51
|
Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genet 2009; 5:e1000420. [PMID: 19282985 PMCID: PMC2652107 DOI: 10.1371/journal.pgen.1000420] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 02/12/2009] [Indexed: 02/07/2023] Open
Abstract
For females, menarche is a most significant physiological event. Age at menarche (AAM) is a trait with high genetic determination and is associated with major complex diseases in women. However, specific genes for AAM variation are largely unknown. To identify genetic factors underlying AAM variation, a genome-wide association study (GWAS) examining about 380,000 SNPs was conducted in 477 Caucasian women. A follow-up replication study was performed to validate our major GWAS findings using two independent Caucasian cohorts with 854 siblings and 762 unrelated subjects, respectively, and one Chinese cohort of 1,387 unrelated subjects—all females. Our GWAS identified a novel gene, SPOCK (Sparc/Osteonectin, CWCV, and Kazal-like domains proteoglycan), which had seven SNPs associated with AAM with genome-wide false discovery rate (FDR) q<0.05. Six most significant SNPs of the gene were selected for validation in three independent replication cohorts. All of the six SNPs were replicated in at least one cohort. In particular, SNPs rs13357391 and rs1859345 were replicated both within and across different ethnic groups in all three cohorts, with p values of 5.09×10−3 and 4.37×10−3, respectively, in the Chinese cohort and combined p values (obtained by Fisher's method) of 5.19×10−5 and 1.02×10−4, respectively, in all three replication cohorts. Interestingly, SPOCK can inhibit activation of MMP-2 (matrix metalloproteinase-2), a key factor promoting endometrial menstrual breakdown and onset of menstrual bleeding. Our findings, together with the functional relevance, strongly supported that the SPOCK gene underlies variation of AAM. Menarche is a physical milestone in a woman's life. Age at menarche (AAM) is related to many common female health problems. AAM is mainly determined by genetic factors. However, the specific genes and the associated mechanisms underlying AAM are largely unknown. Here, taking advantage of the most recent technological advances in the field of human genetics, we identified multiple genetic variants in a gene, SPOCK, which are associated with AAM variation in a group of Caucasian women. This association was subsequently confirmed not only in two independent groups of Caucasian women but also across ethnic boundaries in one group of Chinese women. In addition, SPOCK has a function in regulating a key factor involved in menstrual cycles, MMP-2, which provides further support to our findings. Our study provides a solid basis for further investigation of the gene, which may help to reveal the underlying mechanisms for the timing of menarche and for AAM's relationship with women's health in general.
Collapse
|
52
|
Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, Yan H, Guo YF, Xiong DH, Chen XD, Pan F, Yang TL, Zhang YP, Guo Y, Tang NL, Zhu XZ, Deng HY, Levy S, Recker RR, Papasian CJ, Deng HW. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet 2009; 84:418-23. [PMID: 19268274 PMCID: PMC2668008 DOI: 10.1016/j.ajhg.2009.02.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 02/06/2009] [Accepted: 02/13/2009] [Indexed: 01/09/2023] Open
Abstract
Low lean body mass (LBM) is related to a series of health problems, such as osteoporotic fracture and sarcopenia. Here we report a genome-wide association (GWA) study on LBM variation, by using Affymetrix 500K single-nucleotide polymorphism (SNP) arrays. In the GWA scan, we tested 379,319 eligible SNPs in 1,000 unrelated US whites and found that two SNPs, rs16892496 (p = 7.55 x 10(-8)) and rs7832552 (p = 7.58 x 10(-8)), within the thyrotropin-releasing hormone receptor (TRHR) gene were significantly associated with LBM. Subjects carrying unfavorable genotypes at rs16892496 and rs7832552 had, on average, 2.70 and 2.55 kg lower LBM, respectively, compared to those with alternative genotypes. We replicated the significant associations in three independent samples: (1) 1488 unrelated US whites, (2) 2955 Chinese unrelated subjects, and (3) 593 nuclear families comprising 1972 US whites. Meta-analyses of the GWA scan and the replication studies yielded p values of 5.53 x 10(-9) for rs16892496 and 3.88 x 10(-10) for rs7832552. In addition, we found significant interactions between rs16892496 and polymorphisms of several other genes involved in the hypothalamic-pituitary-thyroid and the growth hormone-insulin-like growth factor-I axes. Results of this study, together with the functional relevance of TRHR in muscle metabolism, support the TRHR gene as an important gene for LBM variation.
Collapse
Affiliation(s)
- Xiao-Gang Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P R China
| | - Shu-Feng Lei
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P R China
| | - Yong-Jun Liu
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Hui Shen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
| | - Liang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Han Yan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Yan-Fang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
| | - Dong-Hai Xiong
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P R China
| | - Feng Pan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
| | - Tie-Lin Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
| | - Yin-Ping Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Yan Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
| | - Nelson L. Tang
- Department of Chemical Pathology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, P R China
| | - Xue-Zhen Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
| | - Hong-Yi Deng
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shawn Levy
- Vanderbilt Microarray Shared Resource, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert R. Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| | | | - Hong-Wen Deng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, P R China
- School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P R China
| |
Collapse
|
53
|
Takahama Y, Uto H, Kanmura S, Oketani M, Ido A, Kusumoto K, Hasuike S, Nagata K, Hayashi K, Stuver S, Okayama A, Tsubouchi H. Association of a genetic polymorphism in ectonucleotide pyrophosphatase/phosphodiesterase 1 with hepatitis C virus infection and hepatitis C virus core antigen levels in subjects in a hyperendemic area of Japan. J Gastroenterol 2008; 43:942-50. [PMID: 19107338 DOI: 10.1007/s00535-008-2256-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 07/03/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The clinical course of chronic hepatitis C virus (HCV) infection is strongly associated with insulin resistance and obesity. The K121Q polymorphism in the ectonucleotide pyrophosphatase/phosphodiesterase (ENPP)-1 gene and the rs7566605 genotype located near insulin-induced gene 2 have been shown to be associated with insulin resistance and obesity. This study examined whether the K121Q polymorphism in ENPP1 or the rs7566605 genotype is associated with the clinical course of HCV infection. METHODS The relationships between the clinical characteristics of 469 anti-HCV antibody-seropositive subjects (353 were positive for HCV core antigen or RNA, whereas 116 were negative for HCV RNA) and the polymorphisms were analyzed. RESULTS No significant differences in body mass index, plasma glucose level, serum insulin level, and other biochemical markers were observed between subgroups of subjects with different genotypes at the K121Q polymorphism or rs7566605. The frequency of the homozygous wild-type genotype at K121Q in HCV carriers, however, was significantly higher than that in subjects who were negative for HCV RNA (84.5% vs. 75.9%; P < 0.05). Moreover, in HCV carriers, HCV core antigen levels in subjects homozygous for the wild-type genotype at K121Q were significantly higher than in heterozygous carriers of K121Q (5358 fmol/l vs. 4002 fmol/l; P = 0.04). In contrast, the rs7566605 genotype was not associated with hepatitis C viremia or with the HCV core antigen level. CONCLUSIONS The K121Q variant of ENPP1 may be associated with hepatitis C viremia and core antigen levels in HCV carriers.
Collapse
Affiliation(s)
- Yuka Takahama
- Miyazaki Prefectural Industrial Support Foundation, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Bivariate genome-wide linkage analysis for traits BMD and AAM: effect of menopause on linkage signals. Maturitas 2008; 62:16-20. [PMID: 19019586 DOI: 10.1016/j.maturitas.2008.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/29/2008] [Accepted: 10/02/2008] [Indexed: 11/22/2022]
Abstract
Osteoporosis is an age-related systemic skeletal disease, characterized by low bone mineral density (BMD). Low BMD is closely associated with late age at menarche (AAM). Our previous bivariate genome-wide linkage analyses (GWLAs) between BMD and AAM identified two shared genomic regions in 2584 Caucasian females including both pre- and post-menopausal females. However, menopause often causes dramatic bone loss in post-menopausal females; this may introduce some confounding effects on the bivariate GWLA for BMD and AAM. To address the effect of menopause on the identification of genetic factors shared by BMD and AAM, we segregated the previously studied population of 2584 females into two separate subgroups consisting of 1462 pre-menopause subjects and 1122 post-menopausal subjects, and performed further bivariate GWLAs. The BMD was measured by Hologic Dual-energy X-ray (DXA) scanners (Hologic Inc., Bedford, MA, USA). Based on the genome-wide thresholds corrected for multiple testing, we found more significant genomic regions in the pre-menopausal group than in total group (including pre- and post-menopausal women), e.g., we found 4, 1, and 2 shared by spine BMD and AAM, femoral neck (FNK) BMD and AAM and ultra distal (UD) BMD and AAM, respectively. We did not found any significant linkage signals in the post-menopausal group. Importantly, the linkage signals at all significant regions were much stronger in pre-menopausal group than in the other groups: post-menopausal females and total females. For example, the linkage LOD score for FNK BMD and AAM is as high as 4.88 in pre-menopausal females, but only 0.24 and 0.31 in post-menopausal and total females, respectively. These results suggest that menopause introduces some noise signals into GWLAs when estimating the shared genetic factors by BMD and AAM. Therefore, it is very important to classify female subjects properly according to their menopause stage when performing such studies.
Collapse
|
55
|
A bivariate whole genome linkage study identified genomic regions influencing both BMD and bone structure. J Bone Miner Res 2008; 23:1806-14. [PMID: 18597637 PMCID: PMC2685488 DOI: 10.1359/jbmr.080614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Areal BMD (aBMD) and areal bone size (ABS) are biologically correlated traits and are each important determinants of bone strength and risk of fractures. Studies showed that aBMD and ABS are genetically correlated, indicating that they may share some common genetic factors, which, however, are largely unknown. To study the genetic factors influencing both aBMD and ABS, bivariate whole genome linkage analyses were conducted for aBMD-ABS at the femoral neck (FN), lumbar spine (LS), and ultradistal (UD)-forearm in a large sample of 451 white pedigrees made up of 4498 individuals. We detected significant linkage on chromosome Xq27 (LOD = 4.89) for LS aBMD-ABS. In addition, we detected suggestive linkages at 20q11 (LOD = 3.65) and Xp11 (LOD = 2.96) for FN aBMD-ABS; at 12p11 (LOD = 3.39) and 17q21 (LOD = 2.94) for LS aBMD-ABS; and at 5q23 (LOD = 3.54), 7p15 (LOD = 3.45), Xq27 (LOD = 2.93), and 12p11 (LOD = 2.92) for UD-forearm aBMD-ABS. Subsequent discrimination analyses indicated that quantitative trait loci (QTLs) at 12p11 and 17q21 may have pleiotropic effects on aBMD and ABS. This study identified several genomic regions that may contain QTLs important for both aBMD and ABS. Further endeavors are necessary to follow these regions to eventually pinpoint the genetic variants affecting bone strength and risk of fractures.
