51
|
Trendelenburg M, Manderson AP, Fossati-Jimack L, Walport MJ, Botto M. Monocytosis and accelerated activation of lymphocytes in C1q-deficient autoimmune-prone mice. Immunology 2004; 113:80-8. [PMID: 15312138 PMCID: PMC1782548 DOI: 10.1111/j.1365-2567.2004.01940.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
C1q deficiency has been shown to accelerate spontaneous autoimmunity in mice. We studied the time course of activation of monocytes and lymphocytes in autoimmune and non-autoimmune mice in the presence or absence of C1q as a disease accelerator. Autoimmune MRL\Mp.C1qa-\- and non-autoimmune C57BL\6.C1qa-\- mice were analysed at various time points between 6 and 33 weeks of age and compared to strain- and age-matched C1q-sufficient controls. Splenic and peritoneal leucocytes were analysed by flow cytometry and plasma levels of immunoglobulin M (IgM), total IgG, IgG subclasses and IgM autoantibodies were measured. Both C1q-deficient strains had significantly more splenic monocytes than their controls at all time points analysed. In addition, MRL\Mp.C1qa-\- but not C57BL/6.C1qa-\- mice developed splenic hypercellularity starting at about 12-17 weeks old, had signs of accelerated CD4+ T-cell activation and showed a marked increase in splenic plasma cells and total serum IgM levels from about 22 weeks of age. The accelerated CD4+ T-cell activation was not due to a direct inhibitory effect of C1q on T cells. These data show that C1q deficiency causes splenic monocytosis together with accelerated T-cell activation in an autoimmune-prone mouse strain.
Collapse
Affiliation(s)
- Marten Trendelenburg
- Rheumatology Section, Eric Bywaters Centre, Faculty of Medicine, Imperial College, Hammersmith Campus, London, UK
| | | | | | | | | |
Collapse
|
52
|
Krishnan S, Nambiar MP, Warke VG, Fisher CU, Mitchell J, Delaney N, Tsokos GC. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2004; 172:7821-31. [PMID: 15187166 DOI: 10.4049/jimmunol.172.12.7821] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In response to appropriate stimulation, T lymphocytes from systemic lupus erythematosus (SLE) patients exhibit increased and faster intracellular tyrosine phosphorylation and free calcium responses. We have explored whether the composition and dynamics of lipid rafts are responsible for the abnormal T cell responses in SLE. SLE T cells generate and possess higher amounts of ganglioside-containing lipid rafts and, unlike normal T cells, SLE T cell lipid rafts include FcRgamma and activated Syk kinase. IgM anti-CD3 Ab-mediated capping of TCR complexes occurs more rapidly in SLE T cells and concomitant with dramatic acceleration of actin polymerization kinetics. The significance of these findings is evident from the observation that cross-linking of lipid rafts evokes earlier and higher calcium responses in SLE T cells. Thus, we propose that alterations in the lipid raft signaling machinery represent an important mechanism that is responsible for the heightened and accelerated T cell responses in SLE.
Collapse
Affiliation(s)
- Sandeep Krishnan
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Choi JY, Craft J. Activation of naive CD4+ T cells in vivo by a self-peptide mimic: mechanism of tolerance maintenance and preservation of immunity. THE JOURNAL OF IMMUNOLOGY 2004; 172:7399-407. [PMID: 15187117 DOI: 10.4049/jimmunol.172.12.7399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Intrathymic selection generates a peripheral repertoire of CD4(+) T cells with receptors that retain low affinity for self-peptide MHC complexes. Despite self-recognition, T cells remain tolerant even in the setting of microbial challenge and resultant costimulatory signals. We demonstrate here a novel mechanism for tolerance maintenance under conditions of self-recognition and strong costimulation. TCR engagement in vivo with a low-avidity peptide, as a mimic of self, provided with poly(I:C) (dsRNA) led to division of naive T cells that was dependent upon costimulatory signals; however, the dividing cells rapidly underwent deletion. By contrast, the surviving cells that were activated as evidenced by up-regulation of CD69 did not become effectors upon restimulation with the same ligand and maintained an effective response against agonist peptide. We suggest TCR engagement with self-peptide MHC complexes promotes tolerance maintenance during pathogen challenge, while preserving efficient reactivity for subsequent encounter with foreign Ags.
Collapse
Affiliation(s)
- Jin-Young Choi
- Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
54
|
Lawson BR, Baccala R, Song J, Croft M, Kono DH, Theofilopoulos AN. Deficiency of the cyclin kinase inhibitor p21(WAF-1/CIP-1) promotes apoptosis of activated/memory T cells and inhibits spontaneous systemic autoimmunity. ACTA ACUST UNITED AC 2004; 199:547-57. [PMID: 14970181 PMCID: PMC2211831 DOI: 10.1084/jem.20031685] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A characteristic feature of systemic lupus erythematosus is the accumulation of activated/memory T and B cells. These G0/G1-arrested cells express high levels of cyclin-dependent kinase inhibitors such as p21, are resistant to proliferation and apoptosis, and produce large amounts of proinflammatory cytokines. Herein, we show that ablation of p21 in lupus-prone mice allows these cells to reenter the cell cycle and undergo apoptosis, leading to autoimmune disease reduction. Absence of p21 resulted in enhanced Fas/FasL-mediated activation-induced T cell death, increased activation of procaspases 8 and 3, and loss of mitochondrial transmembrane potential. Increased apoptosis was also associated with p53 up-regulation and a modest shift in the ratio of Bax/Bcl-2 toward the proapoptotic Bax. Proliferation and apoptosis of B cells were also increased in p21−/− lupus mice. Thus, modulation of the cell cycle pathway may be a novel approach to reduce apoptosis-resistant pathogenic lymphocytes and to ameliorate systemic autoimmunity.
