51
|
Abstract
Asthma affects nearly 300 million people worldwide. The majority respond to inhaled corticosteroid treatment with or without beta-adrenergic agonists. However, a subset of 5 to 10% with severe asthma do not respond optimally to these medications. Different phenotypes of asthma may explain why current therapies show limited benefits in subgroups of patients. Interleukin-13 is implicated as a central regulator in IgE synthesis, mucus hypersecretion, airway hyperresponsiveness, and fibrosis. Promising research suggests that the interleukin-13 pathway may be an important target in the treatment of the different asthma phenotypes.
Collapse
|
52
|
Rolla G, Heffler E. Aspirin-exacerbated asthma: avoiding challenge is still challenging. Int Arch Allergy Immunol 2012; 158:213-5. [PMID: 22378070 DOI: 10.1159/000333096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
53
|
Abstract
It has been recognized for many years that leukotrienes play an important role in mediating various effects of the allergic reaction. Recent evidence has shown that they play a role in other diseases including chronic sinusitis, particularly those sub-types involving eosinophils. Leukotrienes can be separated into the fairly well characterized cysteinyl leukotrienes and less well characterized leukotriene B(4). Effects of the leukotrienes are mediated through receptors that are expressed on a variety of cell types and can be modulated based on the inflammatory environment present. The pharmaceutical industry has long been interested in blocking leukotriene action and as such, two approaches have been developed that led to drugs approved for treatment of allergic disease. The most widely used class is the cysteinyl type 1 receptor antagonists, which block binding of the cysteinyl leukotrienes to the cell. The second class is an inhibitor of the 5-lipoxygenase enzyme that prevents synthesis of both the cysteinyl leukotrienes and leukotriene B(4). This review will focus on the role that leukotrienes play in chronic sinusitis and consider the rationale for choosing either a leukotriene antagonist or synthesis inhibitor as a treatment option. We will also discuss off-label uses for other medications that might be useful in these diseases as they relate to their ability to modulate leukotriene action.
Collapse
Affiliation(s)
- John W Steinke
- Asthma and Allergic Diseases Center, University of Virginia Health System, Charlottesville, VA, 22908-1355, USA,
| | | |
Collapse
|
54
|
Cysteinyl leukotriene overproduction in aspirin-exacerbated respiratory disease is driven by platelet-adherent leukocytes. Blood 2012; 119:3790-8. [PMID: 22262771 DOI: 10.1182/blood-2011-10-384826] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cysteinyl leukotriene (cysLT) overproduction is a hallmark of aspirin-exacerbated respiratory disease (AERD), but its mechanism is poorly understood. Because adherent platelets can convert the leukocyte-derived precursor leukotriene (LT)A(4) to LTC(4), the parent cysLT, through the terminal enzyme LTC(4) synthase, we investigated the contribution of platelet-dependent transcellular cysLT production in AERD. Nasal polyps from subjects with AERD contained many extravascular platelets that colocalized with leukocytes, and the percentages of circulating neutrophils, eosinophils, and monocytes with adherent platelets were markedly higher in the blood of subjects with AERD than in aspirin-tolerant controls. Platelet-adherent subsets of leukocytes had higher expression of several adhesion markers than did platelet nonadherent subsets. Adherent platelets contributed more than half of the total LTC(4) synthase activity of peripheral blood granulocytes, and they accounted for the higher level of LTC(4) generation by activated granulocytes from subjects with AERD compared with aspirin-tolerant controls. Urinary LTE(4) levels, a measure of systemic cysLT production, correlated strongly with percentages of circulating platelet-adherent granulocytes. Because platelet adherence to leukocytes allows for both firm adhesion to endothelial cells and augmented transcellular conversion of leukotrienes, a disturbance in platelet-leukocyte interactions may be partly responsible for the respiratory tissue inflammation and the overproduction of cysLTs that characterize AERD.
Collapse
|
55
|
Interleukin-4 in the Generation of the AERD Phenotype: Implications for Molecular Mechanisms Driving Therapeutic Benefit of Aspirin Desensitization. J Allergy (Cairo) 2012; 2012:182090. [PMID: 22262978 PMCID: PMC3259477 DOI: 10.1155/2012/182090] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/04/2011] [Indexed: 01/04/2023] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) is explained in part by over-expression of 5-lipoxygenase, leukotriene C4 synthase (LTC4S) and the cysteinyl leukotriene (CysLT) receptors (CysLT1 and 2), resulting in constitutive over-production of CysLTs and the hyperresponsiveness to CysLTs that occurs with aspirin ingestion. Increased levels of IL-4 have been found in the sinus mucosa and nasal polyps of AERD subjects. Previous studies demonstrated that IL-4 is primarily responsible for the upregulation of LTC4S by mast cells and the upregulation of CysLT1 and 2 receptors on many immune cell types. Prostaglandin E2 (PGE2) acts to prevent CysLT secretion by inhibiting mast cell and eosinophil activation. PGE2 concentrations are reduced in AERD reflecting diminished expression of cyclooxygenase (COX)-2. IL-4 can inhibit basal and stimulated expression of COX-2 and microsomal PGE synthase 1 leading to decreased capacity for PGE2 secretion. Thus, IL-4 plays an important pathogenic role in generating the phenotype of AERD. This review will examine the evidence supporting this hypothesis and describe a model of how aspirin desensitization provides therapeutic benefit for AERD patients.
Collapse
|
56
|
Interleukin-13, but not indomethacin, increases cysteinyl-leukotriene synthesis in human lung macrophages. J Allergy (Cairo) 2011; 2012:348741. [PMID: 22121385 PMCID: PMC3205618 DOI: 10.1155/2012/348741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 08/26/2011] [Indexed: 11/17/2022] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) is associated with constitutively elevated synthesis of bronchoconstrictor cysteinyl-leukotrienes, associated with increased expression of leukotriene (LT)C(4) synthase and Th2 cytokines and airway eosinophilia. We examined whether interleukin-13 can increase LTC(4) synthase gene transcription and cysteinyl-leukotriene synthesis in macrophages isolated from resected human lung tissue and whether an NSAID (indomethacin) can trigger further cysteinyl-leukotriene synthesis in these cells. Overnight culture of human lung macrophages with IL-13 (10 ng/mL) increased spontaneous and ionophore-stimulated production of cysteinyl-leukotrienes by 42% (P = 0.02) and 52% (P = 0.005), respectively, as quantified by enzyme immunoassays, but PCR gene transcription assays did not demonstrate an effect on LTC4S mRNA. The addition of indomethacin (100 μM) did not modulate cysteinyl-leukotriene production in either IL-13-treated or untreated macrophages. We conclude that while IL-13 enhances cysteinyl-leukotriene synthesis in human lung macrophages, it does not replicate the enhanced LTC(4) synthase expression observed in the AERD lung nor confer sensitivity to NSAIDs.
Collapse
|
57
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 654] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
58
|
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011; 43:92-137. [PMID: 21495793 DOI: 10.3109/03602532.2011.567391] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|
59
|
Lin L, Zheng C, Zhang L, Da C, Zhao K. 2-Aminoethoxydiphenyl borate administration into the nostril alleviates murine allergic rhinitis. Am J Otolaryngol 2011; 32:318-328. [PMID: 20832906 DOI: 10.1016/j.amjoto.2010.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 05/18/2010] [Accepted: 07/17/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Orai1 is the pore-forming subunit of the Ca(2+) release-activated Ca(2+) channels and plays a key role in the store-operated Ca(2+) entry. However, little is known about the function of this pathway in allergic rhinitis (AR). In this study, we examined whether the intervention of Orai1 pathway was capable of controlling IgE-mediated allergic reactions by using AR mice models. MATERIALS AND METHODS We used Western blotting and real-time reverse transcription polymerase chain reaction to evaluate Orai1 expression in nasal mucosa and nasal-associated lymphoid tissue (NALT) of normal, control, and 2-aminoethoxydiphenyl borate (2-APB)-treated mice. In addition, we analyzed concentrations of nasal lavage fluid leukotriene C4 (LTC4), eosinophil cation protein (ECP), ovalbumin-specific IgE, and interleukin-4 (IL-4) through enzyme-linked immunosorbent assay and measured messenger RNA (mRNA) levels of LTC4 synthase and ECP in nasal mucosa, and germline Cɛ transcription and IL-4 mRNA in NALT by using real-time reverse transcription polymerase chain reaction among groups. RESULTS 2-Aminoethoxydiphenyl borate administration into the nostril reduced numbers of sneezing and nasal rubbing as well as counts of invasive eosinophils in treated mice compared with those in control ones. Furthermore, the administration suppressed Orai1 expression in nasal mucosa and NALT of treated mice compared with that of control ones. Similarly, 2-APB treatment restrained nasal lavage fluid LTC4, ECP, ovalbumin-specific IgE, and IL-4 and their corresponding mRNAs in the previously mentioned tissues of treated mice in comparison with those of control ones. CONCLUSION Our results indicate that 2-APB treatment effectively alleviates murine AR through pleiotropic activities.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Blotting, Western
- Boron Compounds/administration & dosage
- Calcium Channels/biosynthesis
- Calcium Channels/genetics
- Disease Models, Animal
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Expression Regulation
- Glutathione Transferase/biosynthesis
- Glutathione Transferase/genetics
- Mice
- Mice, Inbred BALB C
- Nasal Mucosa/metabolism
- ORAI1 Protein
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Rhinitis, Allergic, Perennial/drug therapy
- Rhinitis, Allergic, Perennial/genetics
- Rhinitis, Allergic, Perennial/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Lin Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
60
|
Payne SC, Borish L, Steinke JW. Genetics and phenotyping in chronic sinusitis. J Allergy Clin Immunol 2011; 128:710-20; quiz 721-2. [PMID: 21704364 DOI: 10.1016/j.jaci.2011.05.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/06/2011] [Accepted: 05/10/2011] [Indexed: 01/21/2023]
Abstract
Chronic sinusitis with nasal polyposis historically has been treated as a single monolithic clinical disorder. Just as asthma is now accepted as numerous heterogeneous diseases, chronic sinusitis should also be viewed as comprising several diseases with varying causes, with each one characterized by distinct histologic and gene and protein expression patterns. This includes recognition of the need to define these diseases based on the presence or absence of an eosinophilic infiltrate but also on additional distinctions based on unique agents that drive their development and perpetuation. As a collection of heterogeneous diseases, proper differential diagnosis is required to delineate appropriate therapeutic intervention. This review will focus on recognized distinct presentations of chronic sinus disease, including distinguishing the clinical presentations, cellular and molecular characteristics, genetic differences, and current treatment options for each.