Collapse
|
56
|
Bellis C, Cox HC, Dyer TD, Charlesworth JC, Begley KN, Quinlan S, Lea RA, Heath SC, Blangero J, Griffiths LR. Linkage mapping of CVD risk traits in the isolated Norfolk Island population. Hum Genet 2008; 124:543-52. [PMID: 18975005 DOI: 10.1007/s00439-008-0580-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 10/21/2008] [Indexed: 01/04/2023]
Abstract
To understand the underlying genetic architecture of cardiovascular disease (CVD) risk traits, we undertook a genome-wide linkage scan to identify CVD quantitative trait loci (QTLs) in 377 individuals from the Norfolk Island population. The central aim of this research focused on the utilization of a genetically and geographically isolated population of individuals from Norfolk Island for the purposes of variance component linkage analysis to identify QTLs involved in CVD risk traits. Substantial evidence supports the involvement of traits such as systolic and diastolic blood pressures, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, body mass index and triglycerides as important risk factors for CVD pathogenesis. In addition to the environmental influences of poor diet, reduced physical activity, increasing age, cigarette smoking and alcohol consumption, many studies have illustrated a strong involvement of genetic components in the CVD phenotype through family and twin studies. We undertook a genome scan using 400 markers spaced approximately 10 cM in 600 individuals from Norfolk Island. Genotype data was analyzed using the variance components methods of SOLAR. Our results gave a peak LOD score of 2.01 localizing to chromosome 1p36 for systolic blood pressure and replicated previously implicated loci for other CVD relevant QTLs.
Collapse
Affiliation(s)
- C Bellis
- Genomics Research Centre, Griffith Institute for Health and Medical Research, Griffith University, Gold Coast PMB 50, GCMC Bundall 9726, Gold Coast, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Background Obesity is rapidly becoming a global epidemic. Unlike many complex human diseases, obesity is defined not just by a single trait or phenotype, but jointly by measures of anthropometry and metabolic status. Methods We applied maximum likelihood factor analysis to identify common latent factors underlying observed covariance in multiple obesity-related measures. Both the genetic components and the mode of inheritance of the common factors were evaluated. A total of 1775 participants from 590 families for whom measures on obesity-related traits were available were included in this study. Results The average age of participants was 37 years, 39% of the participants were obese (body mass index ≥ 30.0 kg/m2) and 26% were overweight (body mass index 25.0 - 29.9 kg/m2). Two latent common factors jointly accounting for over 99% of the correlations among obesity-related traits were identified. Complex segregation analysis of the age and sex-adjusted latent factors provide evidence for a Mendelian mode of inheritance of major genetic effect with heritability estimates of 40.4% and 47.5% for the first and second factors, respectively. Conclusions These findings provide a support for multivariate-based approach for investigating pleiotropic effects on obesity-related traits which can be applied in both genetic linkage and association mapping.
Collapse
Affiliation(s)
- B O Tayo
- Department of Preventive Medicine and Epidemiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA.
| | | | | | | | | |
Collapse
|
58
|
Zhao LJ, Xiong DH, Pan F, Liu XG, Recker RR, Deng HW. Polymorphisms of the tumor necrosis factor-alpha receptor 2 gene are associated with obesity phenotypes among 405 Caucasian nuclear families. Hum Genet 2008; 124:171-7. [PMID: 18685868 DOI: 10.1007/s00439-008-0536-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/29/2008] [Indexed: 01/02/2023]
Abstract
The plasma level of the tumor necrosis factor-alpha receptor 2 (TNFR2) is associated with obesity phenotypes. However, the genetic polymorphisms for such an association have rarely been explored and are generally unknown. In this study, by employing a large sample of 1,873 subjects from 405 Caucasian nuclear families, we explored the association of 12 SNPs of the TNFR2 gene and obesity-related phenotypes, including body mass index (BMI), fat mass, and percentage fat mass (PFM). The within-family quantitative transmission disequilibrium test, which is robust to sample stratification, was implemented to evaluate the association of TNFR2 gene with obesity phenotypes. Evidence of association was obtained at SNP9 (rs5746059) with fat mass (P = 0.0002), BMI (P = 0.002), and PFM (P = 0.0006). The contribution of this polymorphism to the variation of fat mass and PFM was 6.24 and 7.82%, respectively. Individuals carrying allele A at the SNP9 site had a 4.6% higher fat mass and a 2.5% increased PFM compared to noncarriers. The results remained significant even after correction for multiple testing. Evidence of association between the TNFR2 gene and obesity phenotypes are also found in 700 independent Chinese Han and 1,000 random Caucasians samples. The results suggest that the TNFR2 gene polymorphisms contribute to the variation of obesity phenotypes.
Collapse
Affiliation(s)
- Lan-Juan Zhao
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA.
| | | | | | | | | | | |
Collapse
|
59
|
Bivariate genome linkage analysis suggests pleiotropic effects on chromosomes 20p and 3p for body fat mass and lean mass. Genet Res (Camb) 2008; 90:259-68. [PMID: 18593513 DOI: 10.1017/s0016672308009257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Total body fat mass (TBFM) and total body lean mass (TBLM) are the major components of the human body. Although these highly correlated phenotypic traits are frequently used to characterize obesity, the specific shared genetic factors that influence both traits remain largely unknown. Our study was aimed at identifying common quantitative trait loci (QTLs) contributing to both TBFM and TBLM. We performed a whole genome-linkage scan study in a large sample of 3255 subjects from 420 Caucasian pedigrees. Bivariate linkage analysis was carried out in both the entire sample and gender-specific subsamples. Several potentially important genomic regions that may harbour QTLs important for TBFM and TBLM were identified. For example, 20p12-11 achieved a LOD score of 2.04 in the entire sample and, in the male subsample, two genomic regions, 20p12 (LOD=2.08) and 3p26-25 (LOD=1.92), showed suggestive linkage. In addition, two-point linkage analyses for chromosome X showed suggestive linkages on Xp22 in the entire sample (LOD=2.14) and significant linkage on Xp22 in the female subsample (LOD=3.05). Complete pleiotropy was suggested for 20p12 and 3p26-25 in males. Our results suggest that QTLs on chromosomes 20p12, 3p26-25 and Xp22 may jointly influence TBFM and TBLM. Further fine mapping and gene identification studies for these pleiotropic effects are needed.
Collapse
|
60
|
Dai F, Sun G, Aberg K, Keighley ED, Indugula SR, Roberts ST, Smelser D, Viali S, Jin L, Deka R, Weeks DE, McGarvey ST. A whole genome linkage scan identifies multiple chromosomal regions influencing adiposity-related traits among Samoans. Ann Hum Genet 2008; 72:780-92. [PMID: 18616661 DOI: 10.1111/j.1469-1809.2008.00462.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We conducted a genome-wide scan in 46 pedigrees, with 671 phenotyped adults, from the independent nation of Samoa to map quantitative trait loci (QTLs) for adiposity-related phenotypes, including body mass index (BMI), abdominal circumference (ABDCIR), percent body fat (%BFAT), and fasting serum leptin and adiponectin. A set of 378 autosomal and 14 X chromosomal microsatellite markers were genotyped in 572 of the adults. Significant genetic correlations (0.82-0.96) were detected between pairs of BMI, ABDCIR, %BFAT and leptin. Suggestive linkages were found on 13q31 (LOD = 2.30 for leptin, LOD = 2.48 for %BFAT, LOD = 2.04 for ABDCIR, and LOD = 2.09 for BMI) and on 9p22 (LOD = 3.08 for ABDCIR and LOD = 2.53 for %BFAT). Furthermore, bivariate linkage analyses indicated that the genetic regions on 9p22 (bivariate LOD 2.35-3.10, LOD(eq) (1df) 1.88-2.59) and 13q31 (bivariate LOD 1.96-2.64, LOD(eq) 1.52-2.21) might harbor common major genes with pleiotropic effects. Other regions showing suggestive linkage included 4q22 (LOD = 2.95) and 7p14 (LOD = 2.64) for %BFAT, 2q13 for adiponectin (LOD = 2.05) and 19q12 for BMI-adjusted leptin (LOD = 2.03). Further fine mapping of these regions may help identify the genetic variants contributing to the development of obesity in Samoan adults.
Collapse
Affiliation(s)
- F Dai
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Liu YJ, Liu XG, Wang L, Dina C, Yan H, Liu JF, Levy S, Papasian CJ, Drees BM, Hamilton JJ, Meyre D, Delplanque J, Pei YF, Zhang L, Recker RR, Froguel P, Deng HW. Genome-wide association scans identified CTNNBL1 as a novel gene for obesity. Hum Mol Genet 2008; 17:1803-13. [PMID: 18325910 PMCID: PMC2900891 DOI: 10.1093/hmg/ddn072] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 03/04/2008] [Indexed: 12/21/2022] Open
Abstract
Obesity is a major public health problem with strong genetic determination; however, the genetic factors underlying obesity are largely unknown. In this study, we performed a genome-wide association scan for obesity by examining approximately 500 000 single-nucleotide polymorphisms (SNPs) in a sample of 1000 unrelated US Caucasians. We identified a novel gene, CTNNBL1, which has multiple SNPs associated with body mass index (BMI) and fat mass. The most significant SNP, rs6013029, achieved experiment-wise P-values of 2.69 x 10(-7) for BMI and of 4.99 x 10(-8) for fat mass, respectively. The SNP rs6013029 minor allele T confers an average increase in BMI and fat mass of 2.67 kg/m(2) and 5.96 kg, respectively, compared with the alternative allele G. We further genotyped the five most significant CTNNBL1 SNPs in a French case-control sample comprising 896 class III obese adults (BMI > or = 40 kg/m(2)) and 2916 lean adults (BMI < 25 kg/m(2)). All five SNPs showed consistent associations with obesity (8.83 x 10(-3) < P < 6.96 x 10(-4)). Those subjects who were homozygous for the rs6013029 T allele had 1.42-fold increased odds of obesity compared with those without the T allele. The protein structure of CTNNBL1 is homologous to beta-catenin, a family of proteins containing armadillo repeats, suggesting similar biological functions. beta-Catenin is involved in the Wnt/beta-catenin-signaling pathway which appears to contribute to maintaining the undifferentiated state of pre-adipocytes by inhibiting adipogenic gene expression. Our study hence suggests a novel mechanism for the development of obesity, where CTNNBL1 may play an important role. Our study also provided supportive evidence for previously identified associations between obesity and INSIG2 and PFKP, but not FTO.
