51
|
Li N, Zhang X, Dong H, Hu Y, Qian Y. Bidirectional relationship of mast cells-neurovascular unit communication in neuroinflammation and its involvement in POCD. Behav Brain Res 2017; 322:60-69. [PMID: 28082194 DOI: 10.1016/j.bbr.2017.01.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 12/31/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
Postoperative cognitive dysfunction (POCD) has been hypothesized to be mediated by surgery-induced neuroinflammation, which is also a key element in the pathobiology of neurodegenerative diseases, stroke, and neuropsychiatric disorders. There is extensive communication between the immune system and the central nervous system (CNS). Inflammation resulting from activation of the innate immune system cells in the periphery can impact central nervous system behaviors, such as cognitive performance. Mast cells (MCs), as the"first responders" in the CNS, can initiate, amplify, and prolong other immune and nervous responses upon activation. In addition, MCs and their secreted mediators modulate inflammatory processes in multiple CNS pathologies and can thereby either contribute to neurological damage or confer neuroprotection. Neuroinflammation has been considered to be linked to neurovascular dysfunction in several neurological disorders. This review will provide a brief overview of the bidirectional relationship of MCs-neurovascular unit communication in neuroinflammation and its involvement in POCD, providing a new and unique therapeutic target for the adjuvant treatment of POCD.
Collapse
Affiliation(s)
- Nana Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Xiang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Hongquan Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Youli Hu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Yanning Qian
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, PR China.
| |
Collapse
|
52
|
Vukman KV, Lalor R, Aldridge A, O'Neill SM. Mast cells: new therapeutic target in helminth immune modulation. Parasite Immunol 2016; 38:45-52. [PMID: 26577605 DOI: 10.1111/pim.12295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023]
Abstract
Helminth infection and their secreted antigens have a protective role in many immune-mediated inflammatory disorders such as inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. However, studies have focused primarily on identifying immune protective mechanisms of helminth infection and their secreted molecules on dendritic cells and macrophages. Given that mast cells have been shown to be implicated in the pathogenesis and progression of many inflammatory disorders, their role should also be examined and considered as cellular target for helminth-based therapies. As there is a dearth of studies examining the interaction of helminth-derived antigens and mast cells, this review will focus on the role of mast cells during helminth infection and examine our current understanding of the involvement of mast cells in TH 1/TH 17-mediated immune disorders. In this context, potential mechanisms by which helminths could target the TH 1/TH 17 promoting properties of mast cells can be identified to unveil novel therapeutic mast cell driven targets in combating these inflammatory disorders.
Collapse
Affiliation(s)
- K V Vukman
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvarad ter 4., H-1089, Budapest, Hungry.,Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - R Lalor
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - A Aldridge
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| | - S M O'Neill
- Parasite Immune Modulation Group, School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
53
|
Significant Contribution of Mouse Mast Cell Protease 4 in Early Phases of Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2016; 2016:9797021. [PMID: 27610007 PMCID: PMC5005578 DOI: 10.1155/2016/9797021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/13/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a mouse model that reproduces cardinal signs of clinical, histopathological, and immunological features found in Multiple Sclerosis (MS). Mast cells are suggested to be involved in the main inflammatory phases occurring during EAE development, possibly by secreting several autacoids and proteases. Among the latter, the chymase mouse mast cell protease 4 (mMCP-4) can contribute to the inflammatory response by producing endothelin-1 (ET-1). The aim of this study was to determine the impact of mMCP-4 on acute inflammatory stages in EAE. C57BL/6 wild type (WT) or mMCP-4 knockout (KO) mice were immunized with MOG35–55 plus complete Freund's adjuvant followed by pertussis toxin. Immunized WT mice presented an initial acute phase characterized by progressive increases in clinical score, which were significantly reduced in mMCP-4 KO mice. In addition, higher levels of spinal myelin were found in mMCP-4 KO as compared with WT mice. Finally, whereas EAE triggered significant increases in brain levels of mMCP-4 mRNA and immunoreactive ET-1 in WT mice, the latter peptide was reduced to basal levels in mMCP-4 KO congeners. Together, the present study supports a role for mMCP-4 in the early inflammatory phases of the disease in a mouse model of MS.
Collapse
|
54
|
Georgin-Lavialle S, Gaillard R, Moura D, Hermine O. Mastocytosis in adulthood and neuropsychiatric disorders. Transl Res 2016; 174:77-85.e1. [PMID: 27063957 DOI: 10.1016/j.trsl.2016.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/04/2016] [Accepted: 03/15/2016] [Indexed: 12/18/2022]
Abstract
Patients with mastocytosis can display various disabling general and neuropsychological symptoms among one third of them, including general signs such as fatigue and musculoskeletal pain, which can have a major impact on quality of life. Neurological symptoms are less frequent and mainly consist of acute or chronic headache (35%), rarely syncopes (5%), acute onset back pain (4%), and in a few cases, clinical and radiological symptoms resembling or allowing the diagnosis of multiple sclerosis (1.3%). Headaches are associated with symptoms related to mast cell activation syndrome (flushes, prurit, and so forth) and more frequently present as migraine (37.5%), with often aura (66%). Depression-anxiety like symptoms can occur in 40% to 60% of the patients and cognitive impairment is not rare (38.6%). The pathophysiology of these symptoms could be linked to tissular mast cell infiltration or to mast cell mediators release or both. The tryptophan metabolism could be involved in mast cell-induced neuroinflammation through indoleamine-2,3-dioxygenase activation. Treatments targeting mast cell may be useful to target neuropsychological features associated with mastocytosis, including tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Sophie Georgin-Lavialle
- Service de médecine Interne, Hôpital Tenon, Université Pierre et Marie Curie, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Raphaël Gaillard
- Laboratoire de "Physiopathologie des maladies Psychiatriques", Centre de Psychiatrie et Neurosciences U894, INSERM; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Service de Psychiatrie, Centre Hospitalier Sainte-Anne, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Paris, France; Human Histopathology and Animal Models, Infection and Epidemiology Department, Institut Pasteur, Paris, France
| | - Daniela Moura
- Centre de référence des mastocytoses, Université Paris Descartes, Sorbonne, Paris Cité, Hôpital Necker Enfants malades, Paris, France
| | - Olivier Hermine
- Centre de référence des mastocytoses, Université Paris Descartes, Sorbonne, Paris Cité, Hôpital Necker Enfants malades, Paris, France; INSERM U1163 and CNRS ERL 8254 and Laboratory of Physiopathology and Treatment of Hematological Disorders Hôpital Necker-Enfants malades, Institut Imagine, Paris, France; Service d'hématologie adulte, Université Paris Descartes, Sorbonne, Paris Cité, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Hôpital Necker-Enfants malades, Paris, France.
| |
Collapse
|
55
|
Russi AE, Walker-Caulfield ME, Guo Y, Lucchinetti CF, Brown MA. Meningeal mast cell-T cell crosstalk regulates T cell encephalitogenicity. J Autoimmun 2016; 73:100-10. [PMID: 27396526 DOI: 10.1016/j.jaut.2016.06.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
GM-CSF is a cytokine produced by T helper (Th) cells that plays an essential role in orchestrating neuroinflammation in experimental autoimmune encephalomyelitis, a rodent model of multiple sclerosis. Yet where and how Th cells acquire GM-CSF expression is unknown. In this study we identify mast cells in the meninges, tripartite tissues surrounding the brain and spinal cord, as important contributors to antigen-specific Th cell accumulation and GM-CSF expression. In the absence of mast cells, Th cells do not accumulate in the meninges nor produce GM-CSF. Mast cell-T cell co-culture experiments and selective mast cell reconstitution of the meninges of mast cell-deficient mice reveal that resident meningeal mast cells are an early source of caspase-1-dependent IL-1β that licenses Th cells to produce GM-CSF and become encephalitogenic. We also provide evidence of mast cell-T cell co-localization in the meninges and CNS of recently diagnosed acute MS patients indicating similar interactions may occur in human demyelinating disease.
Collapse
Affiliation(s)
- Abigail E Russi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | | | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
56
|
Mekori YA, Hershko AY, Frossi B, Mion F, Pucillo CE. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells. Eur J Pharmacol 2016; 778:84-9. [DOI: 10.1016/j.ejphar.2015.03.087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/26/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022]
|
57
|
Betto E, Usuelli V, Mandelli A, Badami E, Sorini C, Capolla S, Danelli L, Frossi B, Guarnotta C, Ingrao S, Tripodo C, Pucillo C, Gri G, Falcone M. Mast cells contribute to autoimmune diabetes by releasing interleukin-6 and failing to acquire a tolerogenic IL-10 + phenotype. Clin Immunol 2015; 178:29-38. [PMID: 26732858 DOI: 10.1016/j.clim.2015.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/10/2015] [Accepted: 12/24/2015] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs) are innate immune cells that exert positive and negative immune modulatory functions capable to enhance or limit the intensity and/or duration of adaptive immune responses. Although MCs are crucial to regulate T cell immunity, their action in the pathogenesis of autoimmune diseases is still debated. Here we demonstrate that MCs play a crucial role in T1D pathogenesis so that their selective depletion in conditional MC knockout NOD mice protects them from the disease. MCs of diabetic NOD mice are overly inflammatory and secrete large amounts of IL-6 that favors differentiation of IL-17-secreting T cells at the site of autoimmunity. Moreover, while MCs of control mice acquire an IL-10+ phenotype upon interaction with FoxP3+ Treg cells, MCs of NOD mice do not undergo this tolerogenic differentiation. Our data indicate that overly inflammatory MCs unable to acquire a tolerogenic IL-10+ phenotype contribute to the pathogenesis of autoimmune T1D.