Collapse
Affiliation(s)
- Brian R Lawson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
55
|
Kong PL, Morel L, Croker BP, Craft J. The centromeric region of chromosome 7 from MRL mice (Lmb3) is an epistatic modifier of Fas for autoimmune disease expression. THE JOURNAL OF IMMUNOLOGY 2004; 172:2785-94. [PMID: 14978078 DOI: 10.4049/jimmunol.172.5.2785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lupus is a prototypic systemic autoimmune disease that has a significant genetic component in its etiology. Several genome-wide screens have identified multiple loci that contribute to disease susceptibility in lupus-prone mice, including the Fas-deficient MRL/Fas(lpr) strain, with each locus contributing in a threshold liability manner. The centromeric region of chromosome 7 was identified as a lupus susceptibility locus in MRL/Fas(lpr) mice as Lmb3. This locus was backcrossed onto the resistant C57BL/6 (B6) background, in the presence or absence of Fas, resulting in the generation of B6.MRLc7 congenic animals. Detailed analysis of these animals showed that Lmb3 enhances and accelerates several characteristics of lupus, including autoantibody production, kidney disease, and T cell activation, as well as accumulation of CD4(-)CD8(-) double-negative T cells, the latter a feature of Fas-deficient mice. These effects appeared to be dependent on the interaction between Lmb3 and Fas deficiency, as Lmb3 on the B6/+(Fas-lpr) background did not augment any of the lupus traits measured. These findings confirm the role of Lmb3 in lupus susceptibility, as a modifier of Fas(lpr) phenotype, and illustrate the importance of epistatic interaction between genetic loci in the etiology of lupus. Furthermore, they suggest that the genetic lesion(s) in MRLc7 is probably different from those in NZMc7 (Sle3/5), despite a significant overlap of these two intervals.
Collapse
Affiliation(s)
- Philip L Kong
- Section of Rheumatology, Department of Internal Medicine, and Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
56
|
|
57
|
Sun D, Krishnan A, Su J, Lawrence R, Zaman K, Fernandes G. Regulation of immune function by calorie restriction and cyclophosphamide treatment in lupus-prone NZB/NZW F1 mice. Cell Immunol 2004; 228:54-65. [PMID: 15203320 DOI: 10.1016/j.cellimm.2004.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Accepted: 04/02/2004] [Indexed: 11/21/2022]
Abstract
We compared the effects of calorie restriction (CR) and cyclophosphamide (CTX) on the progression of lupus nephritis and immunological changes in NZB/NZW F1 mice. Ad libitum (AL)/CTX and CR delayed onset of proteinuria and significantly decreased serum levels of anti-dsDNA, anti-histone, and circulating immune complex antibodies. CTX and CR prevented the increase in and activation of B cells, the decline in CD8(+) T cells, and maintained a higher proportion of naïve CD4(+) and CD8(+) cells. MHC class I antigen and LFA-1 expression on CD8(+) T cells and MHC class II antigen on B cells were also decreased. AL/CTX and CR prevented the increase in production of IL-10 and up-regulated IL-2 production in T cells ex vivo. We concluded that both CR and CTX can delay the onset of autoimmune disease, in part by maintaining higher numbers of naïve T cells and the immune responsiveness of T cells and decreasing the proportion of B cells.
Collapse
Affiliation(s)
- Dongxu Sun
- Department of Medicine, Division of Clinical Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
58
|
Kang I, Quan T, Nolasco H, Park SH, Hong MS, Crouch J, Pamer EG, Howe JG, Craft J. Defective Control of Latent Epstein-Barr Virus Infection in Systemic Lupus Erythematosus. THE JOURNAL OF IMMUNOLOGY 2004; 172:1287-94. [PMID: 14707107 DOI: 10.4049/jimmunol.172.2.1287] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
EBV infection is more common in patients with systemic lupus erythematosus (SLE) than in control subjects, suggesting that this virus plays an etiologic role in disease and/or that patients with lupus have impaired EBV-specific immune responses. In the current report we assessed immune responsiveness to EBV in patients with SLE and healthy controls, determining virus-specific T cell responses and EBV viral loads using whole blood recall assays, HLA-A2 tetramers, and real-time quantitative PCR. Patients with SLE had an approximately 40-fold increase in EBV viral loads compared with controls, a finding not explained by disease activity or immunosuppressive medications. The frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma was higher in patients with SLE than in controls. By contrast, the frequency of EBV-specific CD69+ CD8+ T cells producing IFN-gamma in patients with SLE appeared lower than that in healthy controls, although this difference was not statistically significant. These findings suggest a role for CD4+ T cells in controlling, and a possible defect in CD8+ T cells in regulating, increased viral loads in lupus. These ideas were supported by correlations between viral loads and EBV-specific T cell responses in lupus patients. EBV viral loads were inversely correlated with the frequency of EBV-specific CD69+ CD4+ T cells producing IFN-gamma and were positively correlated with the frequencies of CD69+ CD8+ T cells producing IFN-gamma and with EBV-specific, HLA-A2 tetramer-positive CD8+ T cells. These results demonstrate that patients with SLE have defective control of latent EBV infection that probably stems from altered T cell responses against EBV.
