51
|
Diverse heterochromatin-associated proteins repress distinct classes of genes and repetitive elements. Nat Cell Biol 2021; 23:905-914. [PMID: 34354237 PMCID: PMC9248069 DOI: 10.1038/s41556-021-00725-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 06/30/2021] [Indexed: 12/28/2022]
Abstract
Heterochromatin, typically marked by histone H3 trimethylation at lysine 9 (H3K9me3) or lysine 27 (H3K27me3), represses different protein-coding genes in different cells, as well as repetitive elements. The basis for locus specificity is unclear. Previously, we identified 172 proteins that are embedded in sonication-resistant heterochromatin (srHC) harbouring H3K9me3. Here, we investigate in humans how 97 of the H3K9me3-srHC proteins repress heterochromatic genes. We reveal four groups of srHC proteins that each repress many common genes and repeat elements. Two groups repress H3K9me3-embedded genes with different extents of flanking srHC, one group is specific for srHC genes with H3K9me3 and H3K27me3, and one group is specific for genes with srHC as the primary feature. We find that the enhancer of rudimentary homologue (ERH) is conserved from Schizosaccharomyces pombe in repressing meiotic genes and, in humans, now represses other lineage-specific genes and repeat elements. The study greatly expands our understanding of H3K9me3-based gene repression in vertebrates.
Collapse
|
52
|
McDonald TL, Zhou W, Castro CP, Mumm C, Switzenberg JA, Mills RE, Boyle AP. Cas9 targeted enrichment of mobile elements using nanopore sequencing. Nat Commun 2021; 12:3586. [PMID: 34117247 PMCID: PMC8196195 DOI: 10.1038/s41467-021-23918-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Mobile element insertions (MEIs) are repetitive genomic sequences that contribute to genetic variation and can lead to genetic disorders. Targeted and whole-genome approaches using short-read sequencing have been developed to identify reference and non-reference MEIs; however, the read length hampers detection of these elements in complex genomic regions. Here, we pair Cas9-targeted nanopore sequencing with computational methodologies to capture active MEIs in human genomes. We demonstrate parallel enrichment for distinct classes of MEIs, averaging 44% of reads on-targeted signals and exhibiting a 13.4-54x enrichment over whole-genome approaches. We show an individual flow cell can recover most MEIs (97% L1Hs, 93% AluYb, 51% AluYa, 99% SVA_F, and 65% SVA_E). We identify seventeen non-reference MEIs in GM12878 overlooked by modern, long-read analysis pipelines, primarily in repetitive genomic regions. This work introduces the utility of nanopore sequencing for MEI enrichment and lays the foundation for rapid discovery of elusive, repetitive genetic elements.
Collapse
Affiliation(s)
- Torrin L McDonald
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Weichen Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Christopher P Castro
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Camille Mumm
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jessica A Switzenberg
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ryan E Mills
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
53
|
Kui L, Chen B, Chen J, Sharifi R, Dong Y, Zhang Z, Miao J. A Comparative Analysis on the Structure and Function of the Panax notoginseng Rhizosphere Microbiome. Front Microbiol 2021; 12:673512. [PMID: 34177857 PMCID: PMC8219928 DOI: 10.3389/fmicb.2021.673512] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Panax notoginseng, an important Chinese medicinal herb, can be mainly cultivated in two planting patterns, cropland planting (DT) and understory planting (LX). We speculate that the rhizosphere microbiome may vary in DT and LX and may play an important role in promoting the growth and health of P. notoginseng. In the present study, culture-independent Illumina HiSeq was employed to investigate the rhizosphere bacteria and fungi under DT and LX planting patterns. Predominant phyla include Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and Ascomycota in the two planting patterns. DT has higher alpha diversity index than LX. The predominant LX-core genera include Bradyrhizobium, Streptomyces, and Actinomadura, and the predominant DT-core genera include Sphingomonas, Variovorax, and Novosphingobium. Total relative abundance of the disease-suppression phylum (Proteobacteria, Firmicutes, and Actinobacteria) and the potential plant growth-promoting rhizobacteria (PGPR) were both significantly higher in LX than in DT. We also identified over-presented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition, and plant growth promotion in P. notoginseng rhizosphere. Our findings provide a valuable reference for studying beneficial microbes and pathogens of P. notoginseng planted in DT and LX.
Collapse
Affiliation(s)
- Ling Kui
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Baozheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
| | - Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran
| | - Yang Dong
- College of Biological Big Data, Yunnan Agricultural University, Kunming, China.,Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Zhanjiang Zhang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.,School of Pharmacy, Guangxi Medical University, Nanning, China
| |
Collapse
|
54
|
Trivedi P, Mattupalli C, Eversole K, Leach JE. Enabling sustainable agriculture through understanding and enhancement of microbiomes. THE NEW PHYTOLOGIST 2021; 230:2129-2147. [PMID: 33657660 DOI: 10.1111/nph.17319] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 05/18/2023]
Abstract
Harnessing plant-associated microbiomes offers an invaluable strategy to help agricultural production become more sustainable while also meeting growing demands for food, feed and fiber. A plethora of interconnected interactions among the host, environment and microbes, occurring both above and below ground, drive recognition, recruitment and colonization of plant-associated microbes, resulting in activation of downstream host responses and functionality. Dissecting these complex interactions by integrating multiomic approaches, high-throughput culturing, and computational and synthetic biology advances is providing deeper understanding of the structure and function of native microbial communities. Such insights are paving the way towards development of microbial products as well as microbiomes engineered with synthetic microbial communities capable of delivering agronomic solutions. While there is a growing market for microbial-based solutions to improve crop productivity, challenges with commercialization of these products remain. The continued translation of plant-associated microbiome knowledge into real-world scenarios will require concerted transdisciplinary research, cross-training of a next generation of scientists, and targeted educational efforts to prime growers and the general public for successful adoption of these innovative technologies.
Collapse
Affiliation(s)
- Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| | - Chakradhar Mattupalli
- Department of Plant Pathology, Washington State University, Mount Vernon NWREC, 16650 State Route 536, Mount Vernon, WA, 98273, USA
| | - Kellye Eversole
- Eversole Associates, 5207 Wyoming Road, Bethesda, MD, 20816, USA
- International Alliance for Phytobiomes Research, 2841 NE Marywood Ct, Lee's Summit, MO, 64086, USA
| | - Jan E Leach
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Ft Collins, CO, 80523-1177, USA
| |
Collapse
|
55
|
SMRT sequencing of full-length transcriptome of birch-leaf pear (Pyrus betulifolia Bunge) under drought stress. J Genet 2021. [DOI: 10.1007/s12041-021-01272-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
56
|
Insights into the taxonomic and functional characterization of agricultural crop core rhizobiomes and their potential microbial drivers. Sci Rep 2021; 11:10068. [PMID: 33980901 PMCID: PMC8115259 DOI: 10.1038/s41598-021-89569-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/27/2021] [Indexed: 02/03/2023] Open
Abstract
While our understanding of plant-microbe interactions in the rhizosphere microbiome (rhizobiome) has increased, there is still limited information on which taxa and functions drive these rhizobiome interactions. Focusing on the core rhizobiome (members common to two or more microbial assemblages) of crops may reduce the number of targets for determining these interactions, as they are expected to have greater influence on soil nutrient cycling and plant growth than the rest of the rhizobiome. Here, we examined whether the characterization of a core rhizobiome on the basis of only taxonomic or functional traits rather than the combined analysis of taxonomic and functional traits provides a different assessment of the core rhizobiome of agricultural crops. Sequences of the bacterial 16S rRNA gene from six globally important crops were analyzed using two different approaches in order to identify and characterize the taxonomic and functional core rhizobiome. For all crops examined, we found significant differences in the taxonomic and functional composition between the core rhizobiomes, and different phyla, genera, and predicted microbial functions were dominant depending on the core rhizobiome type. Network analysis indicated potentially important taxa were present in both taxonomic and functional core rhizobiomes. A subset of genera and predicted functions were exclusively or predominately present in only one type of core rhizobiome while others were detected in both core rhizobiomes. These results highlight the necessity of including both taxonomy and function when assessing the core rhizobiome, as this will enhance our understanding of the relationships between microbial taxa and soil health, plant growth, and agricultural sustainability.
Collapse
|
57
|
Liu YX, Qin Y, Chen T, Lu M, Qian X, Guo X, Bai Y. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 2021; 12:315-330. [PMID: 32394199 PMCID: PMC8106563 DOI: 10.1007/s13238-020-00724-8] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/10/2020] [Indexed: 12/22/2022] Open
Abstract
Advances in high-throughput sequencing (HTS) have fostered rapid developments in the field of microbiome research, and massive microbiome datasets are now being generated. However, the diversity of software tools and the complexity of analysis pipelines make it difficult to access this field. Here, we systematically summarize the advantages and limitations of microbiome methods. Then, we recommend specific pipelines for amplicon and metagenomic analyses, and describe commonly-used software and databases, to help researchers select the appropriate tools. Furthermore, we introduce statistical and visualization methods suitable for microbiome analysis, including alpha- and beta-diversity, taxonomic composition, difference comparisons, correlation, networks, machine learning, evolution, source tracing, and common visualization styles to help researchers make informed choices. Finally, a step-by-step reproducible analysis guide is introduced. We hope this review will allow researchers to carry out data analysis more effectively and to quickly select the appropriate tools in order to efficiently mine the biological significance behind the data.
