51
|
Shelef MA, Tauzin S, Huttenlocher A. Neutrophil migration: moving from zebrafish models to human autoimmunity. Immunol Rev 2013; 256:269-81. [PMID: 24117827 PMCID: PMC4117680 DOI: 10.1111/imr.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There has been a resurgence of interest in the neutrophil's role in autoimmune disease. Classically considered an early responder that dies at the site of inflammation, new findings using live imaging of embryonic zebrafish and other modalities suggest that neutrophils can reverse migrate away from sites of inflammation. These 'inflammation-sensitized' neutrophils, as well as the neutrophil extracellular traps and other products made by neutrophils in general, may have many implications for autoimmunity. Here, we review what is known about the role of neutrophils in three different autoimmune diseases: rheumatoid arthritis, systemic lupus erythematosus, and small vessel vasculitis. We then highlight recent findings related to several cytoskeletal regulators that guide neutrophil recruitment including Lyn, Rac2, and SHIP. Finally, we discuss how our improved understanding of the molecules that control neutrophil chemotaxis may impact our knowledge of autoimmunity.
Collapse
Affiliation(s)
- Miriam A. Shelef
- Division of Rheumatology, Department of Medicine, University of Wisconsin – Madison, Madison, WI
| | - Sebastien Tauzin
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| | - Anna Huttenlocher
- Departments of Pediatrics and Medical Microbiology and Immunology, University of Wisconsin – Madison, Madison, WI
| |
Collapse
|
52
|
Deng H, Maitra U, Morris M, Li L. Molecular mechanism responsible for the priming of macrophage activation. J Biol Chem 2013; 288:3897-906. [PMID: 23264622 PMCID: PMC3567643 DOI: 10.1074/jbc.m112.424390] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/10/2012] [Indexed: 12/13/2022] Open
Abstract
Host macrophages can be preprogrammed into opposing primed or tolerant states depending upon the nature and quantities of external stimulants. The paradigm of priming and tolerance has significant implications in the pathogenesis and resolution of both acute and chronic inflammatory diseases. However, the responsible mechanisms are not well understood. Here, we report that super low dose bacterial endotoxin lipopolysaccharide (LPS), as low as 5 pg/ml, primes the expression of proinflammatory mediators in macrophages upon a second high dose LPS challenge (100 ng/ml), although 5 pg/ml LPS itself does not trigger noticeable macrophage activation. Mice primed with super low dose LPS (0.5 μg/kg body weight) in vivo experience significantly elevated mortality following a second hit of high dose LPS as compared with saline-primed control mice. Mechanistically, we demonstrate that LPS primes macrophages by removing transcriptional suppressive RelB through interleukin receptor-associated kinase 1 and Tollip (Toll-interacting protein)-dependent mechanisms. This is in sharp contrast to the well documented RelB stabilization and induction by high dose LPS, potentially through the phosphoinositide 3-kinase (PI3K) pathway. Super low dose and high dose LPS cause opposing modulation of interleukin receptor-associated kinase 1 and PI3K pathways and lead to opposing regulation of RelB. The pathway switching induced by super low versus high dose LPS underscores the importance of competing intracellular circuitry during the establishment of macrophage priming and tolerance.
Collapse
Affiliation(s)
- Hui Deng
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Urmila Maitra
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Matt Morris
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| | - Liwu Li
- From the Laboratory of Inflammation Biology, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0910
| |
Collapse
|
53
|
He K, Zhou HR, Pestka JJ. Targets and intracellular signaling mechanisms for deoxynivalenol-induced ribosomal RNA cleavage. Toxicol Sci 2012; 127:382-90. [PMID: 22491426 PMCID: PMC3355321 DOI: 10.1093/toxsci/kfs134] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/21/2012] [Indexed: 01/07/2023] Open
Abstract
The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-μ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3.
Collapse
Affiliation(s)
- Kaiyu He
- Department of Microbiology and Molecular Genetics
- Center for Integrative Toxicology
| | - Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| | - James J. Pestka
- Department of Microbiology and Molecular Genetics
- Center for Integrative Toxicology
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
54
|
Krebs DL, Chehal MK, Sio A, Huntington ND, Da ML, Ziltener P, Inglese M, Kountouri N, Priatel JJ, Jones J, Tarlinton DM, Anderson GP, Hibbs ML, Harder KW. Lyn-Dependent Signaling Regulates the Innate Immune Response by Controlling Dendritic Cell Activation of NK Cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5094-105. [DOI: 10.4049/jimmunol.1103395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
55
|
Expressing murine p56Hck(ca) promotes HeLa cells' motility and invasion via triggering redistribution of F-actin and microtubules. Mol Biol Rep 2012; 39:6521-7. [PMID: 22350262 DOI: 10.1007/s11033-012-1480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 01/24/2012] [Indexed: 10/28/2022]
Abstract
Hck is the unique example among the Src PTKs to be expressed as two isoforms, which are generated by alternative translation. The two isoforms differs from each other by a 21 N-terminal amino acids sequence which supports myristoylation. Though it has been shown that these different acylation states govern the different subcellular localization of the isoforms and each Hck isoform could play a specific role, little study focus on the function of p56Hck. To investigated the role of p56Hck isoform in cell migration, GFP targeted p56Hck plasmid and its constitutively active form were constructed and transiently transfected into HeLa cells, F-actin staining and Indirect immunofluorescence for microtubules were then performed. Phagokinetic track motility assay and In vitro invasion assays were also investigated after transiently transfection respectively. In this study, we found ectopically expressing a constitutively active form of 56Hck will lead to membrane protrusion and F-actin reorganization in HeLa cells. Both 56Hck and its constitutive active form will lead to redistribution of microtubules and enhancement of cell motility and cell invasion. Hck inhibitor PP2 supplementation eliminated cell motility and cell invasion of p56Hck while PP3, a negative control of PP2 didn't eliminate cell motility and cell invasion of p56Hck. It is indicated that enhanced cell motility and cell invasion in p56Hck ectopically expressed HeLa cells are the results of reorganization of F-actin and microtubules.
Collapse
|
56
|
Liu L, Huang N, Chen L, Wang XZ, Yang XD. Hematopoietic cell kinase gene polymorphisms and the risk of chronic obstructive pulmonary disease in a Chinese population. Exp Lung Res 2011; 38:37-42. [PMID: 22185326 DOI: 10.3109/01902148.2011.632062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hematopoietic cell kinase (Hck), a Src family kinase, has been recently suggested to be implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). The present study aims to analyze the association of polymorphism of Hck gene with COPD in a Chinese population. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and polymerase chain reaction-sequence-specific primer method (PCR-SSP) were used to type Hck polymorphisms in 120 patients with COPD and 100 healthy controls. There were significant differences in the genotype and allele distribution of -627 G/T polymorphism in Hck gene between cases and controls (P<.05). The GT genotype was associated with a significantly increased risk of COPD as compared with the GG genotype (Odds ratio [OR]=2.60, 95% confidence interval [CI]: 1.39-4.48; P=.002). Moreover, individuals carrying T allele had a significantly higher risk for developing COPD than those carrying G allele (OR=2.19, 95% CI: 1.26-3.79; P=.005). In haplotype analysis, compared with CG(deletion) haplotype, CT(insertion) haplotype was associated with a significantly increased risk of COPD (OR=2.66, 95% CI: 1.22-5.78; P=.011). These findings suggest the Hck gene polymorphisms may contribute to COPD susceptibility in Chinese population.
Collapse
Affiliation(s)
- Lin Liu
- Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | | | | | | | | |
Collapse
|
57
|
Li D, Wang Q, Liu C, Duan H, Zeng X, Zhang B, Li X, Zhao J, Tang S, Li Z, Xing X, Yang P, Chen L, Zeng J, Zhu X, Zhang S, Zhang Z, Ma L, He Z, Wang E, Xiao Y, Zheng Y, Chen W. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci 2011; 125:382-91. [PMID: 22048643 DOI: 10.1093/toxsci/kfr299] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Identification of aberrant microRNA (miRNA) expression during chemical carcinogen-induced cell transformation will lead to a better understanding of the substantial role of miRNAs in cancer development. To explore whether aberrant miRNAs expression can be used as biomarkers of chemical exposure in risk assessment of chemical carcinogenesis, we analyzed miRNA expression profiles of human bronchial epithelial cells expressing an oncogenic allele of H-Ras (HBER) at different stages of transformation induced by benzo(a)pyrene (BaP) by miRNA array. It revealed 12 miRNAs differentially expressed in HBER cells at both pretransformed and transformed stages. Differentially expressed miRNAs were confirmed in transformed cells and examined in 50 pairs of primary human non-small-cell lung cancer (NSCLC) tissues using real-time PCR. Among these miRNAs, downregulation of miR-638 was found in 68% (34/50) of NSCLC tissues. However, the expression of miR-638 in HBER cells increased upon treatment of BaP in a dose-dependent manner. The expression of miR-638 was also examined in peripheral lymphocytes from 86 polycyclic aromatic hydrocarbons (PAHs)-exposed (PE) workers. We found that the average expression level of miR-638 in peripheral lymphocytes from 86 PE workers increased by 72% compared with control group. The levels of miR-638 were correlated with the concentration of urinary 1-hydroxypyrene (1-OHP) and external levels of PAHs. Overexpression of miR-638 aggravated cell DNA damage induced by BaP, which might be mediated by suppression of breast cancer 1 (BRCA1), one of the target genes of miR-638. In summary, we suggest that miR-638 is involved in the BaP-induced carcinogenesis by targeting BRCA1.