Collapse
Affiliation(s)
- Yong-Jun Liu
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
| | - Xiao-Gang Liu
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Liang Wang
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Christian Dina
- CNRS-8090-Institute of Biology, Pasteur Institute, Lille, France
| | - Han Yan
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jian-Feng Liu
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
| | - Shawn Levy
- Vanderbilt Microarray Shared Resource, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Betty M. Drees
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
| | - James J. Hamilton
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
| | - David Meyre
- CNRS-8090-Institute of Biology, Pasteur Institute, Lille, France
| | | | - Yu-Fang Pei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Robert R. Recker
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| | - Philippe Froguel
- CNRS-8090-Institute of Biology, Pasteur Institute, Lille, France
- Genomic Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Hong-Wen Deng
- School of Medicine, University of Missouri—Kansas City, Kansas City, MO 64108, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
- Osteoporosis Research Center, Creighton University, Omaha, NE 68131, USA
| |
Collapse
|
62
|
Tan LJ, Liu YZ, Xiao P, Yang F, Tang ZH, Liu PY, Recker RR, Deng HW. Evidence for major pleiotropic effects on bone size variation from a principal component analysis of 451 Caucasian families. Acta Pharmacol Sin 2008; 29:745-51. [PMID: 18501122 DOI: 10.1111/j.1745-7254.2008.00806.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To identify pleiotropic quantitative trait loci (QTL) influencing bone size (BS) at different skeletal sites in Caucasians. METHODS In a sample containing 3899 Caucasians from 451 pedigrees, 410 microsatellite markers spaced approximately 8.9 cM apart across the human genome were genotyped. Phenotypical and genetic correlations of BS at lumbar spine, hip (femoral neck, trochanter, and intertrochanter regions), and wrist (ultradistal, mid-distal, and one-third distal sites) were determined using bivariate quantitative genetic analysis. A principal component analysis (PCA) was performed to obtain principal component (PC) factors that were then subjected to variance components linkage analysis to identify regions linked to the PC. RESULTS Genetic correlations of BS at different skeletal sites ranged from 0.40 to 0.79 (P<0.001). The PCA yielded a PC named PCtotal, which explained up to 76% of the total (co)variation of all the BS at the 7 skeletal sites for the whole sample. We identified a QTL influencing the BS of multiple skeletal sites on chromosome 7 at 140 cM [logarithm of odds (LOD)=2.85] in the overall sample. Sex-specific evidence for linkage was observed on chromosome 11 at 53 cM (LOD =2.82) in the male-only data subset. CONCLUSION Our study identified several genomic regions that may have pleiotropic effects on different skeletal sites. These regions may contain genes that play a critical role in overall bone development and osteoporosis at multiple skeletal sites, hence are biologically and clinically important.
Collapse
Affiliation(s)
- Li-jun Tan
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Sookoian S, Gemma C, Gianotti TF, Burgueño A, Castaño G, Pirola CJ. Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 2008; 87:1606-15. [PMID: 18541547 DOI: 10.1093/ajcn/87.6.1606] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Altering circadian rhythmicity results in pathophysiologic changes resembling metabolic syndrome and fat accumulation. OBJECTIVE We investigated the role of gene variants and derived haplotypes of the CLOCK transcription factor in obesity and related quantitative metabolic traits. DESIGN Lean (n = 715) and overweight or obese (n = 391) unrelated subjects aged 34.4 +/- 8.6 y were included in a population-based cross-sectional study. Six tag single-nucleotide polymorphisms (SNPs) with a minor (>10%) allele frequency (rs1554483 C/G; rs11932595 A/G; rs4580704 C/G; rs6843722 A/C; rs6850524 C/G, and rs4864548 A/G) encompassing 117 kb of chromosome 4 and representing 115 polymorphic sites (r(2) > 0.8) were genotyped. Association was tested by PLINK and WHAP software, and multiple testing was controlled by permutation test. RESULTS The genotype frequencies of 4 tag SNPs--rs1554483, rs6843722, rs6850524, and rs4864548--had significant (empiric P < 0.010, 0.021, 0.021, and 0.010, respectively) associations with overweight or obesity. Haplotype analysis showed that only paired haplotypes, including rs1554483 and rs4864548, had a significant effect on overweight or obesity. Combinations of these SNPs (haplotype block CG and GA) are responsible for the gene effect (GA frequencies: 47% in cases, 41% in controls; empiric P < 0.011). These findings were concurrently observed in a sample of persons from a hospital-based study, and the combined Mantel-Haenszel fixed effect was an odds ratio of 1.82 (95% CI: 1.31, 2.54; P < 0.001) for the paired haplotype, which included CG and GA for rs1554483 and rs4864548. CONCLUSIONS The present study suggests a putative role of the CLOCK polymorphism and related haplotypes in susceptibility to obesity. The haplotype of rs1554483G and rs4864548A was associated with a 1.8-fold risk of overweight or obesity.
Collapse
Affiliation(s)
- Silvia Sookoian
- Departamento de Genética y Biología Molecular de Enfermedades Complejas, Instituto de Investigaciones Medicas A Lanari, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
64
|
In vivo genome-wide expression study on human circulating B cells suggests a novel ESR1 and MAPK3 network for postmenopausal osteoporosis. J Bone Miner Res 2008; 23:644-54. [PMID: 18433299 PMCID: PMC2674539 DOI: 10.1359/jbmr.080105] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Osteoporosis is characterized by low BMD. Studies have shown that B cells may participate in osteoclastogenesis through expression of osteoclast-related factors, such as RANKL, transforming growth factor beta (TGFB), and osteoprotegerin (OPG). However, the in vivo significance of B cells in human bone metabolism and osteoporosis is still largely unknown, particularly at the systematic gene expression level. MATERIALS AND METHODS In this study, Affymetrix HG-U133A GeneChip arrays were used to identify genes differentially expressed in B cells between 10 low and 10 high BMD postmenopausal women. Significance of differential expression was tested by t-test and adjusted for multiple testing with the Benjamini and Hochberg (BH) procedure (adjusted p </= 0.05). RESULTS Twenty-nine genes were downregulated in the low versus high BMD group. These genes were further analyzed using Ingenuity Pathways Analysis (Ingenuity Systems). A network involving estrogen receptor 1 (ESR1) and mitogen activated protein kinase 3 (MAPK3) was identified. Real-time RT-PCR confirmed differential expression of eight genes, including ESR1, MAPK3, methyl CpG binding protein 2 (MECP2), proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1), Scr-like-adaptor (SLA), serine/threonine kinase 11 (STK11), WNK lysine-deficient protein kinase 1 (WNK1), and zinc finger protein 446 (ZNF446). CONCLUSIONS This is the first in vivo genome-wide expression study on human B cells in relation to osteoporosis. Our results highlight the significance of B cells in the etiology of osteoporosis and suggest a novel mechanism for postmenopausal osteoporosis (i.e., that downregulation of ESR1 and MAPK3 in B cells regulates secretion of factors, leading to increased osteoclastogenesis or decreased osteoblastogenesis).
Collapse
|
65
|
He LN, Liu YJ, Xiao P, Zhang L, Guo Y, Yang TL, Zhao LJ, Drees B, Hamilton J, Deng HY, Recker RR, Deng HW. Genomewide Linkage Scan for Combined Obesity Phenotypes using Principal Component Analysis. Ann Hum Genet 2008; 72:319-26. [DOI: 10.1111/j.1469-1809.2007.00423.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
66
|
Chromosomal regions 22q13 and 3p25 may harbor quantitative trait loci influencing both age at menarche and bone mineral density. Hum Genet 2008; 123:419-27. [PMID: 18379822 DOI: 10.1007/s00439-008-0490-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 03/24/2008] [Indexed: 10/22/2022]
Abstract
Late age at menarche (AAM), an important type of endocrinopathy in females, is associated with lower bone mineral density (BMD), a major risk factor for osteoporosis. The correlation is mainly mediated through common genetic factors, which are largely unknown. A bivariate genome-wide linkage scan was conducted on 2,522 females from 414 Caucasian pedigrees to identify quantitative trait loci influencing both AAM and BMD. The strongest linkage signal was detected on chromosome 22q13. Other regions such as the 3q13, 3p25, 7p15, and 15q13 were also suggested. The inferred promising candidate genes in the linkage regions may contribute to our understanding of pathogenesis of endocrinopathy and osteoporosis in females.
Collapse
|
67
|
Ciullo M, Nutile T, Dalmasso C, Sorice R, Bellenguez C, Colonna V, Persico MG, Bourgain C. Identification and replication of a novel obesity locus on chromosome 1q24 in isolated populations of Cilento. Diabetes 2008; 57:783-90. [PMID: 18162505 DOI: 10.2337/db07-0970] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Obesity is a complex trait with a variety of genetic susceptibility variants. Several loci linked to obesity and/or obesity-related traits have been identified, and relatively few regions have been replicated. Studying isolated populations can be a useful approach to identify rare variants that will not be detected with whole-genome association studies in large populations. RESEARCH DESIGN AND METHODS Random individuals were sampled from Campora, an isolated village of the Cilento area in South Italy, phenotyped for BMI, and genotyped using a dense microsatellite marker map. An efficient pedigree-breaking strategy was applied to perform genome-wide linkage analyses of both BMI and obesity. Significance was assessed with ad hoc simulations for the two traits and with an original local false discovery rate approach to quantitative trait linkage analysis for BMI. A genealogy-corrected association test was performed for a single nucleotide polymorphism located in one of the linkage regions. A replication study was conducted in the neighboring village of Gioi. RESULTS A new locus on chr1q24 significantly linked to BMI was identified in Campora. Linkage at the same locus is suggested with obesity. Three additional loci linked to BMI were also detected, including the locus including the INSIG2 gene region. No evidence of association between the rs7566605 variant and BMI or obesity was found. In Gioi, the linkage on chr1q24 was replicated with both BMI and obesity. CONCLUSIONS Overall, our results confirm that successful linkage studies can be accomplished in these populations both to replicate known linkages and to identify novel quantitative trait linkages.
Collapse
Affiliation(s)
- Marina Ciullo
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Via Pietro Castellino, 111, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhang F, Xiao P, Yang F, Shen H, Xiong DH, Deng HY, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Deng HW. A whole genome linkage scan for QTLs underlying peak bone mineral density. Osteoporos Int 2008; 19:303-10. [PMID: 17882466 DOI: 10.1007/s00198-007-0468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 07/31/2007] [Indexed: 01/28/2023]
Abstract
UNLABELLED We conducted a whole genome linkage scan for quantitative trait loci (QTLs) underlying peak bone mineral density (PBMD). Our efforts identified several potential genomic regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation. INTRODUCTION Peak bone mineral density (PBMD) is an important clinical risk predictor of osteoporosis and explains a large part of bone mineral density (BMD) variation. METHODS To detect susceptive quantitative trait loci (QTLs) for PBMD variation including consideration of epistatic and sex-specific effects, we conducted a whole genome linkage scan (WGLS) for PBMD using 2,200 Caucasians from 207 pedigrees, aged 20-50 years. All the individuals were genotyped with 410 microsatellite markers. In addition to WGLS in the total combined sample of males and females, we conducted epistatic interaction analyses, and sex-specific subgroup linkage analyses. RESULTS We identified several potential genomic regions that met the criteria for suggestive linkage. The most impressing region is 12p12 for hip PBMD (LOD = 2.79) in the total sample. Epistatic interaction analyses found a significant epistatic interaction between 12p12 and 22q13 (p = 0.0021) for hip PBMD. Additionally, we detected suggestive linkage evidence at 15q26 (LOD = 2.93), 2p13 (LOD = 2.64), and Xq27 (LOD = 2.64). Sex-specific analyses suggested the presence of sex-specific QTLs for PBMD variation. CONCLUSIONS Our efforts identified several potential regions for PBMD and highlighted the importance of epistatic interaction and sex-specific analyses in identifying genetic regions underlying PBMD variation.