Collapse
Affiliation(s)
- Spencer C Payne
- Asthma and Allergic Disease Center, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|
61
|
Hirata H, Arima M, Fukushima Y, Honda K, Sugiyama K, Tokuhisa T, Fukuda T. Over-expression of the LTC4 synthase gene in mice reproduces human aspirin-induced asthma. Clin Exp Allergy 2011; 41:1133-42. [PMID: 21429049 DOI: 10.1111/j.1365-2222.2011.03720.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pathogenesis of aspirin-induced asthma (AIA) is presumed to involve the aspirin/non-steroidal anti-inflammatory drug (NSAID)-induced abnormal metabolism of arachidonic acid, resulting in an increase in 5-lipoxygenase (5-LO) metabolites, particularly leukotriene C(4) (LTC(4) ). However, the role of LTC(4) in the development of AIA has yet to be conclusively demonstrated. OBJECTIVE The aim of this study was to evaluate the contribution of the lipid product LTC(4) secreted by the 5-LO pathway to the pathogenesis of AIA. METHODS To evaluate antigen-induced airway inflammation, the concentrations of T-helper type 2 cytokine in bronchoalveolar lavage fluid (BALF) obtained from LTC(4) synthase-transgenic (Tg) and wild-type (WT) mice after challenge with ovalbumin were measured. Subsequently, the ex vivo and in vivo effects of the NSAID sulpyrine were investigated in these Tg and WT mice by measuring the secretion of LTC(4) from sulpyrine-treated BAL cells and the levels of LTC(4) in BALF following challenge with sulpyrine. Finally, the sulpyrine-induced airway response by the administration of pranlukast, an antagonist of the cysteinyl (cs)-LT1 receptor, was analysed. RESULTS The concentrations of IL-4, -5, and -13 in BALF from Tg mice were significantly higher than those in WT mice. In addition, sulpyrine augmented the secretion of LTC(4) in BALF and by BAL cells in Tg mice, but not in WT mice. Additionally, the increased airway resistance induced by sulpyrine could be reduced by treatment with pranlukast. Furthermore, the secretion of LTC(4) from mast cells, eosinophils, and macrophages was increased in the allergen-stimulated LTC(4) synthase gene Tg mice, even in the absence of sulpyrine, as well as in BAL cells after sulpyrine. CONCLUSION AND CLINICAL RELEVANCE The over-expression of the LTC(4) synthase in a mouse asthma model also replicates the key features of AIA. And our study supports that cys-LTs play a major role in the pathogenesis of AIA in patients with chronic asthma.
Collapse
Affiliation(s)
- H Hirata
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo University School of Medicine, Tochigi, Japan.
| | | | | | | | | | | | | |
Collapse
|
62
|
Laidlaw TM, Steinke J, Tiñana AM, Feng C, Xing W, Lam BK, Paruchuri S, Boyce JA, Borish L. Characterization of a novel human mast cell line that responds to stem cell factor and expresses functional FcεRI. J Allergy Clin Immunol 2011; 127:815-22.e1-5. [PMID: 21281958 PMCID: PMC3052637 DOI: 10.1016/j.jaci.2010.12.1101] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Studies of human mast cells (MCs) are constrained by the paucity of functional cell lines, the expense of maintaining MCs in culture, and technical complexities. OBJECTIVE We derived and characterized a human MC line that arose spontaneously from a culture of nontransformed hematopoietic progenitor cells. METHODS CD34(+) enriched mononuclear cells derived from a donor with aspirin-exacerbated respiratory disease were cultured for 8 weeks with stem cell factor and IL-6 and with IL-3 for the first week only. The cells (termed LUVA cells) survived and proliferated without further addition of any growth factors and have been maintained in culture for approximately 2 years. RESULTS LUVA cells possess metachromatic cytoplasmic granules that are immunoreactive for tryptase, cathepsin G, and carboxypeptidase A3. They express transcripts encoding FcεRI, c-kit, chymase, tryptase, histidine decarboxylase, carboxypeptidase A3, and the type 1 receptor for cysteinyl leukotrienes. Flow cytometry confirmed uniform expression of FcεRI, c-kit, and FcγRII. FcεRI cross-linkage induced the release of β-hexosaminidase, prostaglandin D(2), thromboxane A(2), and macrophage inflammatory protein 1β. Immortalization was not associated with either a known genomic mutation of c-kit in the donor or a somatic mutation of c-kit within the cells, and it was not associated with c-kit autophosphorylation. CONCLUSIONS LUVA cells are an immortalized human MC line that can be maintained without stem cell factor and display high levels of normally signaling c-kit and FcεRI. These cells will prove valuable for functional human MC studies.
Collapse
Affiliation(s)
- Tanya M. Laidlaw
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA, 02115
| | - John Steinke
- Department of Medicine, University of Virginia, Charlottesville, VA
- Division of Allergy and Immunology, University of Virginia, Charlottesville, VA
| | - Adrienne M. Tiñana
- Division of Allergy and Immunology, University of Virginia, Charlottesville, VA
| | - Chunli Feng
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA, 02115
| | - Wei Xing
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA, 02115
| | - Bing K. Lam
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA, 02115
| | - Sailaja Paruchuri
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA, 02115
| | - Joshua A. Boyce
- Department of Medicine, Harvard Medical School, Boston, MA, 02115
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA, 02115
| | - Larry Borish
- Department of Medicine, University of Virginia, Charlottesville, VA
- Division of Allergy and Immunology, University of Virginia, Charlottesville, VA
| |
Collapse
|
63
|
Sancho-Serra MDC, Simarro M, Castells M. Rapid IgE desensitization is antigen specific and impairs early and late mast cell responses targeting FcεRI internalization. Eur J Immunol 2011; 41:1004-13. [PMID: 21360700 DOI: 10.1002/eji.201040810] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/03/2010] [Accepted: 01/19/2011] [Indexed: 11/08/2022]
Abstract
Rapid IgE desensitization provides temporary tolerization for patients who have presented severe hypersensitivity reactions to food and drugs, protecting them from anaphylaxis, but the underlying mechanisms are still incompletely understood. Thus, here we develop an effective and reproducible in vitro model of rapid IgE desensitization for mouse BM-derived mast cells (BMMCs) under physiologic calcium conditions, and we characterize its antigen specificity and primary events. BMMCs were challenged with DNP-human serum albumin conjugated (DNP-HSA) and/or OVA antigens, delivered either as a single dose (activation) or as increasing sequential doses (desensitization). Compared to activated cells, desensitized BMMCs had impaired degranulation, calcium flux, secretion of arachidonic acid products, early and late TNF-α production, IL-6 production, and phosphorylation of STAT6 and p38 mitogen-activated protein kinase (p38 MAPK). OVA-desensitized cells responded to DNP and DNP-desensitized cells responded to OVA, proving specificity. Internalization of specific antigen, IgE and high-affinity receptor for IgE (FcεRI) were impaired in desensitized BMMCs. Our results demonstrate that rapid IgE desensitization is antigen specific and inhibits early and late mast cell activation responses and internalization of the antigen/IgE/FcεRI complexes.
Collapse
Affiliation(s)
- Maria del Carmen Sancho-Serra
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
64
|
Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol 2009; 125:S53-72. [PMID: 19932918 DOI: 10.1016/j.jaci.2009.07.008] [Citation(s) in RCA: 296] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 02/07/2023]
Abstract
Cytokines and chemokines are secreted proteins involved in numerous aspects of cell growth, differentiation, and activation. A prominent feature of these molecules is their effect on the immune system with regard to cell trafficking and development of immune tissue and organs. The nature of an immune response determines which cytokines are produced and ultimately whether the response is cytotoxic, humoral, cell mediated, or allergic. For this chapter, cytokines are grouped according to those that are predominantly antigen-presenting cell or T lymphocyte derived; that mediate cytotoxic, humoral, cell mediated, and allergic immunity; or that are immunosuppressive. A discussion of chemokine function and their role in cell trafficking and disease follows.
Collapse
|
65
|
Modulation by aspirin of nuclear phospho-signal transducer and activator of transcription 6 expression: Possible role in therapeutic benefit associated with aspirin desensitization. J Allergy Clin Immunol 2009; 124:724-30.e4. [PMID: 19767084 DOI: 10.1016/j.jaci.2009.07.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/15/2009] [Accepted: 07/16/2009] [Indexed: 01/04/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease is characterized by asthma, nasal polyps, and intolerance to aspirin with overexpression of leukotriene (LT) C(4) synthase and cysteinyl leukotriene receptors. Through an unknown mechanism, aspirin desensitization is an effective treatment. OBJECTIVE We hypothesized that aspirin desensitization blocks IL-4-induced expression of these LT activities through inhibition of signal transducer and activator of transcription 6 (STAT6)-mediated transcription. METHODS Nuclear extracts were derived from THP-1 and normal human monocytes resting and cocultured with aspirin before IL-4 stimulation. Quantitative PCRs were conducted. Electrophoretic mobility shift assays were performed by using oligomers for STAT6 sites within the LT receptor and synthase promoters. Western blots of nuclear extracts were probed by using anti-phospho-STAT6 antibodies. RESULTS Upregulation of LT receptor mRNA by IL-4 was negated by aspirin and ketorolac but not by sodium salicylate. The STAT6 site in the LT receptor and synthase promoters was confirmed by using mobility shift assays by competing with unlabeled STAT6 consensus probes and supershifts with anti-STAT6 antibodies. Aspirin and ketorolac decreased the IL-4-inducible expression of nuclear STAT6 observed in mobility shift assays and Western hybridization. CONCLUSION The LT receptor and synthase promoters have STAT6-binding sites that are engaged by IL-4-induced nuclear extracts and inhibited by aspirin. Assuming that normal monocytes behave like monocytes from patients with aspirin-exacerbated respiratory disease, inhibition of IL-4-STAT6 might explain a mechanism in aspirin desensitization daily treatment, resulting in downregulation of production and responsiveness to cysteinyl leukotrienes. This biologic activity of aspirin likely reflects COX inhibition because it was shared with ketorolac but not sodium salicylate.