Collapse
Affiliation(s)
- Daochuan Li
- Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Smolinska MJ, Page TH, Urbaniak AM, Mutch BE, Horwood NJ. Hck Tyrosine Kinase Regulates TLR4-Induced TNF and IL-6 Production via AP-1. THE JOURNAL OF IMMUNOLOGY 2011; 187:6043-51. [DOI: 10.4049/jimmunol.1100967] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
59
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
60
|
Bacterial expression and purification of active hematopoietic cell kinase. Protein Expr Purif 2011; 78:14-21. [PMID: 21385611 DOI: 10.1016/j.pep.2011.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 02/24/2011] [Accepted: 03/02/2011] [Indexed: 11/23/2022]
Abstract
Src family kinases (SFKs) are traditionally purified from eukaryotic expression systems. These expression systems can be costly, yield heterogeneously phosphorylated protein samples and present difficulties when metabolic labeling is required for structural studies. Therefore, many attempts have been made to develop bacterial purification systems for SFKs. So far, high-yield bacterial expression systems have only been achieved for SFK kinase domains or for inactive mutants of constructs containing the regulatory SH3 and SH2 domains, but not for their active forms. Herein described is a bacterial expression system for the wild type, active SFK Hck containing SH3, SH2 and kinase domains. Hck plays an important role in phagocyte function as well as the etiology of chronic myeloid leukemia as Hck is an interaction partner of Bcr-Abl. Structural studies of Hck are essential to fully understand the signaling processes involved in host defense and leukemogenesis. Successful bacterial expression of Hck was possible by a dual strategy: (1) co-expression with YopH phosphatase in order to control host toxicity, and (2) expression in a bacterial strain that is RNase E deficient, which dramatically increased overall expression levels. The expressed Hck construct is unphosphorylated and appears to be in an open conformation. Bacterially expressed Hck is capable of autophosphorylation, phosphorylates substrate at rates comparable to insect cell expressed Hck, and can be inhibited by staurosporine and Csk.
Collapse
|
61
|
Campbell M, Lie WR, Zhao J, Hayes D, Mistry J, Kung HJ, Luciw PA, Khan IH. Multiplex analysis of Src family kinase signaling by microbead suspension arrays. Assay Drug Dev Technol 2010; 8:488-96. [PMID: 20482378 DOI: 10.1089/adt.2009.0255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is renewed interest in the Src family of protein tyrosine kinases (SFKs) as a result of their potential utility as molecular targets for cancer therapy. This protein family consists of 9 nonreceptor tyrosine kinases that, although implicated in a diverse array of cellular functions, possess a similar modular structure. Here we describe a simple and efficient multiplex microbead immunoassay (MMIA), based on Luminex xMAP technology, which allows for the simultaneous detection of 8 phosphorylated SFKs in a single assay. Microbead sets identifiable by unique fluorescence were individually coated with antibodies specific for an individual SFK member. Detection of phosphorylated SFKs was accomplished using a secondary antibody directed against phosphotyrosine. The assay requires < or = 10 microg of cell lysate or nanogram amounts of purified SFK. The use of a generic secondary antibody allows for the expansion of the assay to include any other tyrosine kinase for which a specific antibody exists. Using either mammalian cell lines or purified, recombinant kinases as the SFK source, we demonstrate the utility of the assay by evaluating the phosphorylation status of SFK members following several in vitro manipulations designed to modulate the phosphotyrosine content of the kinases. These results show that the SFK multiplex assay is a robust tool to investigate the function of SFKs in basic and potentially in clinical research.
Collapse
Affiliation(s)
- Mel Campbell
- Center for Comparative Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. WORLD MYCOTOXIN J 2010. [DOI: 10.3920/wmj2010.1247] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Produced by the mould genus Fusarium, the type B trichothecenes include deoxynivalenol (DON), nivalenol (NIV) and their acetylated precursors. These mycotoxins often contaminate cereal staples, posing a potential threat to public health that is still incompletely understood. Understanding the mechanistic basis by which these toxins cause toxicity in experimental animal models will improve our ability to predict the specific thresholds for adverse human effects as well as the persistence and reversibility of these effects. Acute exposure to DON and NIV causes emesis in susceptible species such as pigs in a manner similar to that observed for certain bacterial enterotoxins. Chronic exposure to these mycotoxins at low doses causes growth retardation and immunotoxicity whereas much higher doses can interfere with reproduction and development. Pathophysiological events that precede these toxicities include altered neuroendocrine responses, upregulation of proinflammatory gene expression, interference with growth hormone signalling and disruption of gastrointestinal tract permeability. The underlying molecular mechanisms involve deregulation of protein synthesis, aberrant intracellular cell signalling, gene transactivation, mRNA stabilisation and programmed cell death. A fusion of basic and translational research is now needed to validate or refine existing risk assessments and regulatory standards for DON and NIV. From the perspective of human health translation, biomarkers have been identified that potentially make it possible to conduct epidemiological studies relating DON consumption to potential adverse human health effects. Of particular interest will be linkages to growth retardation, gastrointestinal illness and chronic autoimmune diseases. Ultimately, such knowledge can facilitate more precise science-based risk assessment and management strategies that protect consumers without reducing availability of critical food sources.
Collapse
Affiliation(s)
- J. Pestka
- Deptartment of Food Science and Human Nutrition, Deptartment of Microbiology and Molecular Genetics, Center for Integrative Toxicology, 234 G. Malcolm Trout Building, Michigan State University, East Lansing, MI 48824-1224, USA
| |
Collapse
|
63
|
Pestka JJ. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch Toxicol 2010; 84:663-79. [PMID: 20798930 DOI: 10.1007/s00204-010-0579-8] [Citation(s) in RCA: 701] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
The trichothecene mycotoxin deoxynivalenol (DON) is produced in wheat, barley and corn following infestation by the fungus Fusarium in the field and during storage. Colloquially known as "vomitoxin" because of its emetic effects in pigs, DON has been associated with human gastroenteritis. Since DON is commonly detected in cereal foods, there are significant questions regarding the risks of acute poisoning and chronic effects posed to persons ingesting this trichothecene. A further challenge is how to best manage perceived risks without rendering critical food staples unavailable to an ever-expanding world population. In experimental animal models, acute DON poisoning causes emesis, whereas chronic low-dose exposure elicits anorexia, growth retardation, immunotoxicity as well as impaired reproduction and development resulting from maternal toxicity. Pathophysiologic effects associated with DON include altered neuroendocrine signaling, proinflammatory gene induction, disruption of the growth hormone axis, and altered gut integrity. At the cellular level, DON induces ribotoxic stress thereby disrupting macromolecule synthesis, cell signaling, differentiation, proliferation, and death. There is a need to better understand the mechanistic linkages between these early dose-dependent molecular effects and relevant pathological sequelae. Epidemiological studies are needed to determine if relationships exist between consumption of high DON levels and incidence of both gastroenteritis and potential chronic diseases. From the perspective of human health translation, a particularly exciting development is the availability of biomarkers of exposure (e.g. DON glucuronide) and effect (e.g. IGF1) now make it possible to study the relationship between DON consumption and growth retardation in susceptible human populations such as children and vegetarians. Ultimately, a fusion of basic and translational research is needed to validate or refine existing risk assessments and regulatory standards for this common mycotoxin.
Collapse
Affiliation(s)
- James J Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
64
|
Olivieri KC, Agopian KA, Mukerji J, Gabuzda D. Evidence for adaptive evolution at the divergence between lymphoid and brain HIV-1 nef genes. AIDS Res Hum Retroviruses 2010; 26:495-500. [PMID: 20377428 PMCID: PMC2933169 DOI: 10.1089/aid.2009.0257] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV) infection of the central nervous system frequently causes HIV-associated neurocognitive disorders (HAND). The role of HIV Nef and other accessory proteins in HAND pathogenesis is unclear. To determine whether HIV nef undergoes adaptive selection in brain, we cloned 100 nef sequences (n = 30 brain and n = 70 lymphoid) from four patients with AIDS and HIV-associated dementia (HAD). Normalized nonsynonymous substitutions were more frequent at the divergence of lymphoid and brain sequences, indicating stronger adaptive selection in brain compared to lymphoid tissue. Brain-specific nonsynonymous substitutions were found within an NH(3)-terminal CTL epitope, the PACS1 binding motif, or positions predicted to be important for activation of the myeloid-restricted Src family tyrosine kinase Hck. These results suggest that adaptive selection of HIV nef in brain may reflect altered requirements for efficient replication in macrophages and brain-specific immune selection pressures.