Collapse
Affiliation(s)
- F Zhang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wang XL, Deng FY, Tan LJ, Deng HY, Liu YZ, Papasian CJ, Recker RR, Deng HW. Bivariate whole genome linkage analyses for total body lean mass and BMD. J Bone Miner Res 2008; 23:447-52. [PMID: 17967140 PMCID: PMC2669157 DOI: 10.1359/jbmr.071033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 08/22/2007] [Accepted: 10/26/2007] [Indexed: 01/09/2023]
Abstract
UNLABELLED A genome-wide bivariate analysis was conducted for TBLM and BMD at the spine and hip in a large white sample. We found some QTLs shared by TBLM and BMD in the entire sample and the sex-specific subgroups, and QTLs with potential pleiotropy were disclosed. INTRODUCTION Previous studies suggested that total body lean mass (TBLM) and BMD are highly genetically correlated. However, the specific shared genetic factors between TBLM and BMD are unknown. MATERIALS AND METHODS To identify the specific quantitative trait loci (QTLs) shared by TBLM and BMD at the spine (L1-L4) and total hip, we performed bivariate whole genome linkage analysis (WGLA) in a large sample involving 4498 white subjects of European origin. RESULTS Multipoint bivariate linkage analyses for 22 autosomes showed evidence of significant linkage with an LOD score of 4.86 at chromosome region 15q13 for TBLM and spine BMD in women, and suggestive linkage findings (LOD > 2.2) at 7p22 for TBLM and spine BMD for the entire sample, at 7q32 for TBLM and BMD at both spine and hip in women, and at 7q21 and 13p11 for TBLM and BMD at both spine and hip in men. Two-point linkage analyses for chromosome X also showed significant linkage signals at several regions such as Xq25. Complete pleiotropy (a single locus influencing both traits) was suggested at 7q32 and 13q11 for TBLM and BMD. Additionally, complete co-incident linkage (separate tightly clustered loci each influencing a single trait) was detected at 7p22 for TBLM and spine BMD. CONCLUSIONS We identified several genomic regions shared by TBLM and BMD in whites. Further studies may focus on fine mapping and identification of the specific QTLs in these candidate genomic regions.
Collapse
Affiliation(s)
- Xiang-Li Wang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Fei-Yan Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hong-Yi Deng
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Yao-Zhong Liu
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Christopher J Papasian
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
| | - Robert R Recker
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Departments of Orthopaedic Surgery and Basic Medical Sciences, University of Missouri–Kansas City, Kansas City, Missouri, USA
- Institute of Molecular Genetics and the Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an, Shanxi, China
| |
Collapse
|
70
|
Shriner D, Baye TM, Padilla MA, Zhang S, Vaughan LK, Loraine AE. Commonality of functional annotation: a method for prioritization of candidate genes from genome-wide linkage studies. Nucleic Acids Res 2008; 36:e26. [PMID: 18263617 PMCID: PMC2275105 DOI: 10.1093/nar/gkn007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Linkage studies of complex traits frequently yield multiple linkage regions covering hundreds of genes. Testing each candidate gene from every region is prohibitively expensive and computational methods that simplify this process would benefit genetic research. We present a new method based on commonality of functional annotation (CFA) that aids dissection of complex traits for which multiple causal genes act in a single pathway or process. CFA works by testing individual Gene Ontology (GO) terms for enrichment among candidate gene pools, performs multiple hypothesis testing adjustment using an estimate of independent tests based on correlation of GO terms, and then scores and ranks genes annotated with significantly-enriched terms based on the number of quantitative trait loci regions in which genes bearing those annotations appear. We evaluate CFA using simulated linkage data and show that CFA has good power despite being conservative. We apply CFA to published linkage studies investigating age-of-onset of Alzheimer's disease and body mass index and obtain previously known and new candidate genes. CFA provides a new tool for studies in which causal genes are expected to participate in a common pathway or process and can easily be extended to utilize annotation schemes in addition to the GO.
Collapse
Affiliation(s)
- Daniel Shriner
- Department of Biostatistics, Section on Statistical Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
71
|
The MTHFR gene polymorphism is associated with lean body mass but not fat body mass. Hum Genet 2008; 123:189-96. [DOI: 10.1007/s00439-007-0463-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Accepted: 12/23/2007] [Indexed: 01/25/2023]
|
72
|
Wang L, Liu YJ, Xiao P, Shen H, Deng HY, Papasian CJ, Drees BM, Hamilton JJ, Recker RR, Deng HW. Chromosome 2q32 may harbor a QTL affecting BMD variation at different skeletal sites. J Bone Miner Res 2007; 22:1672-8. [PMID: 17680728 DOI: 10.1359/jbmr.070722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED BMDs at different skeletal sites share some common genetic determinants. Using PCA and bivariate linkage analysis, we identified a QTL on chromosome 2q32 with significant pleiotropic effects on BMDs at different skeletal sites. INTRODUCTION BMDs at the hip, spine, and forearm are genetically correlated, suggesting the existence of quantitative trait loci (QTLs) with concurrent effects on BMDs at these three skeletal sites. Consequently, it is important to identify these QTLs in the human genome and, for those implicated QTLs, it is important to differentiate between pleiotropic effects, caused by a single gene that concurrently effects these traits, and co-incident linkage, caused by multiple, closely linked, genes that independently effect these traits. MATERIALS AND METHODS For a sample of 451 American white pedigrees made up of 4,498 individuals, we evaluated the correlations between BMDs at the three skeletal sites. We carried out principal component analysis (PCA) for the three correlated traits and obtained a major component, PC1, which accounts for >75% of the co-variation of BMDs at the three sites. We subsequently conducted a whole genome linkage scan for PC1 and performed bivariate linkage analysis for pairs of the three traits (i.e., forearm/spine BMD, hip/forearm BMD, and hip/spine BMD). RESULTS Chromosome region 2q32, near the marker GATA65C03M, showed strong linkage to PC1 (LOD = 3.35). Subsequent bivariate linkage analysis substantiated linkage at 2q32 for each trait pair (LOD scores were 2.65, 2.42, and 2.13 for forearm/spine BMD, hip/forearm BMD, and hip/spine BMD, respectively). Further analyses rejected the hypothesis of co-incident linkage (p(0)[forearm/spine] = 0.0005, p(0)[hip/forearm] = 0.004, p(0)(hip/spine] = 0.001) but failed to reject the hypothesis of pleiotropy (p(1)[forearm/spine] = 0.35, p(1)[hip/forearm] = 0.07, p(1)[hip/spine] = 0.15). CONCLUSIONS Our results strongly support the conclusion that chromosome region 2q32 may harbor a QTL with pleiotropic effects on BMDs at different skeletal sites.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Voruganti VS, Göring HHH, Diego VP, Cai G, Mehta NR, Haack K, Cole SA, Butte NF, Comuzzie AG. Genome-wide scan for serum ghrelin detects linkage on chromosome 1p36 in Hispanic children: results from the Viva La Familia study. Pediatr Res 2007; 62:445-50. [PMID: 17667848 DOI: 10.1203/pdr.0b013e31813cbf02] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This study was conducted to investigate genetic influence on serum ghrelin and its relationship with adiposity-related phenotypes in Hispanic children (n=1030) from the Viva La Familia study (VFS). Anthropometric measurements and levels of serum ghrelin were estimated and genetic analyses conducted according to standard procedures. Mean age, body mass index (BMI), and serum ghrelin were 11+/-0.13 y, 25+/-0.24 kg/m2 and 38+/-0.5 ng/mL, respectively. Significant heritabilities (p<0.001) were obtained for BMI, weight, fat mass, percent fat, waist circumference, waist-to-height ratio, and ghrelin. Bivariate analyses of ghrelin with adiposity traits showed significant negative genetic correlations (p<0.0001) with weight, BMI, fat mass, percent fat, waist circumference, and waist-to-height ratio. A genome-wide scan for ghrelin detected significant linkage on chromosome 1p36.2 between STR markers D1S2697 and D1S199 (LOD=3.2). The same region on chromosome 1 was the site of linkage for insulin (LOD=3.3), insulinlike growth factor binding protein 1 (IGFBP1) (LOD=3.4), homeostatic model assessment method (HOMA) (LOD=2.9), and C-peptide (LOD=2.0). Several family-based studies have reported linkages for obesity-related phenotypes in the region of 1p36. These results indicate the importance of this region in relation to adiposity in children from the VFS.
Collapse
Affiliation(s)
- V Saroja Voruganti
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Terruzzi I, Senesi P, Fermo I, Lattuada G, Luzi L. Are genetic variants of the methyl group metabolism enzymes risk factors predisposing to obesity? J Endocrinol Invest 2007; 30:747-53. [PMID: 17993766 DOI: 10.1007/bf03350812] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Obesity, due to the combination of inherited genes and environmental factors, is continually increasing. We evaluated the relationship between polymorphisms of methylene-tetrahydrofolate reductase (MTHFR C677T and A1298C), methionine synthase (MTR A2756G), methionine synthase reductase (MTRR A66G), betaine:homocysteine methyltransferase (BHMT G742A) and cystathionine beta-synthase (CBS 68-bp ins) genes and the risk of obesity. We studied these polymorphic variants in 54 normal and 82 obese subjects [body mass index (BMI)=22.4+/-1.8, 34.1+/-7.1; ages 35.2+/-10.7, 43.3+/-10.6 respectively]. Levels of total plasma homocysteine (t-Hcy), folates, and vitamins B6 and B12 were not significantly different, while leptin concentration was significantly higher (p=0.005) in the obese patients compared to the lean controls. The frequency of only (a) MTHFR (AC), (b) MTR (AG), and (c) MTRR (AG) heterozygous genotypes was statistically different in the obese compared to the control group (p=0.03, p=0.007, and p=0.01). Single (a), (b), and (c) heterozygous genotypes had a significant risk of developing obesity [p=0.02, 0.01, and 0.03; odds ratio (OR)=2.5, 3.0, and 2.4; 95% confidence interval (CI)=1.2-5.3, 1.3-7.1, and 1.2-5.1 respectively] and the risk remarkably increased for combined genotypes a+b, a+c, b+c, and a+b+c (p=0.002, 0.002, 0.016, 0.006; OR=7.7, 5.4, 5.8, 15.4; 95% CI=1.9-30.4, 1.7-16.8, 1.4-23.2, 1.6- 152.3). These findings suggest that in obese subjects, Hcy cycle efficiency is impaired by MTHFR, MTR, and MTRR inability to supply methyl-group donors, providing evidence that MTHFR, MTR, and MTRR gene polymorphisms are genetic risk factors for obesity.
Collapse
Affiliation(s)
- I Terruzzi
- Division of Internal Medicine, Section of Nutrition/Metabolism, San Raffaele Scientific Institute, 20132 Milano, Italy.
| | | | | | | | | |
Collapse
|
75
|
Cornes BK, Zhu G, Martin NG. Sex differences in genetic variation in weight: a longitudinal study of body mass index in adolescent twins. Behav Genet 2007; 37:648-60. [PMID: 17896175 DOI: 10.1007/s10519-007-9165-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/26/2007] [Indexed: 11/27/2022]
Abstract
Genes that influence a phenotype earlier in life may differ from those influencing the same phenotype later, particularly during significant development periods such as puberty, when it is known that new genetic and environmental influences may become important. In the present study, body mass index (BMI) data were collected from 470 monozygotic twin pairs and 673 dizygotic twin pairs longitudinally at ages 12, 14 and 16, roughly straddling puberty. In order to examine whether there are qualitative and quantitative differences in genetic and environmental influences affecting BMI in males and females, during development, a general sex-limitation simplex model (which represents the longitudinal time series of the data) was fitted to the repeated measurements of BMI. The ADE simplex model provided the best fit to the adolescent data, with disparity in the magnitude of additive genetic influences between sexes, but no differences in the non-additive genetic (epistasis or dominance) or environmental influences. Results found may reflect many genetic and environmental influences during puberty, including the possible complex interaction between genes involved in the biological mechanism of weight regulation and the development of likely peer pressured activities such as severe exercise and diet regimes. Although, over 1,000 pairs of twins were used, this study still lacked the power to properly discriminate between additive and non-additive genetic variance.