Collapse
Affiliation(s)
- Insoo Kang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
In the last few years it has become clear that in cells of the immune system, specialized microdomains present in the plasma membrane, called lipid rafts, have been found to play a central role in regulating signalling by immune receptors. Recent studies have looked at whether lipid rafts may be connected to the abnormalities in signalling seen in T lymphocytes isolated from patients with systemic lupus erythematosus (SLE). These early findings show that in SLE T cells, the expression and protein composition of lipid rafts is different when compared with normal T cells. These results also demonstrate changes in the function and localization of critical signalling molecules such as the LCK tyrosine kinase and the CD45 tyrosine phosphatase.
Collapse
Affiliation(s)
- E C Jury
- Centre for Rheumatology, Royal Free and University College Medical School, London, UK.
| | | |
Collapse
|
60
|
Xiao S, Sung SSJ, Fu SM, Ju ST. Combining Fas Mutation with Interleukin-2 Deficiency Prevents Colitis and Lupus. J Biol Chem 2003; 278:52730-8. [PMID: 14525977 DOI: 10.1074/jbc.m308707200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both the lpr gene defect and interleukin 2-targeted mutation (IL-2 KO) in mice are lethal. Interestingly, mice bearing both mutations live significantly longer than mice with either of the single mutant genes, approximating the life span of normal controls. They do not display the major disease phenotypes of lpr and IL-2 KO mice. Systemic autoimmune response, the accumulation of the abnormal CD4-CD8-B220+ double-negative T cells, kidney disease pathology, anemia, colon damage, and lethality are prevented. Our data indicate that IL-2 is mandatory for the expansion of auto-reactive T cells in lpr mice and that CD95 (Fas) is the critical target for the development of anemia and ulcerative colitis in IL-2 KO mice in which CD178 (FasL) on intraepithelial T cells is the major effector responsible for colon damage and lethality.
Collapse
Affiliation(s)
- Sheng Xiao
- Division of Rheumatology and Immunology, Department of Internal Medicine, and Special Center of Research on Systemic Lupus Erythematosus, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
61
|
Doyle HA, Gee RJ, Mamula MJ. A failure to repair self-proteins leads to T cell hyperproliferation and autoantibody production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:2840-7. [PMID: 12960305 DOI: 10.4049/jimmunol.171.6.2840] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is clear that many factors can perturb T cell homeostasis that is critical in the maintenance of immune tolerance. Defects in the molecules that regulate homeostasis can lead to autoimmune pathology. This simple immunologic concept is complicated by the fact that many self-proteins undergo spontaneous posttranslational modifications that affect their biological functions. This is the case in the spontaneous conversion of aspartyl residues to isoaspartyl residues, a modification occurring at physiological pH and under conditions of cell stress and aging. We have examined the effect of isoaspartyl modifications on the effector functions of T lymphocytes in vivo using mice lacking the isoaspartyl repair enzyme protein carboxyl methyltransferase (PCMT). PCMT(-/-) CD4(+) T cells exhibit increased proliferation in response to mitogen and Ag receptor stimulation as compared with wild-type CD4(+) T cells. Hyperproliferation is marked by increased phosphorylation of members of both the TCR and CD28 signaling pathways. Wild-type mice reconstituted with PCMT(-/-) bone marrow develop high titers of anti-DNA autoantibodies and kidney pathology typical of that found in systemic lupus erythematosus. These observations, coupled with the fact that humans have polymorphisms in the pcmt gene, suggest that isoaspartyl self-proteins may alter the maintenance of peripheral immune tolerance.