Collapse
Affiliation(s)
- Kevin C. Olivieri
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristin A. Agopian
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joya Mukerji
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
65
|
Zuckerman ST, Brown JF, Kao WJ. Identification of regulatory Hck and PAI-2 proteins in the monocyte response to PEG-containing matrices. Biomaterials 2009; 30:3825-33. [PMID: 19443025 PMCID: PMC2774525 DOI: 10.1016/j.biomaterials.2009.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/13/2009] [Indexed: 11/29/2022]
Abstract
Mass spectrometry is a powerful proteomic tool enabling researchers to survey the global proteome of a cell. This technique has only recently been employed to investigate cell-material interactions. We had previously identified material scarcity and limited adherent cells as challenges facing mass spectrometric analysis of cell-material interactions. U937 adherent to tissue culture poly(styrene) was used as a model system for identifying proteins expressed by adherent monocytes and analyzed by HPLC coupled offline to MALDI-ToF/ToF (LC-MALDI). We identified 645 proteins from two cation fractions of crude U937 monocyte cell lysate. Forty three proteins of interest from the 645 were chosen based on literature searches for relevance to monocyte-material inflammation and wound healing. Proteins such as 40S ribosomal protein S19 and tyrosyl tRNA synthetase highlight the ability of LC-MALDI to identify proteins relevant to monocyte-material interactions that are currently unexplored. We used PEG-based semi-interpenetrating polymer networks and PEG-only hydrogels to investigate surface dependent effects on the Src family kinase Hck and plasminogen activator inhibitor-2 (PAI-2) using the pyrazolo pyrimidine small molecule inhibitor PP2 and exogenous urokinase plasminogen activator addition, respectively. Hck is well researched in cell adhesion while PAI-2 is virtually unknown in cell-material interactions. U937 on TCPS and PEG-only hydrogels secreted similar levels of inflammatory cytokines and gelatinase MMP-9. MCP-1 secretion from monocytes on PEG-only hydrogels was Hck independent in contrast to Hck-dependent MCP-1 secretion in U937 on TCPS. Overall, U937 adherent to sIPNs secrete low levels of soluble gelatinase MMP-9, IL-1beta, TNF-alpha, IL-6, and MCP-1 independent of Hck and PAI-2. This work demonstrates significant changes in surface dependent expression of proteins from monocytes adherent to PEG-based materials compared to TCPS.
Collapse
Affiliation(s)
- Sean T. Zuckerman
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, 53705 USA
- School of Pharmacy, University of Wisconsin-Madison, WI, 53705 USA
| | - James F. Brown
- Biotechnology Center, University of Wisconsin-Madison, WI, 53705 USA
| | - Weiyuan John Kao
- Department of Biomedical Engineering, University of Wisconsin-Madison, WI, 53705 USA
- School of Pharmacy, University of Wisconsin-Madison, WI, 53705 USA
- College of Biomedical Engineering & Bioinstrumentation, Zhejian University, PRC
| |
Collapse
|
66
|
Yanagisawa S, Sugiura H, Yokoyama T, Yamagata T, Ichikawa T, Akamatsu K, Koarai A, Hirano T, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M. The Possible Role of Hematopoietic Cell Kinase in the Pathophysiology of COPD. Chest 2009; 135:94-101. [DOI: 10.1378/chest.07-3020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
67
|
Abstract
Clinical asthma is very widely assumed to be the net result of excessive inflammation driven by aberrant T-helper-2 (Th2) immunity that leads to inflamed, remodelled airways and then functional derangement that, in turn, causes symptoms. This notion of disease is actually poorly supported by data, and there are substantial discrepancies and very poor correlation between inflammation, damage, functional impairment, and degree of symptoms. Furthermore, this problem is compounded by the poor understanding of the heterogeneity of clinical disease. Failure to recognise and discover the underlying mechanisms of these major variants or endotypes of asthma is, arguably, the major intellectual limitation to progress at present. Fortunately, both clinical research and animal models are very well suited to dissecting the cellular and molecular basis of disease endotypes. This approach is already suggesting entirely novel pathways to disease-eg, alternative macrophage specification, steroid refractory innate immunity, the interleukin-17-regulatory T-cell axis, epidermal growth factor receptor co-amplification, and Th2-mimicking but non-T-cell, interleukins 18 and 33 dependent processes that can offer unexpected therapeutic opportunities for specific patient endotypes.
Collapse
Affiliation(s)
- Gary P Anderson
- Lung Disease Research Group, Departments of Medicine and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
68
|
Guiet R, Poincloux R, Castandet J, Marois L, Labrousse A, Le Cabec V, Maridonneau-Parini I. Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – From signaling and actin reorganization to migration and phagocytosis. Eur J Cell Biol 2008; 87:527-42. [DOI: 10.1016/j.ejcb.2008.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/21/2023] Open
|
69
|
Pestka JJ. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25:1128-40. [PMID: 19238623 PMCID: PMC2917199 DOI: 10.1080/02652030802056626] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fusarium infection of agricultural staples such as wheat, barley and corn with concurrent production of deoxynivalenol (DON) and other trichothecene mycotoxins is an increasingly common problem worldwide. In addition to its emetic effects, chronic dietary exposure to DON causes impaired weight gain, anorexia, decreased nutritional efficiency and immune dysregulation in experimental animals. Trichothecenes are both immunostimulatory or immunosuppressive depending on dose, frequency and duration of exposure as well as type of immune function assay. Monocytes, macrophages, as well as T- and B-lymphocytes of the immune system can be cellular targets of DON and other trichothecenes. In vitro exposure to low trichothecene concentrations upregulates expression both transcriptionally and post-transcriptionally of cytokines, chemokines and inflammatory genes with concurrent immune stimulation, whereas exposure to high concentrations promotes leukocyte apoptosis with concomitant immune suppression. DON and other trichothecenes, via a mechanism known as the 'ribotoxic stress response', bind to ribosomes and rapidly activate mitogen-activated protein kinases (MAPKs). The latter are important transducers of downstream signalling events related to immune response and apoptosis. Using cloned macrophages, two critical upstream transducers of DON-induced MAPK activation have been identified. One transducer is double-stranded RNA (dsRNA)-activated protein kinase (PKR), a widely expressed serine/threonine protein kinase that can be activated by dsRNA, interferon and other agents. The other transducer is haematopoetic cell kinase (Hck), a non-receptor associated Src oncogene family kinase. Pharmacological inhibitors and gene suppression studies have revealed that Hck and PKR contribute to DON-induced gene expression and apoptosis. PKR, Hck and other kinases bind to the ribosome and are activated following DON interaction. Future studies will focus on the sequence of molecular events at the ribosome level that drive selective activation of these upstream kinases.
Collapse
Affiliation(s)
- J J Pestka
- Center for Integrative Toxicology, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
70
|
Abram CL, Lowell CA. The diverse functions of Src family kinases in macrophages. FRONT BIOSCI-LANDMRK 2008; 13:4426-50. [PMID: 18508521 DOI: 10.2741/3015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are key components of the innate immune response. These cells possess a diverse repertoire of receptors that allow them to respond to a host of external stimuli including cytokines, chemokines, and pathogen-associated molecules. Signals resulting from these stimuli activate a number of macrophage functional responses such as adhesion, migration, phagocytosis, proliferation, survival, cytokine release and production of reactive oxygen and nitrogen species. The cytoplasmic tyrosine kinase Src and its family members (SFKs) have been implicated in many intracellular signaling pathways in macrophages, initiated by a diverse set of receptors ranging from integrins to Toll-like receptors. However, it has been difficult to implicate any given member of the family in any specific pathway. SFKs appear to have overlapping and complementary functions in many pathways. Perhaps the function of these enzymes is to modulate the overall intracellular signaling network in macrophages, rather than operating as exclusive signaling switches for defined pathways. In general, SFKs may function more like rheostats, influencing the amplitude of many pathways.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
71
|
Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008; 451:1125-9. [PMID: 18278031 DOI: 10.1038/nature06607] [Citation(s) in RCA: 964] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 12/21/2007] [Indexed: 12/15/2022]
Abstract
MicroRNAs are abundant in animal genomes and have been predicted to have important roles in a broad range of gene expression programmes. Despite this prominence, there is a dearth of functional knowledge regarding individual mammalian microRNAs. Using a loss-of-function allele in mice, we report here that the myeloid-specific microRNA-223 (miR-223) negatively regulates progenitor proliferation and granulocyte differentiation and activation. miR-223 (also called Mirn223) mutant mice have an expanded granulocytic compartment resulting from a cell-autonomous increase in the number of granulocyte progenitors. We show that Mef2c, a transcription factor that promotes myeloid progenitor proliferation, is a target of miR-223, and that genetic ablation of Mef2c suppresses progenitor expansion and corrects the neutrophilic phenotype in miR-223 null mice. In addition, granulocytes lacking miR-223 are hypermature, hypersensitive to activating stimuli and display increased fungicidal activity. As a consequence of this neutrophil hyperactivity, miR-223 mutant mice spontaneously develop inflammatory lung pathology and exhibit exaggerated tissue destruction after endotoxin challenge. Our data support a model in which miR-223 acts as a fine-tuner of granulocyte production and the inflammatory response.
