51
|
|
52
|
Grivel JC, Shattock RJ, Margolis LB. Selective transmission of R5 HIV-1 variants: where is the gatekeeper? J Transl Med 2011; 9 Suppl 1:S6. [PMID: 21284905 PMCID: PMC3105506 DOI: 10.1186/1479-5876-9-s1-s6] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To enter target cells HIV-1 uses CD4 and a coreceptor. In vivo the coreceptor function is provided either by CCR5 (for R5) or CXCR4 (for X4 HIV-1). Although both R5 and X4 HIV-1 variants are present in body fluids (semen, blood, cervicovaginal and rectal secretions), R5 HIV-1 appears to transmit infection and dominates early stages of HIV disease. Moreover, recent sequence analysis of virus in acute infection shows that, in the majority of cases of transmission, infection is initiated by a single virus. Therefore, the existence of a "gatekeeper" that selects R5 over X4 HIV-1 and that operates among R5 HIV-1 variants has been suggested. In the present review we consider various routes of HIV-transmission and discuss potential gatekeeping mechanisms associated with each of these routes. Although many mechanisms have been identified none of them explains the almost perfect selection of R5 over X4 in HIV-1 transmission. We suggest that instead of one strong gatekeeper there are multiple functional gatekeepers and that their superimposition is sufficient to protect against X4 HIV-1 infection and potentially select among R5 HIV-1 variants. In conclusion, we propose that the principle of multiple barriers is more general and not restricted to protection against X4 HIV-1 but rather can be applied to other phenomena when one factor has a selective advantage over the other(s). In the case of gatekeepers for HIV-1 transmission, the task is to identify them and to decipher their molecular mechanisms. Knowledge of the gatekeepers' localization and function may enable us to enhance existing barriers against R5 transmission and to erect the new ones against all HIV-1 variants.
Collapse
Affiliation(s)
- Jean-Charles Grivel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | | | | |
Collapse
|
53
|
Tugizov SM, Herrera R, Veluppillai P, Greenspan D, Soros V, Greene WC, Levy JA, Palefsky JM. HIV is inactivated after transepithelial migration via adult oral epithelial cells but not fetal epithelial cells. Virology 2011; 409:211-22. [PMID: 21056450 PMCID: PMC3034249 DOI: 10.1016/j.virol.2010.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/16/2010] [Accepted: 10/03/2010] [Indexed: 11/21/2022]
Abstract
Oral transmission of human immunodeficiency virus (HIV) in adult populations is rare. However, HIV spread across fetal/neonatal oropharyngeal epithelia could be important in mother-to-child transmission. Analysis of HIV transmission across polarized adult and fetal oral epithelial cells revealed that HIV transmigrates through both adult and fetal cells. However, only virions that passed through the fetal cells - and not those that passed through the adult cells - remained infectious. Analysis of expression of anti-HIV innate proteins beta-defensins 2 and 3, and secretory leukocyte protease inhibitor in adult, fetal, and infant oral epithelia showed that their expression is predominantly in the adult oral epithelium. Retention of HIV infectivity after transmigration correlated inversely with the expression of these innate proteins. Inactivation of innate proteins in adult oral keratinocytes restored HIV infectivity. These data suggest that high-level innate protein expression may contribute to the resistance of the adult oral epithelium to HIV transmission.
Collapse
Affiliation(s)
- Sharof M Tugizov
- Department of Medicine, University of California San Francisco, 513 Parnassus Ave, San Francisco, CA 94143-0512, USA.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Smith PD, Smythies LE, Shen R, Greenwell-Wild T, Gliozzi M, Wahl SM. Intestinal macrophages and response to microbial encroachment. Mucosal Immunol 2011; 4:31-42. [PMID: 20962772 PMCID: PMC3821935 DOI: 10.1038/mi.2010.66] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages in the gastrointestinal mucosa represent the largest pool of tissue macrophages in the body. In order to maintain mucosal homeostasis, resident intestinal macrophages uniquely do not express the lipopolysaccharide (LPS) co-receptor CD14 or the IgA (CD89) and IgG (CD16, 32, and 64) receptors, yet prominently display Toll-like receptors (TLRs) 3-9. Remarkably, intestinal macrophages also do not produce proinflammatory cytokines in response to TLR ligands, likely because of extracellular matrix (stromal) transforming growth factor-β (TGF-β) dysregulation of nuclear factor (NF)-κB signal proteins and, via Smad signaling, expression of IκBα, thereby inhibiting NF-κB-mediated activities. Thus, in noninflamed mucosa, resident macrophages are inflammation anergic but retain avid scavenger and host defense function, an ideal profile for macrophages in close proximity to gut microbiota. In the event of impaired epithelial integrity during intestinal infection or inflammation, however, blood monocytes also accumulate in the lamina propria and actively pursue invading microorganisms through uptake and degradation of the organism and release of inflammatory mediators. Consequently, resident intestinal macrophages are inflammation adverse, but when the need arises, they receive assistance from newly recruited circulating monocytes.
Collapse
Affiliation(s)
- PD Smith
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - LE Smythies
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - R Shen
- Department of Medicine (Gastroenterology) University of Alabama at Birmingham Birmingham, Alabama 35294-2182, USA
| | - T Greenwell-Wild
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - M Gliozzi
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| | - SM Wahl
- Oral Infection and Immunity Branch National Institute of Dental and Craniofacial Research National Institutes of Health Bethesda, MD 20892-4352, USA
| |
Collapse
|
55
|
Abstract
To cause infections, microbial pathogens elaborate a multitude of factors that interact with host components. Using these host–pathogen interactions to their advantage, pathogens attach, invade, disseminate, and evade host defense mechanisms to promote their survival in the hostile host environment. Many viruses, bacteria, and parasites express adhesins that bind to cell surface heparan sulfate proteoglycans (HSPGs) to facilitate their initial attachment and subsequent cellular entry. Some pathogens also secrete virulence factors that modify HSPG expression. HSPGs are ubiquitously expressed on the cell surface of adherent cells and in the extracellular matrix. HSPGs are composed of one or several heparan sulfate (HS) glycosaminoglycan chains attached covalently to specific core proteins. For most intracellular pathogens, cell surface HSPGs serve as a scaffold that facilitates the interaction of microbes with secondary receptors that mediate host cell entry. Consistent with this mechanism, addition of HS or its pharmaceutical functional mimic, heparin, inhibits microbial attachment and entry into cultured host cells, and HS-binding pathogens can no longer attach or enter cultured host cells whose HS expression has been reduced by enzymatic treatment or chemical mutagenesis. In pathogens where the specific HS adhesin has been identified, mutant strains lacking HS adhesins are viable and show normal growth rates, suggesting that the capacity to interact with HSPGs is strictly a virulence activity. The goal of this chapter is to provide a mechanistic overview of our current understanding of how certain microbial pathogens subvert HSPGs to promote their infection, using specific HSPG–pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Mauro S.G. Pavão
- , Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco 255, Rio de Janeiro, 21941-913 Rio de Janeiro Brazil
| |
Collapse
|
56
|
Abstract
HIV-1 is mainly a sexually transmitted infection, and epithelial surfaces covering genital mucosa are the primary site of HIV-1 transmission. Although male circumcision was reported to reduce male acquisition of HIV-1 by 60%, the initial mechanisms of HIV-1 transmission in the male genitals remain elusive. We established two novel models of the adult human foreskin epithelium that allowed for polarized infection via the mucosal pole with either HIV-1-infected cells that are present in all secretions vectorizing HIV-1 or cell-free HIV-1. Efficient HIV-1 transmission occurs following 1 hr of polarized exposure of the inner, but not outer, foreskin to mononuclear cells highly infected with HIV-1, but not to cell-free virus. HIV-1-infected cells form viral synapses with apical foreskin keratinocytes, leading to polarized budding of HIV-1, which is rapidly internalized by Langerhans cells (LCs) in the inner foreskin. In turn, LCs form conjugates with T-cells, thereby transferring HIV-1. Seminal plasma from HIV-negative men mixed with cervico-vaginal secretions from HIV-positive women, which mimics the in-vivo mixture of these genital fluids during woman-to-man HIV-1 sexual transmission, decreases HIV-1 infection at the foreskin. Our results rationalize at the cellular level the apparent protective outcome of circumcision against HIV-1 acquisition by men.