Collapse
|
66
|
Shahriar M, Mizuguchi H, Maeyama K, Kitamura Y, Orimoto N, Horio S, Umehara H, Hattori M, Takeda N, Fukui H. Suplatast tosilate inhibits histamine signaling by direct and indirect down-regulation of histamine H1 receptor gene expression through suppression of histidine decarboxylase and IL-4 gene transcriptions. THE JOURNAL OF IMMUNOLOGY 2009; 183:2133-41. [PMID: 19596986 DOI: 10.4049/jimmunol.0901058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Allergic rhinitis (AR) is an inflammatory disorder typified by symptoms such as sneezing, congestion, and rhinorrhea. Histamine plays important roles in eliciting AR symptoms. Up-regulation of the histamine H(1) receptor (H1R) and histidine decarboxylase (HDC) mRNAs was observed in AR patients. Th2 cytokines are also involved in the pathogenesis of AR. We examined the effect of suplatast tosilate on nasal symptoms, and H1R, HDC, and IL-4 gene expression using toluene-2,4-diisocyanate (TDI)-sensitized rats and HeLa cells expressing endogenous H1R. Provocation with TDI increased nasal symptoms, HDC activity, the histamine content of nasal lavage fluid, and the expression of H1R, HDC, and IL-4 mRNAs in TDI-sensitized rats. Pretreatment with suplatast for 2 wk significantly suppressed TDI-induced nasal symptoms and elevation of H1R, HDC, and IL-4 mRNAs. Suplatast also suppressed HDC activity in the nasal mucosa and the histamine content of the nasal lavage fluid. Bilateral injection of IL-4 into the nasal cavity of normal rats up-regulated H1R mRNA, while intranasal application of histamine up-regulated IL-4 mRNA. Suplatast suppressed IL-4-induced up-regulation of H1R mRNA in HeLa cells. However, it did not inhibit histamine-induced H1R mRNA elevation. These results suggest that suplatast alleviates nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through the suppression of histamine- and IL-4-induced H1R gene expression by the inhibitions of HDC and IL-4 gene transcriptions, respectively.
Collapse
Affiliation(s)
- Masum Shahriar
- Department of Molecular Pharmacology, Institute of Health-Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Freiberg JJ, Dahl M, Tybjaerg-Hansen A, Grande P, Nordestgaard BG. Leukotriene C4 synthase and ischemic cardiovascular disease and obstructive pulmonary disease in 13,000 individuals. J Mol Cell Cardiol 2009; 46:579-86. [PMID: 19280718 DOI: 10.1016/j.yjmcc.2009.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ischemic cardiovascular disease and obstructive pulmonary disease involve inflammation. Leukotrienes may be important pro-inflammatory mediators. We tested the hypothesis that the (-1072)G > A and (-444)A > C promoter polymorphisms of leukotriene C4 synthase confer risk of transient ischemic attack (TIA), ischemic stroke, ischemic heart disease (IHD), asthma, and chronic obstructive pulmonary disease (COPD). We genotyped individuals from the Danish general population, the Copenhagen City Heart Study, and Danish patients with IHD/coronary atherosclerosis, the Copenhagen Ischemic Heart Disease Study. We used prospective (n = 10,386), cross-sectional (n = 10,386), and case-control (n = 2392 + 5012) designs. Allele frequency was 0.07 for (-1072)A and 0.29 for (-444)C. Cumulative incidence for TIA was higher for (-1072)AA versus GG genotype (log-rank: p < 0.001), and lower for (-444)CC versus AA genotype (log-rank: p = 0.03). Cumulative incidence for ischemic stroke was also lower for (-444)CC versus AA genotype (log-rank: p = 0.04). Multifactorially adjusted hazard ratios for TIA were 5.2(95% CI:1.9-14) for (-1072)AA versus GG genotype, and 0.4(0.2-1.0) for (-444)CC versus AA genotype. Corresponding values were 1.9 (0.7-5.2) and 0.7 (0.5-1.0) for ischemic stroke, and 0.8 (0.4-1.6) and 1.0 (0.9-1.2) for IHD. In the case-control study, corresponding multifactorially adjusted odds ratios for IHD/coronary atherosclerosis were 0.5 (0.2-1.3) and 1.2 (1.0-1.5). These genotypes were not associated with risk of asthma or COPD. Leukotriene C4 synthase promoter genotypes influence risk of TIA and ischemic stroke, but not risk of IHD/coronary atherosclerosis, asthma, or COPD.
Collapse
Affiliation(s)
- Jacob J Freiberg
- Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Faculty of Health Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
68
|
Dev S, Mizuguchi H, Das AK, Maeyama K, Horinaga S, Kato S, Tamada M, Hattori M, Umehara H, Fukui H. Kujin suppresses histamine signaling at the transcriptional level in toluene 2,4-diisocyanate-sensitized rats. J Pharmacol Sci 2009; 109:606-17. [PMID: 19352071 DOI: 10.1254/jphs.09003fp] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Kujin, the dried root of Sophorae flavescensis, has been used in Chinese folklore medicine against allergy. Evaluation of its anti-allergic potential as well as its mechanism of action has rarely been established. We investigated the effect of Kujin on toluene-2,4-diisocyanate (TDI)-induced allergic behavior and related histamine signaling including mRNA levels of histamine H(1) receptor (H1R) and histidine decarboxylase (HDC), H1R and HDC activities, and histamine content in rat nasal mucosa. We also investigated the effect of Kujin on the mRNA levels of helper T cell type 2 (Th2)-cytokine genes closely related to histamine signaling. TDI provocation caused acute allergic symptoms accompanied with up-regulations of H1R and HDC mRNAs and increases in HDC activity, histamine content, and [(3)H]mepyramine binding activity in the nasal mucosa, all of which were significantly suppressed by pretreatment with Kujin for 3 weeks. Kujin also suppressed the TDI-induced IL-4 and IL-5 mRNA elevations. These data suggest that oral administration of Kujin showed anti-allergic activity through suppression of histamine signaling by the inhibition of TDI-induced H1R and HDC mRNA elevations followed by decrease in H1R, HDC protein level, and histamine content in the nasal mucosa of TDI-sensitized rats. Suppression of Th2-cytokine signaling by Kujin also suggests that it could affect the histamine-cytokine network.
Collapse
Affiliation(s)
- Shrabanti Dev
- Department of Molecular Pharmacology, Institute of Health-Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Westergren VS, Wilson SJ, Penrose JF, Howarth PH, Sampson AP. Nasal mucosal expression of the leukotriene and prostanoid pathways in seasonal and perennial allergic rhinitis. Clin Exp Allergy 2009; 39:820-8. [PMID: 19364335 DOI: 10.1111/j.1365-2222.2009.03223.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Leukotrienes (LTs) and prostanoids are potent pro-inflammatory and vasoactive lipid mediators implicated in airway disease, but their cellular sources in the nasal airway in naturally occurring allergic rhinitis (AR) are unclear. OBJECTIVE To quantify cellular expression of enzymes of the 5-lipoxygenase (5-LO) and cyclooxygenase (COX) pathways by immunohistochemistry in nasal biopsies from patients with symptomatic perennial AR (PAR, n = 13) and seasonal AR (SAR, n = 14) and from normal subjects (n = 12). METHODS Enzymes of the 5-LO pathway (5-LO, FLAP, LT A4 hydrolase, LTC4 synthase) and the COX pathway (COX-1, COX-2, prostaglandin D2 synthase) were immunostained in glycol methacrylate resin-embedded inferior turbinate biopsy specimens, quantified in the lamina propria and epithelium, and co-localized to leucocyte markers by camera lucida. RESULTS In the lamina propria of PAR biopsies, median counts of cells expressing FLAP were fourfold higher than in normal biopsies (Mann-Whitney, P = 0.014), and also tended to be higher than in SAR biopsies (P = 0.06), which were not different from normal. PAR biopsies showed threefold more cells immunostaining for LTC4 synthase compared with SAR biopsies (P = 0.011) but this was not significant compared with normal biopsies (P = 0.2). These changes were associated with ninefold more eosinophils (P = 0.0005) with no differences in other leucocytes. There were no significant differences in the lamina propria in immunostaining for 5-LO, LTA4 hydrolase, COX-1, COX-2 or PGD2 synthase. Within the epithelium, increased expression of COX-1 was evident in PAR biopsies (P = 0.014) and SAR biopsies (P = 0.037), associated with more intra-epithelial mast cells in both rhinitic groups (P < 0.02). CONCLUSIONS In the nasal biopsies of PAR subjects, increased expression of regulatory enzymes of the cysteinyl-LT biosynthetic pathway was associated with lamina propria infiltration by eosinophils. Seasonal rhinitis biopsies shared only some of these changes, consistent with transient disease. Increased intra-epithelial mast cells and epithelial COX-1 expression in both rhinitic groups may generate modulatory prostanoids.