Collapse
Affiliation(s)
- Hester A Doyle
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
62
|
Tsokos GC, Mitchell JP, Juang YT. T cell abnormalities in human and mouse lupus: intrinsic and extrinsic. Curr Opin Rheumatol 2003; 15:542-7. [PMID: 12960478 DOI: 10.1097/00002281-200309000-00004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this review is to discuss recent developments in the biology and biochemistry of the T cells in mice and humans with systemic lupus erythematosus. T cells that recognize self-antigens are present in systemic lupus erythematosus and normal organisms. It is obvious, though, that an autoimmune environment should be present to disrupt anergy and instigate a response that might cause disease. The environment that lifts anergy is defined by distinct molecular aberrations that include rewiring of the T cells. Aberrant transcription of genes that encode proteins involved in autoimmunity can be traced to abnormal expression and activation of transcription factors and promoter methylation intensity. Only certain components of the autoimmune response can be linked to pathologic changes in the target organ that might be dictated by additional local factors. The works reviewed imply that self-peptides might be considered to reestablish lost tolerance, whereas correction of the aberrant biochemistry might normalize T cell function and limit disease.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Uniformed Services University, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
63
|
Abstract
T helper cells and their antigen receptors were topics of keen interest in Henry Kunkel's laboratory during the early 1980s. The activation of human T cells by foreign antigen, allogeneic cells and autologous non-T cells had been established, but the most effective stimulator cells in those responses had not yet been identified. Dendritic cells, along with activated B cells, were demonstrated to be important stimulators of autologous T cells, and studies of peripheral blood from patients with SLE supported the conclusion that the non-T cells in those patients were deficient in their capacity to stimulate an autologous mixed lymphocyte reaction (AMLR). Subsequent studies have defined the role of apoptotic cells processed by dendritic cells in autologous T cell activation. In view of recent data demonstrating depletion of dendritic cell subsets in SLE peripheral blood and recruitment of those cells to sites of immune system activity, it is proposed that SLE T cells are indeed capable of self-reactivity and that the impaired in vitro proliferative response to autologous non-T cells as assessed in the AMLR may reflect the shift of dendritic cells, with their antigen presenting activity augmented by adjuvant-like factors, from peripheral blood to peripheral lymphoid organs and sites of disease.
Collapse
Affiliation(s)
- M K Crow
- The Mary Kirkland Center for Lupus Research, Rheumatology Research Program, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
64
|
Lajaunias F, Ida A, Kikuchi S, Fossati-Jimack L, Martinez-Soria E, Moll T, Law CL, Izui S. Differential control of CD22 ligand expression on B and T lymphocytes, and enhanced expression in murine systemic lupus. ARTHRITIS AND RHEUMATISM 2003; 48:1612-21. [PMID: 12794829 DOI: 10.1002/art.11021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE CD22, a B cell-restricted transmembrane glycoprotein, regulates B cell antigen receptor signaling upon interaction with alpha2,6-linked sialic acid-bearing glycans, which act as ligands and are expressed on B and T cells. In this study, we investigated how the expression of CD22 ligand (CD22L) is modulated following lymphocyte activation or during the course of systemic lupus erythematosus (SLE). METHODS The expression levels of CD22L on B and T cells in nonautoimmune mice were assessed by flow cytometric analysis using a soluble recombinant form of CD22, following stimulation with antigen or mitogen in vitro. In addition, the expression levels of CD22L on circulating lymphocytes were correlated with the progression of SLE in lupus-prone mice. RESULTS We observed a constitutive expression of CD22L on mature B cells, but not T cells, in nonautoimmune mice. However, CD22L levels were up-regulated selectively on T cells (but not B cells) stimulated with antigens in vitro, while their expression levels on B cells was up-modulated following polyclonal activation with lipopolysaccharide. Furthermore, expression of CD22L was increased on circulating B cells (and to a lesser extent on T cells) in parallel with progression of SLE in several different lupus-prone mice and in a cohort of (C57BL/6 x [NZB x C57BL/6.Yaa]F(1)) backcross mice. CONCLUSION The expression of CD22L is differentially regulated in B and T cells, and high expression of CD22L on circulating B cells is a marker for development of severe SLE, suggesting a role for CD22-CD22L interactions in SLE as well as in the regulation of humoral immunity.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- B-Lymphocytes/metabolism
- Cell Adhesion Molecules
- Cells, Cultured
- Disease Models, Animal
- Female
- Flow Cytometry
- Lectins/metabolism
- Ligands
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/mortality
- Lupus Erythematosus, Systemic/pathology
- Lupus Nephritis/metabolism
- Lupus Nephritis/mortality
- Lupus Nephritis/pathology
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Receptors, Antigen, B-Cell/metabolism
- Recombinant Proteins
- Sialic Acid Binding Ig-like Lectin 2
- Spleen/cytology
- Spleen/immunology
- Survival Rate
- T-Lymphocytes/metabolism
- Up-Regulation
Collapse
|
65
|
Wang C, Khalil M, Ravetch J, Diamond B. The naive B cell repertoire predisposes to antigen-induced systemic lupus erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4826-32. [PMID: 12707365 DOI: 10.4049/jimmunol.170.9.4826] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is clear that the development of an autoimmune disease usually depends on both a genetic predisposition and an environmental trigger. In this study, we demonstrate that BALB/c mice develop a lupus-like serology following immunization with a peptide mimetope of DNA, while DBA/2 mice do not. We further demonstrate that the critical difference resides within the B cell compartment and that the naive B cell repertoire of DBA/2 mice has fewer B cells specific for the DNA mimetope. Differences in the strength of B cell receptor signaling exist between these two strains and may be responsible for the difference in disease susceptibility. BALB/c mice possess more autoreactive cells in the native repertoire; they display a weaker response to Ag and exhibit less Ag-induced apoptosis of B cells. DBA/2 mice, in contrast, display a stronger B cell receptor signal and more stringent central tolerance. This correlates with resistance to lupus induction. Thus, the degree to which autoreactive B cells have been eliminated from the naive B cell repertoire is genetically regulated and may determine whether a nonspontaneously autoimmune host will develop autoimmunity following exposure to Ag.