Collapse
Affiliation(s)
- Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuan Qin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tong Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Meiping Lu
- Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310053, China
| | - Xubo Qian
- Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310053, China
| | - Xiaoxuan Guo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
58
|
Trigo BB, Utsunomiya ATH, Fortunato AAAD, Milanesi M, Torrecilha RBP, Lamb H, Nguyen L, Ross EM, Hayes B, Padula RCM, Sussai TS, Zavarez LB, Cipriano RS, Caminhas MMT, Lopes FL, Pelle C, Leeb T, Bannasch D, Bickhart D, Smith TPL, Sonstegard TS, Garcia JF, Utsunomiya YT. Variants at the ASIP locus contribute to coat color darkening in Nellore cattle. Genet Sel Evol 2021; 53:40. [PMID: 33910501 PMCID: PMC8082809 DOI: 10.1186/s12711-021-00633-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nellore cattle (Bos indicus) are well-known for their adaptation to warm and humid environments. Hair length and coat color may impact heat tolerance. The Nellore breed has been strongly selected for white coat, but bulls generally exhibit darker hair ranging from light grey to black on the head, neck, hump, and knees. Given the potential contribution of coat color variation to the adaptation of cattle populations to tropical and sub-tropical environments, our aim was to map positional and functional candidate genetic variants associated with darkness of hair coat (DHC) in Nellore bulls. RESULTS We performed a genome-wide association study (GWAS) for DHC using data from 432 Nellore bulls that were genotyped for more than 777 k single nucleotide polymorphism (SNP) markers. A single major association signal was detected in the vicinity of the agouti signaling protein gene (ASIP). The analysis of whole-genome sequence (WGS) data from 21 bulls revealed functional variants that are associated with DHC, including a structural rearrangement involving ASIP (ASIP-SV1). We further characterized this structural variant using Oxford Nanopore sequencing data from 13 Australian Brahman heifers, which share ancestry with Nellore cattle; we found that this variant originates from a 1155-bp deletion followed by an insertion of a transposable element of more than 150 bp that may impact the recruitment of ASIP non-coding exons. CONCLUSIONS Our results indicate that the variant ASIP sequence causes darker coat pigmentation on specific parts of the body, most likely through a decreased expression of ASIP and consequently an increased production of eumelanin.
Collapse
Affiliation(s)
- Beatriz B Trigo
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, SP, Brazil.,International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil
| | - Adam T H Utsunomiya
- International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil.,AgroPartners Consulting, R. Floriano Peixoto, 120-Sala 43a-Centro, Araçatuba, SP, 16010-220, Brazil
| | - Alvaro A A D Fortunato
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, SP, Brazil.,International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil.,Personal-PEC, R. Sebastião Lima, 1336-Centro, Campo Grande, MS, 79004-600, Brazil
| | - Marco Milanesi
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, SP, Brazil.,International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil.,AgroPartners Consulting, R. Floriano Peixoto, 120-Sala 43a-Centro, Araçatuba, SP, 16010-220, Brazil
| | - Rafaela B P Torrecilha
- International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil.,AgroPartners Consulting, R. Floriano Peixoto, 120-Sala 43a-Centro, Araçatuba, SP, 16010-220, Brazil
| | - Harrison Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Loan Nguyen
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Elizabeth M Ross
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Ben Hayes
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | | | - Thayla S Sussai
- Centro Universitário Católico Salesiano, Araçatuba, SP, Brazil
| | - Ludmilla B Zavarez
- International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil
| | | | - Maria M T Caminhas
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | - Flavia L Lopes
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, SP, Brazil
| | | | - Tosso Leeb
- Institute of Genetics, Vetsuisse-Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.,Dermfocus, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland
| | - Danika Bannasch
- Institute of Genetics, Vetsuisse-Faculty, University of Bern, Bremgartenstrasse 109A, 3012, Bern, Switzerland.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Derek Bickhart
- Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI, 53706, USA
| | - Timothy P L Smith
- US. Meat Animal Research Center, USDA-ARS, 844 Road 313, Clay Center, NE, 68933, USA
| | | | - José F Garcia
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, SP, Brazil.,International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil.,AgroPartners Consulting, R. Floriano Peixoto, 120-Sala 43a-Centro, Araçatuba, SP, 16010-220, Brazil.,School of Agriculture and Veterinarian Sciences, Jaboticabal, Department of Preventive Veterinary Medicine and Animal Reproduction, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Yuri T Utsunomiya
- School of Veterinary Medicine, Araçatuba, Department of Production and Animal Health, São Paulo State University (Unesp), Araçatuba, SP, Brazil. .,International Atomic Energy Agency (IAEA) Collaborating Centre On Animal Genomics and Bioinformatics, Araçatuba, SP, Brazil. .,AgroPartners Consulting, R. Floriano Peixoto, 120-Sala 43a-Centro, Araçatuba, SP, 16010-220, Brazil.
| |
Collapse
|
59
|
Wang Q, Boenigk S, Boehm V, Gehring NH, Altmueller J, Dieterich C. Single cell transcriptome sequencing on the Nanopore platform with ScNapBar. RNA (NEW YORK, N.Y.) 2021; 27:rna.078154.120. [PMID: 33906975 PMCID: PMC8208055 DOI: 10.1261/rna.078154.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The current ecosystem of single cell RNA-seq platforms is rapidly expanding, but robust solutions for single cell and single molecule full- length RNA sequencing are virtually absent. A high-throughput solution that covers all aspects is necessary to study the complex life of mRNA on the single cell level. The Nanopore platform offers long read sequencing and can be integrated with the popular single cell sequencing method on the 10x Chromium platform. However, the high error-rate of Nanopore reads poses a challenge in downstream processing (e.g. for cell barcode assignment). We propose a solution to this particular problem by using a hybrid sequencing approach on Nanopore and Illumina platforms. Our software ScNapBar enables cell barcode assignment with high accuracy, especially if sequencing satura- tion is low. ScNapBar uses unique molecular identifier (UMI) or Naıve Bayes probabilistic approaches in the barcode assignment, depending on the available Illumina sequencing depth. We have benchmarked the two approaches on simulated and real Nanopore datasets. We further applied ScNapBar to pools of cells with an active or a silenced non-sense mediated RNA decay pathway. Our Nanopore read assignment distinguishes the respective cell populations and reveals characteristic nonsense-mediated mRNA decay events depending on cell status.
Collapse
Affiliation(s)
- Qi Wang
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg
| | - Sven Boenigk
- Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg
| | | | | | | | | |
Collapse
|
60
|
De Anda V, Chen LX, Dombrowski N, Hua ZS, Jiang HC, Banfield JF, Li WJ, Baker BJ. Brockarchaeota, a novel archaeal phylum with unique and versatile carbon cycling pathways. Nat Commun 2021; 12:2404. [PMID: 33893309 PMCID: PMC8065059 DOI: 10.1038/s41467-021-22736-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Geothermal environments, such as hot springs and hydrothermal vents, are hotspots for carbon cycling and contain many poorly described microbial taxa. Here, we reconstructed 15 archaeal metagenome-assembled genomes (MAGs) from terrestrial hot spring sediments in China and deep-sea hydrothermal vent sediments in Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct group within the TACK superphylum, and thus we propose their classification as a new phylum, 'Brockarchaeota', named after Thomas Brock for his seminal research in hot springs. Based on the MAG sequence information, we infer that some Brockarchaeota are uniquely capable of mediating non-methanogenic anaerobic methylotrophy, via the tetrahydrofolate methyl branch of the Wood-Ljungdahl pathway and reductive glycine pathway. The hydrothermal vent genotypes appear to be obligate fermenters of plant-derived polysaccharides that rely mostly on substrate-level phosphorylation, as they seem to lack most respiratory complexes. In contrast, hot spring lineages have alternate pathways to increase their ATP yield, including anaerobic methylotrophy of methanol and trimethylamine, and potentially use geothermally derived mercury, arsenic, or hydrogen. Their broad distribution and their apparent anaerobic metabolic versatility indicate that Brockarchaeota may occupy previously overlooked roles in anaerobic carbon cycling.
Collapse
Affiliation(s)
- Valerie De Anda
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
| | - Lin-Xing Chen
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, Den Burg, Netherlands
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, People's Republic of China
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, People's Republic of China.
| | - Brett J Baker
- Department of Marine Science, University of Texas Austin, Port Aransas, TX, 78373, USA.
| |
Collapse
|
61
|
Han L, Sun Y, Cao Y, Gao P, Quan Z, Chang Y, Ding J. Analysis of the gene transcription patterns and DNA methylation characteristics of triploid sea cucumbers (Apostichopus japonicus). Sci Rep 2021; 11:7564. [PMID: 33828212 PMCID: PMC8027599 DOI: 10.1038/s41598-021-87278-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/26/2021] [Indexed: 02/01/2023] Open
Abstract
Breeding of polyploid aquatic animals is still an important approach and research hotspot for realizing the economic benefits afforded by the improvement of aquatic animal germplasm. To better understand the molecular mechanisms of the growth of triploid sea cucumbers, we performed gene expression and genome-wide comparisons of DNA methylation using the body wall tissue of triploid sea cucumbers using RNA-seq and MethylRAD-seq technologies. We clarified the expression pattern of triploid sea cucumbers and found no dosage effect. DEGs were significantly enriched in the pathways of nucleic acid and protein synthesis, cell growth, cell division, and other pathways. Moreover, we characterized the methylation pattern changes and found 615 differentially methylated genes at CCGG sites and 447 differentially methylated genes at CCWGG sites. Integrative analysis identified 23 genes (such as Guf1, SGT, Col5a1, HAL, HPS1, etc.) that exhibited correlations between promoter methylation and expression. Altered DNA methylation and expression of various genes suggested their roles and potential functional interactions in the growth of triploid sea cucumbers. Our data provide new insights into the epigenetic and transcriptomic alterations of the body wall tissue of triploid sea cucumbers and preliminarily elucidate the molecular mechanism of their growth, which is of great significance for the breeding of fine varieties of sea cucumbers.