Collapse
Affiliation(s)
- Belinda K Cornes
- Genetic Epidemiology, Queensland Institute of Medical Research, Post Office Royal Brisbane Hospital, Herston, Brisbane 4029, QLD, Australia.
| | | | | |
Collapse
|
76
|
Saunders CL, Chiodini BD, Sham P, Lewis CM, Abkevich V, Adeyemo AA, de Andrade M, Arya R, Berenson GS, Blangero J, Boehnke M, Borecki IB, Chagnon YC, Chen W, Comuzzie AG, Deng HW, Duggirala R, Feitosa MF, Froguel P, Hanson RL, Hebebrand J, Huezo-Dias P, Kissebah AH, Li W, Luke A, Martin LJ, Nash M, Ohman M, Palmer LJ, Peltonen L, Perola M, Price RA, Redline S, Srinivasan SR, Stern MP, Stone S, Stringham H, Turner S, Wijmenga C, Collier DA. Meta-analysis of genome-wide linkage studies in BMI and obesity. Obesity (Silver Spring) 2007; 15:2263-75. [PMID: 17890495 DOI: 10.1038/oby.2007.269] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE The objective was to provide an overall assessment of genetic linkage data of BMI and BMI-defined obesity using a nonparametric genome scan meta-analysis. RESEARCH METHODS AND PROCEDURES We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome-wide logarithm of the odds (LOD) scores, non-parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI-defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. RESULTS Bins at chromosome 13q13.2- q33.1, 12q23-q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3-22.3 were also observed for BMI-defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1-qter and 12p11.21-q23 (p < 0.01). CONCLUSION Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.
Collapse
Affiliation(s)
- Catherine L Saunders
- King's College London, Guy's, King's & St. Thomas' School of Medicine, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bouchard L, Bouchard C, Chagnon YC, Perusse L. Evidence of linkage and association with body fatness and abdominal fat on chromosome 15q26. Obesity (Silver Spring) 2007; 15:2061-70. [PMID: 17712124 DOI: 10.1038/oby.2007.245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE In the present study, we undertook a two-step fine mapping of a 20-megabase region around a quantitative trait locus previously reported on chromosome 15q26 for abdominal subcutaneous fat (ASF) in an extended sample of 707 subjects from 202 families from the Quebec Family Study. RESEARCH METHODS AND PROCEDURE First, 19 microsatellites (in addition to the 7 markers initially available on 15q24-q26; total = 26) were genotyped and tested for linkage with abdominal total fat, abdominal visceral fat, and ASF assessed by computed tomography and with fat mass (FM) using variance component-based approach on age- and sex-adjusted phenotypes. Second, 16 single nucleotide polymorphisms (SNPs) were genotyped and tested for association using family-based association tests. RESULTS After the fine mapping, the peak logarithm of odds ratio (LOD) score (marker D15S1004) increased from 2.79 to 3.26 for ASF and from 3.52 to 4.48 for FM, whereas for abdominal total fat, the peak linkage (marker D15S996) decreased from 2.22 to 1.53. No evidence of linkage was found for abdominal visceral fat. Overall, for genotyped SNPs, three variants located in the putative MCTP2 gene were significantly associated with FM and the three abdominal fat phenotypes (p <or= 0.05). The major allele and genotype of rs1424695 were associated with higher adiposity values (p < 0.004). The same trend was found for the two other polymorphisms (p < 0.05). None of the other SNPs was associated with adiposity phenotypes. The linkage for FM became non-significant (LOD = 0.84) after adjustment for the MCTP2 polymorphisms, whereas the one for ASF remained unchanged. DISCUSSION These results suggest that the MCTP2 gene, located on chromosome 15q26, influences adiposity. Other studies will be needed to investigate the function of the MCTP2 gene and its role in obesity.
Collapse
Affiliation(s)
- Luigi Bouchard
- Lipid Research Center, Nutraceuticals and Functional Foods Institute, Laval University, Canada
| | | | | | | |
Collapse
|
78
|
Kumar J, Sunkishala RR, Karthikeyan G, Sengupta S. The common genetic variant upstream of INSIG2 gene is not associated with obesity in Indian population. Clin Genet 2007; 71:415-8. [PMID: 17489846 DOI: 10.1111/j.1399-0004.2007.00795.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high incidence of obesity has resulted in increased morbidity and mortality worldwide. Obesity, a common lifestyle disorder, is caused by multiple factors with heredity playing a strong causal role. Recently, a genetic variation upstream of insulin-induced gene 2 (INSIG2) (rs7566605) has been reported to be associated with obesity in four separate cohorts. Because the lifestyle and food preferences of a large proportion of Indian population differ from the rest of the world, we studied the impact of this polymorphism with body mass index (BMI). The study consisted of two cohorts--1577 healthy individuals from three major linguistic lineages in India and 610 coronary artery disease cases and controls. In the two cohorts studied, no significant association was observed between the polymorphism and BMI. However, frequency of homozygous variant genotype was higher in non-obese individuals as compared with obese individuals in both cohorts although the difference was marginally significant only in the case-control cohort under the assumption of a recessive model. Furthermore, regardless of age and sex, mean BMI did not vary with genotype under the assumptions of recessive model. Thus, in contrast to earlier reports, the variant upstream of INSIG2 is not a determinant of BMI in Indian population.
Collapse
Affiliation(s)
- J Kumar
- Department of Proteomics and Structural Biology, Institute of Genomics and Integrative Biology, New Delhi, India
| | | | | | | |
Collapse
|
79
|
Dai F, Keighley ED, Sun G, Indugula SR, Roberts ST, Aberg K, Smelser D, Tuitele J, Jin L, Deka R, Weeks DE, McGarvey ST. Genome-wide scan for adiposity-related phenotypes in adults from American Samoa. Int J Obes (Lond) 2007; 31:1832-42. [PMID: 17621312 DOI: 10.1038/sj.ijo.0803675] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To detect quantitative trait loci influencing adiposity-related phenotypes assessed by body mass index (BMI), abdominal circumference (ABDCIR), percent body fat (%BFAT) and fasting serum leptin and adiponectin using a whole genome linkage scan of families from American Samoa. DESIGN Family-based linkage analysis, the probands and family members were unselected for obesity. SUBJECTS A total of 583 phenotyped American Samoan adults, of which 578 were genotyped in 34 pedigrees. MEASUREMENTS A total of 377 autosomal and 18 X chromosome microsatellite markers were typed at an approximate average spacing of 10 cM spanning the genome. Multipoint LOD (logarithm of the odds) scores were calculated using variance-components approaches and SOLAR/LOKI software. The covariates simultaneously evaluated were age, sex, education, farm work and cigarette smoking, with a significance level of 0.1. Due to the stochastic nature of LOKI, we report the average of maximum LOD scores from 10 runs. RESULTS Significant linkage to leptin was found at 6q32.2 with LOD of 3.83. Suggestive linkage to leptin was found at 16q21:LOD=2.98, 1q42.2:LOD=1.97, 5q11.2:LOD=2.08, 12q24.23:LOD=2.00, 19p13.3:LOD=2.05; adiponectin was linked to 13q33.1-q22.1:LOD=2.41; %BFAT was linked to 16q12.2-q21, LOD=2.24; ABDCIR was linked to 16q23.1:LOD=1.95; %BFAT-adjusted leptin to 14q12, LOD=2.01; %BFAT-adjusted ABDCIR to 1q31.1, LOD=2.36, to 3q27.3-q28, LOD=2.10 and to 12p12.3, LOD=2.04. CONCLUSION We found strong evidence for a major locus on 6q23.2 influencing serum leptin levels in American Samoans. The 16q21 region appears to harbor a susceptibility locus that has significant pleiotrophic effects on phenotypes BMI, %BFAT, leptin and ABDCIR as shown by bivariate linkage analyses. Several other loci of varying significance were detected across the genome.
Collapse
Affiliation(s)
- F Dai
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 02912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Tang ZH, Xiao P, Lei SF, Deng FY, Zhao LJ, Deng HY, Tan LJ, Shen H, Xiong DH, Recker RR, Deng HW. A bivariate whole-genome linkage scan suggests several shared genomic regions for obesity and osteoporosis. J Clin Endocrinol Metab 2007; 92:2751-7. [PMID: 17473065 DOI: 10.1210/jc.2006-2607] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT A genome-wide bivariate analysis was conducted for body fat mass (BFM) and bone mineral density (BMD) in a large Caucasian sample. We found some quantitative trait loci shared by BFM and BMD in the total sample and the gender-specific subgroups, and quantitative trait loci with potential pleiotropy were disclosed. BFM and BMD, as the respective measure for obesity and osteoporosis, are phenotypically and genetically correlated. However, specific genomic regions accounting for their genetic correlation are unknown. OBJECTIVE To identify systemically the shared genomic regions for BFM and BMD, we performed a bivariate whole-genome linkage scan in 4498 Caucasian individuals from 451 families for BFM and BMD at the hip, spine, and wrist, respectively. Linkage analyses were performed in the total sample and the male and female subgroups, respectively. RESULTS In the entire sample, suggestive linkages were detected at 7p22-p21 (LOD 2.69) for BFM and spine BMD, 6q27 (LOD 2.30) for BFM and hip BMD, and 11q13 (LOD 2.64) for BFM and wrist BMD. Male-specific suggestive linkages were found at 13q12 (LOD 3.23) for BFM and spine BMD and at 7q21 (LOD 2.59) for BFM and hip BMD. Female-specific suggestive LOD scores were 3.32 at 15q13 for BFM and spine BMD and 3.15 at 6p25-24 for BFM and wrist BMD. CONCLUSIONS Several shared genomic regions for BFM and BMD were identified here. Our data may benefit further positional and functional studies, aimed at eventually uncovering the complex mechanism underlying the shared genetic determination of obesity and osteoporosis.
Collapse
Affiliation(s)
- Zi-Hui Tang
- Laboratory of Molecular and Statistical Genetics and the Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Deng FY, Xiao P, Lei SF, Zhang L, Yang F, Tang ZH, Liu PY, Liu YJ, Recker RR, Deng HW. Bivariate whole genome linkage analysis for femoral neck geometric parameters and total body lean mass. J Bone Miner Res 2007; 22:808-16. [PMID: 17352645 DOI: 10.1359/jbmr.070303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED A genome-wide bivariate analysis was conducted for femoral neck GPs and TBLM in a large white sample. We found QTLs shared by GPs and TBLM in the total sample and the sex-specific samples. QTLs with potential pleiotropy were also disclosed. INTRODUCTION Previous studies have suggested that femoral neck cross-section geometric parameters (FNCS-GPs), including periosteal diameter (W), cross-sectional area (CSA), cortical thickness (CT), buckling ratio (BR), and section modulus (Z), are genetically correlated with total body lean mass (TBLM). However, the shared genetic factors between them are unknown. MATERIALS AND METHODS To identify the specific QTLs shared by FNCS-GPs and TBLM, we performed bivariate whole genome linkage analysis (WGLA) in a large sample of 451 white families made up of 4498 subjects. RESULTS Multipoint bivariate linkage analyses for 22 autosomes showed evidence of suggestive or significant linkages (thresholds of LOD = 2.3 and 3.7, respectively) to chromosomes 3q12 and 20q13 in the entire sample, 6p25 and 10q24 in women, and 4p15, 5q34-35 and 7q21 in men. Two-point linkage analyses for chromosome X showed strong linkage to Xp22.13, Xp11.4, Xq22.3, Xq23-24, and Xq25. Complete pleiotropy was identified on 10q24 and 5q35 for TBLM and BR in women and for TBLM and CT in men, respectively. Furthermore, chromosomes 5q34-35, 7q21, 10q24, 20q13, Xp22.13, Xp11.4, and Xq25 are also of importance because of their linkage to multiple trait pairs. For example, linkage to chromosome 10q24 was found for TBLM x W (LOD = 2.31), TBLM x CT (LOD = 2.51), TBLM x CSA (LOD = 2.51), TBLM x BR (LOD = 2.64), and TBLM x Z (LOD = 2.55) in women. CONCLUSIONS In this study, we identified several genomic regions (e.g., 3q12 and 20q13) that seem to be linked to both FNCS-GPs and TBLM. These regions are of interesting because they may harbor genes that may contribute to variation in both FNCS-GPs and TBLM.