Collapse
Affiliation(s)
- Yonatan Ganor
- Mucosal Entry of HIV-1 and Mucosal Immunity, Cell Biology and Host Pathogen Interactions Department, Cochin Institute, Université Paris Descartes, CNRS-UMR 8104, 22 rue Méchain, Paris, France
| | | |
Collapse
|
57
|
Llewellyn GN, Hogue IB, Grover JR, Ono A. Nucleocapsid promotes localization of HIV-1 gag to uropods that participate in virological synapses between T cells. PLoS Pathog 2010; 6:e1001167. [PMID: 21060818 PMCID: PMC2965768 DOI: 10.1371/journal.ppat.1001167] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/28/2010] [Indexed: 12/20/2022] Open
Abstract
T cells adopt a polarized morphology in lymphoid organs, where cell-to-cell transmission of HIV-1 is likely frequent. However, despite the importance of understanding virus spread in vivo, little is known about the HIV-1 life cycle, particularly its late phase, in polarized T cells. Polarized T cells form two ends, the leading edge at the front and a protrusion called a uropod at the rear. Using multiple uropod markers, we observed that HIV-1 Gag localizes to the uropod in polarized T cells. Infected T cells formed contacts with uninfected target T cells preferentially via HIV-1 Gag-containing uropods compared to leading edges that lack plasma-membrane-associated Gag. Cell contacts enriched in Gag and CD4, which define the virological synapse (VS), are also enriched in uropod markers. These results indicate that Gag-laden uropods participate in the formation and/or structure of the VS, which likely plays a key role in cell-to-cell transmission of HIV-1. Consistent with this notion, a myosin light chain kinase inhibitor, which disrupts uropods, reduced virus particle transfer from infected T cells to target T cells. Mechanistically, we observed that Gag copatches with antibody-crosslinked uropod markers even in non-polarized cells, suggesting an association of Gag with uropod-specific microdomains that carry Gag to uropods. Finally, we determined that localization of Gag to the uropod depends on higher-order clustering driven by its NC domain. Taken together, these results support a model in which NC-dependent Gag accumulation to uropods establishes a preformed platform that later constitutes T-cell-T-cell contacts at which HIV-1 virus transfer occurs. CD4+ T cells are natural targets of HIV-1. Efficient spread of HIV-1 from infected T cells to uninfected T cells is thought to occur via cell-cell contact structures. One of these structures is a virological synapse where both viral and cellular proteins have been shown to localize specifically. However, the steps leading to the formation of a virological synapse remain unknown. It has been observed that T cells adopt a polarized morphology in lymph nodes where cell-to-cell virus transmission is likely to occur frequently. In this study, we show that in polarized T cells, the primary viral structural protein Gag accumulates to the plasma membrane of a rear end structure called a uropod. We found that Gag multimerization, driven by its nucleocapsid domain, is essential for Gag localization to uropods and that HIV-1-laden uropods mediate contact with target cells and can become part of the virological synapse. Our findings elucidated a series of molecular events leading to formation of HIV-1-transferring cell contacts and support a model in which the uropod acts as a preformed platform that constitutes a virological synapse after cell-cell contact.
Collapse
Affiliation(s)
- G. Nicholas Llewellyn
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ian B. Hogue
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jonathan R. Grover
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
58
|
Ganor Y, Zhou Z, Tudor D, Schmitt A, Vacher-Lavenu MC, Gibault L, Thiounn N, Tomasini J, Wolf JP, Bomsel M. Within 1 h, HIV-1 uses viral synapses to enter efficiently the inner, but not outer, foreskin mucosa and engages Langerhans-T cell conjugates. Mucosal Immunol 2010; 3:506-22. [PMID: 20571487 DOI: 10.1038/mi.2010.32] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although circumcision reduces male acquisition of human immunodeficiency virus type-1 (HIV-1) by 60%, the initial mechanisms of HIV-1 transmission at the foreskin remain elusive. We have established two novel and complementary models of the human adult foreskin epithelium, namely, ex vivo foreskin explants and in vitro reconstructed immunocompetent foreskins. In these models, efficient HIV-1 transmission occurs after 1 h of polarized exposure of the inner, but not outer, foreskin to mononuclear cells highly infected with HIV-1, but not to cell-free virus. HIV-1-infected cells form viral synapses with apical foreskin keratinocytes, leading to polarized budding of HIV-1, which is rapidly internalized by Langerhans cells (LCs) in the inner foreskin. In turn, LCs migrate toward the epidermis-dermis interface to form conjugates with T cells, thereby transferring HIV-1. Seminal plasma mixed with cervicovaginal secretions inhibits HIV-1 translocation. This set of results rationalizes at the cellular level the apparent protective outcome of circumcision against HIV-1 acquisition by men.
Collapse
Affiliation(s)
- Y Ganor
- Mucosal Entry of HIV-1 and Mucosal Immunity, Cell Biology and Host Pathogen Interactions Department, Cochin Institute, Université Paris Descartes, CNRS (UMR 8104), Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wexler-Cohen Y, Ashkenazi A, Viard M, Blumenthal R, Shai Y. Virus-cell and cell-cell fusion mediated by the HIV-1 envelope glycoprotein is inhibited by short gp41 N-terminal membrane-anchored peptides lacking the critical pocket domain. FASEB J 2010; 24:4196-202. [PMID: 20605950 DOI: 10.1096/fj.09-151704] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interactions between the N- and C-terminal heptad repeat (NHR and CHR) regions of the human immunodeficiency virus (HIV-1) glycoprotein gp41 create a structure comprising a 6-helix bundle (SHB). A sequence in the SHB named the "pocket" is crucial for the SHB's stability and for the fusion inhibitory activity of 36-residue NHR peptide N36. We report that a short 27-residue peptide, N27, which lacks the pocket sequence, exhibits potent inhibitory activity in both cell-cell and virus-cell fusion assays when fatty acids were conjugated to its N but not C terminus. Furthermore, mutations in the positions that prevent interaction with the CHR but not with the NHR resulted in a dramatic reduction in N27 activity. These data support a mechanism in which N27 mainly targets the CHR rather than the internal NHR coiled-coil, reveal the N-terminal edge of the endogenous core structure in situ and hence complement our recent findings of the C-terminal edge of the core, and provide a new approach for designing short inhibitors from the NHR region of other lentiviruses due to similarities in their envelope proteins.
Collapse
Affiliation(s)
- Yael Wexler-Cohen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
60
|
Jolly C. T cell polarization at the virological synapse. Viruses 2010; 2:1261-1278. [PMID: 21994679 PMCID: PMC3185707 DOI: 10.3390/v2061261] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/20/2010] [Accepted: 05/28/2010] [Indexed: 11/16/2022] Open
Abstract
Cell-to-cell spread of HIV-1 between CD4(+) T cells takes place at multimolecular structures called virological synapses. A defining feature of the virological synapse is polarization of viral assembly and budding at sites of T cell-T cell contact. Recent work is beginning to address how viral proteins are targeted to the virological synapse and the molecular mechanisms that regulate HIV-1 egress by cell-to-cell spread. This review discusses our current understanding of these processes and considers how T cell polarization during other forms of intercellular communication may provide insight into HIV-1 assembly and dissemination.