Collapse
Affiliation(s)
- Lingshu Han
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China ,grid.203507.30000 0000 8950 5267Ningbo University, Ningbo, 315832 Zhejiang People’s Republic of China
| | - Yi Sun
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Yue Cao
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Pingping Gao
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Zijiao Quan
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Yaqing Chang
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| | - Jun Ding
- grid.410631.10000 0001 1867 7333Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023 Liaoning People’s Republic of China
| |
Collapse
|
62
|
Zheng T, Li P, Li L, Zhang Q. Research advances in and prospects of ornamental plant genomics. HORTICULTURE RESEARCH 2021; 8:65. [PMID: 33790259 PMCID: PMC8012582 DOI: 10.1038/s41438-021-00499-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 05/14/2023]
Abstract
The term 'ornamental plant' refers to all plants with ornamental value, which generally have beautiful flowers or special plant architectures. China is rich in ornamental plant resources and known as the "mother of gardens". Genomics is the science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene regulation, and important biological mechanisms based on detailed genome sequence information. Due to the diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and application prospects.
Collapse
Affiliation(s)
- Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
63
|
Zhang L, Zhang J, Wei Y, Hu W, Liu G, Zeng H, Shi H. Microbiome-wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in cassava. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:689-701. [PMID: 33095967 PMCID: PMC8051613 DOI: 10.1111/pbi.13495] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/18/2020] [Indexed: 05/07/2023]
Abstract
Cassava is one of the most important staple food crops in tropical regions. To date, an understanding of the relationship between microbial communities and disease resistance in cassava has remained elusive. In order to explore the relationship among microbiome and phenotypes for further targeted design of microbial community, 16S rRNA and ITS of microbiome of ten cassava varieties were analysed, and a distinctive microbial community in the rhizosphere showed significant interdependence with disease resistance. Shotgun metagenome sequencing was performed to elucidate the structure of microbiomes of cassava rhizosphere. Comprehensive microbiome studies were performed to assess the correlation between the rhizosphere microbiome and disease resistance. Subsequently, the metagenome of rhizosphere microbiome was annotated to obtain taxonomic information at species level and identify metabolic pathways that were significantly associated with cassava disease resistance. Notably, cassava disease resistance was significantly associated with Lactococcus sp., which specifically produces nisin. To definitively explain the role of nisin and underlying mechanism, analysis of nisin biosynthesis-associated genes together with in vitro and in vivo experiments highlighted the effect of nisin on inhibiting the growth of Xanthomonas axonopodis pv. manihotis (Xam) and activating immune response in cassava. The new insights between cassava rhizosphere microbiome especially Lactococcus sp. and disease resistance provide valuable information into further control of cassava disease.
Collapse
Affiliation(s)
- Lin Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Jiachao Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical CropsInstitute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouChina
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsCollege of Food Science and TechnologyCollege of Life and Pharmaceutical SciencesHainan UniversityHaikouChina
| |
Collapse
|
64
|
Guo K, Zhong J, Zhu L, Xie F, Du Y, Ji X. The thermal dependence and molecular basis of physiological color change in Takydromus septentrionalis (Lacertidae). Biol Open 2021; 10:bio.058503. [PMID: 33593793 PMCID: PMC8015239 DOI: 10.1242/bio.058503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
One of the main functions of physiological color change is thermoregulation. This change occurs much more rapidly than morphological color change, but the underlying mechanism remains poorly understood. Here, we studied the thermal dependence and molecular basis of physiological color change in lizards using Takydromus septentrionalis (Lacertidae) as the model system. Body color was thermally sensitive, becoming increasingly light as body temperatures deviated from the level (∼30°C) preferred by this species. We identified 3389 differentially expressed genes (DEGs) between lizards at 24°C and 30°C, and 1,097 DEGs between lizards at 36°C and 30°C. Temperature affected the cAMP signal pathway, motor proteins, cytoskeleton, and the expression of genes related to melanocyte-stimulating hormone (MSH) and melanocyte-concentrating hormone (MCH). Our data suggest that the role of physiological color change in thermoregulation is achieved in T. septentrionalis by altering the arrangement of pigments and thus the amount of solar radiation absorbed and reflected. G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion. This mechanism differs from that reported for teleost fish where MCH activates the G proteins and thereby causes pigment aggregation. This article has an associated First Person interview with the first author of the paper. Summary: G protein-coupling system inhibits adenylate cyclase activity to transform ATP into cAMP and thereby causes rapid pigment aggregation. MCH deactivates the G proteins and thereby initiates pigment dispersion.
Collapse
Affiliation(s)
- Kun Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Jun Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China
| | - Lin Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Fan Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China
| | - Yu Du
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, Hainan, China
| | - Xiang Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu, China .,Institute of Biodiversity Conservation and Utilization, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang, China.,MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, Hainan Tropical Ocean University, Sanya 572022, Hainan, China
| |
Collapse
|
65
|
Chen Y, Chen H, Zhong Q, Yun YH, Chen W, Chen W. Determination of Microbial Diversity and Community Composition in Unfermented and Fermented Washing Rice Water by High-Throughput Sequencing. Curr Microbiol 2021; 78:1730-1740. [PMID: 33704531 DOI: 10.1007/s00284-021-02400-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
Washing rice water (WRW) refers to the sewage produced by rice washing in China and other parts of Asia people's daily life. As in the WRW is rich a variety of nutrients, microorganisms are prone to multiply and pollute the environment. In this article, high-throughput sequencing is used to describe the microbial diversity in different fermentation time WRW. The results showed that the sequencing depth effectively covered the microbial species in the samples, and the bacterial community structure in the samples of WRW at different fermentation periods was rich in diversity. Preominant taxa included Proteobacteria (62%), Firmicutes (28%), approximately Cyanobacteria (10%) and Bacteroidetes (0.5%). The core WRW microbiome comprises Trabulsiella, Pseudomonas, Serratia, Lactobacillus, Erwinia, Enterobacter, Clostridium and Acinetobacter, some of which are potential beneficial microbes. The change of microbial community composition with the change of habitat was assessed. It was found that environmental factors had significant influence on the assembly structure of microbial community.
Collapse
Affiliation(s)
- Youlin Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, China
| | - Haiming Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, China
| | - Qiuping Zhong
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, China
| | - Yong-Huan Yun
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, China
| | - Weijun Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, China. .,Chunguang Agro-Product Processing Institute, Wenchang, 571333, China.
| | - Wenxue Chen
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou, 570228, China.
| |
Collapse
|
66
|
Li C, Olave M, Hou Y, Qin G, Schneider RF, Gao Z, Tu X, Wang X, Qi F, Nater A, Kautt AF, Wan S, Zhang Y, Liu Y, Zhang H, Zhang B, Zhang H, Qu M, Liu S, Chen Z, Zhong J, Zhang H, Meng L, Wang K, Yin J, Huang L, Venkatesh B, Meyer A, Lu X, Lin Q. Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution. Nat Commun 2021; 12:1094. [PMID: 33597547 PMCID: PMC7889852 DOI: 10.1038/s41467-021-21379-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Seahorses have a circum-global distribution in tropical to temperate coastal waters. Yet, seahorses show many adaptations for a sedentary, cryptic lifestyle: they require specific habitats, such as seagrass, kelp or coral reefs, lack pelvic and caudal fins, and give birth to directly developed offspring without pronounced pelagic larval stage, rendering long-range dispersal by conventional means inefficient. Here we investigate seahorses' worldwide dispersal and biogeographic patterns based on a de novo genome assembly of Hippocampus erectus as well as 358 re-sequenced genomes from 21 species. Seahorses evolved in the late Oligocene and subsequent circum-global colonization routes are identified and linked to changing dynamics in ocean currents and paleo-temporal seaway openings. Furthermore, the genetic basis of the recurring "bony spines" adaptive phenotype is linked to independent substitutions in a key developmental gene. Analyses thus suggest that rafting via ocean currents compensates for poor dispersal and rapid adaptation facilitates colonizing new habitats.