Collapse
|
72
|
Abstract
A common signaling pathway is known to operate downstream of immunoreceptors, such as the T-cell, B-cell, or Fc receptors, following engagement by their respective ligands. This pathway involves Src family kinase-mediated tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) that recruit and activate spleen tyrosine kinase (Syk) or Zap70 (zeta-associated protein of 70 kDa) kinases, which in turn activate a variety of downstream signals. Evidence has been building from a variety of sources, particularly mouse models, that molecules involved in the immunoreceptor signaling pathway are also required for signals initiated by integrins. Integrins are the major cell surface receptors that mediate adhesion of leukocytes to a variety of extracellular matrix proteins and counter-receptors expressed on endothelial cells. Integrin ligation is a critical step in the activation of leukocyte effector functions (such as neutrophil degranulation or lymphocyte proliferation). Integrin signaling through pathways common to those utilized by immunoreceptors provides a mechanism by which leukocyte adhesion can regulate activation of cellular responses. In animal models, integrin-mediated signal transduction plays a critical role in inflammatory disease. In this review, we discuss the convergence of immunoreceptor and integrin signaling, focusing on how these pathways modulate leukocyte activation.
Collapse
Affiliation(s)
- Clare L Abram
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0451, USA
| | | |
Collapse
|
73
|
Hong H, Kitaura J, Xiao W, Horejsi V, Ra C, Lowell CA, Kawakami Y, Kawakami T. The Src family kinase Hck regulates mast cell activation by suppressing an inhibitory Src family kinase Lyn. Blood 2007; 110:2511-9. [PMID: 17513616 PMCID: PMC1988937 DOI: 10.1182/blood-2007-01-066092] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IgE/antigen-dependent mast cell activation plays a central role in immediate hypersensitivity and other allergic reactions. The Src family tyrosine kinase (SFK) Lyn is activated by the cross-linking of high-affinity IgE receptors (FcepsilonRI). Activated Lyn phosphorylates the FcepsilonRI subunits, beta and gamma, leading to subsequent activation of various signaling pathways. Lyn also plays a negative regulatory function by activating negative regulatory molecules. Another SFK, Fyn, also contributes to mast cell degranulation by inducing Gab2-dependent microtubule formation. Here we show that a third SFK, Hck, plays a critical role in mast cell activation. Degranulation and cytokine production are reduced in FcepsilonRI-stimulated hck(-/-) mast cells. The reduced degranulation can be accounted for by defects in Gab2 phosphorylation and microtubule formation. Importantly, Lyn activity is elevated in hck(-/-) cells, leading to increased phosphorylation of several negative regulators. However, positive regulatory events, such as activation of Syk, Btk, JNK, p38, Akt, and NF-kappaB, are substantially reduced in hck(-/-) mast cells. Analysis of lyn(-/-)hck(-/-), lyn(-/-)FcepsilonRIbeta(-/-), and hck(-/-)FcepsilonRIbeta(-/-) cells shows that Hck exerts these functions via both Lyn-dependent and Lyn-independent mechanisms. Thus, this study has revealed a hierarchical regulation among SFK members to fine-tune mast cell activation.
Collapse
Affiliation(s)
- Hong Hong
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Ardizzone TD, Zhan X, Ander BP, Sharp FR. SRC kinase inhibition improves acute outcomes after experimental intracerebral hemorrhage. Stroke 2007; 38:1621-5. [PMID: 17395859 DOI: 10.1161/strokeaha.106.478966] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The mechanisms by which intracerebral hemorrhages produce changes of blood flow and metabolism, cell death, and behavioral abnormalities are complex. In this study, we begin to test the hypothesis that intracerebral hemorrhage activates Src kinases that phosphorylate other molecules to produce cell injury and behavioral deficits after intracerebral hemorrhage (ICH). METHODS ICH was produced in adult Sprague Dawley rats by direct injection of autologous blood (50 microL) into striatum. Src kinase activity, glucose hypermetabolic areas around the ICH, TUNEL-stained cells, and apomorphine-induced rotational behaviors were assessed in animals with ICH pretreated with the Src kinase inhibitor, PP1, or with vehicle. RESULTS PP1 (3 mg/kg) blocked increases of Src kinase activity (5-fold) at 3 hours after ICH. PP1 also blocked the areas of glucose hypermetabolism and decreased the numbers of TUNEL-stained cells surrounding the ICH at 24 hours. Finally, apomorphine-induced (1 mg/kg) rotation at 24 hours after ICH was markedly attenuated by previous treatment with PP1 (3 mg/kg intraperitoneal). CONCLUSIONS PP1 decreases Src kinase activation, glucose metabolic activation, cell death, and behavioral abnormalities after ICH in striatum of adult rats. It is hypothesized that intracerebral hemorrhage, possibly via thrombin activation of protease-activated receptors, activates Src that phosphorylates NMDA receptors, matrix metalloproteinases, and other proteins that mediate injury after ICH.
Collapse
Affiliation(s)
- Timothy D Ardizzone
- Medical Investigation of Neurodevelopmental Diseases Institute and Department of Neurology, University of California at Davis Medical Center, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
75
|
Fumagalli L, Zhang H, Baruzzi A, Lowell CA, Berton G. The Src family kinases Hck and Fgr regulate neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3874-85. [PMID: 17339487 PMCID: PMC4683084 DOI: 10.4049/jimmunol.178.6.3874] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.
Collapse
Affiliation(s)
- Laura Fumagalli
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | - Hong Zhang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Anna Baruzzi
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Giorgio Berton
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
76
|
Olsson S, Sundler R. The macrophage beta-glucan receptor mediates arachidonate release induced by zymosan: essential role for Src family kinases. Mol Immunol 2006; 44:1509-15. [PMID: 17084455 DOI: 10.1016/j.molimm.2006.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 08/25/2006] [Accepted: 09/04/2006] [Indexed: 11/17/2022]
Abstract
Yeast-derived zymosan beads are among the classical agents used to induce sterile inflammatory responses in experimental animals and macrophage activation in cell culture. In macrophages the cytosolic phospholipase A2 becomes activated, leading to mobilization of arachidonate and the generation of prostaglandins and leukotrienes. Although zymosan can interact with several receptors it has not been unequivocally demonstrated which interaction is required for induction of the eicosanoid response. We have compared arachidonate release induced in primary mouse macrophages by zymosan and particulate beta-glucan and found striking similarities. The similarities include the effects of dectin-1 antagonists (soluble beta-glucan and laminarin) and of inhibitors of Src family kinases, the Tec kinase Btk, phosphatidylinositol 3-kinase and the Map kinases ERK and p38. Furthermore, particulate beta-glucan was equally effective as zymosan in causing phosphorylation of phospholipase Cgamma2, arguing that both agents act via the beta-glucan receptor dectin-1 and that the above signal components are engaged down-stream of that receptor. Suggestive evidence for a role of the scaffold adaptor Gab2 is also presented.
Collapse
Affiliation(s)
- Sandra Olsson
- Department of Experimental Medical Science, Lund University, BMC, B12, SE-221 84 Lund, Sweden
| | | |
Collapse
|
77
|
Lieser SA, Shaffer J, Adams JA. SRC tail phosphorylation is limited by structural changes in the regulatory tyrosine kinase Csk. J Biol Chem 2006; 281:38004-12. [PMID: 17018524 DOI: 10.1074/jbc.m607824200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family tyrosine kinases are down-regulated through phosphorylation of a single C-terminal tyrosine by the nonreceptor tyrosine kinase Csk. Despite the fundamental role of Csk in controlling cell growth and differentiation, it is unclear what limits this key signaling reaction and controls the production of catalytically repressed Src. To investigate this issue, stopped-flow fluorescence experiments were performed to determine which steps modulate catalysis. Both Src binding and phosphorylation can be monitored by changes in intrinsic tryptophan fluorescence. Association kinetics are biphasic with the initial phase corresponding to the bimolecular interaction of both proteins and the second phase representing a slow conformational change that coincides with the rate of maximum turnover. The kinetic transients for the phosphorylation reaction are also biphasic with the initial phase corresponding to the rapid phosphorylation and the release of phospho-Src. These data, along with equilibrium sedimentation and product inhibition experiments, suggest that steps involving Src association, phosphorylation, and product release are fast and that a structural change in Csk participates in limiting the catalytic cycle.
Collapse
Affiliation(s)
- Scot A Lieser
- Department of Chemistry and Biochemistry and Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
78
|
Zhang X, Mahmudi-Azer S, Connett JE, Anthonisen NR, He JQ, Paré PD, Sandford AJ. Association of Hck genetic polymorphisms with gene expression and COPD. Hum Genet 2006; 120:681-90. [PMID: 17024369 DOI: 10.1007/s00439-006-0253-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 08/27/2006] [Indexed: 10/24/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) are major effector cells in the chronic airway inflammation in chronic obstructive pulmonary disease (COPD). PMN degranulation is associated with degradation of extracellular matrix and tissue damage. Hck is an essential molecule in the signaling pathway regulating PMN degranulation. We hypothesized that polymorphisms affect the expression level of Hck, which, in turn, modulates PMN mediator release and tissue damage and influences the development of COPD. Here we systematically investigated genetic tag polymorphisms of the Hck gene, Hck mRNA and protein expression pattern in PMNs, and PMN mediator release (myeloperoxidase) in 60 healthy white subjects, and assessed their association with the use of several genetic models. The association of genetic polymorphisms with COPD-related phenotypes was determined in the lung healthy study cohort (LHS). We identified a novel 15 bp insertion/deletion polymorphism (8,656 L/S) in intron 1 of the Hck gene, which was associated with differential expression of Hck protein and PMN myeloperoxidase release. In the LHS cohort, there was significant interaction between the 8,656 L/S polymorphism and smoking on baseline lung function and 8,656 L/S was associated with bronchodilator response. These data suggest that the insertion/deletion polymorphism could be a functional polymorphism of the Hck gene, may contribute to COPD pathogenesis and modify COPD-related phenotypes.