Collapse
Affiliation(s)
- V S Westergren
- Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton, UK
| | | | | | | | | |
Collapse
|
70
|
Lederer S, Favre D, Walters KA, Proll S, Kanwar B, Kasakow Z, Baskin CR, Palermo R, McCune JM, Katze MG. Transcriptional profiling in pathogenic and non-pathogenic SIV infections reveals significant distinctions in kinetics and tissue compartmentalization. PLoS Pathog 2009; 5:e1000296. [PMID: 19214219 PMCID: PMC2633618 DOI: 10.1371/journal.ppat.1000296] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 01/13/2009] [Indexed: 11/26/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected macaques, whereas natural reservoir hosts exhibit limited disease and pathology. It is, however, unclear how natural hosts can sustain high viral loads, comparable to those observed in the pathogenic model, without developing severe disease. We performed transcriptional profiling on lymph node, blood, and colon samples from African green monkeys (natural host model) and Asian pigtailed macaques (pathogenic model) to directly compare gene expression patterns during acute pathogenic versus non-pathogenic SIV infection. The majority of gene expression changes that were unique to either model were detected in the lymph nodes at the time of peak viral load. Results suggest a shift toward cellular stress pathways and Th1 profiles during pathogenic infection, with strong and sustained type I and II interferon responses. In contrast, a strong type I interferon response was initially induced during non-pathogenic infection but resolved after peak viral load. The natural host also exhibited controlled Th1 profiles and better preservation of overall cell homeostasis. This study identified gene expression patterns that are specific to disease susceptibility, tissue compartmentalization, and infection duration. These patterns provide a unique view of how host responses differ depending upon lentiviral infection outcome.
Collapse
Affiliation(s)
- Sharon Lederer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - David Favre
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Kathie-Anne Walters
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Sean Proll
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Bittoo Kanwar
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of California, San Francisco, California, United States of America
| | - Zeljka Kasakow
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Carole R. Baskin
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Robert Palermo
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Joseph M. McCune
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, California, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
71
|
Mizuguchi H, Hatano M, Matsushita C, Umehara H, Kuroda W, Kitamura Y, Takeda N, Fukui H. Repeated pre-treatment with antihistamines suppresses [corrected] transcriptional up-regulations of histamine H(1) receptor and interleukin-4 genes in toluene-2,4-diisocyanate-sensitized rats. J Pharmacol Sci 2008; 108:480-6. [PMID: 19075512 DOI: 10.1254/jphs.08222fp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Antihistamines are effective for treatment of seasonal nasal allergy. Recently, prophylactic treatment with antihistamines in patients with pollinosis was reported to be more effective when started before the pollen season. The administration with antihistamines from 2 to 6 weeks before onset of the pollen season is recommended for management of allergic rhinitis in Japan. To determine the reason for the effectiveness of prophylactic treatment with antihistamines, the effects of repeated pre-treatment with antihistamines before provocation with toluene 2,4-diisocyanate (TDI) on their nasal allergy-like behavior and up-regulations of histamine H(1) receptors (H1R) and interleukin (IL)-4 mRNAs in their nasal mucosa were examined. Provocation with TDI induced sneezing and up-regulations of H1R and IL-4 mRNAs in the nasal mucosa of TDI-sensitized rats. Repeated pre-treatments with antihistamines including epinastine, olopatadine, or d-chlorpheniramine for 1 to 5 weeks before provocation with TDI suppressed TDI-induced sneezing and the up-regulations of H1R and IL-4 mRNAs in the nasal mucosa more than their administrations once or for 3 days before TDI provocation. Our data indicate that repeated pre-treatment with antihistamines before provocation with TDI is more effective than their single treatment in reducing nasal allergy-like behavior by causing additional suppression of up-regulations of H1R and IL-4 mRNAs in the nasal mucosa.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Department of Molecular Pharmacology, Institute of Health-Biosciences, The University of Tokushima Graduate School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Mast cells have been recognized for well over 100 years. With time, human mast cells have been documented to originate from CD34+ cells, and have been implicated in host responses in both innate and acquired immunity. In clinical immunology, they are recognized for their central role in IgE-mediated degranulation and allergic inflammation by virtue of their expression of the high-affinity receptor for IgE and release of potent proinflammatory mediators. In hematology, the clinical disease of mastocytosis is characterized by a pathologic increase of mast cells in tissues, often associated with mutations in KIT, the receptor for stem cell factor. More recently, and with increased understanding of how human mast cells are activated through receptors including the high-affinity receptor for IgE and KIT, specific tyrosine kinase inhibitors have been identified with the potential to interrupt signaling pathways and thus limit the proliferation of mast cells as well as their activation through immunoglobulin receptors.
Collapse
Affiliation(s)
- Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| |
Collapse
|
73
|
Galinsky DST, Nechushtan H. Mast cells and cancer--no longer just basic science. Crit Rev Oncol Hematol 2008; 68:115-30. [PMID: 18632284 DOI: 10.1016/j.critrevonc.2008.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 03/27/2008] [Accepted: 06/04/2008] [Indexed: 02/06/2023] Open
Abstract
The incorporation of new anti-cancer kinase inhibitors within cancer management is rapidly increasing. Mast cells are sensitive to several of these new anti-cancer agents most notably to c-Kit inhibitors. As a result, studies investigating the role of mast cells in tumors may have direct clinical relevance and consequently, important clinical implications. Here we review some of the basic attributes of mast cells, especially those related to the new "targeted" drugs. Mast cell roles such as modulators of regulatory T-cells, inducers of angiogenesis and promoters of clot formation are discussed. We also review recent mouse tumor models and human pathological data which implicate mast cells as having both pro- and anti-tumor growth properties. These studies expose a complex, emerging picture of mast cell involvement in tumor biology. It seems that mast cell modulator drugs may improve the efficacy of anti-tumor therapy under certain circumstances, whilst under others, may negatively affect drug efficacy.
Collapse
|
74
|
Abstract
I have spent my entire professional life at Harvard Medical School, beginning as a medical student. I have enjoyed each day of a diverse career in four medical subspecialties while following the same triad of preclinical areas of investigation—cysteinyl leukotrienes, mast cells, and complement—with occasional translational opportunities. I did not envision a career with a predominant preclinical component. Such a path simply evolved because I chose instinctively at multiple junctures to follow what proved to be propitious opportunities. My commentary notes some of the highlights for each area of interest and the mentors, collaborators, and trainees whose counsel has been immensely important at particular intervals or over an extended period.
Collapse
Affiliation(s)
- K Frank Austen
- Department of Medicine, Harvard Medical School, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
75
|
Negri J, Early SB, Steinke JW, Borish L. Corticosteroids as inhibitors of cysteinyl leukotriene metabolic and signaling pathways. J Allergy Clin Immunol 2008; 121:1232-7. [PMID: 18355910 DOI: 10.1016/j.jaci.2008.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Corticosteroids (CCSs) do not influence secretion of cysteinyl leukotrienes (CysLTs) that occurs on cellular activation during allergic reactions nor do they modulate bronchospastic responses to inhalation challenges with leukotrienes (LTs). OBJECTIVES We speculated that CCSs might modulate pathways responsible for CysLT production and diminish the ability of cellular activation to cause their release. Similarly, CCSs could reduce expression of CysLT receptor 1 (CysLTR1) and CysLT receptor 2 (CysLT2R) and modulate their responsiveness. METHODS We investigated influences of fluticasone on expression of mRNA for LTC(4) synthase (LTC(4)S), CysLT1R, and CysLT2R within T lymphocytes, monocytes, and eosinophils by means of quantitative PCR. Effects on receptor protein expression were evaluated by means of flow cytometry. RESULTS Circulating immune cells (T cells, monocytes, and eosinophils) express low levels of LTC(4)S mRNA, and this was not influenced by CCSs. However, IL-4 induced transcripts in T lymphocytes, and this was prevented by fluticasone. Paradoxically, CCSs synergized with IL-4 to increase LTC(4)S expression in monocytes. Although not influencing basal or IL-4-stimulated CysLT1R expression, fluticasone inhibited basal CysLT2R transcript expression on monocytes and IL-4-induced expression in all 3 cell types. CONCLUSIONS In addition to not blocking the acute release of CysLTs on cellular activation, CCSs do not diminish the capacity of cells to synthesize these compounds. CCSs do not diminish CysLT1R expression, consistent with their lack of influence on bronchospasm, which is mediated through this receptor.
Collapse
Affiliation(s)
- Julie Negri
- Asthma and Allergic Disease Center, Beirne Carter Center for Immunology Research, Department of Medicine, University of Virginia Health System, Charlottesville, Va
| | | | | | | |
Collapse
|
76
|
Austen KF. The cysteinyl leukotrienes: where do they come from? What are they? Where are they going? Nat Immunol 2008; 9:113-5. [PMID: 18204420 DOI: 10.1038/ni0208-113] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cysteinyl leukotrienes are established mediators of bronchial asthma and have agonist roles analogous to those of histamine in allergic rhinitis. We now know that the substance originally termed slow-reacting substance of anaphylaxis was composed of three cysteinyl leukotrienes that act in the inflammatory response via receptors on smooth muscle and on bone marrow-derived inflammatory cells. K. Frank Austen describes the work culminating in the identification, biosynthesis and functional characterization of these moieties.
Collapse
Affiliation(s)
- K Frank Austen
- Department of Medicine, Harvard Medical School and the Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
77
|
Katsoulotos GP, Qi M, Qi JC, Tanaka K, Hughes WE, Molloy TJ, Adachi R, Stevens RL, Krilis SA. The Diacylglycerol-dependent translocation of ras guanine nucleotide-releasing protein 4 inside a human mast cell line results in substantial phenotypic changes, including expression of interleukin 13 receptor alpha2. J Biol Chem 2007; 283:1610-1621. [PMID: 18024961 DOI: 10.1074/jbc.m707042200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ras guanine nucleotide-releasing protein 4 (RasGRP4) is a mast cell (MC)-restricted guanine nucleotide exchange factor and diacylglycerol (DAG)/phorbol ester receptor. An RasGRP4-defective variant of the human MC line HMC-1 was used to create stable clones expressing green fluorescent protein-labeled RasGRP4 for monitoring the movement of this protein inside MCs after exposure to phorbol 12-myristate 13-acetate (PMA), and for evaluating the protein's ability to control gene expression. RasGRP4 resided primarily in the cytosol. After exposure to PMA, RasGRP4 quickly translocated to the inner leaflet of the cell's plasma membrane. 15-30 min later, this signaling protein translocated from the plasma membrane to other intracellular sites. The translocation of RasGRP4 from the cytosol to its varied membrane compartments was found to be highly dependent on Phe(548) in the protein's C1 DAG/PMA-binding domain. Extracellular signal-regulated kinases 1 and 2 were activated during this translocation process, and c-kit/CD117 was lost from the cell's surface. Transcript-profiling approaches revealed that RasGRP4 profoundly regulated the expression of hundreds of genes in HMC-1 cells. For example, the expression of the transcript that encodes the interleukin (IL) 13 receptor IL-13Ralpha2 increased 61- to 860-fold in RasGRP4-expressing HMC-1 cells. A marked increase in IL-13Ralpha2 protein levels also was found. The accumulated data suggest RasGRP4 translocates to varied intracellular compartments via its DAG/PMA-binding domain to regulate signaling pathways that control gene and protein expression in MCs, including the cell's ability to respond to IL-13.