Collapse
Affiliation(s)
- Clare Jolly
- MRC Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, W1T 4JF, UK
| |
Collapse
|
61
|
Abstract
The epithelial surface acts as an effective barrier against HIV. The various mucosal surfaces possess specific mechanisms that help prevent the transmission of virus. Yet, HIV manages to cross these barriers to establish infection, and this is enhanced in the presence of physical trauma or preexisting sexually transmitted infections. Once breached, the virus accesses numerous cells such as dendritic cells, T cells, and macrophages present in the underlying epithelia. Although these cells should contribute to innate and adaptive immunity to infection, they also serve as permissive targets to HIV and help in the initiation and dissemination of infection. Understanding how the various mucosal surfaces, and the cells within them, respond to the presence of HIV is essential in the design of therapeutic agents that will help to prevent HIV transmission.
Collapse
Affiliation(s)
- Gavin Morrow
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
62
|
Vasiliver-Shamis G, Dustin ML, Hioe CE. HIV-1 Virological Synapse is not Simply a Copycat of the Immunological Synapse. Viruses 2010; 2:1239-60. [PMID: 20890395 PMCID: PMC2947835 DOI: 10.3390/v2051239] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 12/19/2022] Open
Abstract
The virological synapse (VS) is a tight adhesive junction between an HIV-infected cell and an uninfected target cell, across which virus can be efficiently transferred from cell to cell in the absence of cell-cell fusion. The VS has been postulated to resemble, in its morphology, the well-studied immunological synapse (IS). This review article discusses the structural similarities between IS and VS and the shared T cell receptor (TCR) signaling components that are found in the VS. However, the IS and the VS display distinct kinetics in disassembly and intracellular signaling events, possibly leading to different biological outcomes. Hence, HIV-1 exploits molecular components of IS and TCR signaling machinery to trigger unique changes in cellular morphology, migration, and activation that facilitate its transmission and cell-to-cell spread.
Collapse
Affiliation(s)
- Gaia Vasiliver-Shamis
- Program in Molecular Pathogenesis, Martin and Helen Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
| | - Michael L. Dustin
- Program in Molecular Pathogenesis, Martin and Helen Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; E-Mail:
| | - Catarina E. Hioe
- Veterans Affairs New York Harbor Healthcare System, Manhattan Campus, Department of Pathology, New York University School of Medicine, New York, NY 10010, USA
| |
Collapse
|
63
|
Jury EC, Kabouridis PS. New role for Agrin in T cells and its potential importance in immune system regulation. Arthritis Res Ther 2010; 12:205. [PMID: 20398335 PMCID: PMC2888195 DOI: 10.1186/ar2957] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Agrin plays a crucial role in the maintenance of the neuromuscular junction. However, it is expressed in other tissues as well, including T lymphocytes, where cell activation induces its expression. Agrin from activated T cells has the capacity to induce aggregation of key receptors and to regulate signalling. Interestingly, T cells isolated from patients with systemic lupus erythematosus over-express Agrin and its co-stimulation with the T cell receptor enhances production of pathogenic cytokines. These early studies point to an important function for Agrin in T cell biology and make the case for a more thorough and systematic investigation into its role in the immune system.
Collapse
Affiliation(s)
- Elizabeth C Jury
- Centre for Rheumatology, Royal Free and University College Medical School, University College London, London W1P 4JF, UK
| | - Panagiotis S Kabouridis
- Biochemical Pharmacology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
64
|
Abstract
Viral infections spread based on the ability of viruses to overcome multiple barriers and move from cell to cell, tissue to tissue, and person to person and even across species. While there are fundamental differences between these types of transmissions, it has emerged that the ability of viruses to utilize and manipulate cell-cell contact contributes to the success of viral infections. Central to the excitement in the field of virus cell-to-cell transmission is the idea that cell-to-cell spread is more than the sum of the processes of virus release and entry. This implies that virus release and entry are efficiently coordinated to sites of cell-cell contact, resulting in a process that is distinct from its individual components. In this review, we will present support for this model, illustrate the ability of viruses to utilize and manipulate cell adhesion molecules, and discuss the mechanism and driving forces of directional spreading. An understanding of viral cell-to-cell spreading will enhance our ability to intervene in the efficient spreading of viral infections.
Collapse
|
65
|
Shen R, Drelichman ER, Bimczok D, Ochsenbauer C, Kappes JC, Cannon JA, Tudor D, Bomsel M, Smythies LE, Smith PD. GP41-specific antibody blocks cell-free HIV type 1 transcytosis through human rectal mucosa and model colonic epithelium. THE JOURNAL OF IMMUNOLOGY 2010; 184:3648-55. [PMID: 20208001 DOI: 10.4049/jimmunol.0903346] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monostratified epithelial cells translocate HIV type 1 (HIV-1) from the apical to the basolateral surface via vesicular transcytosis. Because acutely transmitted HIV-1 is almost exclusively CCR5-tropic and human intestinal epithelial cells preferentially transcytose CCR5-tropic virus, we established epithelial monolayers using polarized HT-29 cells transduced to express CCR5, and an explant system using normal human rectal mucosa, to characterize biological parameters of epithelial cell transcytosis of HIV-1 and assess antiviral Ab blockade of transcytosis. The amount of cell-free HIV-1 transcytosed through the epithelial monolayer increased linearly in relation to the amount of virus applied to the apical surface, indicating transcytosis efficiency was constant (r(2) = 0.9846; p < 0.0001). The efficiency of HIV-1 transcytosis ranged between 0.05 and 1.21%, depending on the virus strain, producer cell type and gp120 V1-V3 loop signature. Inoculation of HIV-1 neutralizing Abs to the immunodominant region (7B2) or the conserved membrane proximal external region (2F5) of gp41 or to cardiolipin (IS4) onto the apical surface of epithelial monolayers prior to inoculation of virus significantly reduced HIV-1 transcytosis. 2F5 was the most potent of these IgG1 Abs. Dimeric IgA and monomeric IgA, but not polymeric IgM, 2F5 Abs also blocked HIV-1 transcytosis across the epithelium and, importantly, across explanted normal human rectal mucosa, with monomeric IgA substantially more potent than dimeric IgA in effecting transcytosis blockade. These findings underscore the potential role of transcytosis blockade in the prevention of HIV-1 transmission across columnar epithelium such as that of the rectum.
Collapse
Affiliation(s)
- Ruizhong Shen
- Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Abstract
Breastfeeding remains a common practice in parts of the world where the burden of HIV is highest and the fewest alternative feeding options exist. The impossible dilemma faced by HIV-positive mothers is whether to breastfeed their infants in keeping with cultural norms but in doing so risk transmitting the virus through breast milk, or to pursue formula feeding, which comes with its own set of risks, including a higher rate of infant mortality from diarrheal illnesses, while reducing transmission of HIV. Treatment of mothers and/or their infants with antiretroviral drugs is a strategy that has been employed for several decades to reduce HIV transmission through pregnancy and delivery, but the effect of these agents when taken during breastfeeding is a newer field of study. In this article we evaluate the latest clinical research, from trials that encourage exclusive breastfeeding to trials of antiretroviral therapy (ART) for either the mother or infant, in an attempt to prevent transmission of HIV through breast milk. Additionally, we discuss research that is in progress, with results anticipated in the next few years that will further shape clinical guidelines and practice. Exclusive breastfeeding is much safer than mixed feeding (the supplementation of breastfeeding with other foods), and should be encouraged even in settings where ART for either the mother or infant is not readily available. The research published regarding maternal treatment with highly active antiretroviral therapy (HAART) during pregnancy and the breastfeeding period has all been non-randomized with relatively little statistical power, but suggests maternal HAART can drastically reduce the risk of transmission of HIV. Infant prophylaxis has been intensively studied in several trials and has been shown to be as effective as maternal treatment with antiretrovirals, reducing the transmission rate after 6 weeks to as low as 1.2%. Research that is in progress will provide us with more answers about the relative contribution of maternal treatment and infant prophylaxis in preventing transmission, and the results of such research may be expected as early as this year through 2013. There is hope that perinatal HIV transmission may be greatly reduced in breastfeeding populations worldwide through a combination of behavioral interventions that encourage exclusive breastfeeding and pharmacologic interventions with antiretrovirals for mothers and/or their infants.