Collapse
MESH Headings
- Animals
- Antibodies, Anti-Idiotypic/pharmacology
- Antigens/administration & dosage
- Apoptosis/immunology
- Autoantibodies/biosynthesis
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- Calcium/metabolism
- Cell Differentiation/immunology
- Cells, Cultured
- Cross-Linking Reagents/metabolism
- DNA/administration & dosage
- DNA/immunology
- Female
- Immunization
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/immunology
- Interphase/immunology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Mice, SCID
- Oligopeptides/administration & dosage
- Oligopeptides/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Self Tolerance/immunology
- Species Specificity
Collapse
Affiliation(s)
- Chuansheng Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
66
|
Datta SK. Major peptide autoepitopes for nucleosome-centered T and B cell interaction in human and murine lupus. Ann N Y Acad Sci 2003; 987:79-90. [PMID: 12727626 DOI: 10.1111/j.1749-6632.2003.tb06035.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The potential cross-reactivity of normal T and B cells to nuclear antigens is vast, probably due to their "education" by apoptotic cell antigens in generative lymphoid organs. Despite this "nucleocentric repertoire," as we call it, the peripheral immune system normally remains tolerant or ignorant of the products of apoptosis. However, the T helper (Th) cells, and also B cells of lupus, have a regulatory defect in the expression of CD40 ligand (CD40L). A sustained hyper-expression of CD40L by lupus T cells can be triggered by sub-threshold stimuli, and is associated with impaired phosphorylation of Cbl-b, a critical downregulatory molecule in T cell signal transduction. This CD40L hyper-expression abnormally prolongs co-stimulatory signals to autoimmune B cells, and it probably instigates APC (dendritic cells, resting anti-DNA B cells, and macrophages) to present apoptotic cell autoantigens in an immunogenic fashion. We have identified the dominant nucleosomal epitopes that are critical for cognate interactions between autoimmune Th cells and anti-DNA B cells in lupus. By scanning of overlapping synthetic peptides, and by mass spectrometry of naturally processed peptides, five major epitopes in nucleosomal histones were localized, namely H1'(22-42), H2B(10-33), H3(85-105), H4(16-39), and H4(71-94). The autoimmune T cells as well as B cells of lupus recognize these epitopes, and with age, autoantibodies against the peptide epitopes cross-react with nuclear autoantigens. Moreover, the peptide autoepitopes can be promiscuously presented and recognized by lupus T cells in the context of diverse MHC alleles. This cross-reactivity opens up the possibility of developing "universally" tolerogenic peptides for therapy of lupus in humans despite their MHC diversity. Indeed, tolerogenic therapy with a single histone peptide epitope can halt the progression of established glomerulonephritis in lupus-prone mice by "tolerance spreading" that inactivates a broad spectrum of autoimmune T and B cells in concert.
Collapse
Affiliation(s)
- Syamal K Datta
- Rheumatology Division, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| |
Collapse
|
67
|
Kong PL, Odegard JM, Bouzahzah F, Choi JY, Eardley LD, Zielinski CE, Craft JE. Intrinsic T cell defects in systemic autoimmunity. Ann N Y Acad Sci 2003; 987:60-7. [PMID: 12727624 DOI: 10.1111/j.1749-6632.2003.tb06033.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of T cell tolerance to nuclear antigens. Studies in mice and humans have demonstrated that T cells from individuals with lupus are abnormal. Here, we review the known T cell defects in lupus and their possible biochemical nature, genetic causes, and significance for lupus pathogenesis.
Collapse
Affiliation(s)
- Philip L Kong
- Section of Rheumatology, Department of Internal Medicine, and Section of Immunobiology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Nambiar MP, Fisher CU, Kumar A, Tsokos CG, Warke VG, Tsokos GC. Forced expression of the Fc receptor gamma-chain renders human T cells hyperresponsive to TCR/CD3 stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2871-6. [PMID: 12626537 DOI: 10.4049/jimmunol.170.6.2871] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
High level expression of Fc epsilon RI gamma chain replaces the deficient TCR zeta-chain and contributes to altered TCR/CD3-mediated signaling abnormalities in T cells of patients with systemic lupus erythematosus. Increased responsiveness to Ag has been considered to lead to autoimmunity. To test this concept, we studied early signaling events and IL-2 production in fresh cells transfected with a eukaryotic expression vector encoding the Fc epsilon RI gamma gene. We found that the overexpressed Fc epsilon RI gamma chain colocalizes with the CD3 epsilon chain on the surface membrane of T cells and that cross-linking of the new TCR/CD3 complex leads to a dramatic increase of intracytoplasmic calcium concentration, protein tyrosine phosphorylation, and IL-2 production. We observed that overexpression of Fc epsilon RI gamma is associated with increased phosphorylation of Syk kinase, while the endogenous TCR zeta-chain is down-regulated. We propose that altered composition of the CD3 complex leads to increased T cell responsiveness to TCR/CD3 stimulation and sets the biochemical grounds for the development of autoimmunity.