Collapse
Affiliation(s)
- Gregory P Katsoulotos
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - Miao Qi
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - Jian Cheng Qi
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - Kumiko Tanaka
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia
| | - William E Hughes
- The Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Timothy J Molloy
- Blood Diseases and Cancer Research Laboratory, St Vincent's Hospital, New South Wales 2010, Australia
| | - Roberto Adachi
- Department of Pulmonary Medicine, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Richard L Stevens
- Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115
| | - Steven A Krilis
- Department of Medicine, University of New South Wales, and Department of Immunology, Allergy, and Infectious Diseases, St. George Hospital, 2 South St. Centre, New South Wales 2217, Australia.
| |
Collapse
|
78
|
Isogai S, Athiviraham A, Fraser RS, Taha R, Hamid Q, Martin JG. Interferon-gamma-dependent inhibition of late allergic airway responses and eosinophilia by CD8+ gammadelta T cells. Immunology 2007; 122:230-8. [PMID: 17848163 PMCID: PMC2265996 DOI: 10.1111/j.1365-2567.2007.02632.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have previously shown that CD8(+)gammadelta T cells decrease late allergic airway responses, airway eosinophilia, T helper 2 cytokine expression and increase interferon-gamma (IFN-gamma) expression. We hypothesized that the effects of CD8(+)gammadelta T cells were IFN-gamma mediated. Brown Norway rats were sensitized to ovalbumin on day 1. Cervical lymph node CD8(+)gammadelta T cells from sensitized animals were treated with antisense oligodeoxynucleotide (5 micromol/l) to inhibit IFN-gamma synthesis or control oligodeoxynucleotide and 3.5 x 10(4) CD8(+)gammadelta T cells were injected intraperitoneally into sensitized recipients on day 13. Rats were challenged with aerosolized ovalbumin on day 15 and lung resistance was monitored over an 8 hr period, after which bronchoalveolar lavage was performed. Control oligodeoxynucleotide treated gammadelta T cells decreased late airway responses and eosinophilia in bronchoalveolar lavage. There was a complete recovery of late airway responses and a partial recovery of airway eosinophilia in recipients of antisense oligodeoxynucleotide treated cells. Macrophage ingestion of eosinophils was frequent in rats administered gammadeltaT cells but reduced in recipients of antisense oligodeoxynucleotide treated cells. These results indicate that CD8(+)gammadelta T cells inhibit late airway responses and airway eosinophilia through the secretion of IFN-gamma. Defective or altered gammadelta T-cell function may account for some forms of allergic asthma.
Collapse
Affiliation(s)
- Susumu Isogai
- Meakins Christie Laboratories, Department of Medicine, McGill University, Montreal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
79
|
Affiliation(s)
- Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor 48109-5642, USA.
| | | |
Collapse
|
80
|
Chung SW, Toriba A, Chung HY, Yu BP, Kameda T, Tang N, Kizu R, Hayakawa K. Activation of 5-lipoxygenase and NF-kappa B in the action of acenaphthenequinone by modulation of oxidative stress. Toxicol Sci 2007; 101:152-8. [PMID: 17925309 DOI: 10.1093/toxsci/kfm252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Quinoid polycyclic aromatic hydrocarbons are potent redox-active compounds that undergo enzymatic and nonenzymatic redox cycling with their semiquinone radical. We previously reported that acenaphthenequinone (AcQ) can damage human lung epithelial A549 cells through the formation of reactive species (RS). However, the biochemical mechanisms by which RS-generating enzymes cause oxidative burst during AcQ exposure remain elusive. Here we examined the biochemical mechanism of AcQ-induced RS generation by using selective metabolic inhibitors in A549 cells. We found that AA861, a 5-lipoxygenase (5-LO)-specific inhibitor significantly decreases RS generation. This inhibition of RS seems to be 5-LO specific because other inhibitors did not suppress AcQ-induced RS generation by nicotinamide adenine nucleotide phosphate (reduced) oxidase and/or xanthine oxidase. In addition, the inhibition of 5-LO by AA861 markedly reduced AcQ-induced nuclear factor kappa B (NF-kappa B) activation. We further found the activation of 5-LO pathway by exposing cells to AcQ mediates the secretion of inflammatory leukotriene B4, which can be significantly suppressed by a potent RS scavenger, N-acetylcysteine. Thus, based on our findings, we propose that AcQ-induced damage is likely due to increased RS generation and NF-kappa B activity through 5-LO activation.
Collapse
Affiliation(s)
- Sang Woon Chung
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Gomez G, Jogie-Brahim S, Shima M, Schwartz LB. Omalizumab reverses the phenotypic and functional effects of IgE-enhanced Fc epsilonRI on human skin mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:1353-61. [PMID: 17617628 PMCID: PMC2396781 DOI: 10.4049/jimmunol.179.2.1353] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The dramatic effects of the anti-IgE mAb omalizumab to lower free IgE levels and Fc epsilonRI levels on basophils contrast with more modest clinical effects. Accordingly, whether IgE modulates Fc epsilonRI levels and Fc epsilonRI-dependent mediator release in vitro on human skin mast cells (MC(TC) type) that had matured in vivo is of interest. IgE reversibly enhanced Fc epsilonRI levels on MC(TC) cells in a dose- and time-dependent manner (up-regulation t(1/2) of 4-5 days with 1-3 microg/ml IgE), without affecting cell proliferation. A molar ratio of omalizumab to IgE of 0.9 at baseline prevented receptor up-regulation by 50%, whereas adding omalizumab to MC(TC) cells already with IgE-enhanced Fc epsilonRI levels at molar ratios of 5, 12.5, and 31 reduced Fc epsilonRI levels to baseline with respective t(1/2) values of 8.7, 6.3, and 4.8 days. MC(TC) cells with IgE-enhanced Fc epsilonRI levels were more sensitive to stimulation with a low dose of anti-Fc epsilonRI mAb in terms of degranulation and production of PGD(2), GM-CSF, IL-6, IL-13, and TNF-alpha. Reducing up-regulated Fc epsilonRI levels with omalizumab also reduced mediator release to a low dose of anti-Fc epsilonRI mAb to baseline by 3-4 wk. Thus, reducing free IgE should decrease the hypersensitivity of allergic individuals to low naturally occurring concentrations of allergens.
Collapse
Affiliation(s)
- Gregorio Gomez
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Sherryline Jogie-Brahim
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Mika Shima
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| | - Lawrence B. Schwartz
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Immunology, Virginia Commonwealth University, Richmond, VA 23298
| |
Collapse
|
82
|
Gulliksson M, Brunnström A, Johannesson M, Backman L, Nilsson G, Harvima I, Dahlén B, Kumlin M, Claesson HE. Expression of 15-lipoxygenase type-1 in human mast cells. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1156-65. [PMID: 17662651 DOI: 10.1016/j.bbalip.2007.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 11/16/2022]
Abstract
Mast cells play a key role in the pathophysiology of asthma. These cells exert their effector functions by releasing a variety of proinflammatory and immunoregulatory compounds. Mast cells infiltrate the bronchial epithelium and smooth muscle to a higher degree in patients with asthma compared to control subjects. 15-Lipoxygenase type-1 (15-LO-1) is a prooxidant enzyme which is expressed in asthmatic lungs leading to formation of pro- and anti-inflammatory mediators. Here we report that interleukin-4 (IL-4) induced the expression of 15-LO-1 in human cord blood derived mast cells (CBMC) as demonstrated by RT-PCR, western blot and immunocytochemistry. The major metabolite of arachidonic acid formed via the 15-LO pathway in IL-4 treated CBMC was identified as 15-ketoeicosatetraenoic acid (15-KETE, also named 15-oxo-ETE) with smaller amounts of 15-hydroxyeicosatetraenoic acid (15-HETE) as identified by HPLC and mass spectrometry (MS/MS). Furthermore, immunohistochemical stainings demonstrated the expression of 15-LO-1 in mast cells in lung and skin in vivo. Osmotic activation of CBMC with mannitol resulted in activation of the 15-LO-1 pathway. In conclusion, the expression of 15-LO-1 and release of 15-LO-1 derived products by mast cells may contribute to the role of these cells in asthma and other inflammatory diseases.
Collapse
Affiliation(s)
- Magdalena Gulliksson
- The Institute of Environmental Medicine, Division of Physiology, Unit for Experimental Asthma and Allergy Research, Karolinska Institutet, P.O. Box 287, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Mast cells are versatile tissue regulator cells controlling major intestinal functions such as epithelial secretion, epithelial permeability, blood flow, neuroimmune interactions, and peristalsis. Most importantly, mast cells are key regulators of the integrity and function of the gastrointestinal barrier. At the same time, they can act as immunomodulatory cells by reacting to various exogenous signals from bacteria, viruses, and parasites through innate recognition receptors, such as Toll-like receptors (TLRs) or through receptors of the specific immune system, such as immunoglobulins (Igs) bound to their cell surface. This mast cell function is enhanced by an intensive cross talk of mast cells with other cells of the innate or adaptive immune systems. Finally, mast cells act as inflammatory cells mediating diseases such as allergy, once they become dysregulated because of excess of allergen, allergen-specific IgE and cytokines, or invading microbes. The present article focuses on the human mast cell functions in the intestine and compares the data with those derived from animal experiments. In particular, the role of bacteria and TLRs expression by mast cells for allergic reactions are discussed.