Collapse
Affiliation(s)
- Fei-Yan Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Fradin D, Heath S, Lathrop M, Bougnères P. Quantitative trait loci for fasting glucose in young Europeans replicate previous findings for type 2 diabetes in 2q23-24 and other locations. Diabetes 2007; 56:1742-5. [PMID: 17416800 DOI: 10.2337/db06-1329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Long before reaching diagnostic cutoff levels for type 2 diabetes, fasting glucose can be a powerful risk marker for this disease. We conducted a genome-wide search for fasting glucose as a quantitative trait in 412 young European sib-pairs including obese children, with adjustment for sex, age, and BMI. We identified more quantitative trait loci specific to fasting glucose and more significant than would be found by simple chance estimated by permutation tests. The strongest linkage was on chromosome 2q (logarithm of odds [LOD] = 3.00) in a region previously linked to type 2 diabetes as a disease. We also found linkage signals of fasting glucose with 7q (LOD = 2.03), 8q (1.28), 17p (2.12), 17q (1.4), and 11p (1.33). These findings suggest that the quantitative genetics of fasting glucose could contribute to the search for type 2 diabetes genes.
Collapse
Affiliation(s)
- Delphine Fradin
- Department of Pediatric Endocrinology, Hôpital Saint-Vincent de Paul and U561 Institut National de la Santé et de la Recherche Médicale, Paris, France.
| | | | | | | |
Collapse
|
83
|
Xiong D, Wang W, Chen Y, Jiang H, Deng HW. Genetic determination in onset age of wrist fracture. J Hum Genet 2007; 52:481-484. [PMID: 17457512 DOI: 10.1007/s10038-007-0141-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
The onset age of fracture may be useful to explore the clinical and genetic heterogeneity of fracture study. In the present study, we investigated the heritability of the onset age of wrist fracture (OAWF) in 30 female full-sib pairs. The phenotypic correlation coefficient of OAWF was 0.309 (P=0.09) for this cohort of female sib pairs, and the narrow-sense heritability (h2) was estimated to be 0.618 (P=0.09). In addition, the h2 derived from the variance component model implemented in SOLAR was 0.722 (P<0.05). This study, for the very first time, suggested that OAWF is under genetic control and thus potentially helps clarify genetic heterogeneity of wrist fracture.
Collapse
Affiliation(s)
- Donghai Xiong
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Molecular Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Wei Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Molecular Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, NE, 68131, USA
| | - Yuan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Hui Jiang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Hong-Wen Deng
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education and Institute of Molecular Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.
- M3-CO3 Medical School, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA.
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China.
| |
Collapse
|
84
|
Lyon HN, Emilsson V, Hinney A, Heid IM, Lasky-Su J, Zhu X, Thorleifsson G, Gunnarsdottir S, Walters GB, Thorsteinsdottir U, Kong A, Gulcher J, Nguyen TT, Scherag A, Pfeufer A, Meitinger T, Brönner G, Rief W, Soto-Quiros ME, Avila L, Klanderman B, Raby BA, Silverman EK, Weiss ST, Laird N, Ding X, Groop L, Tuomi T, Isomaa B, Bengtsson K, Butler JL, Cooper RS, Fox CS, O'Donnell CJ, Vollmert C, Celedón JC, Wichmann HE, Hebebrand J, Stefansson K, Lange C, Hirschhorn JN. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet 2007; 3:e61. [PMID: 17465681 PMCID: PMC1857727 DOI: 10.1371/journal.pgen.0030061] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 03/06/2007] [Indexed: 12/13/2022] Open
Abstract
A SNP upstream of the INSIG2 gene, rs7566605, was recently found to be associated with obesity as measured by body mass index (BMI) by Herbert and colleagues. The association between increased BMI and homozygosity for the minor allele was first observed in data from a genome-wide association scan of 86,604 SNPs in 923 related individuals from the Framingham Heart Study offspring cohort. The association was reproduced in four additional cohorts, but was not seen in a fifth cohort. To further assess the general reproducibility of this association, we genotyped rs7566605 in nine large cohorts from eight populations across multiple ethnicities (total n = 16,969). We tested this variant for association with BMI in each sample under a recessive model using family-based, population-based, and case-control designs. We observed a significant (p < 0.05) association in five cohorts but saw no association in three other cohorts. There was variability in the strength of association evidence across examination cycles in longitudinal data from unrelated individuals in the Framingham Heart Study Offspring cohort. A combined analysis revealed significant independent validation of this association in both unrelated (p = 0.046) and family-based (p = 0.004) samples. The estimated risk conferred by this allele is small, and could easily be masked by small sample size, population stratification, or other confounders. These validation studies suggest that the original association is less likely to be spurious, but the failure to observe an association in every data set suggests that the effect of SNP rs7566605 on BMI may be heterogeneous across population samples. Obesity is an epidemic in the United States of America and developing world, portending an epidemic of related diseases such as diabetes and heart disease. While diet and lifestyle contribute to obesity, half of the population variation in body mass index, a common measure of obesity, is determined by inherited factors. Many studies have reported that common sequence variants in genes are associated with an increased risk for obesity, yet most of these are not reproducible in other study cohorts, suggesting that some are false. Recently, Herbert et al. reported a slightly increased risk of obesity for people carrying two copies of the minor allele at a common variant near INSIG2. We present our attempts to further evaluate this potential association with obesity in additional populations. We find evidence of increased risk of obesity for people carrying two copies of the minor allele in five out of nine cohorts tested, using both family- and population-based testing. We indicate possible reasons for the varied results, with the hope of encouraging a combined analysis across study cohorts to more precisely define the effect of this INSIG2 gene variant.
Collapse
Affiliation(s)
- Helen N Lyon
- Program in Genomics, Divisions of Genetics and Endocrinology, Children's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hainerová I, Torekov SS, Ek J, Finková M, Borch-Johnsen K, Jørgensen T, Madsen OD, Lebl J, Hansen T, Pedersen O. Association between neuromedin U gene variants and overweight and obesity. J Clin Endocrinol Metab 2006; 91:5057-63. [PMID: 16984985 DOI: 10.1210/jc.2006-1442] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuromedin U (NMU) is an anorexic neuropeptide expressed in the hypothalamus. Mice lacking the NmU gene are hyperphagic and obese, whereas mice overexpressing Nmu are hypophagic and lean. OBJECTIVE Our objective was to investigate whether variants in NMU are associated with human obesity. DESIGN The coding region of NMU was analyzed for variants in obese Czech children and obese Danish adults. Identified missense variants were investigated for cosegregation with obesity in families or association with obesity in the general population. SETTING The study was performed at Steno Diabetes Center, Denmark, and Department of Pediatrics, Charles University, Czech Republic. SUBJECTS AND METHODS A total of 289 Czech children and adolescents with early-onset obesity and 84 Danish obese adults were analyzed for variants in NMU. A NMU Ala19Glu polymorphism was genotyped in 5851 Danish subjects of the Inter99 cohort, and a rare NMU Arg165Trp mutation was sequenced in the proband family and in 53 lean and unrelated Czech subjects. RESULTS The rare NMU Arg165Trp variant cosegregated with childhood obesity in a Czech family. Homozygous carriers of the Glu allele of the NMU Ala19Glu polymorphism were more common in the overweight and obese subjects; the Glu/Glu frequency was 0.4 (95% confidence interval, 0.2-0.6) among 2586 lean subjects (BMI < 25 kg/m2) and 0.9 (95% confidence interval, 0.7-1.1) among 3265 overweight and obese subjects (body mass index >or= 25 kg/m2) [odds ratio, 2.5 (1.2-5.3); P = 0.01]. CONCLUSION Amino acid variants in NMU associate with overweight and obesity, suggesting that NMU is involved in energy regulation in humans.
Collapse
Affiliation(s)
- Irena Hainerová
- Department of Pediatrics, Carles University, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Zhao LJ, Xiao P, Liu YJ, Xiong DH, Shen H, Recker RR, Deng HW. A genome-wide linkage scan for quantitative trait loci underlying obesity related phenotypes in 434 Caucasian families. Hum Genet 2006; 121:145-8. [PMID: 17115187 DOI: 10.1007/s00439-006-0286-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 10/18/2006] [Indexed: 01/09/2023]
Abstract
To identify quantitative trait loci (QTLs) that contribute to obesity, we performed a large-scale whole genome linkage scan (WGS) involving 4,102 individuals from 434 Caucasian families. The most pronounced linkage evidence was found at the genomic region 20p11-12 for fat mass (LOD = 3.31) and percentage fat mass (PFM) (LOD = 2.92). We also identified several regions showing suggestive linkage signals (threshold LOD = 1.9) for obesity phenotypes, including 5q35, 8q13, 10p12, and 17q11.
Collapse
Affiliation(s)
- Lan-Juan Zhao
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, NE 68131, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Shen H, Long JR, Xiong DH, Guo YF, Xiao P, Liu YZ, Zhao LJ, Liu YJ, Deng HY, Li JL, Recker RR, Deng HW. A genomewide scan for quantitative trait loci underlying areal bone size variation in 451 Caucasian families. J Med Genet 2006; 43:873-80. [PMID: 16825438 PMCID: PMC2563191 DOI: 10.1136/jmg.2006.041251] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/02/2006] [Accepted: 05/18/2006] [Indexed: 11/03/2022]
Abstract
BACKGROUND Bone size is an important determinant of bone strength and is under strong genetic control. OBJECTIVE To identify quantitative trait loci (QTL) for areal bone size variation, a large-scale genomewide linkage scan was carried out in 451 Caucasian families. PARTICIPANTS AND METHODS Of 4124 people with phenotypes, 3899 were genotyped with 410 microsatellite markers. Multipoint linkage analyses were carried out in the entire sample, as well as in men and women separately. Potential epistatic interactions between identified genomic regions were also assessed. RESULTS Several potentially important genomic regions were identified, such as 8q24 for hip bone size (logarithm of the ratio of the odds that two loci are linked (LOD) 3.27) and 2p24 (LOD 2.04) for spine bone size. 8q24 may also interact with 19p13 to affect hip bone size. Several sex-specific QTL were also detected, such as 14q21 (LOD 2.94) for wrist bone size in women and 16q12 (LOD 2.19) for hip bone size in men. CONCLUSIONS Together with previous findings, this study has further delineated the genetic basis of bone size and laid a foundation for future studies to eventually elucidate the mechanisms of bone size regulation and associated fracture risks.