Collapse
Affiliation(s)
- Elena Betto
- Department of Biomedical Science and Technology and M.A.T.I. Center of Excellence, University of Udine, Udine, Italy
| | - Vera Usuelli
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Mandelli
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Ester Badami
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies, ISMETT, Palermo, Italy
| | - Chiara Sorini
- Experimental Diabetes Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Sara Capolla
- Department of Biomedical Science and Technology and M.A.T.I. Center of Excellence, University of Udine, Udine, Italy
| | - Luca Danelli
- Department of Biomedical Science and Technology and M.A.T.I. Center of Excellence, University of Udine, Udine, Italy
| | - Barbara Frossi
- Department of Biomedical Science and Technology and M.A.T.I. Center of Excellence, University of Udine, Udine, Italy
| | - Carla Guarnotta
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Sabrina Ingrao
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Carlo Pucillo
- Department of Biomedical Science and Technology and M.A.T.I. Center of Excellence, University of Udine, Udine, Italy.
| | - Giorgia Gri
- Department of Biomedical Science and Technology and M.A.T.I. Center of Excellence, University of Udine, Udine, Italy
| | - Marika Falcone
- Department of Biomedical Science and Technology and M.A.T.I. Center of Excellence, University of Udine, Udine, Italy.
| |
Collapse
|
58
|
Conti P, Kempuraj D. Important role of mast cells in multiple sclerosis. Mult Scler Relat Disord 2015; 5:77-80. [PMID: 26856948 DOI: 10.1016/j.msard.2015.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/07/2015] [Indexed: 10/22/2022]
Abstract
Autoimmunity is a disease that occurs when the body tissue is attacked by its own immune system. Multiple sclerosis (MS) is an autoimmune illness which triggers neurological progressive and persistent functions. MS is associated with an abnormal B-cell response and upregulation of T-cell reactivity against a multitude of antigens. Mast cells are the first line of the innate immune system and act by degranulating and secreting chemical mediators and cytokines. Their participation on the central nervous system has been recognized since the beginning of the last century. They have an important role in autoimmune disease, including MS where they mediate inflammation and demyelinization by presenting myelin antigens to T cells or disrupting the blood-brain barrier and permitting entry of inflammatory cells and cytokines. The participation of mast cells in MS is demonstrated by gene overexpression of chemical mediators and inflammatory cytokines. Here we report the relationship and involvement between mast cells and multiple sclerosis.
Collapse
Affiliation(s)
- P Conti
- Postgraduate, Medical School, University of Chieti-Pescara, Viale Unità dell'Italia 73, 66013 Chieti, Italy.
| | - D Kempuraj
- Department of Neurology, Carver College of Medicine, University of Iowa, IA, USA.
| |
Collapse
|
59
|
Gan PY, O'Sullivan KM, Ooi JD, Alikhan MA, Odobasic D, Summers SA, Kitching AR, Holdsworth SR. Mast Cell Stabilization Ameliorates Autoimmune Anti-Myeloperoxidase Glomerulonephritis. J Am Soc Nephrol 2015; 27:1321-33. [PMID: 26374606 DOI: 10.1681/asn.2014090906] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 07/21/2015] [Indexed: 12/18/2022] Open
Abstract
Observations in experimental murine myeloperoxidase (MPO)-ANCA-associated vasculitis (AAV) show mast cells degranulate, thus enhancing injury as well as producing immunomodulatory IL-10. Here we report that, compared with biopsy specimens from control patients, renal biopsy specimens from 44 patients with acute AAV had more mast cells in the interstitium, which correlated with the severity of tubulointerstitial injury. Furthermore, most of the mast cells were degranulated and spindle-shaped in patients with acute AAV, indicating an activated phenotype. We hypothesized that the mast cell stabilizer disodium cromoglycate would attenuate mast cell degranulation without affecting IL-10 production. We induced anti-MPO GN by immunizing mice with MPO and a low dose of anti-glomerular basement membrane antibody. When administered before or after induction of MPO autoimmunity in these mice, disodium cromoglycate attenuated mast cell degranulation, development of autoimmunity, and development of GN, without diminishing IL-10 production. In contrast, administration of disodium cromoglycate to mast cell-deficient mice had no effect on the development of MPO autoimmunity or GN. MPO-specific CD4(+) effector T cell proliferation was enhanced by co-culture with mast cells, but in the presence of disodium cromoglycate, proliferation was inhibited and IL-10 production was enhanced. These results indicate that disodium cromoglycate blocks injurious mast cell degranulation specifically without affecting the immunomodulatory role of these cells. Thus as a therapeutic, disodium cromoglycate may substantially enhance the regulatory role of mast cells in MPO-AAV.
Collapse
Affiliation(s)
- Poh-Yi Gan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and
| | - Kim M O'Sullivan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and
| | - Maliha A Alikhan
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and
| | - Dragana Odobasic
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and
| | - Shaun A Summers
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and
| | - A Richard Kitching
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and Department of Nephrology, Monash Health, 246 Clayton Road, Clayton, VIC 3168, Australia
| | - Stephen R Holdsworth
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Clayton, VIC, Australia; and Department of Nephrology, Monash Health, 246 Clayton Road, Clayton, VIC 3168, Australia
| |
Collapse
|
60
|
Hemichannels Are Required for Amyloid β-Peptide-Induced Degranulation and Are Activated in Brain Mast Cells of APPswe/PS1dE9 Mice. J Neurosci 2015; 35:9526-38. [PMID: 26109673 DOI: 10.1523/jneurosci.3686-14.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) store an array of proinflammatory mediators in secretory granules that are rapidly released upon activation by diverse conditions including amyloid beta (Aβ) peptides. In the present work, we found a rapid degranulation of cultured MCs through a pannexin1 hemichannel (Panx1 HC)-dependent mechanism induced by Aβ25-35 peptide. Accordingly, Aβ25-35 peptide also increased membrane current and permeability, as well as intracellular Ca(2+) signal, mainly via Panx1 HCs because all of these responses were drastically inhibited by Panx1 HC blockers and absent in the MCs of Panx1(-/-) mice. Moreover, in acute coronal brain slices of control mice, Aβ25-35 peptide promoted both connexin 43 (Cx43)- and Panx1 HC-dependent MC dye uptake and histamine release, responses that were only Cx43 HC dependent in Panx1(-/-) mice. Because MCs have been found close to amyloid plaques of patients with Alzheimer's disease (AD), their distribution in brain slices of APPswe/PS1dE9 mice, a murine model of AD, was also investigated. The number of MCs in hippocampal and cortical areas increased drastically even before amyloid plaque deposits became evident. Therefore, MCs might act as early sensors of amyloid peptide and recruit other cells to the neuroinflammatory response, thus playing a critical role in the onset and progression of AD.
Collapse
|
61
|
Kempuraj D, Thangavel R, Yang E, Pattani S, Zaheer S, Santillan DA, Santillan MK, Zaheer A. Dopaminergic Toxin 1-Methyl-4-Phenylpyridinium, Proteins α-Synuclein and Glia Maturation Factor Activate Mast Cells and Release Inflammatory Mediators. PLoS One 2015; 10:e0135776. [PMID: 26275153 PMCID: PMC4537263 DOI: 10.1371/journal.pone.0135776] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/24/2015] [Indexed: 12/23/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by the presence of Lewy bodies and degeneration of dopaminergic neurons. 1-methyl-4-phenylpyridinium (MPP+), a metabolite of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and Lewy body component α-synuclein activates glia in PD pathogenesis. Mast cells and glia maturation factor (GMF) are implicated in neuroinflammatory conditions including Multiple Sclerosis. However, the role of mast cells in PD is not yet known. We have analyzed the effect of recombinant GMF, MPP+, α-synuclein and interleukin-33 (IL-33) on mouse bone marrow-derived cultured mast cells (BMMCs), human umbilical cord blood-derived cultured mast cells (hCBMCs) and mouse brain-derived cultured astrocytes by quantifying cytokines/chemokines released using ELISA or by detecting the expression of co-stimulatory molecules CD40 and CD40L by flow cytometry. GMF significantly released chemokine (C-C motif) ligand 2 (CCL2) from BMMCs but its release was reduced in BMMCs from GMF knockout mice. GMF, α-synuclein and MPP+ released IL-1β, β-hexosaminidase from BMMCs, and IL-8 from hCBMCs. GMF released CCL5, and IL-33- induced the expression of GMF from hCBMCs. Novel GMF expression was detected in hCBMCs and BMMCs by immunocytochemistry. GMF released tumor necrosis factor-alpha (TNF-α) from mouse astrocytes, and this release was greater in BMMC- astrocyte coculture than in individual cultures. Flow cytometry results showed increased IL-33 expression by GMF and MPP+, and GMF-induced CD40 expression in astrocytes. Proinflammatory mediator release by GMF, MPP+ and α-synuclein, as well as GMF expression by mast cells indicate a potential therapeutic target for neurodegenerative diseases including PD.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Ramasamy Thangavel
- Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Evert Yang
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Sagar Pattani
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Smita Zaheer
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Donna A. Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Mark K. Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Asgar Zaheer
- Veterans Affairs Health Care System, Iowa City, Iowa, United States of America
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
62
|
Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE. Cell Immunol 2015; 297:69-79. [PMID: 26163773 DOI: 10.1016/j.cellimm.2015.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges.