Collapse
Affiliation(s)
- Xiaozhu Zhang
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research , St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Room 166, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
79
|
Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, Laudanna C, Berton G. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involved in sustained adhesion. THE JOURNAL OF IMMUNOLOGY 2006; 177:604-11. [PMID: 16785558 DOI: 10.4049/jimmunol.177.1.604] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.
Collapse
Affiliation(s)
- Cinzia Giagulli
- Department of Pathology, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Johnsen IB, Nguyen TT, Ringdal M, Tryggestad AM, Bakke O, Lien E, Espevik T, Anthonsen MW. Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling. EMBO J 2006; 25:3335-46. [PMID: 16858407 PMCID: PMC1523188 DOI: 10.1038/sj.emboj.7601222] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2004] [Accepted: 06/13/2006] [Indexed: 01/01/2023] Open
Abstract
Double-stranded RNA (dsRNA) is produced during the replication cycle of most viruses and triggers antiviral immune responses through Toll-like receptor 3 (TLR3). However, the molecular mechanisms and subcellular compartments associated with dsRNA-TLR3-mediated signaling are largely unknown. Here we show that c-Src tyrosine kinase is activated by dsRNA in human monocyte-derived dendritic cells, and is recruited to TLR3 in a dsRNA-dependent manner. DsRNA-induced activation of interferon-regulatory factor 3 and signal transducer and activator of transcription 1 was abolished in Src kinase-deficient cells, and restored by adding back c-Src, suggesting a central role of c-Src in antiviral immunity. We also provide evidence that TLR3 is localized in the endoplasmic reticulum of unstimulated cells, moves to dsRNA-containing endosomes in response to dsRNA, and colocalizes with c-Src on endosomes containing dsRNA in the lumen. These results provide novel insight into the molecular mechanisms of TLR3-mediated signaling, which may contribute to the understanding of innate immune responses during viral infections.
Collapse
Affiliation(s)
- Ingvild Bjellmo Johnsen
- Department of Laboratory Medicine, Children's and Women's Health, Institute of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Okutani D, Lodyga M, Han B, Liu M. Src protein tyrosine kinase family and acute inflammatory responses. Am J Physiol Lung Cell Mol Physiol 2006; 291:L129-41. [PMID: 16581827 DOI: 10.1152/ajplung.00261.2005] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute inflammatory responses are one of the major underlying mechanisms for tissue damage of multiple diseases, such as ischemia-reperfusion injury, sepsis, and acute lung injury. By use of cellular and molecular approaches and transgenic animals, Src protein tyrosine kinase (PTK) family members have been identified to be essential for the recruitment and activation of monocytes, macrophages, neutrophils, and other immune cells. Src PTKs also play a critical role in the regulation of vascular permeability and inflammatory responses in tissue cells. Importantly, animal studies have demonstrated that small chemical inhibitors for Src PTKs attenuate tissue injury and improve survival from a variety of pathological conditions related to acute inflammatory responses. Further investigation may lead to the clinical application of these inhibitors as drugs for ischemia-reperfusion injury (such as stroke and myocardial infarction), sepsis, acute lung injury, and multiple organ dysfunction syndrome.
Collapse
Affiliation(s)
- Daisuke Okutani
- Thoracic Surgery Research Laboratory, University Health Network Toronto General, Ontario, Canada
| | | | | | | |
Collapse
|
82
|
Abstract
Acute inflammatory responses are one of the major underlying mechanisms for tissue damage of multiple diseases, such as sepsis and acute lung injury. Inflammatory mediators released from a variety of cells in response to acute inflammations can interact with immune cells, microvascular endothelial cells and other tissue cells, to elicit a series of intracellular signaling reactions where activation of Src protein tyrosine kinase (PTK) family members is involved. Using cellular and molecular approaches and transgenic animals, Src PTK family members have been identified to be essential for the recruitment and activation of monocytes, macrophages, neutrophils and other immune cells. Src PTK family members also play a critical role in the regulation of vascular permeability and inflammatory responses in tissue cells. Importantly, animal studies have demonstrated that small chemical inhibitors for Src PTKs attenuated acute lung injury. Further investigation may lead to the clinical application of these inhibitors as drugs for acute lung injury.
Collapse
Affiliation(s)
- Daisuke Okutani
- Department of Cancer and Thoracic Surgery, Okayama University Graduate School of Medicine and Dentistry
| |
Collapse
|
83
|
Vlahos R, Bozinovski S, Jones JE, Powell J, Gras J, Lilja A, Hansen MJ, Gualano RC, Irving L, Anderson GP. Differential protease, innate immunity, and NF-kappaB induction profiles during lung inflammation induced by subchronic cigarette smoke exposure in mice. Am J Physiol Lung Cell Mol Physiol 2005; 290:L931-45. [PMID: 16361358 DOI: 10.1152/ajplung.00201.2005] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cigarette smoke exposure is a major determinant of adverse lung health, but the molecular processes underlying its effects on inflammation and immunity remain poorly understood. Therefore, we sought to understand whether inflammatory and host defense determinants are affected during subchronic cigarette smoke exposure. Dose-response and time course studies of lungs from Balb/c mice exposed to smoke generated from 3, 6, and 9 cigarettes/day for 4 days showed macrophage- and S100A8-positive neutrophil-rich inflammation in lung tissue and bronchoalveolar lavage (BAL) fluid, matrix metalloproteinase (MMP) and serine protease induction, sustained NF-kappaB translocation and binding, and mucus cell induction but very small numbers of CD3+CD4+ and CD3+CD8+ lymphocytes. Cigarette smoke had no effect on phospho-Akt but caused a small upregulation of phospho-Erk1/2. Activator protein-1 and phospho-p38 MAPK could not be detected. Quantitative real-time PCR showed upregulation of chemokines (macrophage inflammatory protein-2, monocyte chemoattractant protein-1), inflammatory mediators (TNF-alpha, IL-1beta), leukocyte growth and survival factors [granulocyte-macrophage colony-stimulating factor, colony-stimulating factor (CSF)-1, CSF-1 receptor], transforming growth factor-beta, matrix-degrading MMP-9 and MMP-12, and Toll-like receptor (TLR)2, broadly mirroring NF-kappaB activation. No upregulation was observed for MMP-2, urokinase-type plasminogen activator, tissue-type plasminogen activator, and TLRs 3, 4, and 9. In mouse strain comparisons the rank order of susceptibility was Balb/c > C3H/HeJ > 129SvJ > C57BL6. Partition of responses into BAL macrophages vs. lavaged lung strongly implicated macrophages in the inflammatory responses. Strikingly, except for IL-10 and MMP-12, macrophage and lung gene profiles in Balb/c and C57BL/6 mice were very similar. The response pattern we observed suggests that subchronic cigarette smoke exposure may be useful to understand pathogenic mechanisms triggered by cigarette smoke in the lungs including inflammation and alteration of host defense.