Collapse
Affiliation(s)
- Mackenzie Slater
- University of Alabama at Birmingham, Centre for Infectious Disease Research in Zambia, Lusaka, Zambia.
| | | | | |
Collapse
|
67
|
Mazurov D, Ilinskaya A, Heidecker G, Lloyd P, Derse D. Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog 2010; 6:e1000788. [PMID: 20195464 PMCID: PMC2829072 DOI: 10.1371/journal.ppat.1000788] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 01/22/2010] [Indexed: 02/03/2023] Open
Abstract
We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background. Reporter gene expression was detected exclusively in target cells and required an Env-expression plasmid and a viral packaging vector, which provided essential structural and enzymatic proteins for virus replication. Cell-cell fusion did not contribute to infection, as reporter protein was rarely detected in syncytia. Coculture of transfected Jurkat T cells and target Raji/CD4 B cells enhanced HIV-1 infection two fold and HTLV-1 infection ten thousand fold in comparison with cell-free infection of Raji/CD4 cells. Agents that interfere with actin and tubulin polymerization strongly inhibited HTLV-1 and modestly decreased HIV-1 cell-to-cell infection, an indication that cytoskeletal remodeling was more important for HTLV-1 transmission. Time course studies showed that HTLV-1 transmission occurred very rapidly after cell mixing, whereas slower kinetics of HIV-1 coculture infection implies a different mechanism of infectious transmission. HTLV-1 Tax was demonstrated to play an important role in altering cell-cell interactions that enhance virus infection and replication. Interestingly, superantigen-induced synapses between Jurkat cells and Raji/CD4 cells did not enhance infection for either HTLV-1 or HIV-1. In general, the dependence on cell-to-cell infection was determined by the virus, the effector and target cell types, and by the nature of the cell-cell interaction.
Collapse
Affiliation(s)
- Dmitriy Mazurov
- HIV Drug Resistance Program, National Cancer Institute and SAIC-Frederick, NCI-Frederick, Frederick, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
68
|
Proteoglycans in host-pathogen interactions: molecular mechanisms and therapeutic implications. Expert Rev Mol Med 2010; 12:e5. [PMID: 20113533 DOI: 10.1017/s1462399409001367] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many microbial pathogens subvert proteoglycans for their adhesion to host tissues, invasion of host cells, infection of neighbouring cells, dissemination into the systemic circulation, and evasion of host defence mechanisms. Where studied, specific virulence factors mediate these proteoglycan-pathogen interactions, which are thus thought to affect the onset, progression and outcome of infection. Proteoglycans are composites of glycosaminoglycan (GAG) chains attached covalently to specific core proteins. Proteoglycans are expressed ubiquitously on the cell surface, in intracellular compartments, and in the extracellular matrix. GAGs mediate the majority of ligand-binding activities of proteoglycans, and many microbial pathogens elaborate cell-surface and secreted factors that interact with GAGs. Some pathogens also modulate the expression and function of proteoglycans through known virulence factors. Several GAG-binding pathogens can no longer attach to and invade host cells whose GAG expression has been reduced by mutagenesis or enzymatic treatment. Furthermore, GAG antagonists have been shown to inhibit microbial attachment and host cell entry in vitro and reduce virulence in vivo. Together, these observations underscore the biological significance of proteoglycan-pathogen interactions in infectious diseases.
Collapse
|
69
|
|
70
|
Pais-Correia AM, Sachse M, Guadagnini S, Robbiati V, Lasserre R, Gessain A, Gout O, Alcover A, Thoulouze MI. Biofilm-like extracellular viral assemblies mediate HTLV-1 cell-to-cell transmission at virological synapses. Nat Med 2009; 16:83-9. [PMID: 20023636 DOI: 10.1038/nm.2065] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 10/30/2009] [Indexed: 02/07/2023]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is a lymphotropic retrovirus whose cell-to-cell transmission requires cell contacts. HTLV-1-infected T lymphocytes form 'virological synapses', but the mechanism of HTLV-1 transmission remains poorly understood. We show here that HTLV-1-infected T lymphocytes transiently store viral particles as carbohydrate-rich extracellular assemblies that are held together and attached to the cell surface by virally-induced extracellular matrix components, including collagen and agrin, and cellular linker proteins, such as tetherin and galectin-3. Extracellular viral assemblies rapidly adhere to other cells upon cell contact, allowing virus spread and infection of target cells. Their removal strongly reduces the ability of HTLV-1-producing cells to infect target cells. Our findings unveil a novel virus transmission mechanism based on the generation of extracellular viral particle assemblies whose structure, composition and function resemble those of bacterial biofilms. HTLV-1 biofilm-like structures represent a major route for virus transmission from cell to cell.
Collapse
Affiliation(s)
- Ana-Monica Pais-Correia
- Institut Pasteur, Unité de Biologie Cellulaire des Lymphocytes, Centre National de Recherche Scientifique (CNRS), Unité de Recherche Associée 1961, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Innate Factors in Human Breast Milk Inhibit Cell-Free HIV-1 but Not Cell-Associated HIV-1 Infection of CD4+ Cells. J Acquir Immune Defic Syndr 2009; 51:117-24. [DOI: 10.1097/qai.0b013e3181a3908d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
72
|
Haller C, Fackler OT. HIV-1 at the immunological and T-lymphocytic virological synapse. Biol Chem 2009; 389:1253-60. [PMID: 18713012 DOI: 10.1515/bc.2008.143] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cell-cell transmission of human immunodeficiency virus type 1 (HIV-1) is considered the most effective mode of viral spread in T-lymphocyte cultures. Evidence has accumulated that HIV-1 assembles polarized synaptic-like structures, referred to as virological synapses, as specialized sites of viral transfer. Interestingly, it was recently also discovered that HIV-1 impairs the formation of the structurally similar immunological synapse, thereby modulating exogenous T-lymphocyte stimulation to yield an optimal activation state for productive HIV-1 infection. The careful dissection of these opposing effects will contribute to our understanding of retroviral spread and cellular signal transduction machineries.
Collapse
Affiliation(s)
- Claudia Haller
- Department of Virology, University of Heidelberg, INF 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
73
|
Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol 2009; 83:6234-46. [PMID: 19369333 DOI: 10.1128/jvi.00282-09] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) efficiently propagates through cell-to-cell contacts, which include virological synapses (VS), filopodia, and nanotubes. Here, we quantified and characterized further these diverse modes of contact in lymphocytes. We report that viral transmission mainly occurs across VS and through "polysynapses," a rosette-like structure formed between one infected cell and multiple adjacent recipients. Polysynapses are characterized by simultaneous HIV clustering and transfer at multiple membrane regions. HIV Gag proteins often adopt a ring-like supramolecular organization at sites of intercellular contacts and colocalize with CD63 tetraspanin and raft components GM1, Thy-1, and CD59. In donor cells engaged in polysynapses, there is no preferential accumulation of Gag proteins at contact sites facing the microtubule organizing center. The LFA-1 adhesion molecule, known to facilitate viral replication, enhances formation of polysynapses. Altogether, our results reveal an underestimated mode of viral transfer through polysynapses. In HIV-infected individuals, these structures, by promoting concomitant infection of multiple targets in the vicinity of infected cells, may facilitate exponential viral growth and escape from immune responses.