Collapse
MESH Headings
- Calcium/metabolism
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Down-Regulation/genetics
- Down-Regulation/immunology
- Electroporation
- Enzyme Precursors/biosynthesis
- Enzyme Precursors/genetics
- Humans
- Interleukin-2/biosynthesis
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/metabolism
- Phosphorylation
- Protein Subunits/biosynthesis
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Protein-Tyrosine Kinases/biosynthesis
- Protein-Tyrosine Kinases/genetics
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/metabolism
- Receptors, IgE/biosynthesis
- Receptors, IgE/genetics
- Receptors, IgE/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Substrate Specificity/genetics
- Syk Kinase
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transfection/methods
- Tyrosine/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Madhusoodana P Nambiar
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | | | | | |
Collapse
|
69
|
Deng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, Richardson B. Hydralazine may induce autoimmunity by inhibiting extracellular signal-regulated kinase pathway signaling. ARTHRITIS AND RHEUMATISM 2003; 48:746-56. [PMID: 12632429 DOI: 10.1002/art.10833] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine whether hydralazine might decrease DNA methyltransferase (DNMT) expression and induce autoimmunity by inhibiting extracellular signal-regulated kinase (ERK) pathway signaling. METHODS The effect of hydralazine on DNMT was tested in vitro using enzyme inhibition studies, and in vivo by measuring messenger RNA (mRNA) levels and enzyme activity. Effects on ERK, c-Jun N-terminal kinase, and p38 pathway signaling were tested using immunoblotting. Murine T cells treated with hydralazine or an ERK pathway inhibitor were injected into mice and anti-DNA antibodies were measured by enzyme-linked immunosorbent assay. RESULTS In vitro, hydralazine did not inhibit DNMT activity. Instead, hydralazine inhibited ERK pathway signaling, thereby decreasing DNMT1 and DNMT3a mRNA expression and DNMT enzyme activity similar to mitogen-activated protein kinase kinase (MEK) inhibitors. Inhibiting T cell ERK pathway signaling with an MEK inhibitor was sufficient to induce anti-double-stranded DNA antibodies in a murine model of drug-induced lupus, similar to the effect of hydralazine. CONCLUSION Hydralazine reproduces the lupus ERK pathway signaling abnormality and its effects on DNMT expression, and inhibiting this pathway induces autoimmunity. Hydralazine-induced lupus could be caused in part by inducing the same ERK pathway signaling defect that occurs in idiopathic lupus.
Collapse
Affiliation(s)
- Chun Deng
- Astrozeneca, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Sthoeger ZM, Dayan M, Tcherniack A, Green L, Toledo S, Segal R, Elkayam O, Mozes E. Modulation of autoreactive responses of peripheral blood lymphocytes of patients with systemic lupus erythematosus by peptides based on human and murine anti-DNA autoantibodies. Clin Exp Immunol 2003; 131:385-92. [PMID: 12562403 PMCID: PMC1808619 DOI: 10.1046/j.1365-2249.2003.02058.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Two peptides, based on the sequences of the complementarity-determining regions (CDR) 1 and 3 of a pathogenic murine monoclonal anti-DNA autoatibody that bears the 16/6 idiotype (Id), were shown to either prevent or treat an already established systemic lupus erythematosus (SLE) in two murine models of lupus. Two additional peptides based on the human monoclonal anti-DNA, 16/6 Id were synthesized. This study was undertaken in order to investigate the ability of the CDR-based peptides to immunomodulate SLE-associated responses of peripheral blood lymphocytes (PBL) of SLE patients. PBL of 24 of the 62 SLE patients tested proliferated in vitro following stimulation with the human 16/6 Id. Peptides based on the CDRs of both the human and murine anti-DNA autoantibodies inhibited efficiently and specifically the 16/6 Id-induced proliferation and IL-2 production. The latter inhibitions correlated with an up-regulated production (by 2.5-3.5-fold) of the immunosuppressive cytokine, TGF-beta. Overall, the results of our study demonstrate that the CDR-based peptides are capable of down-regulating in vitro autoreactive T cell responses of PBL of SLE patients. Thus, these peptides are potential candidates for a novel specific treatment of SLE patients.