Collapse
|
63
|
The crucial role of mast cells in blood-brain barrier alterations. Exp Cell Res 2015; 338:119-25. [PMID: 26004870 DOI: 10.1016/j.yexcr.2015.05.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Mast cells are critical regulators of the pathogenesis of the central nervous system diseases, including stroke, multiple sclerosis, and traumatic brain injury, and brain tumors. Here, we have summarized the literature data concerning the involvement of mast cells in blood-brain barrier alterations, and we have suggested a possible role of angiogenic mediators stored in mast cell granules in the vasoproliferative reactions occurring in these pathological conditions. It is conceivable to hypothesize that mast cells might be regarded in a future perspective as a new target for the adjuvant treatment of neurodegenerative diseases and brain tumors through the selective inhibition of angiogenesis, tissue remodeling and tumor-promoting molecules, favoring the secretion of cytotoxic cytokines and preventing mast cell-mediated immune suppression.
Collapse
|
64
|
Russi AE, Walker-Caulfield ME, Ebel ME, Brown MA. Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:5609-13. [PMID: 25972476 DOI: 10.4049/jimmunol.1500068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/10/2015] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis preferentially affects women, and this sexual dimorphism is recapitulated in the SJL mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). In this study, we demonstrate that signaling through c-Kit exerts distinct effects on EAE susceptibility in male and female SJL mice. Previous studies in females show that Kit mutant (W/W(v)) mice are less susceptible to EAE than are wild-type mice. However, male W/W(v) mice exhibit exacerbated disease, a phenotype independent of mast cells and corresponding to a shift from a Th2- to a Th17-dominated T cell response. We demonstrate a previously undescribed deficit in c-Kit(+) type 2 innate lymphoid cells (ILC2s) in W/W(v) mice. ILC2s are also significantly reduced in EAE-susceptible wild-type females, indicating that both c-Kit signals and undefined male-specific factors are required for ILC2 function. We propose that deficiencies in Th2-promoting ILC2s remove an attenuating influence on the encephalitogenic T cell response and therefore increases disease susceptibility.
Collapse
Affiliation(s)
- Abigail E Russi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | | | - Mark E Ebel
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| | - Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611; and
| |
Collapse
|
65
|
Kostic M, Stojanovic I, Marjanovic G, Zivkovic N, Cvetanovic A. Deleterious versus protective autoimmunity in multiple sclerosis. Cell Immunol 2015; 296:122-32. [PMID: 25944389 DOI: 10.1016/j.cellimm.2015.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/18/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disorder of central nervous system, in which myelin specific CD4(+) T cells have a central role in orchestrating pathological events involved in disease pathogenesis. There is compelling evidence that Th1, Th9 and Th17 cells, separately or in cooperation, could mediate deleterious autoimmune response in MS. However, the phenotype differences between Th cell subpopulations initially employed in MS pathogenesis are mainly reflected in the different patterns of inflammation introduction, which results in the development of characteristic pathological features (blood-brain barrier disruption, demyelination and neurodegeneration), clinically presented with MS symptoms. Although, autoimmunity was traditionally seen as deleterious, some studies indicated that autoimmunity mediated by Th2 cells and T regulatory cells could be protective by nature. The concept of protective autoimmunity in MS pathogenesis is still poorly understood, but could be of great importance in better understanding of MS immunology and therefore, creating better therapeutic strategies.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia.
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Goran Marjanovic
- Department of Immunology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty, University of Nis, Blvd. Dr. Zorana Djindjica 81, 18000 Nis, Serbia
| | - Ana Cvetanovic
- Clinic of Oncology, Clinical Centre, Blvd. Dr. Zorana Djindjica 48, 18000 Nis, Serbia
| |
Collapse
|
66
|
Yu X, Kasprick A, Petersen F. Revisiting the role of mast cells in autoimmunity. Autoimmun Rev 2015; 14:751-9. [PMID: 25913139 DOI: 10.1016/j.autrev.2015.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022]
Abstract
Beside their well known role in allergy, mast cells (MCs) are capable to sense multiple signals and have therefore the potential to be involved in many immune responses. MCs are actively present in the target tissues of some autoimmune disorders, suggesting a possible function in the manifestation of such diseases. This idea is strengthened by the evidence that KIT-dependent MC-deficient mice are protected from disease in many mouse models of autoimmunity, including multiple sclerosis, rheumatoid arthritis and autoimmune skin blistering diseases. Thus, the essential role of MCs in autoimmunity not only significantly extends the knowledge of MCs in the immune response but also provides novel therapeutic targets for the treatment of such diseases. However, recent studies using a new generation of KIT-independent MC-deficient strains could not confirm an essential participation of MCs in autoimmune diseases. Therefore, it is necessary to clarify the observed discrepancies and to elucidate the role of MCs in autoimmune diseases. Here, we review the impact of MCs on the development of autoimmune diseases with focus on the controversial effects of MC deficiency in different mouse models of autoimmune diseases. We also try to clarify contradictory findings in mouse studies to finally elucidate the role of MCs in autoimmunity.
Collapse
Affiliation(s)
- Xinhua Yu
- Priority Area Asthma and Allergy, Research Center Borstel, 23845, Borstel, Germany; Laboratory of Autoimmunity, The Medical College of Xiamen University, Xiamen University, 361005 Xiamen, China.
| | - Anika Kasprick
- Priority Area Asthma and Allergy, Research Center Borstel, 23845, Borstel, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Research Center Borstel, 23845, Borstel, Germany
| |
Collapse
|
67
|
Mari ER, Moore JN, Zhang GX, Rostami A. Mechanisms of immunological tolerance in central nervous system inflammatory demyelination. ACTA ACUST UNITED AC 2015; 6:264-274. [PMID: 26425145 DOI: 10.1111/cen3.12196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Multiple sclerosis is a complex autoimmune disease of the central nervous system that results in a disruption of the balance between pro-inflammatory and anti-inflammatory signals in the immune system. Given that central nervous system inflammation can be suppressed by various immunological tolerance mechanisms, immune tolerance has become a focus of research in the attempt to induce long-lasting immune suppression of pathogenic T cells. Mechanisms underlying this tolerance induction include induction of regulatory T cell populations, anergy and the induction of tolerogenic antigen-presenting cells. The intravenous administration of encephalitogenic peptides has been shown to suppress experimental autoimmune encephalomyelitis and induce tolerance by promoting the generation of regulatory T cells and inducing apoptosis of pathogenic T cells. Safe and effective methods of inducing long-lasting immune tolerance are essential for the treatment of multiple sclerosis. By exploring tolerogenic mechanisms, new strategies can be devised to strengthen the regulatory, anti-inflammatory cell populations thereby weakening the pathogenic, pro-inflammatory cell populations.
Collapse
Affiliation(s)
- Elisabeth R Mari
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jason N Moore
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
68
|
Kasprick A, Yu X, Scholten J, Hartmann K, Pas HH, Zillikens D, Ludwig RJ, Petersen F. Conditional depletion of mast cells has no impact on the severity of experimental epidermolysis bullosa acquisita. Eur J Immunol 2015; 45:1462-70. [PMID: 25678008 DOI: 10.1002/eji.201444769] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 01/28/2015] [Accepted: 02/06/2015] [Indexed: 12/16/2022]
Abstract
The role of mast cells (MCs) in autoimmunity is the matter of an intensive scientific debate. Based on observations in different MC-deficient mouse strains, MCs are considered as fundamental players in autoimmune diseases. However, most recent data suggest that the outcome of such diseases is strongly affected by the individual mouse strain used. By the use of two c-Kit mutant MC-deficient mouse strains and one c-Kit-independent strain, we here investigated the role of MCs in a systemic Ab transfer model of epidermolysis bullosa acquisita, a subepidermal autoimmune blistering skin disease characterized by autoantibodies against type VII collagen. While C57BL/6J-Kit(W-sh/W-sh) mice developed an unexpected increased blistering phenotype, no significant differences to WT controls were seen in WBB6F1 -Kit(W/W-v) or the novel Mcpt5-Cre iDTR animals. Interestingly, in a local Ab transfer model, which induces a localized disease, we showed that application of high concentrations of anti-COL7 (where COL7 is type VII collagen) Abs induced MC activation and MC-dependent edema formation that did, however, not contribute to blister induction. Our results indicate that in the autoimmune disorder epidermolysis bullosa acquisita MCs do not contribute to the immune-mediated tissue injury. Modern c-Kit mutant-independent MC-deficient mouse strains will help to further redefine the role of MCs in autoimmunity.