Collapse
Affiliation(s)
- R Vlahos
- Department of Medicine, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3050, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Parihar R, Trotta R, Roda JM, Ferketich AK, Tridandapani S, Caligiuri MA, Carson WE. Src Homology 2–Containing Inositol 5′-Phosphatase 1 Negatively Regulates IFN-γ Production by Natural Killer Cells Stimulated with Antibody-Coated Tumor Cells and Interleukin-12. Cancer Res 2005; 65:9099-107. [PMID: 16204085 DOI: 10.1158/0008-5472.can-04-4424] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously shown that natural killer (NK) cells secrete a distinct profile of immunomodulatory cytokines in response to dual stimulation with antibody-coated tumor cells and interleukin-12 (IL-12). This NK cell cytokine response is dependent on synergistic signals mediated by the activating receptor for the Fc portion of IgG (FcgammaRIIIa) and the IL-12 receptor (IL-12R), both constitutively expressed on NK cells. The phosphatase Src homology 2-containing inositol 5'-phosphatase 1 (SHIP1) is known to exert inhibitory effects on Fc receptor (FcR) signaling via its enzymatic activity on phosphatidylinositol 3-kinase (PI3-K) products within many cells of the immune system, most notably mast cells, B cells, and monocytes. However, its activity in the context of FcR activation on NK cells has not been fully explored. The current study focused on the regulation of FcgammaRIIIa-induced NK cell cytokine production by SHIP1. Inhibitor studies showed that NK cell IFN-gamma production following FcR stimulation in the presence of IL-12 depended, in part, on the downstream products of PI3-K. Overexpression of wild-type (WT) SHIP1, but not a catalytic-deficient mutant, via retroviral transfection of primary human NK cells, resulted in a >70% reduction of NK cell IFN-gamma production in response to costimulation. In addition, NK cells from SHIP1-/- mice produced 10-fold greater amounts of IFN-gamma following culture with antibody-coated tumor cells plus IL-12 compared with NK cells from WT mice. Further, activation of the mitogen-activated protein kinase (MAPK) family member extracellular signal-regulated kinase (Erk; a downstream target of PI3-K) was significantly enhanced within SHIP1-/- NK cells compared with WT NK cells following costimulation. Pharmacologic inhibition of Erk activity, but not Jnk MAPK activity, led to significantly decreased IFN-gamma production from both SHIP1-/- and WT NK cells under these conditions. These results are the first to show a physiologic role for SHIP1 in the regulation of NK cell cytokine production and implicate PI3-K in the induction of MAPK signal transduction following costimulation of NK cells via the FcR and the IL-12R.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Humans
- Inositol Polyphosphate 5-Phosphatases
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Interleukin-12/immunology
- Interleukin-12/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/enzymology
- Killer Cells, Natural/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoric Monoester Hydrolases/antagonists & inhibitors
- Phosphoric Monoester Hydrolases/biosynthesis
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Receptors, IgG
- Receptors, Interleukin/immunology
- Receptors, Interleukin/metabolism
- Receptors, Interleukin-12
- Transfection
Collapse
Affiliation(s)
- Robin Parihar
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
85
|
Bozinovski S, Cross M, Vlahos R, Jones JE, Hsuu K, Tessier PA, Reynolds EC, Hume DA, Hamilton JA, Geczy CL, Anderson GP. S100A8 chemotactic protein is abundantly increased, but only a minor contributor to LPS-induced, steroid resistant neutrophilic lung inflammation in vivo. J Proteome Res 2005; 4:136-45. [PMID: 15707368 DOI: 10.1021/pr049829t] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutrophilic lung inflammation is an essential component of host defense against diverse eukaryotic and prokaryotic pathogens, but in chronic inflammatory lung diseases, such as chronic obstructive lung disease (COPD), severe asthma, cystic fibrosis, and bronchiolitis, it may damage the host. Glucocorticosteroids are widely used in these conditions and in their infectious exacerbations; however, the clinical efficacy of steroids is disputed. In this study, we used a proteomic approach to identify molecules contributing to neutrophilic inflammation induced by transnasal administration of lipopolysaccharide (LPS) that were also resistant to the potent glucocorticosteroid dexamethasone (Dex). We confirmed that Dex was biologically active at both the transcript (suppression of GM-CSF and TNFalphatranscripts) and protein levels (induction of lipocortin) and used 2D-PAGE/MALDI-TOF to generate global expression profiles, identifying six LPS-induced proteins that were Dex resistant. Of these, S100A8, a candidate neutrophil chemotactic factor, was profiled in detail. Steroid refractory S100A8 expression was highly abundant, transcriptionally regulated, secreted into lung lavage fluid and immunohistochemically localized to tissue infiltrating neutrophils. However, in marked contrast to other vascular beds, neutralizing antibodies to S100A8 had only a weak anti-neutrophil recruitment effect and antibodies against the related S100A9 were ineffective. These data highlight the need for extensive in vivo profiling of proteomically identified candidate molecules and demonstrates that S100A8, despite its abundance, resistance to steroids and known chemotactic activity, is unlikely to be an important determinant of LPS-induced neutrophilic lung inflammation in vivo.
Collapse
Affiliation(s)
- Steven Bozinovski
- Lung Disease Research Group, Departments of Pharmacology and Medicine, The University of Melbourne, Parkville 3010 VIC Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Chong YP, Mulhern TD, Cheng HC. C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)--endogenous negative regulators of Src-family protein kinases. Growth Factors 2005; 23:233-44. [PMID: 16243715 DOI: 10.1080/08977190500178877] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are endogenous inhibitors of the Src-family protein tyrosine kinases (SFKs). Since constitutive activation of SFKs contributes to cancer formation and progression, to prevent excessive activation of SFKs, their activity in normal cells is kept at the basal level by CSK and CHK. CSK and CHK inactivate SFKs by specifically phosphorylating a consensus tyrosine (called Y(T)) near their C-termini. Upon phosphorylation, the phospho-Y(T) engages in intramolecular interactions that lock the SFK molecule in an inactive conformation. SFKs are anchored to the plasma membrane, while CSK and CHK are localized predominantly in the cytosol. To inhibit SFKs, CSK and CHK need to translocate to the plasma membrane. Recruitment of CSK and CHK to the plasma membrane is mediated by the binding of their SH2, SH3 and/or kinase domains to specific transmembrane proteins, G-proteins and adaptor proteins located near the plasma membrane. For CSK, membrane recruitment often accompanies activation. CSK and CHK employ two types of direct interactions with SFKs to achieve efficient Y(T) phosphorylation: (i) short-range interactions involving binding of the active sites of CSK and CHK to specific residues near Y(T), (ii) long-range non-catalytic interactions involving binding of SFKs to motifs located distally from the active sites of CSK and CHK. The interactions between CSK and SFKs are transient in nature. Unlike CSK, CHK binds tightly to SFKs to form stable protein complexes. The binding is non-catalytic as it is independent of Y(T). More importantly, the tight binding alone is sufficient to completely inhibit SFKs. This non-catalytic inhibitory binding represents a novel mechanism employed by CHK to inhibit SFKs. Given that SFKs are implicated in cancer development, compounds mimicking the non-catalytic inhibitory mechanism of CHK are potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Yuh-Ping Chong
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Department of Biochemistry and Molecular Biology, Parkville, Victoria, Australia
| | | | | |
Collapse
|
87
|
Cougoule C, Carréno S, Castandet J, Labrousse A, Astarie-Dequeker C, Poincloux R, Le Cabec V, Maridonneau-Parini I. Activation of the Lysosome-Associated p61Hck Isoform Triggers the Biogenesis of Podosomes. Traffic 2005; 6:682-94. [PMID: 15998323 DOI: 10.1111/j.1600-0854.2005.00307.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haematopoietic cell kinase (Hck) is a protein tyrosine kinase of the Src family specifically expressed in phagocytes as two isoforms, p59Hck and p61Hck, present at the plasma membrane and lysosomes, respectively. We report that ectopic expression of a constitutively active mutant of p61Hck (p61Hck(ca)) triggered the de novo formation of actin-rich rings at the ventral face of the cells that we characterized as bona fide podosome rosettes, structures involved in cell migration. Their formation required the adaptor domains and the kinase activity of p61Hck, the integrity of microfilament and microtubule networks and concerted action of Cdc42, Rac and Rho. Podosome rosette formation was either abolished when p61Hck(ca) was readdressed from lysosomes to the cytosol or triggered when p59Hck(ca) was relocalized to lysosomes. Lysosomal markers were present at podosome rosettes. By stimulating exocytosis of p61Hck(ca) lysosomes with a calcium ionophore, the formation of podosome rosettes was enhanced. Interestingly, we confirm that, in human macrophages, Hck and lysosomal markers were present at podosomes which were spatially reorganized as clusters, a foregoing step to form rosettes, upon expression of p61Hck(ca). We propose that lysosomes, under the control of p61Hck, are involved in the biogenesis of podosomes, a key phenomenon in the migration of phagocytes.
Collapse
Affiliation(s)
- Céline Cougoule
- Institut de Pharmacologie et de Biologie Structurale - Centre National de la Recherche Scientifique UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, 31077 Toulouse cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Brown EJ. Leukocyte migration: dismantling inhibition. Trends Cell Biol 2005; 15:393-5. [PMID: 15982887 DOI: 10.1016/j.tcb.2005.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/17/2005] [Accepted: 06/10/2005] [Indexed: 11/20/2022]
Abstract
A new study demonstrates that the Src-family kinases Fgr and Hck inhibit chemokine signaling in polymorphonuclear leukocytes and dendritic cells by phosphorylation of PIR-B, an inhibitory receptor expressed on leukocytes. In resting cells, PIR-B phosphorylation is constitutive but is decreased transiently by addition of chemokines. In Fgr/Hck-deficient cells, constitutive PIR-B phosphorylation is markedly decreased. These Src-family kinases have a novel role in tonic inhibition of cell activation that must be overcome to allow the phenotypic effects of chemokine signaling through G-protein-coupled receptor ligands.