Collapse
|
88
|
Lakka TA, Rankinen T, Rice T, Leon AS, Rao DC, Skinner JS, Bouchard C. Quantitative trait locus on chromosome 20q13 for plasma levels of C-reactive protein in healthy whites: the HERITAGE Family Study. Physiol Genomics 2006; 27:103-7. [PMID: 16822830 DOI: 10.1152/physiolgenomics.00054.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
C-reactive protein (CRP) is a sensitive marker of systemic low-grade inflammation. Increased plasma levels of CRP predict the risk of cardiovascular and metabolic diseases. Although genetic factors account for 30-40% of individual differences in plasma CRP levels, genomic regions contributing to CRP levels remain unknown. We performed a genome-wide linkage scan for plasma CRP levels in healthy whites from the HERITAGE Family Study. CRP was measured with a high-sensitivity assay. Multipoint linkage analyses were performed in 280 sibling pairs with 654 markers using regression and variance components-based methods. Data were adjusted for independent correlates of plasma CRP. We showed the strongest evidence of linkage for plasma CRP levels on chromosome 20q13. Markers which gave suggestive linkages in this region were D20S52 [logarithm of odds (LOD) score 3.18, P = 0.00006], D20S857 (LOD score 2.87, P = 0.00014), D20S869 (LOD score 2.75, P = 0.0002), D20S480 (LOD score 2.59, P = 0.0003), D20S501 (LOD score 2.55, P = 0.0003), D20S840 (LOD score 2.18, P = 0.0008), and D20S876 (LOD score 2.07, P = 0.001). We also detected suggestive linkage on chromosome 5p13 for marker D5S1470 (LOD score 2.23, P = 0.0007). Chromosome 20q13 may contribute to plasma CRP levels in healthy whites. This region contains genes that are important in the inflammatory process and may play a role in the development of chronic inflammatory diseases. The present findings may be useful in the ongoing effort to search for genes contributing to inflammation and to identify individuals at an increased risk of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Timo A Lakka
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA.
| | | | | | | | | | | | | |
Collapse
|
89
|
Xiao P, Shen H, Guo YF, Xiong DH, Liu YZ, Liu YJ, Zhao LJ, Long JR, Guo Y, Recker RR, Deng HW. Genomic regions identified for BMD in a large sample including epistatic interactions and gender-specific effects. J Bone Miner Res 2006; 21:1536-44. [PMID: 16995807 DOI: 10.1359/jbmr.060717] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED A genome-wide linkage scan was conducted using a large white sample to identify QTLs for BMD. We found QTLs in the total sample and the gender-specific subgroups, as well as significant epistatic interactions underlying BMD variations. INTRODUCTION Low BMD is an important risk factor for osteoporosis and under strong genetic control. MATERIALS AND METHODS To identify quantitative trait loci (QTLs) for regulation of BMD, we performed a large-scale whole genome linkage scan (WGS) involving 4126 individuals from 451 families. In addition to the conventional linkage analyses in the total combined sample of males and females, we conducted epistatic interaction analyses and gender-specific linkage analyses. RESULTS Significant linkage was detected on 5q23 for wrist BMD (LOD = 3.39) and 15q13 for female spine BMD (LOD = 4.49). For spine BMD, we revealed significant epistatic interactions between 3p25 and 2q32 (p = 0.0022) and between 3p25 and 11q23 (p = 0.0007). We replicated several genomic regions that showed linkage with BMD in previous studies by others and ours, such as 3p21, 1p36, and Xq27. CONCLUSIONS This study highlights the importance of large sample size, incorporation of epistatic interaction, and consideration of gender-specific effects in identifying QTLs for BMD variation. The results of this study provide a foundation for the future fine mapping and gene identification in our population.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Biomedical Sciences and Osteoporosis Research Center, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Zhao LJ, Guo YF, Xiong DH, Xiao P, Recker RR, Deng HW. Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappaB) gene in a large Caucasian sample. Hum Genet 2006; 120:561-70. [PMID: 16960694 PMCID: PMC1829481 DOI: 10.1007/s00439-006-0243-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Accepted: 07/31/2006] [Indexed: 11/26/2022]
Abstract
In light of findings that osteoporosis and obesity may share some common genetic determination and previous reports that RANK (receptor activator of nuclear factor-kappaB) is expressed in skeletal muscles which are important for energy metabolism, we hypothesize that RANK, a gene essential for osteoclastogenesis, is also important for obesity. In order to test the hypothesis with solid data we first performed a linkage analysis around the RANK gene in 4,102 Caucasian subjects from 434 pedigrees, then we genotyped 19 SNPs in or around the RANK gene. A family-based association test (FBAT) was performed with both a quantitative measure of obesity [fat mass, lean mass, body mass index (BMI), and percentage fat mass (PFM)] and a dichotomously defined obesity phenotype-OB (OB if BMI > or = 30 kg/m(2)). In the linkage analysis, an empirical P = 0.004 was achieved at the location of the RANK gene for BMI. Family-based association analysis revealed significant associations of eight SNPs with at least one obesity-related phenotype (P < 0.05). Evidence of association was obtained at SNP10 (P = 0.002) and SNP16 (P = 0.001) with OB; SNP1 with fat mass (P = 0.003); SNP1 (P = 0.003) and SNP7 (P = 0.003) with lean mass; SNP1 (P = 0.002) and SNP7 (P = 0.002) with BMI; SNP1 (P = 0.003), SNP4 (P = 0.007), and SNP7 (P = 0.002) with PFM. In order to deal with the complex multiple testing issues, we performed FBAT multi-marker test (FBAT-MM) to evaluate the association between all the 18 SNPs and each obesity phenotype. The P value is 0.126 for OB, 0.033 for fat mass, 0.021 for lean mass, 0.016 for BMI, and 0.006 for PFM. The haplotype data analyses provide further association evidence. In conclusion, for the first time, our results suggest that RANK is a novel candidate for determination of obesity.
Collapse
Affiliation(s)
- Lan-Juan Zhao
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, NE 68131, USA
| | | | | | | | | | | |
Collapse
|
91
|
Xiao P, Liu P, Weber JL, Papasian CJ, Recker RR, Deng HW. Paternal uniparental isodisomy of the entire chromosome 3 revealed in a person with no apparent phenotypic disorders. Hum Mutat 2006; 27:133-7. [PMID: 16429396 DOI: 10.1002/humu.20302] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Uniparental disomy (UPD) is a rare genetic abnormality. During a whole genome linkage study we identified a case of paternal uniparental isodisomy 3 serendipitously. This is the first ascertained human paternal UPD for chromosome 3 (UPD3pat). The finding of this paternal UPD case of the entire chromosome 3 with no apparent phenotypic disorders suggests that there are no paternal imprinted genes causing rare genetic disorders on chromosome 3.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
92
|
Li X, Quiñones MJ, Wang D, Bulnes-Enriquez I, Jimenez X, De La Rosa R, Aurea GL, Taylor KD, Hsueh WA, Rotter JI, Yang H. Genetic effects on obesity assessed by bivariate genome scan: the Mexican-American coronary artery disease study. Obesity (Silver Spring) 2006; 14:1192-200. [PMID: 16899800 DOI: 10.1038/oby.2006.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To identify the genetic determinants of obesity using univariate and bivariate models in a genome scan. RESEARCH METHODS AND PROCEDURES We evaluated the genetic and environmental effects and performed a genome-wide linkage analysis of obesity-related traits in 478 subjects from 105 Mexican-American nuclear families ascertained through a proband with documented coronary artery disease. The available obesity traits include BMI, body surface area (BSA), waist-to-hip ratio (WHR), and trunk fat mass as percentage of body weight. Heritability estimates and multipoint linkage analysis were performed using a variance components procedure implemented in SOLAR software. RESULTS The heritability estimates were 0.62 for BMI, 0.73 for BSA, 0.40 for WHR, and 0.38 for trunk fat mass as percentage of body weight. Using a bivariate genetic model, we observed significant genetic correlations between BMI and other obesity-related traits (all p < 0.01). Evidence for univariate linkage was observed at 252 to approximately 267 cM on chromosome 2 for three obesity-related traits (except for WHR) and at 163 to approximately 167 cM on chromosome 5 for BMI and BSA, with the maximum logarithm of the odds ratio score of 3.12 (empirical p value, 0.002) for BSA on chromosome 2. Use of the bivariate linkage model yielded an additional peak (logarithm of the odds ratio = 3.25, empirical p value, 0.002) at 25 cM on chromosome 7 for the pair of BMI and BSA. DISCUSSION The evidence for linkage on chromosomes 2q36-37 and 5q36 is supported both by univariate and bivariate analysis, and an additional linkage peak at 7p15 was identified by the bivariate model. This suggests that use of the bivariate model provides additional information to identify linkage of genes responsible for obesity-related traits.
Collapse
Affiliation(s)
- Xiaohui Li
- Genetic Epidemiology, Medical Genetic Institute, Steven Spielberg Pediatric Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, Wichmann HE, Meitinger T, Hunter D, Hu FB, Colditz G, Hinney A, Hebebrand J, Koberwitz K, Zhu X, Cooper R, Ardlie K, Lyon H, Hirschhorn JN, Laird NM, Lenburg ME, Lange C, Christman MF. A common genetic variant is associated with adult and childhood obesity. Science 2006; 312:279-83. [PMID: 16614226 DOI: 10.1126/science.1124779] [Citation(s) in RCA: 565] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Obesity is a heritable trait and a risk factor for many common diseases such as type 2 diabetes, heart disease, and hypertension. We used a dense whole-genome scan of DNA samples from the Framingham Heart Study participants to identify a common genetic variant near the INSIG2 gene associated with obesity. We have replicated the finding in four separate samples composed of individuals of Western European ancestry, African Americans, and children. The obesity-predisposing genotype is present in 10% of individuals. Our study suggests that common genetic polymorphisms are important determinants of obesity.