Collapse
|
74
|
Abstract
The vast majority of new HIV infections are acquired via the genital and rectal mucosa. Here, we provide an overview of our current knowledge of how HIV establishes local infection, with an emphasis on viral invasion through the female genital tract. Studies using human explant tissues and in vivo animal studies have improved our understanding of the cellular and molecular pathways of infection; this information could be harnessed to design effective HIV vaccines and microbicides.
Collapse
|
75
|
Abstract
The heparan sulfate proteoglycan agrin is best known for its essential role during formation, maintenance and regeneration of the neuromuscular junction. Mutations in agrin-interacting proteins are the genetic basis for a number of neuromuscular disorders. However, agrin is widely expressed in many tissues including neurons and glial cells of the brain, where its precise function is much less understood. Fewer synapses develop in brains that lack agrin, consistent with a function of agrin during CNS synaptogenesis. Recently, a specific transmembrane form of agrin (TM-agrin) was identified that is concentrated at that interneuronal synapses in the brain. Clustering or overexpression of TM-agrin leads to the formation of filopodia-like processes, which might be precursors for CNS synapses. Agrin is subject to defined and activity-dependent proteolytic cleavage by neurotrypsin at synapses and dysregulation of agrin processing might contribute to the development of mental retardation. This review summarizes what is known about the role of agrin during synapse formation at the neuromuscular junction and in the developing CNS and will discuss additional functions of agrin in the adult CNS, in particular during BBB formation, during recovery after traumatic brain injury and in the etiology of diseases, including Alzheimer’s disease and mental retardation.
Collapse
Affiliation(s)
- Stephan Kröger
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| | - Heike Pfister
- Department of Physiological Genomics, Ludwig-Maximilians University, Schillerstrasse 46, D-80336 Munich, Germany
| |
Collapse
|
76
|
Yu H, Tudor D, Alfsen A, Labrosse B, Clavel F, Bomsel M. Peptide P5 (residues 628-683), comprising the entire membrane proximal region of HIV-1 gp41 and its calcium-binding site, is a potent inhibitor of HIV-1 infection. Retrovirology 2008; 5:93. [PMID: 18925934 PMCID: PMC2585100 DOI: 10.1186/1742-4690-5-93] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/16/2008] [Indexed: 11/10/2022] Open
Abstract
The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor.
Collapse
Affiliation(s)
- Huifeng Yu
- Departement de Biologie Cellulaire, (Cell Biology Department), Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 22 rue Mechain, 75014 Paris, France.
| | | | | | | | | | | |
Collapse
|
77
|
Excretion of human immunodeficiency virus type 1 through polarized epithelium by immunoglobulin A. J Virol 2008; 82:11526-35. [PMID: 18829757 DOI: 10.1128/jvi.01111-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) is transmitted primarily sexually across mucosal surfaces. After infection, HIV propagates initially in the lamina propria below the polarized epithelium and causes extensive destruction of mucosal T cells. Immunoglobulin A (IgA) antibodies, produced in the lamina propria and then transcytosed across the mucosal epithelium into the lumen, can be the first line of immune defense against HIV. Here, we used IgA monoclonal antibodies against HIV envelope proteins to investigate the abilities of polarized primate and human epithelial cells to excrete HIV virions from the basolateral to the apical surface via polymeric Ig receptor (pIgR)-mediated binding and the internalization of HIV-IgA immune complexes. African green monkey kidney cells expressing pIgR demonstrated HIV excretion that was dependent on the IgA concentration and the exposure time. Matched IgG antibodies with the same variable regions as the IgA antibodies and IgA antibodies to non-HIV antigens had no HIV excretory function. A mixture of two IgA anti-bodies against gp120 and gp41 showed a synergistic increase in the level of HIV excreted. The capacity for HIV excretion correlated with the ability of IgA antibodies to bind HIV and of the resulting immune complexes to bind pIgR. Consistent with the epithelial transcytosis of HIV-IgA immune complexes, the colocalization of HIV proteins and HIV-specific IgA was detected intracellularly by confocal microscopy. Our results suggest the potential of IgA antibodies to excrete HIV from mucosal lamina propria, thereby decreasing the viral burden, access to susceptible cells, and the chronic activation of the immune system.
Collapse
|
78
|
Vacharaksa A, Asrani AC, Gebhard KH, Fasching CE, Giacaman RA, Janoff EN, Ross KF, Herzberg MC. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells. Retrovirology 2008; 5:66. [PMID: 18637194 PMCID: PMC2491655 DOI: 10.1186/1742-4690-5-66] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 07/17/2008] [Indexed: 01/01/2023] Open
Abstract
Background Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. Results To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Δenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Conclusion Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.
Collapse
Affiliation(s)
- Anjalee Vacharaksa
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
OBJECTIVE The early steps of HIV entry into intact vaginal mucosa still need to be clarified. Here we investigated how HIV translocated across the vaginal pluristratified epithelium, either by transcytosis or by uptake in Langerhans cells. METHODS Using human primary fibroblasts and vaginal epithelial cells, we developed an in-vitro model of vaginal mucosa in which Langerhans cells could also be integrated. Owing to the absence of T lymphocytes and macrophages, we specifically studied the role of Langerhans cells in HIV transmission and the transcytosis of cell-associated HIV. RESULTS Our model has a normal mucosal tissue architecture and Langerhans cells were efficiently integrated within the pluristratified epithelium. In addition, tight junction proteins' expression, high transepithelium resistance and low fluorescein isothiocyanate-BSA passage confirmed the integrity and impermeability of the reconstruction. Furthermore, we showed that human Langerhans cells also expressed tight junction proteins. Then, we demonstrated that neither transcellular nor intercellular transport of free infectious virus released by R5-infected or X4-infected peripheral blood mononuclear cells inoculated apically occured in the vaginal mucosa, irrespective to the presence of Langerhans cells. CONCLUSION For the first time, we documented that, within 4 h following contact with HIV-infected cells, translocation of free HIV particles across a pluristratified mucosa is not detectable and that, in this context, it seemed that Langerhans cells do not increase HIV transmission. Moreover, we provided a useful model for the development of strategies preventing HIV entry into the female genital tract, especially for testing the efficiency of various microbicides.
Collapse
|
80
|
Abstract
For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention.
Collapse
Affiliation(s)
- Florian Hladik
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Departments of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Departments of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Departments of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Departments of Global Health, University of Washington School of Medicine, Seattle, WA 98195, USA
- Departments of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
81
|
Girard MP, Bansal GP, Pedroza-Martins L, Dodet B, Mehra V, Schito M, Mathieson B, Delfraissy JF, Bradac J. Mucosal immunity and HIV/AIDS vaccines. Report of an International Workshop, 28-30 October 2007. Vaccine 2008; 26:3969-77. [PMID: 18513838 PMCID: PMC7131112 DOI: 10.1016/j.vaccine.2008.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/22/2022]
Abstract
In October 2007, a joint ANRS-NIH workshop was held on “Mucosal immunity and HIV/AIDS vaccines” in Veyrier-du-Lac, France. Goal of the meeting was to discuss recent developments in the understanding of viral entry and dissemination at mucosal surfaces, rationale for designing vaccines to elicit mucosal immune responses by various routes of immunization, and the types of immune responses elicited. Lessons were drawn from existing vaccines against viral mucosal infections, from the recent failure of the Merck Ad5/HIV vaccine and from attempts at mucosal immunization against SIV. This report summarizes the main concepts and conclusions that came out of the meeting.