Collapse
Affiliation(s)
- Eric J Brown
- Program in Microbial Pathogenesis and Host Defense, University of California-San Francisco, Campus Box 2140, 600 16th Street, San Francisco, CA 94123, USA.
| |
Collapse
|
89
|
Pertosa G, Simone S, Soccio M, Marrone D, Gesualdo L, Schena FP, Grandaliano G. Coagulation cascade activation causes CC chemokine receptor-2 gene expression and mononuclear cell activation in hemodialysis patients. J Am Soc Nephrol 2005; 16:2477-86. [PMID: 15976001 DOI: 10.1681/asn.2004070621] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Priming of the coagulation cascade during hemodialysis (HD) leads to the release of activated factor X (FXa). The binding of FXa to its specific receptors, effector protease receptor-1 (EPR-1) and protease-activated receptor-2 (PAR-2), may induce the activation of peripheral blood mononuclear cells (PBMC) and promote a chronic inflammatory state that is responsible for several HD-related morbidities. In the attempt to elucidate the mechanisms underlying the coagulation-associated inflammation in HD, 10 HD patients were randomized to be treated subsequently with a cellulose acetate membrane (CA) and Ethylen-vinyl-alcohol (EVAL), a synthetic membrane that has been shown to reduce FXa generation. At the end of each experimental period, surface FXa and thrombin receptors (EPR-1 and PAR-1, -2, and -4) and CCR2 (monocyte chemoattractant protein-1 receptor) gene expression in isolated PBMC were examined. the ability of dialytic membranes to activate protein-tyrosine kinases and the stress-activated kinase JNK and to modulate the generation of terminal complement complex (TCC) was also investigated. EPR-1 and PAR-2 and -4 mRNA expression, barely detectable in normal PBMC, were significantly upregulated in HD patients, particularly in those who were treated with CA. A striking increase of tyrosine-phosphorylated proteins and JNK activation was observed at the end of HD only in CA-treated patients. Simultaneously, an increased gene expression for both splicing isoforms of CCR2, A and B, only in PBMC from CA-treated patients was demonstrated. The increased CCR-2 mRNA abundance was followed by a significant increase in its protein synthesis. The high expression of CCR2 was associated with an increased generation of plasma TCC and a significant drop in leukocyte and monocyte count. By contrast, EVAL treatment slightly lowered TCC generation and normalized leukocyte count. In vitro FXa induced CCR2 A and B expression and JNK activation in freshly isolated PBMC. FXa-induced CCR2 mRNA expression was completely abolished by JNK and tyrosine kinase inhibition. In conclusion, these data suggest that subclinical clotting activation may cause an increased CCR2 gene and protein expression on uremic PBMC, contributing to HD-related chronic microinflammation. The use of the less coagulation-activating membrane, EVAL, may reduce PBMC activation through the modulation of the stress-activated kinase JNK.
Collapse
Affiliation(s)
- Giovanni Pertosa
- Division of Nephrology, Department of Emergency and Transplantation, University of Bari, Policlinico, Piazza Giulio Cesare 11, Bari 70124, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Abstract
Src-family kinases and Syk tyrosine kinases have crucial roles in multiple leukocyte intracellular signaling pathways. In immunoreceptor-related pathways, these enzymes work together sequentially, with Src-family kinases phosphorylating specific protein substrates, which in turn recruit and activate Syk. Recent evidence indicates that several non-immunoreceptors also use Src-family kinases and Syk in this same fashion. In leukocyte integrin signaling, the interaction between the kinases is more complex, where they appear to act in a sequential manner but the mechanisms by which they are activated remain poorly defined. Elucidating the regulation of these tyrosine kinase-based signaling pathways in leukocytes remains an important goal in understanding how immune cells respond to the multitude of activating agents they encounter.
Collapse
Affiliation(s)
- Giorgio Berton
- Department of Pathology, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy.
| | | | | |
Collapse
|
91
|
Vlahos R, Bozinovski S, Gualano RC, Ernst M, Anderson GP. Modelling COPD in mice. Pulm Pharmacol Ther 2005; 19:12-7. [PMID: 16286233 DOI: 10.1016/j.pupt.2005.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 02/14/2005] [Accepted: 02/22/2005] [Indexed: 11/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by persistent airflow limitation, neutrophilic inflammation, macrophage accumulation, and the production of cytokines, chemokines and proteases. Cigarette smoking is the major cause of COPD and there is currently no satisfactory therapy to help treat individuals with this disease. A better understanding of the cellular and molecular responses triggered by cigarette smoke may provide new molecular targets for the development of therapeutic agents. This brief review highlights some of the mouse models used to define the cellular, molecular and pathological consequences of cigarette smoke exposure.
Collapse
Affiliation(s)
- R Vlahos
- Department of Medicine, Cooperative Research Center for Chronic Inflammatory Diseases, The University of Melbourne, Royal Melbourne Hospital, Parkville, Vic. 3050, Australia.
| | | | | | | | | |
Collapse
|
92
|
Severgnini M, Takahashi S, Tu P, Perides G, Homer RJ, Jhung JW, Bhavsar D, Cochran BH, Simon AR. Inhibition of the Src and Jak Kinases Protects against Lipopolysaccharide-induced Acute Lung Injury. Am J Respir Crit Care Med 2005; 171:858-67. [PMID: 15665321 DOI: 10.1164/rccm.200407-981oc] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The cascade of cellular and molecular pathways mediating acute lung injury is complex and incompletely defined. Although the Src and Jak family of kinases is upregulated in LPS-induced murine lung injury, their role in the development of lung injury is unknown. Here we report that systemic inhibition of these kinases using specific small molecule inhibitors (PP2, SU6656, tyrphostin A1) significantly attenuated LPS-induced lung injury, as determined by histologic and capillary permeability assays. These inhibitors blocked LPS-dependent cytokine and chemokine production in the lung and in the serum. In contrast, lung-targeted inhibition of these kinases in the airway epithelium via adenoviral-mediated gene transfer of dominant negative Src or of suppressor of cytokine signaling (SOCS-1) disrupted lung cytokine production but had no effect on systemic cytokine production or lung vascular permeability. Mice were significantly protected from lethal LPS challenge by the small molecule inhibitors of Jak and Src kinase. Importantly, this protection was still evident even when the inhibitors were administered 6 hours after LPS challenge. Taken together, these observations suggest that Jak and Src kinases participate in acute lung injury and verify the potential of this class of selective tyrosine kinase inhibitors to serve as novel therapeutic agents for this disease.
Collapse
Affiliation(s)
- Mariano Severgnini
- Pulmonary and Critical Care Division, Tufts-New England Medical Center, Box 369, 750 Washington Street, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Zhou HR, Jia Q, Pestka JJ. Ribotoxic Stress Response to the Trichothecene Deoxynivalenol in the Macrophage Involves the Src Family Kinase Hck. Toxicol Sci 2005; 85:916-26. [PMID: 15772366 DOI: 10.1093/toxsci/kfi146] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trichothecene mycotoxins and other translational inhibitors activate mitogen-activated protein kinase (MAPKs) by a mechanism called the "ribotoxic stress response," which drives both cytokine gene expression and apoptosis in macrophages. The purpose of this study was to identify upstream kinases involved in the ribotoxic stress response using the trichothecene deoxynivalenol (DON) and the RAW 264.7 macrophage as models. DON (100 to 1000 ng/ml) dose-dependently induced phosphorylation of c-Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAPKs. MAPK phosphorylation in response to DON exposure occurred as early as 5 min, was maximal from 15 to 30 min, and lasted up to 8 h. Preincubation with inhibitors of protein kinase C, protein kinase A, or phospholipase C had no effect on DON-induced MAPK phosphorylation. In contrast, the Src family tyrosine kinase inhibitors, PP1 (4-amino-5-[4-methylphenyl)]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) and, PP2 (4-amino-5-[4-chlorophenyl]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) concentration-dependently impaired phosphorylation of all three MAPK families. PP1 suppressed DON-induced phosphorylation of the MAPK substrates c-jun, ATF-2, and p90(Rsk). MAPK phosphorylation by two other translational inhibitors, anisomycin and emetine, were similarly Src-dependent. PP1 reduced DON-induced increases in nuclear levels and binding activities of several transcription factors (NF-kappaB, AP-1, and C/EBP), which corresponded to decreases in TNF-alpha production, caspase-3 activation, and apoptosis. Tyrosine phosphorylation of hematopoeitic cell kinase (Hck), a Src found in macrophages, was detectable within 1 to 5 min after DON addition, and this was suppressed by PP1. Knockdown of Hck expression with siRNAs confirmed involvement of this Src in DON-induced TNF-alpha production and caspase activation. Taken together, activation of Hck and possibly other Src family tyrosine kinases are likely to be critical signals that precede both MAPK activation and induction of resultant downstream sequelae by DON and other ribotoxic stressors.
Collapse
Affiliation(s)
- Hui-Ren Zhou
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824-1224, USA
| | | | | |
Collapse
|
94
|
Pereira S, Zhang H, Takai T, Lowell CA. The inhibitory receptor PIR-B negatively regulates neutrophil and macrophage integrin signaling. THE JOURNAL OF IMMUNOLOGY 2004; 173:5757-65. [PMID: 15494528 DOI: 10.4049/jimmunol.173.9.5757] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ig-like receptor family member, PIR-B, has been shown to play an inhibitory role in receptor signaling within B cells, mast cells, and dendritic cells. As it has been implicated in integrin-mediated responses, we investigated the effect of loss of the PIR-B protein on integrin-mediated signaling in primary murine myeloid cells. The pir-b-/- neutrophils displayed enhanced respiratory burst, secondary granule release, and a hyperadhesive phenotype when plated on surfaces coated with either extracellular matrix proteins or cellular adhesion molecules in the presence or absence of the soluble inflammatory agonist TNF-alpha. The pir-b-/- and wild-type cells responded equivalently when stimulated with TNF-alpha in suspension, indicating that the hyperresponsive phenotype of the pir-b-/- cells during adhesion was due to enhanced integrin signaling. Both wild-type and pir-b-/- neutrophils expressed similar levels of integrin subunits. Primary bone marrow-derived macrophages from pir-b-/- mice were also hyperadhesive and spread more rapidly than wild-type cells following plating on surfaces that cross-linked cellular beta2 integrins. Biochemical analysis of macrophages from pir-b-/- mice revealed enhanced phosphorylation and activation of proteins involved in integrin signaling. These observations point to a nonredundant role for PIR-B in the regulation of leukocyte integrin signaling.