Collapse
Affiliation(s)
- Alan Herbert
- Department of Genetics and Genomics, Boston University Medical School, E613, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, Pérusse L, Bouchard C. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14:529-644. [PMID: 16741264 DOI: 10.1038/oby.2006.71] [Citation(s) in RCA: 704] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the 12th update of the human obesity gene map, which incorporates published results up to the end of October 2005. Evidence from single-gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTL) from animal cross-breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2005, 176 human obesity cases due to single-gene mutations in 11 different genes have been reported, 50 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 244 genes that, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 408. The number of human obesity QTLs derived from genome scans continues to grow, and we now have 253 QTLs for obesity-related phenotypes from 61 genome-wide scans. A total of 52 genomic regions harbor QTLs supported by two or more studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably, with 426 findings of positive associations with 127 candidate genes. A promising observation is that 22 genes are each supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. The electronic version of the map with links to useful publications and relevant sites can be found at http://obesitygene.pbrc.edu.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Puppala S, Dodd GD, Fowler S, Arya R, Schneider J, Farook VS, Granato R, Dyer TD, Almasy L, Jenkinson CP, Diehl AK, Stern MP, Blangero J, Duggirala R. A genomewide search finds major susceptibility loci for gallbladder disease on chromosome 1 in Mexican Americans. Am J Hum Genet 2006; 78:377-92. [PMID: 16400619 PMCID: PMC1380282 DOI: 10.1086/500274] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/16/2005] [Indexed: 12/11/2022] Open
Abstract
Gallbladder disease (GBD) is one of the major digestive diseases. Its risk factors include age, sex, obesity, type 2 diabetes, and metabolic syndrome (MS). The prevalence of GBD is high in minority populations, such as Native and Mexican Americans. Ethnic differences, familial aggregation of GBD, and the identification of susceptibility loci for gallstone disease by use of animal models suggest genetic influences on GBD. However, the major susceptibility loci for GBD in human populations have not been identified. Using ultrasound-based information on GBD occurrence and a 10-cM gene map, we performed multipoint variance-components analysis to localize susceptibility loci for GBD. Phenotypic and genotypic data from 715 individuals in 39 low-income Mexican American families participating in the San Antonio Family Diabetes/Gallbladder Study were used. Two GBD phenotypes were defined for the analyses: (1) clinical or symptomatic GBD, the cases of cholecystectomies due to stones confirmed by ultrasound, and (2) total GBD, the clinical GBD cases plus the stone carriers newly diagnosed by ultrasound. With use of the National Cholesterol Education Program/Adult Treatment Panel III criteria, five MS risk factors were defined: increased waist circumference, hypertriglyceredemia, low high-density lipoprotein cholesterol, hypertension, and high fasting glucose. The MS risk-factor score (range 0-5) for a given individual was used as a single, composite covariate in the genetic analyses. After accounting for the effects of age, sex, and MS risk-factor score, we found stronger linkage signals for the symptomatic GBD phenotype. The highest LOD scores (3.7 and 3.5) occurred on chromosome 1p between markers D1S1597 and D1S407 (1p36.21) and near marker D1S255 (1p34.3), respectively. Other genetic locations (chromosomes 2p, 3q, 4p, 8p, 9p, 10p, and 16q) across the genome exhibited some evidence of linkage (LOD >or=1.2) to symptomatic GBD. Some of these chromosomal regions corresponded with the genetic locations of Lith loci, which influence gallstone formation in mouse models. In conclusion, we found significant evidence of major genetic determinants of symptomatic GBD on chromosome 1p in Mexican Americans.
Collapse
Affiliation(s)
- Sobha Puppala
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Xiong DH, Shen H, Xiao P, Guo YF, Long JR, Zhao LJ, Liu YZ, Deng HY, Li JL, Recker RR, Deng HW. Genome-wide scan identified QTLs underlying femoral neck cross-sectional geometry that are novel studied risk factors of osteoporosis. J Bone Miner Res 2006; 21:424-37. [PMID: 16491291 DOI: 10.1359/jbmr.051202] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/03/2005] [Accepted: 12/02/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED A genome-wide screen was conducted using a large white sample to identify QTLs for FNCS geometry. We found significant linkage of FNCS parameters to 20q12 and Xq25, plus significant epistatic interactions and sex-specific QTLs influencing FNCS geometry variation. INTRODUCTION Bone geometry, a highly heritable trait, is a critical component of bone strength that significantly determines osteoporotic fracture risk. Specifically, femoral neck cross-sectional (FNCS) geometry is significantly associated with hip fracture risk as well as genetic factors. However, genetic research in this respect is still in its infancy. MATERIALS AND METHODS To identify the underlying genomic regions influencing FNCS variables, we performed a remarkably large-scale whole genome linkage scan involving 3998 individuals from 434 pedigrees for four FNCS geometry parameters, namely buckling ratio (BR), cross-sectional area (CSA), cortical thickness (CT), and section modulus (Z). The major statistical approach adopted is the variance component method implemented in SOLAR. RESULTS Significant linkage evidence (threshold LOD = 3.72 after correction for tests of multiple phenotypes) was found in the regions of 20q12 and Xq25 for CT (LOD = 4.28 and 3.90, respectively). We also identified eight suggestive linkage signals (threshold LOD = 2.31 after correction for multiple tests) for the respective geometry traits. The above findings were supported by principal component linkage analysis. Of them, 20q12 was of particular interest because it was linked to multiple FNCS geometry traits and significantly interacted with five other genomic loci to influence CSA variation. The effects of 20q12 on FNCS geometry were present in both male and female subgroups. Subgroup analysis also revealed the presence of sex-specific quantitative trait loci (QTLs) for FNCS traits in the regions such as 2p14, 3q26, 7q21 and 15q21. CONCLUSIONS Our findings laid a foundation for further replication and fine-mapping studies as well as for positional and functional candidate gene studies, aiming at eventually finding the causal genetic variants and hidden mechanisms concerning FNCS geometry variation and the associated hip fractures.
Collapse
Affiliation(s)
- Dong-Hai Xiong
- Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Shen H, Long JR, Xiong DH, Liu YJ, Liu YZ, Xiao P, Zhao LJ, Dvornyk V, Zhang YY, Rocha-Sanchez S, Liu PY, Li JL, Deng HW. Mapping quantitative trait loci for cross-sectional geometry at the femoral neck. J Bone Miner Res 2005; 20:1973-82. [PMID: 16234971 DOI: 10.1359/jbmr.050715] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 06/28/2005] [Accepted: 07/13/2005] [Indexed: 01/06/2023]
Abstract
UNLABELLED A genome-wide linkage scan was performed in a sample of 79 multiplex pedigrees to identify genomic regions linked to femoral neck cross-sectional geometry. Potential quantitative trait loci were detected at several genomic regions, such as 10q26, 20p12-q12, and chromosome X. INTRODUCTION Bone geometry is an important determinant of bone strength and osteoporotic fractures. Previous studies have shown that femoral neck cross-sectional geometric variables are under genetic controls. To identify genetic loci underlying variation in femoral neck cross-sectional geometry, we conducted a whole genome linkage scan for four femoral neck cross-sectional geometric variables in 79 multiplex white pedigrees. MATERIALS AND METHODS A total of 1816 subjects from 79 pedigrees were genotyped with 451 microsatellite markers across the human genome. We performed linkage analyses on the entire data, as well as on men and women separately. RESULTS Significant linkage evidence was identified at 10q26 for buckling ratio (LOD = 3.27) and Xp11 (LOD = 3.45) for cortical thickness. Chromosome region 20p12-q12 showed suggestive linkage with cross-sectional area (LOD = 2.33), cortical thickness (LOD = 2.09), and buckling ratio (LOD = 1.94). Sex-specific linkage analyses further supported the importance of 20p12-q12 for cortical thickness (LOD = 2.74 in females and LOD = 1.88 in males) and buckling ratio (LOD = 5.00 in females and LOD = 3.18 in males). CONCLUSIONS This study is the first genome-wide linkage scan searching for quantitative trait loci underlying femoral neck cross-sectional geometry in humans. The identification of the genes responsible for bone geometric variation will improve our knowledge of bone strength and aid in development of diagnostic approaches and interventions for osteoporotic fractures.
Collapse
Affiliation(s)
- Hui Shen
- Osteoporosis Research Center, Creighton University, Omaha, Nebraska 68131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Lewis CE, North KE, Arnett D, Borecki IB, Coon H, Ellison RC, Hunt SC, Oberman A, Rich SS, Province MA, Miller MB. Sex-specific findings from a genome-wide linkage analysis of human fatness in non-Hispanic whites and African Americans: the HyperGEN study. Int J Obes (Lond) 2005; 29:639-49. [PMID: 15809668 DOI: 10.1038/sj.ijo.0802916] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To conduct a full genome search for genes potentially influencing two related phenotypes: body mass index (BMI, kg/m2) and percent body fat (PBF) from bioelectric impedance in men and women. DESIGN A total of 3383 participants, 1348 men and 2035 women; recruitment was initiated with hypertensive sibpairs and expanded to first-degree relatives in a multicenter study of hypertension genetics. MEASUREMENTS Genotypes for 387 highly polymorphic markers spaced to provide a 10 cM map (CHLC-8) were generated by the NHLBI Mammalian Genotyping Service (Marshfield, WI, USA). Quantitative trait loci for obesity phenotypes, BMI and PBF, were examined with a variance components method using SOLAR, adjusting for hypertensive status, ethnicity, center, age, age2, sex, and age2 x sex. As we detected a significant genotype-by-sex interaction in initial models and because of the importance of sex effects in the expression of these phenotypes, models thereafter were stratified by sex. No genotype-by-ethnicity interactions were found. RESULTS A QTL influencing PBF in women was detected on chromosome12q (12q24.3-12q24.32, maximum empirical LOD score=3.8); a QTL influencing this phenotype in men was found on chromosome 15q (15q25.3, maximum empirical LOD score=3.0). These QTLs were detected in African-American and white women (12q) and men (15q). QTLs influencing both BMI and PBF were found over a broad region on chromosome 3 in men. QTLs on chromosomes 3 and 12 were found in the combined sample of men and women, but with weaker significance. CONCLUSION The locations with highest LOD scores have been previously reported for obesity phenotypes, indicating that at least two genomic regions influence obesity-related traits. Furthermore, our results indicate the importance of considering context-dependent effects in the search for obesity QTLs.
Collapse
Affiliation(s)
- C E Lewis
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Rance KA, Fustin JM, Dalgleish G, Hambly C, Bünger L, Speakman JR. A paternally imprinted QTL for mature body mass on mouse Chromosome 8. Mamm Genome 2005; 16:567-77. [PMID: 16180138 DOI: 10.1007/s00335-005-0012-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Body mass (BM) is a classic polygenic trait that has been extensively investigated to determine the underlying genetic architecture. Many previous studies looking at the genetic basis of variation in BM in murine animal models by quantitative trait loci (QTL) mapping have used crosses between two inbred lines. As a consequence it has not been possible to explore imprinting effects which have been shown to play an important role in the genetic basis of early growth with persistent effects throughout the growth curve. Here we use partially inbred mouse lines to identify QTL for mature BM by applying both Mendelian and Imprinting models. The analysis of an F2 population (n approximately 500) identified a number of QTL at 14, 16, and 18 weeks explaining in total 31.5%, 34.4%, and 30.5% of total phenotypic variation, respectively. On Chromosome 8 a QTL of large effect (14% of the total phenotypic variance at 14 weeks) was found to be explained by paternal imprinting. Although Chromosome 8 has not been previously associated with imprinting effects, features of candidate genes within the QTL confidence interval (CpG islands and direct clustered repeats) support the hypothesis that Insulin receptor substrate 2 may be associated with imprinting, but as yet is unidentified as being so.
Collapse
Affiliation(s)
- Kellie A Rance
- Aberdeen Centre for Energy Regulation and Obesity (ACERO), School of Biological Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| | | | | | | | | | | |
Collapse
|
100
|
Majumder PP, Ghosh S. Mapping quantitative trait loci in humans: achievements and limitations. J Clin Invest 2005; 115:1419-24. [PMID: 15931376 PMCID: PMC1137003 DOI: 10.1172/jci24757] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Recent advances in statistical methods and genomic technologies have ushered in a new era in mapping clinically important quantitative traits. However, many refinements and novel statistical approaches are required to enable greater successes in this mapping. The possible impact of recent findings pertaining to the structure of the human genome on efforts to map quantitative traits is yet unclear.
Collapse
|