Collapse
|
82
|
Williams S, Ryan C, Jacobson C. Agrin and neuregulin, expanding roles and implications for therapeutics. Biotechnol Adv 2008; 26:187-201. [DOI: 10.1016/j.biotechadv.2007.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/21/2007] [Accepted: 11/21/2007] [Indexed: 01/15/2023]
|
83
|
Matoba N, Griffin TA, Mittman M, Doran JD, Alfsen A, Montefiori DC, Hanson CV, Bomsel M, Mor TS. Transcytosis-blocking abs elicited by an oligomeric immunogen based on the membrane proximal region of HIV-1 gp41 target non-neutralizing epitopes. Curr HIV Res 2008; 6:218-29. [PMID: 18473785 PMCID: PMC2744741 DOI: 10.2174/157016208784324994] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CTB-MPR(649-684), a translational fusion protein consisting of cholera toxin B subunit (CTB) and residues 649 684 of gp41 membrane proximal region (MPR), is a candidate vaccine aimed at blocking early steps of HIV-1 mucosal transmission. Bacterially produced CTB MPR(649-684) was purified to homogeneity by two affinity chromatography steps. Similar to gp41 and derivatives thereof, the MPR domain can specifically and reversibly self-associate. The affinities of the broadly-neutralizing monoclonal Abs 4E10 and 2F5 to CTB MPR(649-684) were equivalent to their nanomolar affinities toward an MPR peptide. The fusion protein's affinity to GM1 ganglioside was comparable to that of native CTB. Rabbits immunized with CTB-MPR(649-684) raised only a modest level of anti-MPR(649-684) Abs. However, a prime-boost immunization with CTB-MPR(649-684) and a second MPR(649-684)-based immunogen elicited a more productive anti-MPR(649-684) antibody response. These Abs strongly blocked the epithelial transcytosis of a primary subtype B HIV-1 isolate in a human tight epithelial model, expanding our previously reported results using a clade D virus. The Abs recognized epitopes at the N-terminal portion of the MPR peptide, away from the 2F5 and 4E10 epitopes and were not effective in neutralizing infection of CD4+ cells. These results indicate distinct vulnerabilities of two separate interactions of HIV-1 with human cells - Abs against the C-terminal portion of the MPR can neutralize CD4+-dependent infection, while Abs targeting the MPR's N-terminal portion can effectively block galactosyl ceramide dependent transcytosis. We propose that Abs induced by MPR(649-684)-based immunogens may provide broad protective value independent of infection neutralization.
Collapse
Affiliation(s)
- Nobuyuki Matoba
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Tagan A. Griffin
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Michele Mittman
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey D. Doran
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Annette Alfsen
- Department de Biologie Cellulaire, Institut Cochin. 22, rue Méchain, Paris, France
| | - David C. Montefiori
- Laboratory for AIDS Vaccine Research & Development Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Carl V. Hanson
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, CA, USA
| | - Morgane Bomsel
- Department de Biologie Cellulaire, Institut Cochin. 22, rue Méchain, Paris, France
| | - Tsafrir S. Mor
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
84
|
Yu H, Alfsen A, Tudor D, Bomsel M. The binding of HIV-1 gp41 membrane proximal domain to its mucosal receptor, galactosyl ceramide, is structure-dependent. Cell Calcium 2008; 43:73-82. [PMID: 17553560 DOI: 10.1016/j.ceca.2007.04.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 04/04/2007] [Indexed: 01/19/2023]
Abstract
The peptide of HIV-1 envelope gp41 (a.a 628-683), referred to herein as P5, contains P1, a conserved galactose-specific lectin domain for binding the mucosal HIV-1-receptor, galactosyl ceramide (GalCer), as shown earlier, and a potential calcium-binding site (a.a 628-648). P1 contains contiguous epitopes recognized by the broadly neutralizing antibodies 2F5, 4E10, Z13. However, similar neutralizing antibodies could not be raised in animal model using immunogens based on these epitopes. We now show that the structure of both P5 and P1 peptides, as measured by circular dichroism, differs according to their environment: aqueous or lipidic, and as a function of calcium concentration. P5, but not P1, binds to calcium with a low binding affinity constant in the order of 2.5x10(4). Calcium binding results in a conformational change of P5, leading in turn to a decrease in affinity for GalCer. Hence, the affinity of the gp41-lectin site for the galactose harbored by the mucosal HIV-1 receptor GalCer is modulated by the peptide secondary and tertiary structure and the local environment. Therefore, definition of the conformation of this novel extended gp41 membrane proximal region, containing the conserved peptide P1 and the Ca(2+) binding site, could help designing an immunogen efficient at inducing neutralizing anti-HIV-1 antibodies.
Collapse
Affiliation(s)
- Huifeng Yu
- Entrée Muqueuse du VIH et Immunité Muqueuse, Département de Biologie Cellulaire, Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), 22 rue Méchain, 75014 Paris, France
| | | | | | | |
Collapse
|
85
|
Laurén A, Vincic E, Hoshino H, Thorstensson R, Fenyö EM. CD4-independent use of the CCR5 receptor by sequential primary SIVsm isolates. Retrovirology 2007; 4:50. [PMID: 17645788 PMCID: PMC1950888 DOI: 10.1186/1742-4690-4-50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022] Open
Abstract
Background CD4-independence has been taken as a sign of a more open envelope structure that is more accessible to neutralizing antibodies and may confer altered cell tropism. In the present study, we analyzed SIVsm isolates for CD4-independent use of CCR5, mode of CCR5-use and macrophage tropism. The isolates have been collected sequentially from 13 experimentally infected cynomolgus macaques and have previously been shown to use CCR5 together with CD4. Furthermore, viruses obtained early after infection were neutralization sensitive, while neutralization resistance appeared already three months after infection in monkeys with progressive immunodeficiency. Results Depending whether isolated early or late in infection, two phenotypes of CD4-independent use of CCR5 could be observed. The inoculum virus (SIVsm isolate SMM-3) and reisolates obtained early in infection often showed a pronounced CD4-independence since virus production and/or syncytia induction could be detected directly in NP-2 cells expressing CCR5 but not CD4 (CD4-independent-HIGH). Conversely, late isolates were often more CD4-dependent in that productive infection in NP-2/CCR5 cells was in most cases weak and was revealed only after cocultivation of infected NP-2/CCR5 cells with peripheral blood mononuclear cells (CD4-independent-LOW). Considering neutralization sensitivity of these isolates, newly infected macaques often harbored virus populations with a CD4-independent-HIGH and neutralization sensitive phenotype that changed to a CD4-independent-LOW and neutralization resistant virus population in the course of infection. Phenotype changes occurred faster in progressor than long-term non-progressor macaques. The phenotypes were not reflected by macrophage tropism, since all isolates replicated efficiently in macrophages. Infection of cells expressing CCR5/CXCR4 chimeric receptors revealed that SIVsm used the CCR5 receptor in a different mode than HIV-1. Conclusion Our results show that SIVsm isolates use CCR5 independently of CD4. While the degree of CD4 independence and neutralization sensitivity vary over time, the ability to productively infect monocyte-derived macrophages remains at a steady high level throughout infection. The mode of CCR5 use differs between SIVsm and HIV-1, SIVsm appears to be more flexible than HIV-1 in its receptor requirement. We suggest that the mode of CCR5 coreceptor use and CD4-independence are interrelated properties.