Collapse
Affiliation(s)
- Chunyan Li
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China ,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Melisa Olave
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany ,grid.423606.50000 0001 1945 2152Present Address: Argentine Dryland Research Institute, National Council for Scientific and Technical Research (IADIZA-CONICET), Mendoza, Argentina
| | - Yali Hou
- grid.464209.d0000 0004 0644 6935Beijing Institute of Genomics, Chinese Academy of Sciences; China National Center for Bioinformation, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Geng Qin
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Ralf F. Schneider
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany ,Marine Ecology, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Zexia Gao
- grid.35155.370000 0004 1790 4137College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | | | - Xin Wang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Furong Qi
- grid.464209.d0000 0004 0644 6935Beijing Institute of Genomics, Chinese Academy of Sciences; China National Center for Bioinformation, Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Alexander Nater
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany
| | - Andreas F. Kautt
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany ,grid.38142.3c000000041936754XPresent Address: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| | - Shiming Wan
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yanhong Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yali Liu
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Huixian Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Bo Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Hao Zhang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Meng Qu
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Shuaishuai Liu
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zeyu Chen
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.419010.d0000 0004 1792 7072State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Jia Zhong
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | | | - Kai Wang
- grid.443651.1School of Agriculture, Ludong University, Yantai, China
| | - Jianping Yin
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Liangmin Huang
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Byrappa Venkatesh
- grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore, Singapore
| | - Axel Meyer
- grid.9811.10000 0001 0658 7699Department of Biology, University of Konstanz, Konstanz, Germany
| | - Xuemei Lu
- grid.419010.d0000 0004 1792 7072State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Qiang Lin
- grid.458498.c0000 0004 1798 9724CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China ,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China ,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
67
|
Low L, Fuentes-Utrilla P, Hodson J, O’Neil JD, Rossiter AE, Begum G, Suleiman K, Murray PI, Wallace GR, Loman NJ, Rauz S, West Midlands Collaborative Ophthalmology Network for Clinical Effectiveness & Research by Trainees (WM CONCERT). Evaluation of full-length nanopore 16S sequencing for detection of pathogens in microbial keratitis. PeerJ 2021; 9:e10778. [PMID: 33628638 PMCID: PMC7891086 DOI: 10.7717/peerj.10778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Microbial keratitis is a leading cause of preventable blindness worldwide. Conventional sampling and culture techniques are time-consuming, with over 40% of cases being culture-negative. Nanopore sequencing technology is portable and capable of generating long sequencing reads in real-time. The aim of this study is to evaluate the potential of nanopore sequencing directly from clinical samples for the diagnosis of bacterial microbial keratitis. METHODS Using full-length 16S rRNA amplicon sequences from a defined mock microbial community, we evaluated and benchmarked our bioinformatics analysis pipeline for taxonomic assignment on three different 16S rRNA databases (NCBI 16S RefSeq, RDP and SILVA) with clustering at 97%, 99% and 100% similarities. Next, we optimised the sample collection using an ex vivo porcine model of microbial keratitis to compare DNA recovery rates of 12 different collection methods: 21-gauge needle, PTFE membrane (4 mm and 6 mm), Isohelix™ SK-2S, Sugi® Eyespear, Cotton, Rayon, Dryswab™, Hydraflock®, Albumin-coated, Purflock®, Purfoam and Polyester swabs. As a proof-of-concept study, we then used the sampling technique that provided the highest DNA recovery, along with the optimised bioinformatics pipeline, to prospectively collected samples from patients with suspected microbial keratitis. The resulting nanopore sequencing results were then compared to standard microbiology culture methods. RESULTS We found that applying alignment filtering to nanopore sequencing reads and aligning to the NCBI 16S RefSeq database at 100% similarity provided the most accurate bacterial taxa assignment. DNA concentration recovery rates differed significantly between the collection methods (p < 0.001), with the Sugi® Eyespear swab providing the highest mean rank of DNA concentration. Then, applying the optimised collection method and bioinformatics pipeline directly to samples from two patients with suspected microbial keratitis, sequencing results from Patient A were in agreement with culture results, whilst Patient B, with negative culture results and previous antibiotic use, showed agreement between nanopore and Illumina Miseq sequencing results. CONCLUSION We have optimised collection methods and demonstrated a novel workflow for identification of bacterial microbial keratitis using full-length 16S nanopore sequencing.
Collapse
Affiliation(s)
- Liying Low
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, West Midlands, UK
| | - Pablo Fuentes-Utrilla
- MicrobesNG/School of Biosciences, University of Birmingham, Birmingham, West Midlands, UK
| | - James Hodson
- Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, West Midlands, UK
| | - John D. O’Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, UK
| | - Amanda E. Rossiter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, West Midlands, UK
| | - Ghazala Begum
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, UK
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
| | - Kusy Suleiman
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip I. Murray
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, West Midlands, UK
| | - Graham R. Wallace
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, West Midlands, UK
| | - Nicholas J. Loman
- MicrobesNG/School of Biosciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, West Midlands, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, West Midlands, UK
| | | |
Collapse
|
68
|
Naji MM, Utsunomiya YT, Sölkner J, Rosen BD, Mészáros G. Investigation of ancestral alleles in the Bovinae subfamily. BMC Genomics 2021; 22:108. [PMID: 33557747 PMCID: PMC7871596 DOI: 10.1186/s12864-021-07412-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/27/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND In evolutionary theory, divergence and speciation can arise from long periods of reproductive isolation, genetic mutation, selection and environmental adaptation. After divergence, alleles can either persist in their initial state (ancestral allele - AA), co-exist or be replaced by a mutated state (derived alleles -DA). In this study, we aligned whole genome sequences of individuals from the Bovinae subfamily to the cattle reference genome (ARS.UCD-1.2) for defining ancestral alleles necessary for selection signatures study. RESULTS Accommodating independent divergent of each lineage from the initial ancestral state, AA were defined based on fixed alleles on at least two groups of yak, bison and gayal-gaur-banteng resulting in ~ 32.4 million variants. Using non-overlapping scanning windows of 10 Kb, we counted the AA observed within taurine and zebu cattle. We focused on the extreme points, regions with top 0. 1% (high count) and regions without any occurrence of AA (null count). High count regions preserved gene functions from ancestral states that are still beneficial in the current condition, while null counts regions were linked to mutated ones. For both cattle, high count regions were associated with basal lipid metabolism, essential for survival of various environmental pressures. Mutated regions were associated to productive traits in taurine, i.e. higher metabolism, cell development and behaviors and in immune response domain for zebu. CONCLUSIONS Our findings suggest that retaining and losing AA in some regions are varied and made it species-specific with possibility of overlapping as it depends on the selective pressure they had to experience.
Collapse
Affiliation(s)
- Maulana M. Naji
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Yuri T. Utsunomiya
- São Paulo State University (Unesp), School of Veterinary Medicine, Department of Production and Animal Health, Araçatuba, São Paulo Brazil
- International Atomic Energy Agency (IAEA) Collaborating Centre on Animal Genomics and Bioinformatics, Araçatuba, São Paulo Brazil
- AgroPartners Consulting. R. Floriano Peixoto, 120-Sala 43A-Centro, Araçatuba, SP 16010-220 Brazil
- Personal-PEC. R. Sebastiao Lima, 1336-Centro, Campo Grande, MS 79004-600 Brazil
| | - Johann Sölkner
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | | | - Gábor Mészáros
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
69
|
Phillip JM, Han KS, Chen WC, Wirtz D, Wu PH. A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei. Nat Protoc 2021; 16:754-774. [PMID: 33424024 PMCID: PMC8167883 DOI: 10.1038/s41596-020-00432-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Cell morphology encodes essential information on many underlying biological processes. It is commonly used by clinicians and researchers in the study, diagnosis, prognosis, and treatment of human diseases. Quantification of cell morphology has seen tremendous advances in recent years. However, effectively defining morphological shapes and evaluating the extent of morphological heterogeneity within cell populations remain challenging. Here we present a protocol and software for the analysis of cell and nuclear morphology from fluorescence or bright-field images using the VAMPIRE algorithm ( https://github.com/kukionfr/VAMPIRE_open ). This algorithm enables the profiling and classification of cells into shape modes based on equidistant points along cell and nuclear contours. Examining the distributions of cell morphologies across automatically identified shape modes provides an effective visualization scheme that relates cell shapes to cellular subtypes based on endogenous and exogenous cellular conditions. In addition, these shape mode distributions offer a direct and quantitative way to measure the extent of morphological heterogeneity within cell populations. This protocol is highly automated and fast, with the ability to quantify the morphologies from 2D projections of cells seeded both on 2D substrates or embedded within 3D microenvironments, such as hydrogels and tissues. The complete analysis pipeline can be completed within 60 minutes for a dataset of ~20,000 cells/2,400 images.
Collapse
Affiliation(s)
- Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kyu-Sang Han
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA
| | - Wei-Chiang Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center, Johns Hopkins Institute for Nanobiotechnology (INBT), Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
70
|
Li R, Shen X, Chen H, Peng D, Wu R, Sun H. Developmental validation of the MGIEasy Signature Identification Library Prep Kit, an all-in-one multiplex system for forensic applications. Int J Legal Med 2021; 135:739-753. [PMID: 33523251 DOI: 10.1007/s00414-021-02507-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/08/2021] [Indexed: 01/23/2023]
Abstract
Analyzing genetic markers in nuclear and mitochondrial genomes is helpful in various forensic applications, such as individual identifications and kinship analyses. However, most commercial kits detect these markers separately, which is time-consuming, laborious, and more error-prone (mislabelling, contamination, ...). The MGIEasy Signature Identification Library Prep Kit (hereinafter "MGIEasy identification system"; MGI Tech, Shenzhen, China) has been designed to provide a simple, fast, and robust way to detect appropriate markers in one multiplex PCR reaction: 52 autosomal STRs, 27 X-chromosomal STRs, 48 Y-chromosomal STRs, 145 identity-informative SNPs, 53 ancestry-informative SNPs, 29 phenotype-informative SNPs, and the hypervariable regions of mitochondrial DNA (mtDNA). Here, we validated the performance of MGIEasy identification system following the guidelines of the Scientific Working Group on DNA Analysis Methods (SWGDAM), assessing species specificity, sensitivity, mixture identification, stability under non-optimal conditions (degraded samples, inhibitor contamination, and various substrates), repeatability, and concordance. Libraries prepared using MGIEasy identification system were sequenced on a MGISEQ-2000 instrument (MGI Tech). MGIEasy-derived STR, SNP, and mtDNA genotypes were highly concordant with CE-based STR genotypes (99.79%), MiSeq FGx-based SNP genotypes (99.78%), and Sanger-based mtDNA genotypes (100%), respectively. This system was strongly human-specific, resistant to four common PCR inhibitors, and reliably amplified both low quantities of DNA (as low as 0.125 ng) and degraded DNA (~ 150 nt). Most of the unique alleles from the minor contributor were detected in 1:10 male-female and male-male mixtures; some minor Y-STR alleles were even detected in 1:1000 male-female mixtures. MGIEasy also successfully directly amplified markers from blood stains on FTA cards, filter papers, and swabs. Thus, our results demonstrated that MGIEasy identification system was suitable for use in forensic analyses due to its robust and reliable performance on samples of varying quality and quantity.