Collapse
Affiliation(s)
- Anika Kasprick
- Priority Area Asthma and Allergy, Members of the German Center for Lung Research, Research Center Borstel, Borstel, Germany
| | - Xinhua Yu
- Priority Area Asthma and Allergy, Members of the German Center for Lung Research, Research Center Borstel, Borstel, Germany
| | | | - Karin Hartmann
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Hendri H Pas
- Centre of Blistering Diseases, Department of Dermatology, University of Groningen, Groningen, The Netherlands
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Frank Petersen
- Priority Area Asthma and Allergy, Members of the German Center for Lung Research, Research Center Borstel, Borstel, Germany
| |
Collapse
|
69
|
Galli SJ, Tsai M, Marichal T, Tchougounova E, Reber LL, Pejler G. Approaches for analyzing the roles of mast cells and their proteases in vivo. Adv Immunol 2015; 126:45-127. [PMID: 25727288 DOI: 10.1016/bs.ai.2014.11.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such "controversial" results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified.
Collapse
Affiliation(s)
- Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; Microbiology & Immunology, Stanford University School of Medicine, Stanford, California, USA.
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Thomas Marichal
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA; GIGA-Research and Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Elena Tchougounova
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden; Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
70
|
Russi AE, Brown MA. The meninges: new therapeutic targets for multiple sclerosis. Transl Res 2015; 165:255-69. [PMID: 25241937 PMCID: PMC4424790 DOI: 10.1016/j.trsl.2014.08.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
The central nervous system (CNS) largely comprises nonregenerating cells, including neurons and myelin-producing oligodendrocytes, which are particularly vulnerable to immune cell-mediated damage. To protect the CNS, mechanisms exist that normally restrict the transit of peripheral immune cells into the brain and spinal cord, conferring an "immune-specialized" status. Thus, there has been a long-standing debate as to how these restrictions are overcome in several inflammatory diseases of the CNS, including multiple sclerosis (MS). In this review, we highlight the role of the meninges, tissues that surround and protect the CNS and enclose the cerebral spinal fluid, in promoting chronic inflammation that leads to neuronal damage. Although the meninges have traditionally been considered structures that provide physical protection for the brain and spinal cord, new data have established these tissues as sites of active immunity. It has been hypothesized that the meninges are important players in normal immunosurveillance of the CNS but also serve as initial sites of anti-myelin immune responses. The resulting robust meningeal inflammation elicits loss of localized blood-brain barrier (BBB) integrity and facilitates a large-scale influx of immune cells into the CNS parenchyma. We propose that targeting the cells and molecules mediating these inflammatory responses within the meninges offers promising therapies for MS that are free from the constraints imposed by the BBB. Importantly, such therapies may avoid the systemic immunosuppression often associated with the existing treatments.
Collapse
Affiliation(s)
- Abigail E Russi
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Melissa A Brown
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
71
|
Maciel TT, Moura IC, Hermine O. The role of mast cells in cancers. F1000PRIME REPORTS 2015; 7:09. [PMID: 25705392 PMCID: PMC4311277 DOI: 10.12703/p7-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mast cells are immune cells that accumulate in the tumors and their microenvironment during disease progression. Mast cells are armed with a wide array of receptors that sense environment modifications and, upon stimulation, they are able to secrete several biologically active factors involved in the modulation of tumor growth. For example, mast cells are able to secrete pro-angiogenic and growth factors but also pro- and anti-inflammatory mediators. Recent studies have allowed substantial progress in understanding the role of mast cells in tumorigenesis/disease progression but further studies are necessary to completely elucidate their impact in the pathophysiology of cancer. Here we review observations suggesting that mast cells could modulate tumor growth in humans. We also discuss the drawbacks related to observations from mast cell-deficient mouse models, which could have consequences in the determination of a potential causative relationship between mast cells and cancer. We believe that the understanding of the precise role of mast cells in tumor development and progression will be of critical importance for the development of new targeted therapies in human cancers.
Collapse
Affiliation(s)
- Thiago T. Maciel
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications24 Boulevard du Montparnasse, 75015, ParisFrance
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute24 Boulevard du Montparnasse, 75015, ParisFrance
- CNRS ERL 825424 Boulevard du Montparnasse, 75015, ParisFrance
- Laboratory of Excellence GR-Ex24 Boulevard du Montparnasse, 75015, ParisFrance
- Centre de Référence National des Mastocytoses (CEREMAST)149 rue de Sèvres, 75015, ParisFrance
| | - Ivan C. Moura
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications24 Boulevard du Montparnasse, 75015, ParisFrance
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute24 Boulevard du Montparnasse, 75015, ParisFrance
- CNRS ERL 825424 Boulevard du Montparnasse, 75015, ParisFrance
- Laboratory of Excellence GR-Ex24 Boulevard du Montparnasse, 75015, ParisFrance
- Centre de Référence National des Mastocytoses (CEREMAST)149 rue de Sèvres, 75015, ParisFrance
| | - Olivier Hermine
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications24 Boulevard du Montparnasse, 75015, ParisFrance
- Paris Descartes – Sorbonne Paris Cité University, Imagine Institute24 Boulevard du Montparnasse, 75015, ParisFrance
- CNRS ERL 825424 Boulevard du Montparnasse, 75015, ParisFrance
- Laboratory of Excellence GR-Ex24 Boulevard du Montparnasse, 75015, ParisFrance
- Centre de Référence National des Mastocytoses (CEREMAST)149 rue de Sèvres, 75015, ParisFrance
- Service d'Hématologie clinique, Assistance Publique-Hôpitaux de Paris, Hôpital Necker149 rue de Sèvres, 75015, ParisFrance
| |
Collapse
|
72
|
Siebenhaar F, Falcone FH, Tiligada E, Hammel I, Maurer M, Sagi-Eisenberg R, Levi-Schaffer F. The search for mast cell and basophil models--are we getting closer to pathophysiological relevance? Allergy 2015; 70:1-5. [PMID: 25155287 DOI: 10.1111/all.12517] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- F. Siebenhaar
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - F. H. Falcone
- Division of Molecular and Cellular Science; School of Pharmacy; University of Nottingham; Nottingham UK
| | - E. Tiligada
- Department of Pharmacology; Medical School University of Athens; Athens Greece
| | - I. Hammel
- Department of Pathology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - M. Maurer
- Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - R. Sagi-Eisenberg
- Department of Cell and Developmental Biology; Sackler Faculty of Medicine; Tel Aviv University; Tel Aviv Israel
| | - F. Levi-Schaffer
- Department of Pharmacology and Experimental Therapeutics; School of Pharmacy; Institute for Drug Research; Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem Israel
| |
Collapse
|
73
|
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is best known for its ability to cause skin cancer, it is also associated with protection against a range of autoimmune diseases, particularly multiple sclerosis (MS). Although the precise mechanism by which sunlight affords protection from MS remains to be determined, some have hypothesised that UV immunosuppression explains the "latitude-gradient effect" associated with MS. By stimulating the release of soluble factors in exposed skin, UV activates immune suppressive pathways that culminate in the induction of regulatory cells in distant tissues. Each and every one of the immune suppressive cells and molecules activated by UV exposure are potential targets for treating and preventing MS. A thorough understanding of the mechanisms involved is therefore required if we are to realise the therapeutic potential of photoimmunology.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia. .,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Infectious Diseases and Immunology, Level 5 (East), The Charles Perkins Centre Hub (D17), University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
74
|
DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, Lopez M, McNagny KM, Hughes MR. Mast cells in human health and disease. Methods Mol Biol 2015; 1220:93-119. [PMID: 25388247 DOI: 10.1007/978-1-4939-1568-2_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.
Collapse
Affiliation(s)
- Erin J DeBruin
- Department of Experimental Medicine, The Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Abstract
Mast cell, basophil, and eosinophil lineages all derive from CD34(+) hemopoietic stem cells; however, mast cells are derived from a distinct, nonmyeloid progenitor, while eosinophils and basophils share a common myeloid progenitor. These progenitors likely evolved from an ancestral leukocyte population involved in innate immunity and currently play a central role in the pathology of allergic disease. Advances in isolation and analysis of mast cell and basophil/eosinophil progenitor populations have been critical to understanding lineage commitment, differentiation, function, and transcriptional regulation of these cells and have provided a way of monitoring the effect of novel investigational therapies on these cell populations in samples of blood, bone marrow, and airway secretions.
Collapse
Affiliation(s)
- Gail M Gauvreau
- McMaster University, HSC-3U26, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1,
| | | |
Collapse
|
77
|
Abstract
It has been determined that there is extensive communication between the immune system and the central nervous system (CNS). Proinflammatory cytokines play a key role in this communication. There is an emerging realization that glia and microglia, in particular, (which are the brain’s resident macrophages), are an important source of inflammatory mediators and may have fundamental roles in CNS disorders. Microglia respond also to proinflammatory signals released from other non-neuronal cells, principally those of immune origin, such as mast cells. Mast cells reside in the CNS and are capable of migrating across the blood-brain barrier (BBB) in situations where the barrier is compromised as a result of CNS pathology. Mast cells are both sensors and effectors in communication among nervous, vascular, and immune systems. In the brain, they reside on the brain side of the BBB, and interact with astrocytes, microglia, and blood vessels via their neuroactive stored and newly synthesized chemicals. They are first responders, acting as catalysts and recruiters to initiate, amplify, and prolong other immune and nervous responses upon activation. Mast cells both promote deleterious outcomes in brain function and contribute to normative behavioral functioning, particularly cognition and emotion. Mast cells may play a key role in treating systemic inflammation or blockade of signaling pathways from the periphery to the brain.