Collapse
Affiliation(s)
- Stephan C Bischoff
- Department of Nutritional Medicine and Immunology, University of Hohenheim, Stuttgart, Germany.
| | | |
Collapse
|
84
|
Jame AJ, Lackie PM, Cazaly AM, Sayers I, Penrose JF, Holgate ST, Sampson AP. Human bronchial epithelial cells express an active and inducible biosynthetic pathway for leukotrienes B4 and C4. Clin Exp Allergy 2007; 37:880-92. [PMID: 17517102 DOI: 10.1111/j.1365-2222.2007.02733.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human bronchial epithelial cells synthesize cyclooxygenase and 15-lipoxygenase products, but the 5-lipoxygenase (5-LO) pathway that generates the leukotriene (LT) family of bronchoconstrictor and pro-inflammatory mediators is thought to be restricted to leucocytes. OBJECTIVE We hypothesized that human bronchial epithelial cells (HBECs) express a complete and active 5-LO pathway for the synthesis of LTB4 and LTC4, either constitutively or after stimulation. METHODS Flow cytometry, RT-PCR, Western blotting, enzyme immunoassays and reverse-phase high-performance liquid chromatography were used to investigate constitutive and stimulated expression of 5-LO pathway enzymes and the synthesis of LTs B4 and C4 in primary HBECs and in the 16-HBE 14o- cell line. RESULTS Constitutive mRNA and protein expression for 5-LO, 5-LO-activating protein (FLAP), LTA4 hydrolase and LTC4 synthase were demonstrated in primary HBECs and in the 16-HBE 14o- cell line. In 16-HBE 14o- cells, treatment with calcium ionophore A23187, bradykinin or LPS up-regulated the expression of these enzymes. The up-regulation of 5-LO was blocked by the anti-inflammatory glucocorticoid dexamethasone. Human bronchial epithelial cells were shown to generate bioactive LTs, with primary HBECs generating 11-fold more LTC4 and five-fold more LTB4 than 16-HBE 14o- cells. LT production was enhanced by ionophore treatment and blocked by the FLAP inhibitor MK-886. CONCLUSIONS Expression of an active and inducible 5-LO pathway in HBEC suggests that damaged or inflamed bronchial epithelium may synthesize LTs that contribute directly to bronchoconstriction and leucocytosis in airway inflammation.
Collapse
Affiliation(s)
- A J Jame
- Division of Infection, University of Southampton School of Medicine, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
85
|
Abstract
When activated by specific antigen, complement, or other transmembrane stimuli, mast cells (MCs) generate three eicosanoids: prostaglandin (PG)D(2), leukotriene (LT)B(4), and LTC(4), the parent molecule of the cysteinyl leukotrienes (cysLTs). These diverse lipid mediators, which are generated from a single cell membrane-associated precursor, arachidonic acid, can initiate, amplify, or dampen inflammatory responses and influence the magnitude, duration, and nature of subsequent immune responses. PGD(2) and cysLTs, which were originally recognized for their bronchoconstricting and vasoactive properties, also serve diverse and pivotal functions in effector cell trafficking, antigen presentation, leukocyte activation, matrix deposition, and fibrosis. LTB(4) is a powerful chemoattractant for neutrophils and certain lymphocyte subsets. Thus, MCs can contribute to each of these processes through eicosanoid generation. Additionally, MCs express G-protein-coupled receptors specific for cysLTs, LTB(4), and another eicosanoid, PGE(2). Each of these receptors can regulate MC functions in vivo by autocrine and paracrine mechanisms. This review focuses on the biologic functions for MC-associated eicosanoids, the regulation of their production, and the mechanisms by which eicosanoids may regulate MC function in host defense and disease.
Collapse
Affiliation(s)
- Joshua A Boyce
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
86
|
Endoh I, Di Girolamo N, Hampartzoumian T, Cameron B, Geczy CL, Tedla N. Ultraviolet B irradiation selectively increases the production of interleukin-8 in human cord blood-derived mast cells. Clin Exp Immunol 2007; 148:161-7. [PMID: 17286758 PMCID: PMC1868850 DOI: 10.1111/j.1365-2249.2007.03332.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UVB irradiation modulates immune responses in the skin and is a major cause of sunburn, during which neutrophils accumulate in the skin. Because of their abundance in skin and ability to produce a variety of proinflammatory mediators, we propose that mast cells may play a key role in ultraviolet B (UVB)-induced skin inflammation. Cord blood-derived human mast cells were treated in vitro with varying doses of UVB and production of multiple cytokines was measured in culture supernatants. UVB exposure significantly increased the release of interleukin (IL)-8 and modestly increased IL-1alpha production, but cytokines such as IL-2, IL-4, IL-6, IL-10, IL-12, IL-13, tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma were unaffected. Cycloheximide reduced the UVB-mediated induction of IL-8 by 30-40%, suggesting that new protein synthesis contributed to IL-8 production. In line with this, UVB treatment of mast cells significantly increased IL-8 mRNA. In contrast to its effect on IL-8 production, optimal doses of UVB did not provoke histamine or tryptase release, indicating little effect on degranulation. Our data suggest that mast cells may play a major role during UVB-induced acute inflammation by selectively inducing cytokines involved in neutrophil recruitment.
Collapse
Affiliation(s)
- I Endoh
- Centre for Inflammation and Infectious Diseases, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
Mast cells possess an array of potent inflammatory mediators capable of inducing acute symptoms after cell activation, including urticaria, angioedema, bronchoconstriction, diarrhea, vomiting, hypotension, cardiovascular collapse, and death in few minutes. In contrast, mast cells can provide an array of beneficial mediators in the setting of acute infections, cardiovascular diseases, and cancer. The balance between the detrimental and beneficial roles of mast cells is not completely understood. Although the symptoms of acute mast cell mediator release can be reversed with epinephrine, adrenergic agonists, and mediator blockers, the continued release of histamine, proteases, prostaglandins, leukotrienes, cytokines, and chemokines leads to chronic and debilitating disease, such as mastocytosis. Identification of the molecular factors and mechanisms that control the synthesis and release of mast cell mediators should benefit all patients with mast cell activation syndromes and mastocytosis.
Collapse
Affiliation(s)
- Mariana Castells
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
88
|
Pérez-Novo CA, Claeys C, Van Zele T, Holtapples G, Van Cauwenberge P, Bachert C. Eicosanoid metabolism and eosinophilic inflammation in nasal polyp patients with immune response to Staphylococcus aureus enterotoxins. ACTA ACUST UNITED AC 2006; 20:456-60. [PMID: 16955779 DOI: 10.2500/ajr.2006.20.2873] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Staphylococcus aureus-derived enterotoxins (SEs) have been implicated in the pathogenesis of airway inflammatory diseases, especially nasal polyposis. However, the exact role of these molecules in the regulation of eicosanoid synthesis in this pathology remains unexplored. We studied the possible impact of SE-induced immune responses on the eicosanoid production in nasal polyp (NP) patients. METHODS Tissue sample homogenates from NP patients, with (NP-SEs[+]) and without detectable IgE-antibodies to SEs (NP-SEs[-]; ImmunoCap system), were assayed for IL-5, myeloperoxidase, leukotriene CJD4/E4 (LTC4/D4/E4), LTB4, lipoxin A4, total IgE, and eosinophil cationic protein. RESULTS Inflammatory makers, eicosanoids, and total IgE were significantly increased in NP-SEs(+) compared with NP-SEs(-) tissues, with the exception of myeloperoxidase, which was similar in both groups. Eicosanoid concentrations correlated to IL-5 and eosinophil cationic protein; however, only cys-leukotriene levels correlated with IgE-antibodies to SEs, independently of allergy and asthma. CONCLUSION Eicosanoid synthesis is up-regulated in polyp tissue of patients with immune response to SEs and seems to be related to the inflammatory reaction induced by these enterotoxins.
Collapse
Affiliation(s)
- Claudina Angela Pérez-Novo
- Department of Otorhinolaryngology, Upper Airways Research Laboratory, Gent University Hospital, Belgium.
| | | | | | | | | | | |
Collapse
|
89
|
Gulliksson M, Palmberg L, Nilsson G, Ahlstedt S, Kumlin M. Release of prostaglandin D2 and leukotriene C4 in response to hyperosmolar stimulation of mast cells. Allergy 2006; 61:1473-9. [PMID: 17073880 DOI: 10.1111/j.1398-9995.2006.01213.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mannitol-induced bronchoconstriction in subjects with exercise-induced asthma is associated with increased urinary excretion of 9alpha, 11beta-PGF(2), a metabolite of prostaglandin D(2) (PGD(2)) serving as a mast cell marker. It has however been questioned whether or not human mast cells release PGD(2) and leukotriene C(4) (LTC(4)) after osmotic challenge with mannitol in vitro. METHODS Cord blood-derived human mast cells were stimulated osmotically, immunologically or with a combination of both. Supernatants were analysed for PGD(2), LTC(4) and histamine contents with enzyme immunoassays. RESULTS Significant release of de novo synthesized eicosanoids, predominantly PGD(2) [12 (8.8, 14) pmol/10(6)cells; median (25th, 75th percentile) but also LTC(4) (0.1 (0.08, 0.15) pmol/10(6) cells] were found in mast cells in vitro in response to 0.7 M mannitol stimulation. A massive release of histamine [70 (5.3)% of total; mean (SEM)] was also found. There were no correlations between the levels of released mediators after mannitol stimulation. In contrast, there was a correlation between release of PGD(2) and LTC(4), following immunological stimulation. CONCLUSION The findings support that hyperosmolar challenge activates mast cells, but different than antigen stimulation.