Collapse
Affiliation(s)
- Ran Li
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xuefeng Shen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hui Chen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Dan Peng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Riga Wu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Hongyu Sun
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China. .,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
71
|
He Q, Zhi H, Tang S, Xing L, Wang S, Wang H, Zhang A, Li Y, Gao M, Zhang H, Chen G, Dai S, Li J, Yang J, Liu H, Zhang W, Jia Y, Li S, Liu J, Qiao Z, Guo E, Jia G, Liu J, Diao X. QTL mapping for foxtail millet plant height in multi-environment using an ultra-high density bin map. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:557-572. [PMID: 33128073 DOI: 10.1007/s00122-020-03714-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/23/2020] [Indexed: 05/20/2023]
Abstract
Using a fixed RIL population derived from a widely used foxtail millet backbone breeding line and an elite cultivar, we constructed a high-density bin map and identified six novel multi-environment effect QTLs and seven candidate genes for dwarf phenotype. Plant height is an important trait that determines tradeoffs between competition and resource allocation, which is crucial for yield potential. To improve the C4 model plant foxtail millet (Setaria italica) productivity, it is necessary to isolate plant height-related genes that contribute to ideal plant architecture in breeding. In the present study, we generated a foxtail millet population of 333 recombinant inbred lines (RILs) derived from a cross between a backbone line Ai 88 and an elite cultivar Liaogu 1. We evaluated plant height in 13 environmental conditions across 4 years, the mean plant height of the RIL population ranged from 89.5 to 149.9 cm. Using deep re-sequencing data, we constructed a high-density bin map with 3744 marker bins. Quantitative trait locus (QTL) mapping identified 26 QTLs significantly associated with plant height. Of these, 13 QTLs were repeatedly detected under multiple environments, including six novel QTLs that have not been reported before. Seita.1G242300, a gene encodes gibberellin 2-oxidase-8, which was detected in nine environments in a 1.54-Mb interval of qPH1.3, was considered as an important candidate gene. Moreover, other six genes involved in GA biosynthesis or signaling pathways, and fifteen genes encode F-box domain proteins which might function as E3 ligases, were also considered as candidate genes in different QTLs. These QTLs and candidate genes identified in this study will help to elucidate the genetic basis of foxtail millet plant height, and the linked markers will be useful for marker-assistant selection of varieties with ideal plant architecture and high yield potential.
Collapse
Affiliation(s)
- Qiang He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Hui Zhi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Sha Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Lu Xing
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Suying Wang
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Haigang Wang
- Institute of Crop Germplasm, Shanxi Academy of Agricultural Sciences, Taiyuan, 030000, China
| | - Aiying Zhang
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046000, Shanxi, China
| | - Yuhui Li
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046000, Shanxi, China
| | - Ming Gao
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, 136100, China
| | - Haijin Zhang
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Guoqiu Chen
- Institute of Dry-Land Agriculture and Forestry, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, Liaoning, China
| | - Shutao Dai
- Institute of Crop Sciences, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, Henan, China
| | - Junxia Li
- Institute of Crop Sciences, Henan Academy of Agricultural Sciences, Zhengzhou, 450000, Henan, China
| | - Junjun Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Huifang Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Wei Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Yanchao Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Shujie Li
- Institute of Crop Sciences, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin, 136100, China
| | - Jinrong Liu
- Anyang Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhijun Qiao
- Institute of Crop Germplasm, Shanxi Academy of Agricultural Sciences, Taiyuan, 030000, China
| | - Erhu Guo
- Institute of Millet Crops, Shanxi Academy of Agricultural Sciences, Changzhi, 046000, Shanxi, China
| | - Guanqing Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Jun Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, Haidian, 100081, China.
| |
Collapse
|
72
|
Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat Commun 2021; 12:405. [PMID: 33452249 PMCID: PMC7810986 DOI: 10.1038/s41467-020-20508-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Plant genomes remain highly fragmented and are often characterized by hundreds to thousands of assembly gaps. Here, we report chromosome-level reference and phased genome assembly of Ophiorrhiza pumila, a camptothecin-producing medicinal plant, through an ordered multi-scaffolding and experimental validation approach. With 21 assembly gaps and a contig N50 of 18.49 Mb, Ophiorrhiza genome is one of the most complete plant genomes assembled to date. We also report 273 nitrogen-containing metabolites, including diverse monoterpene indole alkaloids (MIAs). A comparative genomics approach identifies strictosidine biogenesis as the origin of MIA evolution. The emergence of strictosidine biosynthesis-catalyzing enzymes precede downstream enzymes' evolution post γ whole-genome triplication, which occurred approximately 110 Mya in O. pumila, and before the whole-genome duplication in Camptotheca acuminata identified here. Combining comparative genome analysis, multi-omics analysis, and metabolic gene-cluster analysis, we propose a working model for MIA evolution, and a pangenome for MIA biosynthesis, which will help in establishing a sustainable supply of camptothecin.
Collapse
|
73
|
Liu LY, Bhandari V, Salcedo A, Espiritu SMG, Morris QD, Kislinger T, Boutros PC. Quantifying the influence of mutation detection on tumour subclonal reconstruction. Nat Commun 2020; 11:6247. [PMID: 33288765 PMCID: PMC7721877 DOI: 10.1038/s41467-020-20055-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Whole-genome sequencing can be used to estimate subclonal populations in tumours and this intra-tumoural heterogeneity is linked to clinical outcomes. Many algorithms have been developed for subclonal reconstruction, but their variabilities and consistencies are largely unknown. We evaluate sixteen pipelines for reconstructing the evolutionary histories of 293 localized prostate cancers from single samples, and eighteen pipelines for the reconstruction of 10 tumours with multi-region sampling. We show that predictions of subclonal architecture and timing of somatic mutations vary extensively across pipelines. Pipelines show consistent types of biases, with those incorporating SomaticSniper and Battenberg preferentially predicting homogenous cancer cell populations and those using MuTect tending to predict multiple populations of cancer cells. Subclonal reconstructions using multi-region sampling confirm that single-sample reconstructions systematically underestimate intra-tumoural heterogeneity, predicting on average fewer than half of the cancer cell populations identified by multi-region sequencing. Overall, these biases suggest caution in interpreting specific architectures and subclonal variants.
Collapse
Affiliation(s)
- Lydia Y Liu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Vinayak Bhandari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Adriana Salcedo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | | | - Quaid D Morris
- Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5T 3A1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2C1, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Vector Institute for Artificial Intelligence, Toronto, ON, M5G 1M1, Canada.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, 90024, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
74
|
Xu J, Fu Y, Hu Y, Yin L, Tang Z, Yin D, Zhu M, Yu M, Li X, Zhou Y, Zhao S, Liu X. Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features. J Anim Sci Biotechnol 2020; 11:115. [PMID: 33292532 PMCID: PMC7713148 DOI: 10.1186/s40104-020-00520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Background A large number of pig breeds are distributed around the world, their features and characteristics vary among breeds, and they are valuable resources. Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved pig breeds. Results In this study, we performed GWAS using a standard mixed linear model with three types of genome variants (SNP, InDel, and CNV) that were identified from public, whole-genome, sequencing data sets. We used 469 pigs of 57 breeds, and we identified and analyzed approximately 19 million SNPs, 1.8 million InDels, and 18,016 CNVs. We defined six biological phenotypes by the characteristics of breed features to identify the associated genome variants and candidate genes, which included coat color, ear shape, gradient zone, body weight, body length, and body height. A total of 37 candidate genes was identified, which included 27 that were reported previously (e.g., PLAG1 for body weight), but the other 10 were newly detected candidate genes (e.g., ADAMTS9 for coat color). Conclusion Our study indicated that using GWAS across a modest number of breeds with high density genome variants provided efficient mapping of complex traits. Supplementary Information Supplementary information accompanies this paper at 10.1186/s40104-020-00520-8.
Collapse
Affiliation(s)
- Jingya Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Dong Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
75
|
Prachar M, Justesen S, Steen-Jensen DB, Thorgrimsen S, Jurgons E, Winther O, Bagger FO. Identification and validation of 174 COVID-19 vaccine candidate epitopes reveals low performance of common epitope prediction tools. Sci Rep 2020; 10:20465. [PMID: 33235258 PMCID: PMC7686376 DOI: 10.1038/s41598-020-77466-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
The outbreak of SARS-CoV-2 (2019-nCoV) virus has highlighted the need for fast and efficacious vaccine development. Stimulation of a proper immune response that leads to protection is highly dependent on presentation of epitopes to circulating T-cells via the HLA complex. SARS-CoV-2 is a large RNA virus and testing of all of its overlapping peptides in vitro to deconvolute an immune response is not feasible. Therefore HLA-binding prediction tools are often used to narrow down the number of peptides to test. We tested NetMHC suite tools' predictions by using an in vitro peptide-MHC stability assay. We assessed 777 peptides that were predicted to be good binders across 11 MHC alleles in a complex-stability assay and tested a selection of 19 epitope-HLA-binding prediction tools against the assay. In this investigation of potential SARS-CoV-2 epitopes we found that current prediction tools vary in performance when assessing binding stability, and they are highly dependent on the MHC allele in question. Designing a COVID-19 vaccine where only a few epitope targets are included is therefore a very challenging task. Here, we present 174 SARS-CoV-2 epitopes with high prediction binding scores, validated to bind stably to 11 HLA alleles. Our findings may contribute to the design of an efficacious vaccine against COVID-19.