Collapse
Affiliation(s)
- Z M Sthoeger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Bouzahzah F, Jung S, Craft J. CD4+ T cells from lupus-prone mice avoid antigen-specific tolerance induction in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:741-8. [PMID: 12517936 DOI: 10.4049/jimmunol.170.2.741] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated T cells in spontaneous lupus presumably bypass normal tolerance mechanisms in the periphery, since thymic tolerance appears intact. To determine whether such T cells indeed avoid in vivo peripheral tolerance mechanisms, we assessed their activation and recall responses after in vivo Ag stimulation in the absence of exogenously supplied costimulatory signals. Naive CD4(+) AND (transgenic mice bearing rearranged TCR specific for pigeon cytochrome c, peptides 88-104) TCR-transgenic T cells, specific for pigeon cytochrome c, from lupus-prone Fas-intact MRL/Mp+(Fas-lpr) and from H-2(k)-matched control CBA/CaJ and B10.BR mice (MRL.AND, CBA.AND, and B10.AND, respectively) were adoptively transferred into (MRL x CBA)F(1) or (MRL x B10)F(1) recipients transgenically expressing membrane-bound pigeon cytochrome c as a self-Ag. MRL.AND and control CBA.AND and B10.AND-transgenic T cells were activated and divided after transfer, indicating encounter with their cognate Ag; however, T cells from CBA.AND and B10.AND mice were impaired in their ability to proliferate and produce IL-2 after challenge with pigeon cytochrome c in ex vivo recall assays, a typical phenotype of anergized cells. By contrast, MRL.AND T cells proliferated more, and a significantly higher percentage of such cells produced IL-2, compared with control T cells. This observation that MRL T cells avoided anergy induction in vivo was confirmed in an in vitro system where the cells were stimulated with an anti-CD3 in the absence of a costimulatory signal. These experiments provide direct evidence that CD4(+) T cells from Fas-intact lupus-prone MRL mice are more resistant than nonautoimmune control cells to anergy induction. Anergy avoidance in the periphery might contribute to the characteristic finding in lupus of inappropriate T cell activation in response to ubiquitous self-Ags.
Collapse
Affiliation(s)
- Farida Bouzahzah
- Department of Medicine, Section of Rheumatology, Yale School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
72
|
Abstract
The genetic basis and familial clustering of autoimmunity suggest that common phenotypic traits predispose individuals to disease. We found a hyporesponsive T-cell phenotype that was shared by all autoimmune-prone mouse and rat strains tested, including MRL, nonobese diabetic (NOD), NZB, NZW, NZB/W F1, SJL and SWR mice, as well as DA and BB rats, but was not evident in nonautoimmune-prone rodents. This T-cell intrinsic, age-independent hyporesponsiveness is measured as an increased activation threshold for upregulation of activation markers upon T-cell receptor (TCR) cross-linking both in vitro and in vivo. Inefficient deletion of CD4 and CD8 single-positive, heat stable antigen (HSA)hi medullary thymocytes was also observed in hyporesponsive donors. We interpret these data to suggest that increased TCR-mediated signalling thresholds in autoimmune-prone individuals may contribute to the escape of autoreactive thymocytes from negative selection.
Collapse
Affiliation(s)
- J Lang
- Barbara Davis Center for Childhood Diabetes and the Integrated Department of Immunology, University of Colorado Health Sciences Center and National Jewish Medical and Research Center, Denver, Colorado, USA.
| | | |
Collapse
|
73
|
Kammer GM, Perl A, Richardson BC, Tsokos GC. Abnormal T cell signal transduction in systemic lupus erythematosus. ARTHRITIS AND RHEUMATISM 2002; 46:1139-54. [PMID: 12115215 DOI: 10.1002/art.10192] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gary M Kammer
- Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
74
|
Yan J, Mamula MJ. Autoreactive T cells revealed in the normal repertoire: escape from negative selection and peripheral tolerance. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3188-94. [PMID: 11907071 DOI: 10.4049/jimmunol.168.7.3188] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Self-reactive T cells are known to be eliminated by negative selection in the thymus or by the induction of tolerance in the periphery. However, developmental pathways that allow self-reactive T cells to inhabit the normal repertoire are not well-characterized. In this investigation, we made use of anti-small nuclear ribonucleoprotein particle (snRNP) Ig transgenic (Tg) mice (2-12 Tg) to demonstrate that autoreactive T cells can be detected and activated in both normal naive mice and autoimmune-prone MRL lpr/lpr mice. In contrast, autoreactive T cells of nonautoimmune Tg mice are tolerized by Tg B cells in the periphery. In adoptive transfer studies, autoreactive T cells from MRL lpr/lpr mice can stimulate autoantibody synthesis in nonautoimmune anti-snRNP Tg mice. Transferred CD4 T cells migrate to regions of the spleen proximal to the B cell follicles, suggesting that cognate B cell-T cell interactions are critical to the autoimmune response. Taken together, our studies suggest that anti-snRNP B cells are important APCs for T cell activation in autoimmune-prone mice. Additionally, we have demonstrated that anti-snRNP B cell anergy in nonautoimmune mice may be reversed by appropriate T cell help.
Collapse
Affiliation(s)
- Jun Yan
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
75
|
Salvador JM, Hollander MC, Nguyen AT, Kopp JB, Barisoni L, Moore JK, Ashwell JD, Fornace AJ. Mice lacking the p53-effector gene Gadd45a develop a lupus-like syndrome. Immunity 2002; 16:499-508. [PMID: 11970874 DOI: 10.1016/s1074-7613(02)00302-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study addresses the biological function of the p53-effector genes Gadd45a and p21 in the immune system. We find that Gadd45a is a negative regulator of T cell proliferation because, compared to wild-type cells, Gadd45a(-/-) T cells have a lower threshold of activation and proliferate to a greater extent following primary T cell receptor stimulation. Gadd45a(-/-) mice develop an autoimmune disease, similar to human systemic lupus erythematosus (SLE), characterized by high titers of anti-dsDNA, anti-ssDNA, and anti-histone autoantibodies, severe hematological disorders, autoimmune glomerulonephritis, and premature death. Here we show that the lack of both Gadd45a and p21 dramatically accelerates the development of autoimmunity observed in each individual single-gene disruption mutant, demonstrating that these genes play nonredundant roles in the immune response.