Collapse
Affiliation(s)
- M Gulliksson
- Division of Physiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
90
|
McCauley SD, Gilchrist M, Befus AD. Regulation and function of the protein inhibitor of nitric oxide synthase (PIN)/dynein light chain 8 (LC8) in a human mast cell line. Life Sci 2006; 80:959-64. [PMID: 17169380 DOI: 10.1016/j.lfs.2006.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 11/05/2006] [Accepted: 11/16/2006] [Indexed: 01/17/2023]
Abstract
The protein inhibitor of nitric oxide synthase (PIN) was independently identified as an inhibitor of nitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS), and as a member of the cellular dynein light chain family, dynein light chain 8 (LC8), responsible for intracellular protein trafficking. Mast cells (MC) are involved in several homeostatic and pathological processes and can be regulated by NO. This study describes the expression of PIN/LC8 in the human MC line HMC-1. We also studied if PIN/LC8 binds nNOS, and what role this might have in leukotriene (LT) production. We found that PIN/LC8 mRNA and protein was expressed in HMC-1. Using a GST-PIN construct, we showed PIN binds to nNOS, but not endothelial (e)NOS in HMC-1; in our studies HMC-1 did not express inducible (i)NOS. Intracellular delivery of anti-PIN/LC8 antibody enhanced ionophore (A23187)-induced LT production through an unknown mechanism. Thus we established for the first time expression of PIN/LC8 in human MC, its ability to bind nNOS, and the effect that blocking it has on LT production in a human MC lines.
Collapse
Affiliation(s)
- Scott D McCauley
- Glaxo-Heritage Asthma Research Laboratory, Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
91
|
Peters-Golden M, Gleason MM, Togias A. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clin Exp Allergy 2006; 36:689-703. [PMID: 16776669 PMCID: PMC1569601 DOI: 10.1111/j.1365-2222.2006.02498.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cysteinyl leukotrienes (CysLTs) are a family of inflammatory lipid mediators synthesized from arachidonic acid by a variety of cells, including mast cells, eosinophils, basophils, and macrophages. This article reviews the data for the role of CysLTs as multi-functional mediators in allergic rhinitis (AR). We review the evidence that: (1) CysLTs are released from inflammatory cells that participate in AR, (2) receptors for CysLTs are located in nasal tissue, (3) CysLTs are increased in patients with AR and are released following allergen exposure, (4) administration of CysLTs reproduces the symptoms of AR, (5) CysLTs play roles in the maturation, as well as tissue recruitment, of inflammatory cells, and (6) a complex inter-regulation between CysLTs and a variety of other inflammatory mediators exists.
Collapse
|
92
|
Yang Z, Yan WX, Cai H, Tedla N, Armishaw C, Di Girolamo N, Wang HW, Hampartzoumian T, Simpson JL, Gibson PG, Hunt J, Hart P, Hughes JM, Perry MA, Alewood PF, Geczy CL. S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J Allergy Clin Immunol 2006; 119:106-14. [PMID: 17208591 DOI: 10.1016/j.jaci.2006.08.021] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/12/2006] [Accepted: 08/17/2006] [Indexed: 01/17/2023]
Abstract
BACKGROUND The calcium-binding protein S100A12 might provoke inflammation and monocyte recruitment through the receptor for advanced glycation end products. OBJECTIVE Because inflammation elicited by S100A12 in vivo had characteristics of mast cell (MC) activation, we aimed to define the mechanism. METHODS Various MC populations were used to test S100A12 activation assessed on the basis of morphology, histamine release, leukotriene production, and cytokine induction. MC dependence of S100A12-provoked inflammation was tested in mice and on the rat microcirculation by means of intravital microscopy. Immunohistochemistry localized S100A12 in the asthmatic lung, and levels in sputum from asthmatic patients were quantitated by means of ELISA. Expression of the receptor for advanced glycation end products was evaluated by means of RT-PCR and Western blotting. RESULTS S100A12 provoked degranulation of mucosal and tissue MCs in vitro and in vivo and amplified IgE-mediated responses. It induced a cytokine profile indicating a role in innate/T(H)1-mediated responses. S100A12-induced edema and leukocyte rolling, adhesion, and transmigration in the microcirculation were MC dependent. Eosinophils in airway tissue from asthmatic patients were S100A12 positive, and levels were increased in sputum. S100A12 responses were partially blocked by an antagonist to the receptor for advanced glycation end products, but MCs did not express mRNA or protein, suggesting an alternate receptor. CONCLUSION This novel pathway highlights the potential importance of S100A12 in allergic responses and in infectious and chronic inflammatory diseases. CLINICAL IMPLICATIONS MC activation by S100A12 might exacerbate allergic inflammation and asthma. S100A12 might provide a novel marker for eosinophilic asthma.
Collapse
Affiliation(s)
- Zheng Yang
- School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Adamjee J, Suh YJ, Park HS, Choi JH, Penrose JF, Lam BK, Austen KF, Cazaly AM, Wilson SJ, Sampson AP. Expression of 5-lipoxygenase and cyclooxygenase pathway enzymes in nasal polyps of patients with aspirin-intolerant asthma. J Pathol 2006; 209:392-9. [PMID: 16583357 DOI: 10.1002/path.1979] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In aspirin-intolerant subjects, adverse bronchial and nasal reactions to cyclooxygenase (COX) inhibitors are associated with over-production of cysteinyl-leukotrienes (cys-LTs) generated by the 5-lipoxygenase (5-LO) pathway. In the bronchi of patients with aspirin-intolerant asthma, we previously linked cys-LT over-production and aspirin hyper-reactivity with elevated immunoexpression in eosinophils of the terminal enzyme for cys-LT production, LTC4 synthase. We investigated whether this anomaly also occurs in the nasal airways of these patients. Immunohistochemical expression of 5-LO and COX pathway proteins was quantified in nasal polyps from 12 patients with aspirin-intolerant asthma and 13 with aspirin-tolerant asthma. In the mucosa of polyps from aspirin-intolerant asthmatic patients, cells immunopositive for LTC4 synthase were four-fold more numerous than in aspirin-tolerant asthmatic patients (p=0.04). There were also three-fold more cells expressing 5-LO (p=0.037), with no differences in 5-LO activating protein (FLAP), COX-1 or COX-2. LTC4 synthase-positive cell counts correlated exclusively with mucosal eosinophils (r=0.94, p<0.001, n=25). Co-localisation confirmed that five-fold higher eosinophil counts (p=0.007) accounted for the increased LTC4 synthase expression in polyps from aspirin-intolerant asthmatic patients, with no alterations in mast cells or macrophages. Within the epithelium, increased counts of eosinophils (p=0.006), macrophages (p=0.097), and mast cells (p=0.034) in aspirin-intolerant asthmatic polyps were associated only with 2.5-fold increased 5-LO-positive cells (p<0.05), while the other enzymes were not different. Our results indicate that a marked over-representation of LTC4 synthase in mucosal eosinophils is closely linked to aspirin intolerance in the nasal airway, as in the bronchial airways.
Collapse
Affiliation(s)
- J Adamjee
- Allergy and Inflammation Research (IIR Division), Southampton University School of Medicine, Southampton SO16 6YD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Jiang Y, Kanaoka Y, Feng C, Nocka K, Rao S, Boyce JA. Cutting Edge: Interleukin 4-Dependent Mast Cell Proliferation Requires Autocrine/Intracrine Cysteinyl Leukotriene-Induced Signaling. THE JOURNAL OF IMMUNOLOGY 2006; 177:2755-9. [PMID: 16920908 DOI: 10.4049/jimmunol.177.5.2755] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reactive mastocytosis (RM) in epithelial surfaces is a consistent Th2-associated feature of allergic disease. RM fails to develop in mice lacking leukotriene (LT) C4 synthase (LTC4S), which is required for cysteinyl leukotriene (cys-LT) production. We now report that IL-4, which induces LTC4S expression by mast cells (MCs), requires cys-LTs, the cys-LT type 1 receptor (CysLT1), and Gi proteins to promote MC proliferation. LTD4 (10-1000 nM) enhanced proliferation of human MCs in a CysLT1-dependent, pertussis toxin-sensitive manner. LTD4-induced phosphorylation of ERK required transactivation of c-kit. IL-4-driven comitogenesis was likewise sensitive to pertussis toxin or a CysLT1-selective antagonist and was attenuated by treatment with leukotriene synthesis inhibitors. Mouse MCs lacking LTC4S or CysLT1 showed substantially diminished IL-4-induced comitogenesis. Thus, IL-4 induces proliferation in part by inducing LTC4S and cys-LT generation, which causes CysLT1 to transactivate c-kit in RM.
Collapse
Affiliation(s)
- Yongfeng Jiang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
95
|
Di Girolamo N, Indoh I, Jackson N, Wakefield D, McNeil HP, Yan W, Geczy C, Arm JP, Tedla N. Human Mast Cell-Derived Gelatinase B (Matrix Metalloproteinase-9) Is Regulated by Inflammatory Cytokines: Role in Cell Migration. THE JOURNAL OF IMMUNOLOGY 2006; 177:2638-50. [PMID: 16888026 DOI: 10.4049/jimmunol.177.4.2638] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells are key effectors in the pathogenesis of inflammatory and tissue destructive diseases such as rheumatoid arthritis (RA). These cells contain specialized secretory granules loaded with bioactive molecules including cytokines, growth factors, and proteases that are released upon activation. This study investigated the regulation of matrix metalloproteinase MMP-9 (gelatinase B) in human mast cells by cytokines that are known to be involved in the pathogenesis of RA. Immunohistochemical staining of synovial tissue showed abundant expression of MMP-9 by synovial tissue mast cells in patients with RA but not in normal controls. The expression, activity, and production of MMP-9 in mast cells was confirmed by RT-PCR, zymography, and Western blotting using cord blood-derived human mast cells (CB-HMC). Treatment of CB-HMC with TNF-alpha significantly increased the expression of MMP-9 mRNA and up-regulated the activity of MMP-9 in a time- and dose-dependent manner. By contrast, IFN-gamma inhibited MMP-9 mRNA and protein expression. The cytokine-mediated regulation of MMP-9 was also apparent in the human mast cell line (HMC-1) and in mouse bone marrow-derived mast cells. Furthermore, TNF-alpha significantly increased the invasiveness of CB-HMC across Matrigel-coated membranes while the addition of IFN-gamma, rTIMP-1, or pharmacological MMP inhibitors significantly reduced this process. These observations suggest that MMP-9 is not a stored product in mast cells but these cells are capable of producing this enzyme under inflammatory conditions that may facilitate the migration of mast cell progenitors to sites of inflammation and may also contribute to local tissue damage.