Collapse
Affiliation(s)
- Marek Prachar
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Immunitrack ApS, Copenhagen, Denmark
| | | | | | | | - Erik Jurgons
- INTAVIS Peptide Services GmbH & Co.KG, Waldhäuser Str. 64, 72076, Tübingen, Germany
| | - Ole Winther
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Biomedicine, UKBB Universitats-Kinderspital, Basel, 4031, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Basel, 4053, Basel, Switzerland.
| |
Collapse
|
76
|
Vereecke N, Bokma J, Haesebrouck F, Nauwynck H, Boyen F, Pardon B, Theuns S. High quality genome assemblies of Mycoplasma bovis using a taxon-specific Bonito basecaller for MinION and Flongle long-read nanopore sequencing. BMC Bioinformatics 2020; 21:517. [PMID: 33176691 PMCID: PMC7661149 DOI: 10.1186/s12859-020-03856-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/30/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Implementation of Third-Generation Sequencing approaches for Whole Genome Sequencing (WGS) all-in-one diagnostics in human and veterinary medicine, requires the rapid and accurate generation of consensus genomes. Over the last years, Oxford Nanopore Technologies (ONT) released various new devices (e.g. the Flongle R9.4.1 flow cell) and bioinformatics tools (e.g. the in 2019-released Bonito basecaller), allowing cheap and user-friendly cost-efficient introduction in various NGS workflows. While single read, overall consensus accuracies, and completeness of genome sequences has been improved dramatically, further improvements are required when working with non-frequently sequenced organisms like Mycoplasma bovis. As an important primary respiratory pathogen in cattle, rapid M. bovis diagnostics is crucial to allow timely and targeted disease control and prevention. Current complete diagnostics (including identification, strain typing, and antimicrobial resistance (AMR) detection) require combined culture-based and molecular approaches, of which the first can take 1-2 weeks. At present, cheap and quick long read all-in-one WGS approaches can only be implemented if increased accuracies and genome completeness can be obtained. RESULTS Here, a taxon-specific custom-trained Bonito v.0.1.3 basecalling model (custom-pg45) was implemented in various WGS assembly bioinformatics pipelines. Using MinION sequencing data, we showed improved consensus accuracies up to Q45.2 and Q46.7 for reference-based and Canu de novo assembled M. bovis genomes, respectively. Furthermore, the custom-pg45 model resulted in mean consensus accuracies of Q45.0 and genome completeness of 94.6% for nine M. bovis field strains. Improvements were also observed for the single-use Flongle sequencer (mean Q36.0 accuracies and 80.3% genome completeness). CONCLUSIONS These results implicate that taxon-specific basecalling of MinION and single-use Flongle Nanopore long reads are of great value to be implemented in rapid all-in-one WGS tools as evidenced for Mycoplasma bovis as an example.
Collapse
Affiliation(s)
- Nick Vereecke
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- PathoSense, Merelbeke, Belgium.
| | - Jade Bokma
- Faculty of Veterinary Medicine, Department of Large Animal Internal Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans Nauwynck
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- PathoSense, Merelbeke, Belgium
| | - Filip Boyen
- Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Bart Pardon
- Faculty of Veterinary Medicine, Department of Large Animal Internal Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sebastiaan Theuns
- Faculty of Veterinary Medicine, Department of Virology, Parasitology and Immunology, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- PathoSense, Merelbeke, Belgium
| |
Collapse
|
77
|
Deciphering the Microbial Taxonomy and Functionality of Two Diverse Mangrove Ecosystems and Their Potential Abilities To Produce Bioactive Compounds. mSystems 2020; 5:5/5/e00851-19. [PMID: 33109752 PMCID: PMC7593590 DOI: 10.1128/msystems.00851-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study comprehensively described the taxonomy and functionality of mangrove microbiomes, including their capacity for secondary metabolite biosynthesis and their ability to resist antibiotics. The microbial taxonomic and functional characteristics differed between geographical locations, corresponding to the environmental condition of two diverse mangrove regions. A large number of microbial biosynthetic gene clusters encoding novel bioactivities were found, and this can serve as a valuable resource to guide novel bioactive compound discovery for potential clinical uses. Mangroves, as important and special ecosystems, create unique ecological environments for examining the microbial gene capacity and potential for producing bioactive compounds. However, little is known about the biogeochemical implications of microbiomes in mangrove ecosystems, especially the variations between pristine and anthropogenic mangroves. To elucidate this, we investigated the microbial taxonomic and functional shifts of the mangrove microbiomes and their potential for bioactive compounds in two different coastal mangrove ecosystems in southern China. A gene catalogue, including 87 million unique genes, was constructed, based on deep shotgun metagenomic sequencing. Differentially enriched bacterial and archaeal taxa between pristine mangroves (Guangxi) and anthropogenic mangroves (Shenzhen) were found. The Nitrospira and ammonia-oxidizing archaea, specifically, were more abundant in Shenzhen mangroves, while sulfate-reducing bacteria and methanogens were more abundant in Guangxi mangroves. The results of functional analysis were consistent with the taxonomic results, indicating that the Shenzhen mangrove microbiome has a higher abundance of genes involved in nitrogen metabolism while the Guangxi mangrove microbiome has a higher capacity for sulfur metabolism and methanogenesis. Biosynthetic gene clusters were identified in the metagenome data and in hundreds of de novo reconstructed nonredundant microbial genomes, respectively. Notably, we found different biosynthetic potential in different taxa, and we identified three high quality and novel Acidobacteria genomes with a large number of BGCs. In total, 67,278 unique genes were annotated with antibiotic resistance, indicating the prevalence and persistence in multidrug-resistant genes in the mangrove microbiome. IMPORTANCE This study comprehensively described the taxonomy and functionality of mangrove microbiomes, including their capacity for secondary metabolite biosynthesis and their ability to resist antibiotics. The microbial taxonomic and functional characteristics differed between geographical locations, corresponding to the environmental condition of two diverse mangrove regions. A large number of microbial biosynthetic gene clusters encoding novel bioactivities were found, and this can serve as a valuable resource to guide novel bioactive compound discovery for potential clinical uses.
Collapse
|
78
|
Gui F, Lan T, Zhao Y, Guo W, Dong Y, Fang D, Liu H, Li H, Wang H, Hao R, Cheng X, Li Y, Yang P, Sahu SK, Chen Y, Cheng L, He S, Liu P, Fan G, Lu H, Hu G, Dong W, Chen B, Jiang Y, Zhang Y, Xu H, Lin F, Slippers B, Postma A, Jackson M, Abate BA, Tesfaye K, Demie AL, Bayeleygne MD, Degefu DT, Chen F, Kuria PK, Kinyua ZM, Liu TX, Yang H, Huang F, Liu X, Sheng J, Kang L. Genomic and transcriptomic analysis unveils population evolution and development of pesticide resistance in fall armyworm Spodoptera frugiperda. Protein Cell 2020; 13:513-531. [PMID: 33108584 PMCID: PMC9226219 DOI: 10.1007/s13238-020-00795-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a destructive pest native to America and has recently become an invasive insect pest in China. Because of its rapid spread and great risks in China, understanding of FAW genetic background and pesticide resistance is urgent and essential to develop effective management strategies. Here, we assembled a chromosome-level genome of a male FAW (SFynMstLFR) and compared re-sequencing results of the populations from America, Africa, and China. Strain identification of 163 individuals collected from America, Africa and China showed that both C and R strains were found in the American populations, while only C strain was found in the Chinese and African populations. Moreover, population genomics analysis showed that populations from Africa and China have close relationship with significantly genetic differentiation from American populations. Taken together, FAWs invaded into China were most likely originated from Africa. Comparative genomics analysis displayed that the cytochrome p450 gene family is extremely expanded to 425 members in FAW, of which 283 genes are specific to FAW. Treatments of Chinese populations with twenty-three pesticides showed the variant patterns of transcriptome profiles, and several detoxification genes such as AOX, UGT and GST specially responded to the pesticides. These findings will be useful in developing effective strategies for management of FAW in China and other invaded areas.
Collapse
Affiliation(s)
- Furong Gui
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming, 650201, China
| | - Tianming Lan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Yue Zhao
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming, 650201, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China.,Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Haimeng Li
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ruoshi Hao
- Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming, 650201, China
| | | | - Yahong Li
- Yunnan Plant Protection and Quarantine Station, Kunming, 650034, China
| | - Pengcheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Yaping Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Le Cheng
- BGI-Yunnan, No. 389 Haiyuan Road, High-tech Development Zone, Kunming, 650106, China
| | - Shuqi He
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Ping Liu
- MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Haorong Lu
- China National GeneBank, Jinsha Road, Dapeng New District, Shenzhen, 518120, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Guohai Hu
- China National GeneBank, Jinsha Road, Dapeng New District, Shenzhen, 518120, China.,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Wei Dong
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Bin Chen
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Yuan Jiang
- BGI-Americas, One Broadway, 14th Floor, Cambridge, MA, 02142, USA
| | - Yongwei Zhang
- BGI-Americas, One Broadway, 14th Floor, Cambridge, MA, 02142, USA
| | - Hanhong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Fei Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Alisa Postma
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Matthew Jackson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | | | - Kassahun Tesfaye
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia.,College of Natural Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | - Dawit Tesfaye Degefu
- Melkassa Agricultural Research Center, Ethiopian Institute of Agricultural Research, Melkassa, Addis Ababa, Ethiopia
| | - Feng Chen
- MGI, BGI-Shenzhen, Shenzhen, 518083, China
| | - Paul K Kuria
- Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi, 00800, Kenya
| | - Zachary M Kinyua
- Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Nairobi, 00800, Kenya
| | - Tong-Xian Liu
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huanming Yang
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China.,Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen, 518120, China
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083, China. .,Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Jun Sheng
- State Key Laboratory for Conservation and Utilization of Bioresources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming, 650201, China.