Collapse
Affiliation(s)
- Jesus M Salvador
- Gene Response Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Shlomchik MJ, Craft JE, Mamula MJ. From T to B and back again: positive feedback in systemic autoimmune disease. Nat Rev Immunol 2001; 1:147-53. [PMID: 11905822 DOI: 10.1038/35100573] [Citation(s) in RCA: 408] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Systemic lupus erythematosus, a prototypical systemic autoimmune disease, is the result of a series of interactions within the immune system that ultimately lead to the loss of self-tolerance to nuclear autoantigens. Here, we present an integrated model that explains how self-tolerance is initially lost and how the loss of tolerance is then amplified and maintained as a chronic autoimmune state. Key to this model are the self-reinforcing interactions of T and B cells, which we suggest lead to perpetuation of autoimmunity as well as its spread to multiple autoantigen targets.
Collapse
Affiliation(s)
- M J Shlomchik
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8035, USA
| | | | | |
Collapse
|
77
|
Lawson BR, Koundouris SI, Barnhouse M, Dummer W, Baccala R, Kono DH, Theofilopoulos AN. The role of alpha beta+ T cells and homeostatic T cell proliferation in Y-chromosome-associated murine lupus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2354-60. [PMID: 11490025 DOI: 10.4049/jimmunol.167.4.2354] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Male BXSB mice develop an early life, severe lupus-like disease largely attributed to an undefined Y-chromosome-associated autoimmunity accelerator, termed YAA: Although the exact disease pathogenesis is uncertain, indirect evidence suggests that T cells play an important role in the male BXSB disease. We have developed TCR alpha-chain gene-deleted BXSB mice to directly examine the role of alphabeta+ T cells and the mode by which Yaa promotes disease in this strain. All disease parameters, including hypergammaglobulinemia, autoantibody production, glomerulonephritis, and the unique monocytosis of BXSB males, were severely reduced or absent in the alphabeta+ T cell-deficient mice. Adoptively transferred CD4+ T cells of either male or female BXSB origin showed equal homeostatic proliferation in alphabeta+ T cell-deficient male recipients. Moreover, deficient male mice eventually developed equally severe lupus-like disease after adoptive transfer and homeostatic expansion of T cells from wild-type BXSB males or females. The results directly demonstrate that the Yaa-mediated disease requires alphabeta+ T cells that are not, in themselves, abnormal in either composition or properties, but are engaged by a Yaa-encoded abnormality in a non-T cell component. In addition, homeostatic anti-self proliferation of mature T cells derived from a small number of precursors can induce systemic autoimmunity in an appropriate background.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Female
- Homeostasis/immunology
- Immunoglobulin G/blood
- Kidney/immunology
- Kidney/pathology
- Leukocytosis/genetics
- Leukocytosis/immunology
- Lupus Nephritis/genetics
- Lupus Nephritis/immunology
- Lupus Nephritis/mortality
- Lupus Nephritis/pathology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Monocytes/immunology
- Monocytes/pathology
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Spleen/immunology
- Spleen/pathology
- Survival Analysis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocyte Subsets/transplantation
- Y Chromosome/genetics
Collapse
Affiliation(s)
- B R Lawson
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Fields ML, Sokol CL, Eaton-Bassiri A, Seo S, Madaio MP, Erikson J. Fas/Fas ligand deficiency results in altered localization of anti-double-stranded DNA B cells and dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2370-8. [PMID: 11490027 DOI: 10.4049/jimmunol.167.4.2370] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Autoantibodies directed against dsDNA are found in patients with systemic lupus erythematosus as well as in mice functionally deficient in either Fas or Fas ligand (FasL) (lpr/lpr or gld/gld mice). Previously, an IgH chain transgene has been used to track anti-dsDNA B cells in both nonautoimmune BALB/c mice, in which autoreactive B cells are held in check, and MRL-lpr/lpr mice, in which autoantibodies are produced. In this study, we have isolated the Fas/FasL mutations away from the autoimmune-prone MRL background, and we show that anti-dsDNA B cells in Fas/FasL-deficient BALB/c mice are no longer follicularly excluded, and they produce autoantibodies. Strikingly, this is accompanied by alterations in the frequency and localization of dendritic cells as well as a global increase in CD4 T cell activation. Notably, as opposed to MRL-lpr/lpr mice, BALB-lpr/lpr mice show no appreciable kidney pathology. Thus, while some aspects of autoimmune pathology (e.g., nephritis) rely on the interaction of the MRL background with the lpr mutation, mutations in Fas/FasL alone are sufficient to alter the fate of anti-dsDNA B cells, dendritic cells, and T cells.
Collapse
Affiliation(s)
- M L Fields
- Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|