Collapse
Affiliation(s)
- Hongquan Dong
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Xiang Zhang
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| | - Yanning Qian
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (mainland)
| |
Collapse
|
78
|
Murta V, Farías MI, Pitossi FJ, Ferrari CC. Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood-brain barrier integrity. J Neuroimmunol 2014; 278:30-43. [PMID: 25595250 DOI: 10.1016/j.jneuroim.2014.11.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 12/13/2022]
Abstract
Peripheral circulating cytokines are involved in immune to brain communication and systemic inflammation is considered a risk factor for flaring up the symptoms in most neurodegenerative diseases. We induced both central inflammatory demyelinating lesion, and systemic inflammation with an interleukin-1β expressing adenovector. The peripheral pro-inflammatory stimulus aggravated the ongoing central lesion independently of the blood-brain barrier (BBB) integrity. This model allows studying the role of specific molecules and cells (neutrophils) from the innate immune system, in the relationship between central and peripheral communication, and on relapsing episodes of demyelinating lesions, along with the role of BBB integrity.
Collapse
Affiliation(s)
- Verónica Murta
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - María Isabel Farías
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - Fernando Juan Pitossi
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| | - Carina Cintia Ferrari
- Laboratorio de Terapias Regenerativas y Protectoras del Sistema Nervioso, Leloir Institute Foundation, Institute for Biochemical Investigations, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
79
|
Kritas SK, Saggini A, Cerulli G, Caraffa A, Antinolfi P, Pantalone A, Rosati M, Tei M, Speziali A, Saggini R, Frydas A, Conti P. Impact of mast cells on multiple sclerosis: inhibitory effect of natalizumab. Int J Immunopathol Pharmacol 2014; 27:331-5. [PMID: 25280024 DOI: 10.1177/039463201402700303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mast cells (MCs) derive from a distinct precursor in the bone marrow and are predominantly found in tissues at the interface between the host and the external environment where they can secrete mediators without overt degranulation. Mast cells mature under local tissue microenvironmental factors and are necessary for the development of allergic reactions, through crosslinking of their surface receptors for IgE (FcεRI), leading to degranulation and the release of vasoactive, pro-inflammatory and nociceptive mediators that include histamine, pro-inflammatory and anti-inflammatory cytokines and proteolytic enzymes. Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory demylination within the central nervous system. MCs are involved in the pathogenesis of MS by generating various vasoactive mediators and cytokines and participate in the destruction of the myelin sheath and the neuronal cells. The process of the development of demyelinating plaques in MS is probably linked with the rupture of the blood-brain barrier by MC products. The effects of natalizumab, which is a very effective drug in reducing the annualized relapse rate and other relapse-based endpoints, are discussed. Here, we report the relationship between MCs and MS.
Collapse
Affiliation(s)
- S K Kritas
- Department of Microbiology and Infectious Diseases, School of Veterinary Medicine, Aristotle University of Thessaloniki, Macedonia, Greece
| | - A Saggini
- Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - G Cerulli
- Nicola's Foundation, Onlus, Arezzo, Italy
| | - A Caraffa
- Orthopedic Division, University of Perugia, Perugia, Italy
| | - P Antinolfi
- Orthopedic Division, University of Perugia, Perugia, Italy
| | - A Pantalone
- Orthopedic Division, University of Chieti-Pescara, Chieti, Italy
| | - M Rosati
- Gynecology Clinic, Pescara Hospital, Pescara, Italy
| | - M Tei
- Nicola's Foundation, Onlus, Arezzo, Italy
| | - A Speziali
- Nicola's Foundation, Onlus, Arezzo, Italy
| | - R Saggini
- Department of Neurosciences and Imaging, Faculty of Medicine and Surgery, G. d'Annunzio University Chieti-Pescara, Chieti, Italy
| | - A Frydas
- Aristotle University of Thessaloniki, Macedonia, Greece
| | - P Conti
- Immunology Division, Medical School, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
80
|
Rönnberg E, Johnzon CF, Calounova G, Garcia Faroldi G, Grujic M, Hartmann K, Roers A, Guss B, Lundequist A, Pejler G. Mast cells are activated by Staphylococcus aureus in vitro but do not influence the outcome of intraperitoneal S. aureus infection in vivo. Immunology 2014; 143:155-63. [PMID: 24689370 DOI: 10.1111/imm.12297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is a major pathogen that can cause a broad spectrum of serious infections including skin infections, pneumonia and sepsis. Peritoneal mast cells have been implicated in the host response towards various bacterial insults and to provide mechanistic insight into the role of mast cells in intraperitoneal bacterial infection we here studied the global effects of S. aureus on mast cell gene expression. After co-culture of peritoneal mast cells with live S. aureus we found by gene array analysis that they up-regulate a number of genes. Many of these corresponded to pro-inflammatory cytokines, including interleukin-3, interleukin-13 and tumour necrosis factor-α. The cytokine induction in response to S. aureus was confirmed by ELISA. To study the role of peritoneal mast cells during in vivo infection with S. aureus we used newly developed Mcpt5-Cre(+) × R-DTA mice in which mast cell deficiency is independent of c-Kit. This is in contrast to previous studies in which an impact of mast cells on bacterial infection has been proposed based on the use of mice whose mast cell deficiency is a consequence of defective c-Kit signalling. Staphylococcus aureus was injected intraperitoneally into mast-cell-deficient Mcpt5-Cre(+) × R-DTA mice using littermate mast-cell-sufficient mice as controls. We did not observe any difference between mast-cell-deficient and control mice with regard to weight loss, bacterial clearance, inflammation or cytokine production. We conclude that, despite peritoneal mast cells being activated by S. aureus in vitro, they do not influence the in vivo manifestations of intraperitoneal S. aureus infection.
Collapse
Affiliation(s)
- Elin Rönnberg
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Gutierrez DA, Fu W, Schonefeldt S, Feyerabend TB, Ortiz-Lopez A, Lampi Y, Liston A, Mathis D, Rodewald HR. Type 1 diabetes in NOD mice unaffected by mast cell deficiency. Diabetes 2014; 63:3827-34. [PMID: 24917576 DOI: 10.2337/db14-0372] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets.
Collapse
Affiliation(s)
- Dario A Gutierrez
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Wenxian Fu
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA
| | - Susann Schonefeldt
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | | | - Adriana Ortiz-Lopez
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA
| | - Yulia Lampi
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
82
|
Förster A, Preussner LM, Seeger JM, Rabenhorst A, Kashkar H, Mrowietz U, Hartmann K. Dimethylfumarate induces apoptosis in human mast cells. Exp Dermatol 2014; 22:719-24. [PMID: 24112621 DOI: 10.1111/exd.12247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 12/30/2022]
Abstract
Mast cells modulate autoimmune diseases such as psoriasis and multiple sclerosis. Fumaric acid esters (FAEs) are widely used for the treatment of psoriasis, and dimethylfumarate (DMF) has recently been approved for multiple sclerosis. In this study, we analysed the cytotoxic effect of FAEs on human mast cells. Specifically, cell death was analysed in the human mast cell line HMC-1 and in primary cord blood-derived mast cells (CBMCs) after incubation with fumaric acid (FA), monomethylfumarate (MMF), DMF and calcium bis(monomethylfumarate) (Ca-MF). Our data show that only DMF potently induces apoptotic cell death in HMC-1 cells and CBMCs. DMF-mediated apoptosis was associated with increased expression of Bax and Bak and activation of caspase-9 and caspase-6. Interestingly, DMF also enhanced the sensitivity of CBMCs towards TRAIL- and dexamethasone-induced apoptosis. These findings demonstrate for the first time that DMF induces apoptosis of human mast cells, primarily via the mitochondrial apoptotic pathway. Our study contributes to the understanding of the beneficial effects of FAEs in autoimmune diseases and provides a rationale for exploiting FAEs for other diseases associated with mast cells.