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
79
|
Chromosome-level genome assembly of a parent species of widely cultivated azaleas. Nat Commun 2020; 11:5269. [PMID: 33077749 PMCID: PMC7572368 DOI: 10.1038/s41467-020-18771-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 09/11/2020] [Indexed: 11/15/2022] Open
Abstract
Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their cultural and economic importance. We present a chromosome-scale genome assembly for Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae, likely contributing to the genomic architecture of flowering time. Small-scale gene duplications contribute to the expansion of gene families involved in azalea pigment biosynthesis. We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their potential regulatory networks by detailed analysis of time-ordered gene co-expression networks. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY transcription factors controlling progressive flower coloring at later stages. This work provides a cornerstone for understanding the underlying genetics governing flower timing and coloration and could accelerate selective breeding in azalea. Azaleas are one of the most diverse ornamental plants and have cultural and economic importance. Here, the authors report a chromosome-scale genome assembly for the primary ancestor of the azalea cultivar Rhododendro simsi and identify transcription factors that may function in flower coloration at different stages.
Collapse
|
80
|
Mudd AB, Bredeson JV, Baum R, Hockemeyer D, Rokhsar DS. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun Biol 2020; 3:480. [PMID: 32873878 PMCID: PMC7463020 DOI: 10.1038/s42003-020-1096-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/06/2020] [Indexed: 01/29/2023] Open
Abstract
Closely related muntjac deer show striking karyotype differences. Here we describe chromosome-scale genome assemblies for Chinese and Indian muntjacs, Muntiacus reevesi (2n = 46) and Muntiacus muntjak vaginalis (2n = 6/7), and analyze their evolution and architecture. The genomes show extensive collinearity with each other and with other deer and cattle. We identified numerous fusion events unique to and shared by muntjacs relative to the cervid ancestor, confirming many cytogenetic observations with genome sequence. One of these M. muntjak fusions reversed an earlier fission in the cervid lineage. Comparative Hi-C analysis showed that the chromosome fusions on the M. muntjak lineage altered long-range, three-dimensional chromosome organization relative to M. reevesi in interphase nuclei including A/B compartment structure. This reshaping of multi-megabase contacts occurred without notable change in local chromatin compaction, even near fusion sites. A few genes involved in chromosome maintenance show evidence for rapid evolution, possibly associated with the dramatic changes in karyotype.
Collapse
Affiliation(s)
- Austin B Mudd
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rachel Baum
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Department of Energy Joint Genome Institute, Walnut Creek, CA, USA.
- Molecular Genetics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan.
| |
Collapse
|
81
|
Miao X, Shen Y, Gong X, Yu H, Li B, Chang L, Wang Y, Fan J, Liang Z, Tan B, Li S, Zhang B. A novel forensic panel of 186-plex SNPs and 123-plex STR loci based on massively parallel sequencing. Int J Legal Med 2020; 135:709-718. [PMID: 32851473 DOI: 10.1007/s00414-020-02403-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 01/23/2023]
Abstract
The MiSeq® FGX Forensic system and the HID-Ion AmpliSeq Panel were previously developed for massively parallel sequencing (MPS) for forensic casework. Among the three major sequencing platforms, BGISEQ-500TM, which is based on multiple PCRs, is still lacking in forensics. Here, a novel forensic panel was constructed to detect 186 single-nucleotide polymorphisms (SNPs) and 123 short tandem repeats (STRs) with MPS technology on the BGISEQ-500™ platform. First, the library preparation, sequencing process, and data analysis were performed, focusing on the average depth of coverage and heterozygote balance. We calculated the allelic frequencies and forensic parameters of STR and SNP loci in 73 unrelated Chinese Han individuals. In addition, performance was evaluated with accuracy, uniformity, sensitivity, PCR inhibitor, repeatability and reproducibility, mixtures, degraded samples, case-type samples, and pedigree analyses. The results showed that 100% accurate and concordant genotypes can be obtained, and the loci with an abundance in the interquartile range accounted for 92.90% of the total, suggesting reliable uniformity in this panel. We obtained a locus detection rate that was higher than 98.78% from 78 pg of input DNA, and the optimal amount was 1.25-10 ng. The maximum concentrations of hematin and humic acid were 200 and 100 μM, respectively (the ratios of detected loci were 96.52% and 92.41%), in this panel. As a mixture, compared with those of SNPs, minor-contributor alleles of STRs could be detected at higher levels. For the degraded sample, the ratio of detected loci was 98.41%, and most profiles from case-type samples were not significantly different in abundance in our studies. As a whole, this panel showed high-performance, reliable, robust, repeatable, and reproducible results, which are sufficient for paternity testing, individual identification, and use for potentially degraded samples in forensic science.
Collapse
Affiliation(s)
- Xinyao Miao
- College of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuesheng Shen
- School of Life Science, Northwest A&F University, Yangling, People's Republic of China
| | - Xiaojuan Gong
- College of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- School of Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huiyun Yu
- School of Life Science, Northwest A&F University, Yangling, People's Republic of China
| | - Bowen Li
- School of Life Science, Sichuan University, Chengdu, People's Republic of China
| | - Liao Chang
- College of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yinan Wang
- College of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jingna Fan
- College of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Zuhuan Liang
- Forensic Genomics International, The Beijing Genomics Institute (BGI), Shenzhen, People's Republic of China
| | - Bowen Tan
- School of Computer Science, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Shengbin Li
- College of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bao Zhang
- College of Forensic Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China.
| |
Collapse
|
82
|
Liu PJ, Harris JM, Marchi E, D'Arienzo V, Michler T, Wing PAC, Magri A, Ortega-Prieto AM, van de Klundert M, Wettengel J, Durantel D, Dorner M, Klenerman P, Protzer U, Giotis ES, McKeating JA. Hypoxic gene expression in chronic hepatitis B virus infected patients is not observed in state-of-the-art in vitro and mouse infection models. Sci Rep 2020; 10:14101. [PMID: 32839523 PMCID: PMC7445281 DOI: 10.1038/s41598-020-70865-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is the leading cause of hepatocellular carcinoma (HCC) worldwide. The prolyl hydroxylase domain (PHD)-hypoxia inducible factor (HIF) pathway is a key mammalian oxygen sensing pathway and is frequently perturbed by pathological states including infection and inflammation. We discovered a significant upregulation of hypoxia regulated gene transcripts in patients with chronic hepatitis B (CHB) in the absence of liver cirrhosis. We used state-of-the-art in vitro and in vivo HBV infection models to evaluate a role for HBV infection and the viral regulatory protein HBx to drive HIF-signalling. HBx had no significant impact on HIF expression or associated transcriptional activity under normoxic or hypoxic conditions. Furthermore, we found no evidence of hypoxia gene expression in HBV de novo infection, HBV infected human liver chimeric mice or transgenic mice with integrated HBV genome. Collectively, our data show clear evidence of hypoxia gene induction in CHB that is not recapitulated in existing models for acute HBV infection, suggesting a role for inflammatory mediators in promoting hypoxia gene expression.
Collapse
Affiliation(s)
- Peter Jianrui Liu
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - James M Harris
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Emanuele Marchi
- Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Valentina D'Arienzo
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Thomas Michler
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - Peter A C Wing
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Andrea Magri
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK
| | - Ana Maria Ortega-Prieto
- Section of Molecular Virology, Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Maarten van de Klundert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - Jochen Wettengel
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - David Durantel
- Cancer Research Center of Lyon (CRCL), INSERM U1052, and University of Lyon (UCBL1), Lyon, France
| | - Marcus Dorner
- Section of Molecular Virology, Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
| | - Paul Klenerman
- Medawar Building, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Trogerstrasse 30, 81675, Munich, Germany
| | - Efstathios S Giotis
- Section of Molecular Virology, Department of Infectious Diseases, Imperial College London, London, W2 1PG, UK
- School of Life Sciences, University of Essex, Colchester, C04 3SQ, UK
| | - Jane A McKeating
- Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7LF, UK.
| |
Collapse
|
83
|
Li M, Chen Z, Qian J, Wei F, Zhang G, Wang Y, Wei G, Hu Z, Dong L, Chen S. Composition and function of rhizosphere microbiome of Panax notoginseng with discrepant yields. Chin Med 2020; 15:85. [PMID: 32793300 PMCID: PMC7418314 DOI: 10.1186/s13020-020-00364-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Background Panax notoginseng is a highly valuable medicinal plant. Reduced P. notoginseng yield is a common and serious problem that arises in a continuous cropping system. Variation in the composition and function of soil microbial community is considered the primary cause of yield reduction. Methods This study used shotgun metagenomic sequencing approaches to describe the taxonomic and functional features of P. notoginseng rhizosphere microbiome and screen microbial taxa and functional traits related to yields. Results At the family and genus level, a total of 43 families and 45 genera (relative abundance > 0.1%) were obtained, and the correlation with the yield of P. notoginseng was further analyzed. Nitrosomonadaceae, Xanthomonadaceae, Mycobacterium and Arthrobacter that were enriched in soils with higher yields were positively correlated with P. notoginseng yields, thereby suggesting that they might increase yields. Negative correlation coefficients indicated that Xanthobacteraceae, Caulobacteraceae, Oxalobacteraceae, Chitinophagaceae, Sphingomonas, Hyphomicrobium, Variovorax and Phenylobacterium might be detrimental to P. notoginseng growth. A total of 85 functional traits were significantly (P < 0.05) correlated with P. notoginseng yields. Functional traits, likely steroid biosynthesis and MAPK signaling pathway were positively correlated with P. notoginseng yields. In contrast, functional traits, such as bacterial secretion system, ABC transporters, metabolism of xenobiotics by cytochrome P450 and drug metabolism–cytochrome P450, were negatively associated with yields. Conclusions This study describes an overview of the rhizosphere microbiome of P. notoginseng with discrepant yields and identifies the taxa and functional traits related to yields. Our results provide valuable information to guide the isolation and culture of potentially beneficial microorganisms and to utilize the power of the microbiome to increase plant yields in a continuous cropping system.