Collapse
Affiliation(s)
- Shalini Pereira
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
95
|
Yan SR, Byers DM, Bortolussi R. Role of protein tyrosine kinase p53/56lyn in diminished lipopolysaccharide priming of formylmethionylleucyl- phenylalanine-induced superoxide production in human newborn neutrophils. Infect Immun 2004; 72:6455-62. [PMID: 15501776 PMCID: PMC523037 DOI: 10.1128/iai.72.11.6455-6462.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 06/04/2004] [Accepted: 07/26/2004] [Indexed: 11/20/2022] Open
Abstract
Human newborns are more susceptible than adults to bacterial infection. With gram-negative bacteria, this may be due to a diminished response of newborn leukocytes to lipopolysaccharide (LPS). Since protein tyrosine kinase inhibition abolishes LPS priming in adult cells, we hypothesized that protein tyrosine kinases may have a critical role in LPS priming of polymorphonuclear neutrophils (PMNs) and that newborn PMNs may have altered protein tyrosine kinase activities. In the present study, we investigated the role of src family protein tyrosine kinases in the LPS response of newborn PMNs compared to adult cells. In a respiratory assay, the LPS-primed increase in formylmethionylleucylphenylalanine (fMLP)-triggered O2- release by adult PMNs was greatly decreased by PP1 [4-amino-5-(4-methyphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine], a src kinase inhibitor, to the level of untreated newborn PMNs, in which LPS failed to prime. LPS activated the src-like kinases p59hck (HCK) and p58fgr (FGR) in both adult and newborn PMNs but increased the activation of p53/56lyn (LYN) only in adult cells. In newborn PMNs, LYN was highly phosphorylated independent of LPS. We evaluated subcellular fractions of PMNs and found that the phosphorylated form of LYN was mainly in the Triton-extractable, cytosolic fraction in adult PMNs, while in newborn cells it was located mainly in Triton-insoluble, granule- and membrane-associated fractions. In contrast, the phosphorylated mitogen-activated protein kinases ERK1/2 and p38 were mainly detected in the cytosol in both adult and newborn PMNs. These data indicate a role for LYN in the regulation of LPS priming. The trapping of phosphorylated LYN in the membrane-granule fraction in newborn PMNs may contribute to the deficiency of newborn cells in responding to LPS stimulation.
Collapse
Affiliation(s)
- Sen Rong Yan
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
96
|
Pestka JJ, Zhou HR, Moon Y, Chung YJ. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 2004; 153:61-73. [PMID: 15342082 DOI: 10.1016/j.toxlet.2004.04.023] [Citation(s) in RCA: 363] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Macrophages, T cells, and B cells of the immune system are central targets of deoxynivalenol (DON) and other trichothecenes-mycotoxins that can be immunostimulatory or immunosuppressive depending on dose, exposure frequency and timing of functional immune assay. Notably, low dose trichothecene exposure transcriptionally and post-transcriptionally upregulates expression of cytokines, chemokines and inflammatory genes with concurrent immune stimulation, whereas high dose exposure promotes leukocyte apoptosis with concomitant immune suppression. DON and other trichothecenes, via a mechanism known as the ribotoxic stress response, bind to ribosomes and rapidly activate mitogen-activated protein kinases (MAPKs). The latter are important transducers of downstream signaling events related to immune response and apoptosis. Using cloned macrophages, our laboratory has identified two critical upstream transducers of DON-induced MAPK activation. One transducer is double-stranded RNA-(dsRNA)-activated protein kinase (PKR), a widely-expressed serine/theonine protein kinase that can be activated by dsRNA, interferon, and other agents. The second transducer is hematopoetic cell kinase (Hck), a non-receptor associated Src family kinase. Inhibitors and gene silencing studies have revealed that Hck and PKR play roles in DON induced gene expression and apoptosis. Future studies should focus on the molecular linkages between these kinases and trichothecene toxicity.
Collapse
Affiliation(s)
- James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, 234 G.M. Trout Food Science and Human Nutrition Bldg., East Lansing, MI 48824-1224, USA.
| | | | | | | |
Collapse
|
97
|
Chen P, Doweyko AM, Norris D, Gu HH, Spergel SH, Das J, Moquin RV, Lin J, Wityak J, Iwanowicz EJ, McIntyre KW, Shuster DJ, Behnia K, Chong S, de Fex H, Pang S, Pitt S, Shen DR, Thrall S, Stanley P, Kocy OR, Witmer MR, Kanner SB, Schieven GL, Barrish JC. Imidazoquinoxaline Src-Family Kinase p56Lck Inhibitors: SAR, QSAR, and the Discovery of (S)-N-(2-Chloro-6-methylphenyl)-2-(3-methyl-1-piperazinyl)imidazo- [1,5-a]pyrido[3,2-e]pyrazin-6-amine (BMS-279700) as a Potent and Orally Active Inhibitor with Excellent in Vivo Antiinflammatory Activity. J Med Chem 2004; 47:4517-29. [PMID: 15317463 DOI: 10.1021/jm030217e] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of novel anilino 5-azaimidazoquinoxaline analogues possessing potent in vitro activity against p56Lck and T cell proliferation have been discovered. Subsequent SAR studies led to the identification of compound 4 (BMS-279700) as an orally active lead candidate that blocks the production of proinflammatory cytokines (IL-2 and TNFalpha) in vivo. In addition, an expanded set of imidazoquinoxalines provided several descriptive QSAR models highlighting the influence of significant steric and electronic features. The H-bonding (Met319) contribution to observed binding affinities within a tightly congeneric series was found to be significant.
Collapse
Affiliation(s)
- Ping Chen
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08543-4000
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Thomas RM, Schmedt C, Novelli M, Choi BK, Skok J, Tarakhovsky A, Roes J. C-terminal SRC kinase controls acute inflammation and granulocyte adhesion. Immunity 2004; 20:181-91. [PMID: 14975240 DOI: 10.1016/s1074-7613(04)00023-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/22/2003] [Accepted: 01/07/2004] [Indexed: 12/31/2022]
Abstract
To establish whether the widely expressed regulator of Src family kinases Csk contributes to the control of acute inflammation in vivo, we inactivated csk in granulocytes by conditional mutagenesis (Cre/loxP). Mutant mice (Csk-GEcre) developed acute multifocal inflammation in skin and lung. Animals were protected from the disease in a microbiologically controlled environment, but remained hypersensitive to LPS-induced shock. Csk-deficient granulocytes showed enhanced spontaneous and ligand-induced degranulation with hyperinduction of integrins. This hyperresponsiveness was associated with hyperadhesion and impaired migratory responses in vitro. Hyperphosphorylation of key signaling proteins such as Syk and Paxillin in mutant granulocytes further supported breakdown of the activation threshold set by Csk. By enforcing the need for ligand engagement Csk thus prevents premature granulocyte recruitment while supporting the motility of stimulated cells through negative regulation of cell adhesion.
Collapse
Affiliation(s)
- Richard M Thomas
- University College London, Department of Immunology and Molecular Pathology, The Windeyer Institute of Medical Sciences, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
99
|
Gardai SJ, Xiao YQ, Dickinson M, Nick JA, Voelker DR, Greene KE, Henson PM. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 2003; 115:13-23. [PMID: 14531999 DOI: 10.1016/s0092-8674(03)00758-x] [Citation(s) in RCA: 520] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Surfactant proteins A and D (SP-A and SP-D) are lung collectins composed of two regions, a globular head domain that binds PAMPs and a collagenous tail domain that initiates phagocytosis. We provide evidence that SP-A and SP-D act in a dual manner, to enhance or suppress inflammatory mediator production depending on binding orientation. SP-A and SP-D bind SIRPalpha through their globular heads to initiate a signaling pathway that blocks proinflammatory mediator production. In contrast, their collagenous tails stimulate proinflammatory mediator production through binding to calreticulin/CD91. Together a model is implied in which SP-A and SP-D help maintain a non/anti-inflammatory lung environment by stimulating SIRPalpha on resident cells through their globular heads. However, interaction of these heads with PAMPs on foreign organisms or damaged cells and presentation of the collagenous tails in an aggregated state to calreticulin/CD91, stimulates phagocytosis and proinflammatory responses.
Collapse
Affiliation(s)
- Shyra J Gardai
- Program in Cell Biology, Department of Pediatrics, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Chronic obstructive pulmonary disease (COPD) is caused mostly by cigarette smoking but its specific molecular mechanisms are obscure. Current theories suggest that the inflammation and oxidative stress induced by smoking lead to proteolytic imbalance and progressive lung structural derangement, with disease susceptibility being controlled by inherited variations in protective or inflammatory genes. However, cigarette smoke is directly mutagenic. Acquired somatic mutations, rather than inherited polymorphisms, might therefore be major determinants of COPD. Somatic mutations in oncogenes such as p53, Ras, EGFR and PTEN abound in the epithelium of smokers. These mutations are persistent, explaining the paradox that smoking cessation does not resolve inflammation. Moreover, the recognition that these somatic mutations converge on key inflammation, host defense and steroid response pathways might help to explain the clinical defects in these processes in COPD and guide discovery of future therapies.
Collapse
Affiliation(s)
- Gary P Anderson
- Department of Pharmacology, Cooperative Research Center for Chronic Inflammatory Diseases, The University of Melbourne, Parkville, Australia.
| | | |
Collapse
|