Collapse
Affiliation(s)
- Anja Förster
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
83
|
da Silva EZM, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem 2014; 62:698-738. [PMID: 25062998 PMCID: PMC4230976 DOI: 10.1369/0022155414545334] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
Collapse
Affiliation(s)
- Elaine Zayas Marcelino da Silva
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Maria Célia Jamur
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| | - Constance Oliver
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil (EZMDS, MCJ, CO)
| |
Collapse
|
84
|
|
85
|
Cruz-Orengo L, Daniels BP, Dorsey D, Basak SA, Grajales-Reyes JG, McCandless EE, Piccio L, Schmidt RE, Cross AH, Crosby SD, Klein RS. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest 2014; 124:2571-84. [PMID: 24812668 DOI: 10.1172/jci73408] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/20/2014] [Indexed: 11/17/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the CNS that is characterized by BBB dysfunction and has a much higher incidence in females. Compared with other strains of mice, EAE in the SJL mouse strain models multiple features of MS, including an enhanced sensitivity of female mice to disease; however, the molecular mechanisms that underlie the sex- and strain-dependent differences in disease susceptibility have not been described. We identified sphingosine-1-phosphate receptor 2 (S1PR2) as a sex- and strain-specific, disease-modifying molecule that regulates BBB permeability by destabilizing adherens junctions. S1PR2 expression was increased in disease-susceptible regions of the CNS of both female SJL EAE mice and female patients with MS compared with their male counterparts. Pharmacological blockade or lack of S1PR2 signaling decreased EAE disease severity as the result of enhanced endothelial barrier function. Enhanced S1PR2 signaling in an in vitro BBB model altered adherens junction formation via activation of Rho/ROCK, CDC42, and caveolin endocytosis-dependent pathways, resulting in loss of apicobasal polarity and relocation of abluminal CXCL12 to vessel lumina. Furthermore, S1PR2-dependent BBB disruption and CXCL12 relocation were observed in vivo. These results identify a link between S1PR2 signaling and BBB polarity and implicate S1PR2 in sex-specific patterns of disease during CNS autoimmunity.
Collapse
MESH Headings
- Animals
- Autoimmunity/genetics
- Blood-Brain Barrier/immunology
- Blood-Brain Barrier/metabolism
- Case-Control Studies
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Gene Expression Profiling
- Genetic Predisposition to Disease
- Humans
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Multiple Sclerosis/etiology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sex Characteristics
- Species Specificity
- Sphingosine-1-Phosphate Receptors
Collapse
|
86
|
|
87
|
Yokota M, Suzuki K, Tokoyoda K, Meguro K, Hosokawa J, Tanaka S, Ikeda K, Mikata T, Nakayama T, Kohsaka H, Nakajima H. Roles of mast cells in the pathogenesis of inflammatory myopathy. Arthritis Res Ther 2014; 16:R72. [PMID: 24636001 PMCID: PMC4060256 DOI: 10.1186/ar4512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/05/2014] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION In addition to the pivotal roles of mast cells in allergic diseases, recent data suggest that mast cells play crucial roles in a variety of autoimmune responses. However, their roles in the pathogenesis of autoimmune skeletal muscle diseases have not been clarified despite their distribution in skeletal muscle. Therefore, the objective of this study is to determine the roles of mast cells in the development of autoimmune skeletal muscle diseases. METHODS The number of mast cells in the affected muscle was examined in patients with dermatomyositis (DM) or polymyositis (PM). The susceptibility of mast cell-deficient WBB6F1-Kit(W)/Kit(Wv) mice (W/W(v) mice) to a murine model of polymyositis, C protein-induced myositis (CIM), was compared with that of wild-type (WT) mice. The effect of mast cell reconstitution with bone marrow-derived mast cells (BMMCs) on the susceptibility of W/W(v) mice to CIM was also evaluated. RESULTS The number of mast cells in the affected muscle increased in patients with PM as compared with patients with DM. W/W(v) mice exhibited significantly reduced disease incidence and histological scores of CIM as compared with WT mice. The number of CD8⁺ T cells and macrophages in the skeletal muscles of CIM decreased in W/W(v) mice compared with WT mice. Engraftment of BMMCs restored the incidence and histological scores of CIM in W/W(v) mice. Vascular permeability in the skeletal muscle was elevated in WT mice but not in W/W(v) mice upon CIM induction. CONCLUSION Mast cells are involved in the pathogenesis of inflammatory myopathy.
Collapse
|
88
|
Dellinger A, Zhou Z, Connor J, Madhankumar AB, Pamujula S, Sayes CM, Kepley CL. Application of fullerenes in nanomedicine: an update. Nanomedicine (Lond) 2014; 8:1191-208. [PMID: 23837857 DOI: 10.2217/nnm.13.99] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fullerenes are carbon spheres presently being pursued globally for a wide range of applications in nanomedicine. These molecules have unique electronic properties that make them attractive candidates for diagnostic, therapeutic and theranostic applications. Herein, the latest research is discussed on developing fullerene-based therapeutics as antioxidants for inflammatory diseases, their potential as antiviral/bacterial agents, utility as a drug delivery device and the promise of endohedral fullerenes as new MRI contrast agents. The recent discovery that certain fullerene derivatives can stabilize immune effector cells to prevent or inhibit the release of proinflammatory mediators makes them potential candidates for several diseases such as asthma, arthritis and multiple sclerosis. Gadolinium-containing endohedral fullerenes are being pursued as diagnostic MRI contrast agents for several diseases. Finally, a new class of fullerene-based theranostics has been developed, which combine therapeutic and diagnostic capabilities to specifically detect and kill cancer cells.
Collapse
Affiliation(s)
- Anthony Dellinger
- Joint School of Nanoscience & Nanoengineering, 2907 East Lee Street, Greensboro, NC 27401, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Reber LL, Frossard N. Targeting mast cells in inflammatory diseases. Pharmacol Ther 2014; 142:416-35. [PMID: 24486828 DOI: 10.1016/j.pharmthera.2014.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/24/2014] [Indexed: 12/24/2022]
Abstract
Although mast cells have long been known to play a critical role in anaphylaxis and other allergic diseases, they also participate in some innate immune responses and may even have some protective functions. Data from the study of mast cell-deficient mice have facilitated our understanding of some of the molecular mechanisms driving mast cell functions during both innate and adaptive immune responses. This review presents an overview of the biology of mast cells and their potential involvement in various inflammatory diseases. We then discuss some of the current pharmacological approaches used to target mast cells and their products in several diseases associated with mast cell activation.
Collapse
Affiliation(s)
- Laurent L Reber
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, Faculté de Pharmacie, France
| |
Collapse
|
90
|
Heger K, Fierens K, Vahl JC, Aszodi A, Peschke K, Schenten D, Hammad H, Beyaert R, Saur D, van Loo G, Roers A, Lambrecht BN, Kool M, Schmidt-Supprian M. A20-deficient mast cells exacerbate inflammatory responses in vivo. PLoS Biol 2014; 12:e1001762. [PMID: 24453940 PMCID: PMC3891641 DOI: 10.1371/journal.pbio.1001762] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/26/2013] [Indexed: 12/13/2022] Open
Abstract
Mast cells, best known as effector cells in pathogenic immunoglobulin-mediated responses, can sense a variety of “danger” signals; if manipulated to enhance their resulting inflammatory responses, they also exacerbate inflammatory diseases such as arthritis and lung inflammation. Mast cells are implicated in the pathogenesis of inflammatory and autoimmune diseases. However, this notion based on studies in mast cell-deficient mice is controversial. We therefore established an in vivo model for hyperactive mast cells by specifically ablating the NF-κB negative feedback regulator A20. While A20 deficiency did not affect mast cell degranulation, it resulted in amplified pro-inflammatory responses downstream of IgE/FcεRI, TLRs, IL-1R, and IL-33R. As a consequence house dust mite- and IL-33-driven lung inflammation, late phase cutaneous anaphylaxis, and collagen-induced arthritis were aggravated, in contrast to experimental autoimmune encephalomyelitis and immediate anaphylaxis. Our results provide in vivo evidence that hyperactive mast cells can exacerbate inflammatory disorders and define diseases that might benefit from therapeutic intervention with mast cell function. Mast cells mediate allergic and anaphylactic immune reactions. They are also equipped with innate pattern recognition, cytokine, and alarmin receptors, which induce inflammatory responses. Correlative studies in human patients hinted at roles for mast cells in autoimmune and inflammatory diseases. However, studies using mast cell-deficient mice have yielded contradictory results in this context. In this study we determined that A20, the negative feedback regulator, restricts inflammation downstream of the mast cell antigen (allergen) receptor module, innate pattern recognition receptors, and the alarmin receptor IL-33R. By mast cell–specific ablation of A20 we established a mouse model for exaggerated inflammatory but normal anaphylactic mast cell signaling. With these mice we evaluated the impact of increased mast cell-mediated inflammation under experimental conditions aimed at mimicking several inflammatory human diseases. Our results demonstrated that the lack of A20 from mast cells exacerbated disease in mouse models for rheumatoid arthritis and innate forms of asthma, but did not impact disease progression in a mouse model for multiple sclerosis. Our data provide direct evidence that enhanced inflammatory mast cell responses can contribute to disease pathology and do so via sensing and amplifying local inflammatory reactions driven by “danger” stimuli and/or tissue damage that leads to the release of alarmins.