Collapse
Affiliation(s)
- Anna Laurén
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| | - Elzbieta Vincic
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| | - Hiroo Hoshino
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Eva Maria Fenyö
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| |
Collapse
|
86
|
Vidricaire G, Tremblay MJ. A Clathrin, Caveolae, and Dynamin-independent Endocytic Pathway Requiring Free Membrane Cholesterol Drives HIV-1 Internalization and Infection in Polarized Trophoblastic Cells. J Mol Biol 2007; 368:1267-83. [PMID: 17395200 DOI: 10.1016/j.jmb.2007.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 03/02/2007] [Accepted: 03/02/2007] [Indexed: 02/06/2023]
Abstract
In human trophoblastic cells, a correlation between early endosomal trafficking of HIV-1 and virus infection was previously documented. However, if HIV-1 is massively internalized in these cells, the endocytic pathway(s) responsible for viral uptake is still undefined. Here we address this vital question. Amongst all the putative endocytic pathways present in polarized trophoblastic cells, we demonstrate that HIV-1 infection of these cells is independent of clathrin-mediated endocytosis and macropinocytosis. Importantly, treatment with the cholesterol-sequestering drug filipin severely impairs virus internalization, whereas the cholesterol-depleting compound methyl-beta-cyclodextrin has no impact on this pathway. Moreover, viral internalization is unaffected by overexpression of a mutant dynamin 2 or treatment with a kinase or tyrosine phosphatase inhibitor. Thus, HIV-1 infection in polarized trophoblastic cells occurs primarily via a clathrin, caveolae, and dynamin-independent pathway requiring free cholesterol. Notably, even though HIV-1 did not initially co-localize with transferrin, some virions migrate at later time points to transferrin-enriched endosomes, suggesting an unusual transit from the non-classical pathway to early endosomes. Finally, virus internalization in these cells does not involve the participation of microtubules but relies partly on actin filaments. Collectively these findings provide unprecedented information on the route of HIV-1 internalization in polarized human trophoblasts.
Collapse
Affiliation(s)
- Gaël Vidricaire
- Research Center in Infectious Diseases, CHUL Research Center, and Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada G1V 4G2
| | | |
Collapse
|
87
|
Abstract
The epithelial surface acts as an effective barrier against HIV. The various mucosal surfaces possess specific mechanisms that help prevent the transmission of virus. Yet, HIV manages to cross these barriers to establish infection, and this is enhanced in the presence of physical trauma or pre-existing sexually transmitted infections. Once breached, the virus accesses numerous cells such as dendritic cells, T cells, and macrophages present in the underlying epithelia. Although these cells should contribute to innate and adaptive immunity to infection, they also serve as permissive targets to HIV and help in the initiation and dissemination of infection. Understanding how the various mucosal surfaces, and the cells within them, respond to the presence of HIV is essential in the design of therapeutic agents that will help to prevent HIV transmission.
Collapse
Affiliation(s)
- Gavin Morrow
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
88
|
Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 2007; 9:310-5. [PMID: 17293854 PMCID: PMC2628976 DOI: 10.1038/ncb1544] [Citation(s) in RCA: 354] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 01/09/2007] [Indexed: 11/08/2022]
Abstract
The spread of retroviruses between cells is estimated to be 2-3 orders of magnitude more efficient when cells can physically interact with each other. The underlying mechanism is largely unknown, but transfer is believed to occur through large-surface interfaces, called virological or infectious synapses. Here, we report the direct visualization of cell-to-cell transmission of retroviruses in living cells. Our results reveal a mechanism of virus transport from infected to non-infected cells, involving thin filopodial bridges. These filopodia originate from non-infected cells and interact, through their tips, with infected cells. A strong association of the viral envelope glycoprotein (Env) in an infected cell with the receptor molecules in a target cell generates a stable bridge. Viruses then move along the outer surface of the filopodial bridge toward the target cell. Our data suggest that retroviruses spread by exploiting an inherent ability of filopodia to transport ligands from cell to cell.
Collapse
Affiliation(s)
- Nathan M. Sherer
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06536, USA
| | - Maik J. Lehmann
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06536, USA
| | - Luisa F. Jimenez-Soto
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06536, USA
| | - Christina Horensavitz
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06536, USA
| | - Marc Pypaert
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06536, USA
| | - Walther Mothes
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Ave, New Haven, CT 06536, USA
| |
Collapse
|
89
|
Magérus-Chatinet A, Yu H, Garcia S, Ducloux E, Terris B, Bomsel M. Galactosyl ceramide expressed on dendritic cells can mediate HIV-1 transfer from monocyte derived dendritic cells to autologous T cells. Virology 2007; 362:67-74. [PMID: 17234232 DOI: 10.1016/j.virol.2006.11.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 09/22/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Mucosa, comprising epithelial and dendritic cells, are the major sites for Human Immunodeficiency Virus type 1 (HIV-1) transmission. There, DCs can capture incoming HIV-1 and in turn transfer virus to CD4(+) T lymphocytes in a two-phase process, thereby initiating HIV-1 dissemination. We show that the glycosphingolipid Galactosyl Ceramide (GalCer), acting as mucosal epithelial receptor for HIV-1, was expressed by human monocyte derived immature DCs (iDCs), human primary DCs isolated from blood and mucosal tissue and in situ on mucosal tissue and acts as HIV-1-gp41 receptor. Blocking both GalCer and CD4 with specific mAbs results in a >95% transfer inhibition of HIV-1 from human monocyte-derived iDCs to autologous resting T cells. GalCer interaction with HIV-1 controls the early infection-independent phase of HIV-1 transfer to T cells. Thus, GalCer appears as an initial receptor for HIV-1, common to both mucosal epithelial cells and iDCs.
Collapse
Affiliation(s)
- Aude Magérus-Chatinet
- Entrée Muqueuse du VIH et immunité muqueuse (Mucosal entry of HIV-1 and mucosal immunity), Departement de Biologie Cellulaire (Cell Biology Department), Institut Cochin, CNRS, INSERM, Université René Descartes, 22 rue Mechain, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
90
|
Bomsel M, Pastori C, Tudor D, Alberti C, Garcia S, Ferrari D, Lazzarin A, Lopalco L. Natural mucosal antibodies reactive with first extracellular loop of CCR5 inhibit HIV-1 transport across human epithelial cells. AIDS 2007; 21:13-22. [PMID: 17148963 DOI: 10.1097/qad.0b013e328011049b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The genital mucosa represents the major site for initial host-HIV-1 contact. HIV-1-protective mucosal immunity has been identified either in subjects who despite repeated sexual exposure, remain seronegative (ESN) or in long-term non-progressor HIV-1-seropositive individuals (LTNP). As a subset of ESN and LTNP produce anti-CCR5 antibodies both at systemic and mucosal level, we studied the role of anti-CCR5 antibodies in blocking HIV transfer through human epithelial cells. DESIGN AND METHODS To evaluate HIV-1-inhibitory activity by anti-CCR5 antibodies, a two-chambers system was established to model HIV-1 infection across the human mucosal epithelium. Moreover, peripheral blood mononuclear cells (PBMC) and a CCR5 transfected cell line were also used in a classical HIV-infectivity assay. CCR5-specific IgG and IgA were used to inhibit HIV replication. RESULTS Either serum or mucosal IgA to CCR5 were able to specifically block transcytosis of CCR5- but not CXCR4-HIV strains across a tight epithelial cell layer by interacting with the first extracellular loop of the receptor (amino acids YAAAQWDFGNTMCQ). Monoclonal antibodies against other regions of CCR5 had no effect on HIV transcytosis. Moreover, mucosal CCR5-specific IgA neutralized CCR5-tropic strains and SOS-JRFL pseudovirus replication in PBMC and CCR5 transfected cell lines respectively, with a mechanism different than that observed for transcytosis. CONCLUSIONS Anti-CCR5 Abs shed light on the immunological mechanisms involved in the control of HIV-1 infection in a model that can be considered an experimentum naturae for resistance to HIV. They could be useful in the design of new strategies against HIV infection at mucosal sites.