Collapse
Affiliation(s)
- Nick Di Girolamo
- Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
96
|
James AJ, Penrose JF, Cazaly AM, Holgate ST, Sampson AP. Human bronchial fibroblasts express the 5-lipoxygenase pathway. Respir Res 2006; 7:102. [PMID: 16872537 PMCID: PMC1550400 DOI: 10.1186/1465-9921-7-102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 07/27/2006] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fibroblasts are implicated in sub-epithelial fibrosis in remodeled asthmatic airways and contribute to airway inflammation by releasing cytokines and other mediators. Fibroblast activity is influenced by members of the leukotriene family of bronchoconstrictor and inflammatory mediators, but it is not known whether human bronchial fibroblasts can synthesize leukotrienes. METHODS The expression of leukotriene biosynthetic enzymes and receptors was investigated in primary fibroblasts from the bronchi of normal and asthmatic adult subjects using RT-PCR, Western blotting, immunocytochemistry and flow cytometry. RESULTS These techniques revealed that human bronchial fibroblasts from both subject groups constitutively express 5-lipoxygenase, its activating protein FLAP, the terminal enzymes leukotriene A4 hydrolase and leukotriene C4 synthase, and receptors for leukotriene B4 (BLT1) and cysteinyl-leukotrienes (CysLT1). Human bronchial fibroblasts generated immunoreactive leukotriene B4 and cysteinyl-leukotrienes spontaneously and in increased amounts after calcium-dependent activation. Flow cytometry showed that human bronchial fibroblasts transformed to a myofibroblast-like phenotype by culture with transforming growth factor-beta1 expressed 320-400% more immunofluorescence for leukotriene C4 synthase and CysLT1 receptors, with 60-80% reductions in leukotriene A4 hydrolase and BLT1 receptors. CONCLUSION These results indicate that human bronchial fibroblasts may not only respond to exogenous leukotrienes but also generate leukotrienes implicated in narrowing, inflammation and remodeling of the asthmatic airway.
Collapse
Affiliation(s)
- Anna J James
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - John F Penrose
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Angelica M Cazaly
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Stephen T Holgate
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| | - Anthony P Sampson
- Division of Infection, Inflammation and Repair (IIR), University of Southampton, School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK
| |
Collapse
|
97
|
Abstract
Leukotrienes are lipid messengers involved in autocrine and paracrine cellular signaling. They are synthesized from arachidonic acid by the 5-lipoxygenase pathway. Current models of this enzymatic pathway recognize that a key step in initiating leukotriene synthesis is the calcium-mediated movement of enzymes, including 5-lipoxygenase, to intracellular membranes. However, 5-lipoxygenase can be imported into or exported from the nucleus before calcium activation. As a result, its subcellular localization will affect its ability to be activated by calcium, as well as the membrane to which it binds and its interaction with other enzymes. This commentary focuses on the role of 5-lipoxygenase compartmentation in determining its regulation and, ultimately, leukotriene synthesis.
Collapse
Affiliation(s)
- Thomas G Brock
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
98
|
Wen D, Nong Y, Morgan JG, Gangurde P, Bielecki A, Dasilva J, Keaveney M, Cheng H, Fraser C, Schopf L, Hepperle M, Harriman G, Jaffee BD, Ocain TD, Xu Y. A selective small molecule IkappaB Kinase beta inhibitor blocks nuclear factor kappaB-mediated inflammatory responses in human fibroblast-like synoviocytes, chondrocytes, and mast cells. J Pharmacol Exp Ther 2006; 317:989-1001. [PMID: 16525037 DOI: 10.1124/jpet.105.097584] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
IkappaB kinase (IKK) beta is essential for inflammatory cytokine-induced activation of nuclear factor kappaB (NF-kappaB). NF-kappaB plays a pivotal role in the function of major cell types that contribute to the pathophysiological process of rheumatoid arthritis (RA). Here, we report the mechanism and the effect of the IKKbeta inhibitor N-(6-chloro-7-methoxy-9H-beta-carbolin-8-yl)-2-methylnicotinamide (ML120B), a beta-carboline derivative, on NF-kappaB signaling and gene activation in RA-relevant cell systems. ML120B is a potent, selective, reversible, and ATP-competitive inhibitor of IKKbeta with an IC50 of 60 nM when evaluated in an IkappaBalpha kinase complex assay. ML120B does not inhibit other IKK isoforms or a panel of other kinases. ML120B concentration-dependently inhibits tumor necrosis factor alpha (TNFalpha)-stimulated NF-kappaB signaling via inhibition of IkappaBalpha phosphorylation, degradation, and NF-kappaB translocation into the nucleus. For the first time, we have demonstrated that in human fibroblast-like synoviocytes, TNFalpha- or interleukin (IL)-1beta-induced monocyte chemoattractant protein-1 regulated on activation, normal T cell expressed and secreted and production is IKKbeta-dependent. In addition, for the first time, we have demonstrated that lipopolysaccharide- or peptidoglycan-induced cytokine production in human cord blood-derived mast cells is IKKbeta-dependent. In addition, in human chondrocytes, ML120B inhibited IL-1beta-induced matrix metalloproteinase production with an IC50 of approximately 1 microM. ML120B also blocked IL-1beta-induced prostaglandin E2 production. In summary, ML120B blocked numerous NF-kappaB-regulated cell responses that are involved in inflammation and destructive processes in the RA joint. Our findings support the evaluation of IKKbeta inhibitors as anti-inflammatory agents for the treatment of RA.
Collapse
Affiliation(s)
- Danyi Wen
- Inflammation Department, Millennium Pharmaceuticals, Inc., 35 Landsdowne Street, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Feng C, Beller EM, Bagga S, Boyce JA. Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood 2005; 107:3243-50. [PMID: 16357326 PMCID: PMC1895755 DOI: 10.1182/blood-2005-07-2772] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Prostaglandin E2 (PGE2) blocks mast-cell (MC)-dependent allergic responses in humans but activates MCs in vitro. We assessed the functions of the EP receptors for PGE2 on cultured human MCs (hMCs). hMCs expressed the EP3, EP2, and EP4 receptors. PGE2 stimulated the accumulation of cyclic adenosine monophosphate (cAMP), and suppressed both Fc epsilonRI-mediated eicosanoid production and tumor necrosis factor-alpha (TNF-alpha) generation. PGE2 also caused phosphorylation of extracellular signal-regulated kinase (ERK), exocytosis, and production of prostaglandin D2 (PGD2), as well as leukotriene C4 (LTC4) when protein kinase A (PKA) was inhibited. An EP3 receptor-selective agonist, AE-248, mimicked PGE2-mediated ERK phosphorylation, exocytosis, and eicosanoid formation. Selective agonists of both EP2 and EP4 receptors (AE1-259-01 and AE-329, respectively) stimulated cAMP accumulation. No selective agonist, alone or in combination, was as effective as PGE2. AE-248, AE1-259-01, and AE-329 all inhibited Fc epsilonRI-mediated TNF-alpha generation, while AE1-259-01 blocked eicosanoid production. PGE2 caused the expression of inducible cAMP early repressor (ICER) by a pathway involving PKA and ERK. Thus, while PGE2 activates MCs through EP3 receptors, it also counteracts Fc epsilonRI-mediated eicosanoid production through EP2 receptors and PKA, and blocks cytokine transcription. These functions explain the potency of PGE2 as a suppressor of early- and late-phase allergic responses.
Collapse
Affiliation(s)
- Chunli Feng
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
100
|
Lin DA, Boyce JA. IL-4 regulates MEK expression required for lysophosphatidic acid-mediated chemokine generation by human mast cells. THE JOURNAL OF IMMUNOLOGY 2005; 175:5430-8. [PMID: 16210650 DOI: 10.4049/jimmunol.175.8.5430] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
IL-4 and mast cells (MCs) mediate mucosal defense against helminths and are central to allergic inflammation. Lysophosphatidic acid (LPA), an abundant, potent lipid growth factor, stimulates the growth of cultured human MCs (hMCs) in vitro through a pathway involving LPA receptors 1 and 3 (termed the LPA(1) and LPA(3) receptors, respectively) and peroxisome proliferator-activated receptor-gamma. We now report that LPA potently induces the generation of proinflammatory chemokines (MIP-1beta, IL-8, and MCP-1) by hMCs by a mechanism that absolutely requires IL-4. The de novo expression of chemokine mRNA and protein generation involves synergistic actions of calcium flux-dependent NFAT transcription factors and ERK. ERK phosphorylation and chemokine production in response to LPA require IL-4-dependent up-regulation of MEK-1 expression by a pathway involving PI3K. Although receptor-selective agonists for both the LPA(2) and LPA(3) receptors induce calcium fluxes by hMCs, only the LPA(2) receptor-selective agonist fatty alcohol phosphate-12 mimics the IL-4-dependent effect of LPA on chemokine generation. The fact that LPA, an endogenous lipid mediator, activates hMCs by an LPA(2) receptor-dependent pathway indicates functional distinctions between different LPA receptor family members that are expressed constitutively by cells of a single hemopoietic lineage. Moreover, the regulation of MEK-dependent signaling is a mechanism by which IL-4 could amplify inflammation in mucosal immune responses through receptor systems for endogenous ligands such as LPA.
Collapse
Affiliation(s)
- Debby A Lin
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|