Collapse
MESH Headings
- Anaphylaxis/chemically induced
- Anaphylaxis/immunology
- Anaphylaxis/metabolism
- Anaphylaxis/pathology
- Animals
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Collagen Type II/administration & dosage
- Cysteine Endopeptidases
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Dinitrophenols/administration & dosage
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Gene Expression
- Immunoglobulin E/genetics
- Immunoglobulin E/immunology
- Interleukin-1 Receptor-Like 1 Protein
- Interleukin-33
- Interleukins/genetics
- Interleukins/immunology
- Intracellular Signaling Peptides and Proteins/deficiency
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Mast Cells/immunology
- Mast Cells/metabolism
- Mast Cells/pathology
- Mice
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein/administration & dosage
- NF-kappa B/genetics
- NF-kappa B/immunology
- Peptide Fragments/administration & dosage
- Pneumonia/chemically induced
- Pneumonia/immunology
- Pneumonia/metabolism
- Pneumonia/pathology
- Pyroglyphidae/immunology
- Receptors, IgE/genetics
- Receptors, IgE/immunology
- Receptors, Interleukin/genetics
- Receptors, Interleukin/immunology
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Serum Albumin, Bovine/administration & dosage
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Tumor Necrosis Factor alpha-Induced Protein 3
- Ubiquitin-Protein Ligases/deficiency
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
Collapse
Affiliation(s)
- Klaus Heger
- Molecular Immunology and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kaat Fierens
- Laboratory of Immunoregulation, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - J. Christoph Vahl
- Molecular Immunology and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Attila Aszodi
- Department of Surgery, Ludwig Maximilians Universität, Munich, Germany
| | - Katrin Peschke
- Institute for Immunology, Technische Universität Dresden, Dresden, Germany
| | - Dominik Schenten
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hamida Hammad
- Laboratory of Immunoregulation, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | - Rudi Beyaert
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dieter Saur
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Geert van Loo
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Axel Roers
- Institute for Immunology, Technische Universität Dresden, Dresden, Germany
| | - Bart N. Lambrecht
- Laboratory of Immunoregulation, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mirjam Kool
- Laboratory of Immunoregulation, Department of Pulmonary Medicine, University Hospital Ghent, Ghent, Belgium
- Department for Molecular Biomedical Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marc Schmidt-Supprian
- Molecular Immunology and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- * E-mail:
| |
Collapse
|
91
|
Heger K, Seidler B, Vahl JC, Schwartz C, Kober M, Klein S, Voehringer D, Saur D, Schmidt-Supprian M. CreER(T2) expression from within the c-Kit gene locus allows efficient inducible gene targeting in and ablation of mast cells. Eur J Immunol 2013; 44:296-306. [PMID: 24127407 DOI: 10.1002/eji.201343731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/07/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023]
Abstract
Mast cells are abundantly situated at contact sites between the body and its environment, such as the skin and, especially during certain immune responses, at mucosal surfaces. They mediate allergic reactions and degrade toxins as well as venoms. However, their roles during innate and adaptive immune responses remain controversial and it is likely that major functions remain to be discovered. Recent developments in mast cell-specific conditional gene targeting in the mouse promise to enhance our understanding of these fascinating cells. To complete the genetic toolbox to study mast cell development, homeostasis and function, it is imperative to inducibly manipulate their gene expression. Here, we report the generation of a novel knock-in mouse line expressing a tamoxifen-inducible version of the Cre recombinase from within the endogenous c-Kit locus. We demonstrate highly efficient and specific inducible expression of a fluorescent reporter protein in mast cells both in vivo and in vitro. Furthermore, induction of diphtheria toxin A expression allowed selective and efficient ablation of mast cells at various anatomical locations, while other hematopoietic cells remain unaffected. This novel mouse strain will hence be very valuable to study mast cell homeostasis and how specific genes influence their functions in physiology and pathology.
Collapse
Affiliation(s)
- Klaus Heger
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Nakamura T, Otsuka S, Ichii O, Sakata Y, Nagasaki KI, Hashimoto Y, Kon Y. Relationship between numerous mast cells and early follicular development in neonatal MRL/MpJ mouse ovaries. PLoS One 2013; 8:e77246. [PMID: 24124609 PMCID: PMC3790711 DOI: 10.1371/journal.pone.0077246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/09/2013] [Indexed: 11/21/2022] Open
Abstract
In the neonatal mouse ovary, clusters of oocytes called nests break into smaller cysts and subsequently form individual follicles. During this period, we found numerous mast cells in the ovary of MRL/MpJ mice and investigated their appearance and morphology with follicular development. The ovarian mast cells, which were already present at postnatal day 0, tended to localize adjacent to the surface epithelium. Among 11 different mouse strains, MRL/MpJ mice possessed the greatest number of ovarian mast cells. Ovarian mast cells were also found in DBA/1, BALB/c, NZW, and DBA/2 mice but rarely in C57BL/6, NZB, AKR, C3H/He, CBA, and ICR mice. The ovarian mast cells expressed connective tissue mast cell markers, although mast cells around the surface epithelium also expressed a mucosal mast cell marker in MRL/MpJ mice. Some ovarian mast cells migrated into the oocyte nests and directly contacted the compressed and degenerated oocytes. In MRL/MpJ mice, the number of oocytes in the nest was significantly lower than in the other strains, and the number of oocytes showed a positive correlation with the number of ovarian mast cells. The gene expression of a mast cell marker also correlated with the expression of an oocyte nest marker, suggesting a link between the appearance of ovarian ? 4mast cells and early follicular development. Furthermore, the expression of follicle developmental markers was significantly higher in MRL/MpJ mice than in C57BL/6 mice. These results indicate that the appearance of ovarian mast cells is a unique phenotype of neonatal MRL/MpJ mice, and that ovarian mast cells participate in early follicular development, especially nest breakdown.
Collapse
Affiliation(s)
- Teppei Nakamura
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Saori Otsuka
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Sakata
- Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Ken-Ichi Nagasaki
- Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Yoshiharu Hashimoto
- Office for Faculty Development and Teaching Enriched Veterinary Medicine, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
93
|
Nelissen S, Vangansewinkel T, Geurts N, Geboes L, Lemmens E, Vidal PM, Lemmens S, Willems L, Boato F, Dooley D, Pehl D, Pejler G, Maurer M, Metz M, Hendrix S. Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4. Neurobiol Dis 2013; 62:260-72. [PMID: 24075853 DOI: 10.1016/j.nbd.2013.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 08/23/2013] [Accepted: 09/17/2013] [Indexed: 12/16/2022] Open
Abstract
Mast cells (MCs) are found abundantly in the central nervous system and play a complex role in neuroinflammatory diseases such as multiple sclerosis and stroke. In the present study, we show that MC-deficient Kit(W-sh/W-sh) mice display significantly increased astrogliosis and T cell infiltration as well as significantly reduced functional recovery after spinal cord injury compared to wildtype mice. In addition, MC-deficient mice show significantly increased levels of MCP-1, TNF-α, IL-10 and IL-13 protein levels in the spinal cord. Mice deficient in mouse mast cell protease 4 (mMCP4), an MC-specific chymase, also showed increased MCP-1, IL-6 and IL-13 protein levels in spinal cord samples and a decreased functional outcome after spinal cord injury. A degradation assay using supernatant from MCs derived from either mMCP4(-/-) mice or controls revealed that mMCP4 cleaves MCP-1, IL-6, and IL-13 suggesting a protective role for MC proteases in neuroinflammation. These data show for the first time that MCs may be protective after spinal cord injury and that they may reduce CNS damage by degrading inflammation-associated cytokines via the MC-specific chymase mMCP4.
Collapse
Affiliation(s)
- Sofie Nelissen
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Tim Vangansewinkel
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Nathalie Geurts
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Lies Geboes
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Evi Lemmens
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Pia M Vidal
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Stefanie Lemmens
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Leen Willems
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Francesco Boato
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Debora Pehl
- Dept. of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Germany
| | - Gunnar Pejler
- Dept. of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marcus Maurer
- Dept. of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Germany
| | - Martin Metz
- Dept. of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Germany
| | - Sven Hendrix
- Dept. of Morphology & Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
94
|
Initial immunopathogenesis of multiple sclerosis: innate immune response. Clin Dev Immunol 2013; 2013:413465. [PMID: 24174969 PMCID: PMC3794540 DOI: 10.1155/2013/413465] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/01/2013] [Accepted: 08/09/2013] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. The hallmark to MS is the demyelinated plaque, which consists of a well-demarcated hypocellular area characterized by the loss of myelin, the formation of astrocytic scars, and the mononuclear cell infiltrates concentrated in perivascular spaces composed of T cells, B lymphocytes, plasma cells, and macrophages. Activation of resident cells initiates an inflammatory cascade, leading to tissue destruction, demyelination, and neurological deficit. The immunological phenomena that lead to the activation of autoreactive T cells to myelin sheath components are the result of multiple and complex interactions between environment and genetic background conferring individual susceptibility. Within the CNS, an increase of TLR expression during MS is observed, even in the absence of any apparent microbial involvement. In the present review, we focus on the role of the innate immune system, the first line of defense of the organism, as promoter and mediator of cross reactions that generate molecular mimicry triggering the inflammatory response through an adaptive cytotoxic response in MS.