Collapse
|
91
|
Lehman DA, Farquhar C. Biological mechanisms of vertical human immunodeficiency virus (HIV-1) transmission. Rev Med Virol 2007; 17:381-403. [PMID: 17542053 DOI: 10.1002/rmv.543] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the absence of interventions, 30-45% of exposed infants acquire human immunodeficiency virus type 1 (HIV-1) through mother-to-child transmission. It remains unclear why some infants become infected while others do not, despite significant exposure to HIV-1 in utero, during delivery and while breastfeeding. Here we discuss the correlates of vertical transmission with an emphasis on factors that increase maternal HIV-1 levels, either systemically or locally in genital secretions and breast milk. Immune responses may influence maternal viral load, and data suggest that maternal neutralising antibodies reduce infection rates. In addition, infants may be capable of mounting HIV-specific cellular immune responses. We propose that both humoral and cellular responses are necessary to reduce infection because cell-free as well as cell-associated virus appears to play a role in vertical transmission. These distinct forms of the virus may be targeted most effectively by different components of the immune system. We also discuss the use of antiretrovirals to reduce transmission, focusing on the mechanisms of action of regimens currently used in developing country settings. We conclude that prevention relies not only on reducing maternal HIV-1 levels within blood, genital tract and breast milk, but also on pre- and/or post-exposure prophylaxis to the infant. However, HIV-1 has the capacity to mutate under drug pressure and rapidly acquires mutations conferring antiretroviral resistance. This review concludes with data on persistence of low-level resistance after delivery as well as recent guidelines for maternal and infant regimens designed to limit resistance.
Collapse
Affiliation(s)
- Dara A Lehman
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | |
Collapse
|
92
|
Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O. Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 2006; 81:1000-12. [PMID: 17079292 PMCID: PMC1797449 DOI: 10.1128/jvi.01629-06] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-to-cell viral transfer facilitates the spread of lymphotropic retroviruses such as human immunodeficiency virus (HIV) and human T-cell leukemia virus (HTLV), likely through the formation of "virological synapses" between donor and target cells. Regarding HIV replication, the importance of cell contacts has been demonstrated, but this phenomenon remains only partly characterized. In order to alter cell-to-cell HIV transmission, we have maintained cultures under continuous gentle shaking and followed viral replication in this experimental system. In lymphoid cell lines, as well as in primary lymphocytes, viral replication was dramatically reduced in shaken cultures. To document this phenomenon, we have developed an assay to assess the relative contributions of free and cell-associated virions in HIV propagation. Acutely infected donor cells were mixed with carboxyfluorescein diacetate succinimidyl ester-labeled lymphocytes as targets, and viral production was followed by measuring HIV Gag expression at different time points by flow cytometry. We report that cellular contacts drastically enhance productive viral transfer compared to what is seen with infection with free virus. Productive cell-to-cell viral transmission required fusogenic viral envelope glycoproteins on donor cells and adequate receptors on targets. Only a few syncytia were observed in this coculture system. Virus release from donor cells was unaffected when cultures were gently shaken, whereas virus transfer to recipient cells was severely impaired. Altogether, these results indicate that cell-to-cell transfer is the predominant mode of HIV spread and help to explain why this virus replicates so efficiently in lymphoid organs.
Collapse
Affiliation(s)
- Marion Sourisseau
- Groupe Virus et Immunité, URA CNRS 1930, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
93
|
Fackler OT, Kräusslich HG. Interactions of human retroviruses with the host cell cytoskeleton. Curr Opin Microbiol 2006; 9:409-15. [PMID: 16820319 DOI: 10.1016/j.mib.2006.06.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 06/20/2006] [Indexed: 12/23/2022]
Abstract
As obligate cell parasites, viruses have evolved into professional manipulators of host cell functions. Accordingly, viruses often remodel the cytoskeleton of target cells in order to convert one of the cell's barriers to viral replication into a vehicle for the virus that facilitates the generation of infectious progeny. Surprisingly little is known about the mechanisms employed by two major human pathogens, HIV and human T-cell leukaemia virus (HTLV), to exploit host cell cytoskeletal dynamics. New studies have begun to unravel how these retroviruses remodel cytoskeletal structures to facilitate entry into, transport within and egress from target cells. Exciting progress has been made in understanding how HIV and HTLV polarize actin and also control microtubule organization to spread from donor to target cells in close cell-contacts termed virological synapses.
Collapse
Affiliation(s)
- Oliver T Fackler
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
94
|
Matoba N, Geyer BC, Kilbourne J, Alfsen A, Bomsel M, Mor TS. Humoral immune responses by prime-boost heterologous route immunizations with CTB-MPR649–684, a mucosal subunit HIV/AIDS vaccine candidate. Vaccine 2006; 24:5047-55. [PMID: 16621185 DOI: 10.1016/j.vaccine.2006.03.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 03/15/2006] [Accepted: 03/16/2006] [Indexed: 11/21/2022]
Abstract
CTB-MPR(649-684) is a translational fusion protein consisting of the cholera toxin B subunit and a 36-residue peptide, MPR(649-684), corresponding to the conserved membrane proximal ectodomain of gp41. CTB-MPR(649-684) was previously shown to induce HIV-1 transcytosis-blocking antibodies in mice. In this report, we describe an effective immunization regimen for this novel anti HIV-1 vaccine-candidate. Bacterially-produced CTB-MPR(649-684) was intranasally and/or intraperitoneally administered to investigate several prime-boost heterologous route immunization regimens. Mucosal priming with the adjuvant cholera toxin elicited significant levels of vaginal IgA and serum IgG specific to MPR(649-684). Systemic boosting after mucosal priming enhanced the levels of serum and mucosal antibodies. Systemic priming induced a strong serum anti-MPR(649-684) IgG response, which was efficiently recalled and augmented by either systemic or mucosal boosting. However, this regimen was less effective in inducing secretory anti-MPR(649-684) IgA. The serum anti-MPR(649-684) IgG subtype profile revealed that both IgG1 and IgG2a were induced in all the immunization regimens, and that mucosal co-administration of cholera toxin shifted the bias to the latter subtype. We concluded that, of the various immunization regimens examined here, mucosal priming with adjuvant followed by systemic boosting exhibited the best response in respect to either systemic or mucosal anti-MPR(649-684) antibodies. Most importantly, mucosal antibodies elicited by this regimen significantly inhibited HIV-1 transcytosis in a human tight epithelium model.
Collapse
Affiliation(s)
- Nobuyuki Matoba
- The Biodesign Institute and School of Life Sciences, P.O. Box 874501, Arizona State University, Tempe, 85287-4501, USA
| | | | | | | | | | | |
Collapse
|
95
|
Abstract
Cell-to-cell spread of retroviruses via virological synapse (VS) contributes to overall progression of disease. VS are specialized pathogen-induced cellular structures that facilitate cell-to-cell transfer of HIV-1 and HTLV-1. VS provide a mechanistic explanation for cell-associated retroviral replication. While VS share some common features with neurological or immunological synapses, they also exhibit important differences. The role of VS might not be limited to human retroviruses and the emerging role of a plant synapse suggests that VS might well be conserved structures for cell-cell spreading of both animal and plant viruses. Dissection of the VS is just at its beginning, but already offers ample information and fascinating insights into mechanisms of viral replication and cell-to-cell communication.
Collapse
Affiliation(s)
- Eduardo Garcia
- Department of Dermatology and Venereology, University Hospital of Geneva, 4-747, 24 Rue Micheli-du-Crest, 1211 Geneva, Switzerland
| | - Vincent Piguet
- Department of Dermatology and Venereology, University Hospital of Geneva, 4-747, 24 Rue Micheli-du-Crest, 1211 Geneva, Switzerland
| |
Collapse
|