Collapse
|
95
|
Abstract
Although the pathological role of the immune system in several metabolic disorders, including type 1 diabetes mellitus (T1DM) and Addison's disease, has long been recognized and studied, only in the last decade has it become apparent that the immune system plays a broad and more subtle role in local and systemic metabolism. It is now apparent that the immune system monitors and responds to specific metabolic cues in both pathologic and non-pathologic settings through a set of processes dubbed immunometabolism. Expansion of adipose tissue mass, activation of lipolysis, eating a high fat diet and even non-shivering thermogenesis all lead to the recruitment and activation of immune cells in key metabolic tissues. The responses are complex and not completely defined, and indeed, as is typical of rapidly evolving research areas, there are some conflicting reports, especially related to the metabolic consequences of manipulation of immune function. However, what is clear is the consensus that metabolic processes, especially obesity and obesity-related complications, activate both the innate and adaptive arms of the immune system. Canonical immune processes consist of discrete steps: surveillance, recognition, effector action and resolution. Over the last decade evidence for each part of the immune response has been found at the intersection of the immune system with metabolism. Although evidence for immune surveillance and modulation of metabolism has been found in the liver, muscle, hypothalamus and pancreas, immune cell function has been most intensively studied and best understood in adipose tissue where studies continue to provide insights into the intersection of the metabolic and immune systems. Here we review the modulation of immune cell populations in adipose tissue and discuss regulatory processes implicated in controlling the interface between metabolism and immunologic function.
Collapse
Affiliation(s)
- A W Ferrante
- Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
96
|
Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev 2013; 12:947-53. [DOI: 10.1016/j.autrev.2013.02.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/28/2013] [Indexed: 12/18/2022]
|
97
|
Kwak MH, Kim JE, Hwang IS, Lee YJ, An BS, Hong JT, Lee SH, Hwang DY. Quantitative evaluation of therapeutic effect of Liriope platyphylla on phthalic anhydride-induced atopic dermatitis in IL-4/Luc/CNS-1 Tg mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:880-889. [PMID: 23726789 DOI: 10.1016/j.jep.2013.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A variety of previous pharmacological studies have suggested that Liriope platyphylla may exert beneficial biological effects on inflammation, diabetes, neurodegenerative disorder, obesity, and atopic dermatitis (AD). AIM OF THE STUDY The therapeutic effect of aqueous extract of Liriope platyphylla (AEtLP) on AD was quantified using the luciferase report system in IL-4/Luc/CNS-1 transgenic (Tg) mice. MATERIALS AND METHODS Alteration of the luciferase signal was quantified in IL-4/Luc/CNS-1 Tg mice co-treated with phthalic anhydride (PA) and AEtLP for 2 weeks using the IVIS imaging system. Phenotypes of AD were assessed by ear thickness analysis, measurement of immune-related organ weights, ELISA, and histological and pathological analysis in Tg mice. RESULTS A strong luciferase signal was detected in the abdominal region of IL-4/Luc/CNS-1 Tg mice treated with only PA. However, this signal was significantly reduced in IL-4/Luc/CNS-1 Tg mice co-treated with PA+AEtLP in an AEtLP concentration-dependent manner. Especially, three organs, the thymus, pancreas, and submandibular lymph node (SL), showed a high signal response to PA treatment. Furthermore, to verify whether or not alteration of the luciferase signal is associated with AD, these disease response phenotypes were measured in the same group of mice. Common allergenic responses including increases in ear thickness, lymph node weight, IgE concentration, and infiltrated mast cells were detected in IL-4/Luc/CNS-1 Tg mice treated with PA. However, these responses were dramatically decreased by AEtLP treatment for 2 weeks. CONCLUSION These results indicate that the luciferase signal may successfully reflect the therapeutic effects of AEtLP in IL-4/Luc/CNS-1 Tg mice. Further, we suggest additional evidence that Liriope platyphylla may be considered as an effective therapeutic drug for the treatment of AD.
Collapse
Affiliation(s)
- Moon Hwa Kwak
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang 627-706, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Possible involvement of TLRs and hemichannels in stress-induced CNS dysfunction via mastocytes, and glia activation. Mediators Inflamm 2013; 2013:893521. [PMID: 23935250 PMCID: PMC3713603 DOI: 10.1155/2013/893521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/16/2013] [Accepted: 06/11/2013] [Indexed: 12/13/2022] Open
Abstract
In the central nervous system (CNS), mastocytes and glial cells (microglia, astrocytes and oligodendrocytes) function as sensors of neuroinflammatory conditions, responding to stress triggers or becoming sensitized to subsequent proinflammatory challenges. The corticotropin-releasing hormone and glucocorticoids are critical players in stress-induced mastocyte degranulation and potentiation of glial inflammatory responses, respectively. Mastocytes and glial cells express different toll-like receptor (TLR) family members, and their activation via proinflammatory molecules can increase the expression of connexin hemichannels and pannexin channels in glial cells. These membrane pores are oligohexamers of the corresponding protein subunits located in the cell surface. They allow ATP release and Ca2+ influx, which are two important elements of inflammation. Consequently, activated microglia and astrocytes release ATP and glutamate, affecting myelinization, neuronal development, and survival. Binding of ligands to TLRs induces a cascade of intracellular events leading to activation of several transcription factors that regulate the expression of many genes involved in inflammation. During pregnancy, the previous responses promoted by viral infections and other proinflammatory conditions are common and might predispose the offspring to develop psychiatric disorders and neurological diseases. Such disorders could eventually be potentiated by stress and might be part of the etiopathogenesis of CNS dysfunctions including autism spectrum disorders and schizophrenia.
Collapse
|
99
|
Skaper SD, Facci L, Giusti P. Glia and mast cells as targets for palmitoylethanolamide, an anti-inflammatory and neuroprotective lipid mediator. Mol Neurobiol 2013; 48:340-52. [PMID: 23813098 DOI: 10.1007/s12035-013-8487-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/13/2013] [Indexed: 11/29/2022]
Abstract
Glia are key players in a number of nervous system disorders. Besides releasing glial and neuronal signaling molecules directed to cellular homeostasis, glia respond also to pro-inflammatory signals released from immune-related cells, with the mast cell being of particular interest. A proposed mast cell-glia communication may open new perspectives for designing therapies to target neuroinflammation by differentially modulating activation of non-neuronal cells normally controlling neuronal sensitization-both peripherally and centrally. Mast cells and glia possess endogenous homeostatic mechanisms/molecules that can be upregulated as a result of tissue damage or stimulation of inflammatory responses. Such molecules include the N-acylethanolamines, whose principal family members are the endocannabinoid N-arachidonoylethanolamine (anandamide), and its congeners N-stearoylethanolamine, N-oleoylethanolamine, and N-palmitoylethanolamine (PEA). A key role of PEA may be to maintain cellular homeostasis when faced with external stressors provoking, for example, inflammation: PEA is produced and hydrolyzed by microglia, it downmodulates mast cell activation, it increases in glutamate-treated neocortical neurons ex vivo and in injured cortex, and PEA levels increase in the spinal cord of mice with chronic relapsing experimental allergic encephalomyelitis. Applied exogenously, PEA has proven efficacious in mast cell-mediated experimental models of acute and neurogenic inflammation. This fatty acid amide possesses also neuroprotective effects, for example, in a model of spinal cord trauma, in a delayed post-glutamate paradigm of excitotoxic death, and against amyloid β-peptide-induced learning and memory impairment in mice. These actions may be mediated by PEA acting through "receptor pleiotropism," i.e., both direct and indirect interactions of PEA with different receptor targets, e.g., cannabinoid CB2 and peroxisome proliferator-activated receptor-alpha.
Collapse
Affiliation(s)
- Stephen D Skaper
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo "Egidio Meneghetti" 2, 35131, Padova, Italy,
| | | | | |
Collapse
|
100
|
Therapeutic effects of fermented soycrud on phenotypes of atopic dermatitis induced by phthalic anhydride. Lab Anim Res 2013; 29:103-12. [PMID: 23825483 PMCID: PMC3696623 DOI: 10.5625/lar.2013.29.2.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 11/28/2022] Open
Abstract
Atopic dermatitis (AD), which is known as the most common pruritic skin disease, is caused by epidermal barrier dysfunction, allergies, microwave radiation, histamine intolerance, and genetic defects. To investigate the therapeutic effects of fermented soycrud (FSC) on AD pathology, alteration of AD phenotypes induced by phthalic anhydride (PA) treatment was assessed by ear thickness analysis, measurement of immune-related organ weights, ELISA, and histological and pathological analyses of ICR mice after FSC treatment for 2 weeks. Except for water content, the concentrations of most major components were lower in FSC compared to common tofu (CMT). Thymus and lymph node weights were significantly reduced in ICR mice treated with PA+CMT or PA+FSC, whereas spleen and body weights were maintained. Elevation of ear thickness induced by PA treatment was rapidly diminished in the CMT- and FSC-treated groups, although there was no significant difference between the two groups. Furthermore, significant reduction of epidermal thickness was detected in both the PA+CMT- and PA+FSC-treated groups. However, IgE concentration and dermal thickness were reduced only by PA+FSC treatment, whereas PA+CMT treatment maintained levels comparable to PA+vehicle treatment. The number of infiltrated mast cells was higher in the PA+vehicle-treated group compared to the untreated control. Following CMT or FSC treatment, mast cell infiltration was slightly reduced, although the CMT-treated group showed greater cell numbers. These results indicate that FSC may significantly relieve the phenotypes of AD induced by PA treatment and should be considered as a potential candidate for AD therapy.
Collapse
|