Collapse
Affiliation(s)
- Mengzhi Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China.,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, Wenshan, 663000 China.,Wenshan Miaoxiang Notoginseng Technology, Co., Ltd, Wenshan, 663000 China
| | - Jun Qian
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China.,College of Pharmaceutical Science, Dali University, Dali, 671000 China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd, Wenshan, 663000 China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, 663000 China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065 China.,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Institute of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
84
|
Lichman BR. The scaffold-forming steps of plant alkaloid biosynthesis. Nat Prod Rep 2020; 38:103-129. [PMID: 32745157 DOI: 10.1039/d0np00031k] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways.
Collapse
Affiliation(s)
- Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
85
|
Xu J, Shen X, Liao B, Xu J, Hou D. Comparing and phylogenetic analysis chloroplast genome of three Achyranthes species. Sci Rep 2020; 10:10818. [PMID: 32616875 PMCID: PMC7331806 DOI: 10.1038/s41598-020-67679-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022] Open
Abstract
In this study, the chloroplast genome sequencing of the Achyranthes longifolia, Achyranthes bidentata and Achyranthes aspera were performed by Next-generation sequencing technology. The results revealed that there were a length of 151,520 bp (A. longifolia), 151,284 bp (A. bidentata), 151,486 bp (A. aspera), respectively. These chloroplast genome have a highly conserved structure with a pair of inverted repeat (IR) regions (25,150 bp; 25,145 bp; 25,150 bp), a large single copy (LSC) regions (83,732 bp; 83,933 bp; 83,966 bp) and a small single copy (SSC) regions (17,252 bp; 17,263 bp; 17,254 bp) in A. bidentate, A. aspera and A. longifolia. There were 127 genes were annotated, which including 8 rRNA genes, 37 tRNA genes and 82 functional genes. The phylogenetic analysis strongly revealed that Achyranthes is monophyletic, and A. bidentata was the closest relationship with A. aspera and A. longifolia. A. bidentata and A. longifolia were clustered together, the three Achyranthes species had the same origin, then the gunes of Achyranthes is the closest relative to Alternanthera, and that forms a group with Alternanthera philoxeroides. The research laid a foundation and provided relevant basis for the identification of germplasm resources in the future.
Collapse
Affiliation(s)
- Jingya Xu
- Agricultural College, Henan University of Science and Technology, Luoyang, China
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-Di Herbs, Luoyang, China
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaofeng Shen
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baosheng Liao
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiang Xu
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Dianyun Hou
- Agricultural College, Henan University of Science and Technology, Luoyang, China.
- The Luoyang Engineering Research Center of Breeding and Utilization of Dao-Di Herbs, Luoyang, China.
| |
Collapse
|
86
|
Kim J, Kang SH, Park SG, Yang TJ, Lee Y, Kim OT, Chung O, Lee J, Choi JP, Kwon SJ, Lee K, Ahn BO, Lee DJ, Yoo SI, Shin IG, Um Y, Lee DY, Kim GS, Hong CP, Bhak J, Kim CK. Whole-genome, transcriptome, and methylome analyses provide insights into the evolution of platycoside biosynthesis in Platycodon grandiflorus, a medicinal plant. HORTICULTURE RESEARCH 2020; 7:112. [PMID: 32637140 PMCID: PMC7327020 DOI: 10.1038/s41438-020-0329-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 05/19/2023]
Abstract
Triterpenoid saponins (TSs) are common plant defense phytochemicals with potential pharmaceutical properties. Platycodon grandiflorus (Campanulaceae) has been traditionally used to treat bronchitis and asthma in East Asia. The oleanane-type TSs, platycosides, are a major component of the P. grandiflorus root extract. Recent studies show that platycosides exhibit anti-inflammatory, antiobesity, anticancer, antiviral, and antiallergy properties. However, the evolutionary history of platycoside biosynthesis genes remains unknown. In this study, we sequenced the genome of P. grandiflorus and investigated the genes involved in platycoside biosynthesis. The draft genome of P. grandiflorus is 680.1 Mb long and contains 40,017 protein-coding genes. Genomic analysis revealed that the CYP716 family genes play a major role in platycoside oxidation. The CYP716 gene family of P. grandiflorus was much larger than that of other Asterid species. Orthologous gene annotation also revealed the expansion of β-amyrin synthases (bASs) in P. grandiflorus, which was confirmed by tissue-specific gene expression. In these expanded gene families, we identified key genes showing preferential expression in roots and association with platycoside biosynthesis. In addition, whole-genome bisulfite sequencing showed that CYP716 and bAS genes are hypomethylated in P. grandiflorus, suggesting that epigenetic modification of these two gene families affects platycoside biosynthesis. Thus whole-genome, transcriptome, and methylome data of P. grandiflorus provide novel insights into the regulation of platycoside biosynthesis by CYP716 and bAS gene families.
Collapse
Affiliation(s)
- Jungeun Kim
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Sin-Gi Park
- Theragen Etex Bio Institute, Suwon, 16229 Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Yi Lee
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, 28644 Korea
| | - Ok Tae Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jungho Lee
- Green Plant Institute, Yongin, 16954 Korea
| | - Jae-Pil Choi
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Keunpyo Lee
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | - Byoung-Ohg Ahn
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| | | | | | | | - Yurry Um
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Eumseong, 27709 Korea
| | | | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Osong, 28160 Korea
- Clinomics Inc, Ulsan, 44919 Korea
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences (NAS), Jeonju, 54874 Korea
| |
Collapse
|
87
|
COVID-19 pandemic reveals the peril of ignoring metadata standards. Sci Data 2020; 7:188. [PMID: 32561801 PMCID: PMC7305141 DOI: 10.1038/s41597-020-0524-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Efficient response to the pandemic through the mobilization of the larger scientific community is challenged by the limited reusability of the available primary genomic data. Here, the Genomic Standards Consortium board highlights the essential need for contextual genomic data FAIRness, for empowering key data-driven biological questions.
Collapse
|
88
|
Lin M, Xiong H, Xiang X, Zhou Z, Liang L, Mei Z. The Effect of Plant Geographical Location and Developmental Stage on Root-Associated Microbiomes of Gymnadenia conopsea. Front Microbiol 2020; 11:1257. [PMID: 32625183 PMCID: PMC7314937 DOI: 10.3389/fmicb.2020.01257] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/18/2020] [Indexed: 12/26/2022] Open
Abstract
Gymnadenia conopsea (L.) R. Br. is an important perennial terrestrial photosynthetic orchid species whose microbiomes are considered to play an important role in helping its germination and growth. However, the assemblage of G. conopsea root-associated microbial communities is poorly understood. The compositions of fungal and bacterial communities from the roots and corresponding soil samples in G. conopsea across distinct biogeographical regions from two significantly different altitudes were characterized at the vegetative and reproductive growth stages. The geographical location, developmental stage and compartment were factors contributing to microbiome variation in G. conopsea. Predominant fungal taxa include Ascomycota, Basidiomycota, Mortierellomycota and Chytridiomycota, whereas Proteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, Verrucomicrobia, Chloroflexi, TM7 and Planctomycetes were predominant bacterial taxa. Using G. conopsea as a model, the structural and functional composition in G. conopsea root-associated microbiomes were comprehensive analyzed. Contrary to previous studies, biogeography was the main factor influencing the microbial community in this study. Besides, compartment and developmental stage should also be considered to analyze the variation of microbiota composition. Although the microbial composition varied greatly by location, the symbiotic microorganisms of G. conopsea still have certain specificity. This study gives an abundant information of G. conopsea root-associated microbiomes and provides new clues to better understanding the factors affecting the composition and diversity of fungal/bacterial communities associated with orchids. Our results also laying a foundation for harnessing the microbiome for sustainable G. conopsea cultivation. Moreover, these results might be generally applicable to other orchidaceae plants.
Collapse
Affiliation(s)
- Min Lin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xuechuan Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Zelin Zhou
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Lifeng Liang
- Institute of Ethnomedicine, South-Central University for Nationalities, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
89
|
Xu Z, Pu X, Gao R, Demurtas OC, Fleck SJ, Richter M, He C, Ji A, Sun W, Kong J, Hu K, Ren F, Song J, Wang Z, Gao T, Xiong C, Yu H, Xin T, Albert VA, Giuliano G, Chen S, Song J. Tandem gene duplications drive divergent evolution of caffeine and crocin biosynthetic pathways in plants. BMC Biol 2020; 18:63. [PMID: 32552824 PMCID: PMC7302004 DOI: 10.1186/s12915-020-00795-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background Plants have evolved a panoply of specialized metabolites that increase their environmental fitness. Two examples are caffeine, a purine psychotropic alkaloid, and crocins, a group of glycosylated apocarotenoid pigments. Both classes of compounds are found in a handful of distantly related plant genera (Coffea, Camellia, Paullinia, and Ilex for caffeine; Crocus, Buddleja, and Gardenia for crocins) wherein they presumably evolved through convergent evolution. The closely related Coffea and Gardenia genera belong to the Rubiaceae family and synthesize, respectively, caffeine and crocins in their fruits. Results Here, we report a chromosomal-level genome assembly of Gardenia jasminoides, a crocin-producing species, obtained using Oxford Nanopore sequencing and Hi-C technology. Through genomic and functional assays, we completely deciphered for the first time in any plant the dedicated pathway of crocin biosynthesis. Through comparative analyses with Coffea canephora and other eudicot genomes, we show that Coffea caffeine synthases and the first dedicated gene in the Gardenia crocin pathway, GjCCD4a, evolved through recent tandem gene duplications in the two different genera, respectively. In contrast, genes encoding later steps of the Gardenia crocin pathway, ALDH and UGT, evolved through more ancient gene duplications and were presumably recruited into the crocin biosynthetic pathway only after the evolution of the GjCCD4a gene. Conclusions This study shows duplication-based divergent evolution within the coffee family (Rubiaceae) of two characteristic secondary metabolic pathways, caffeine and crocin biosynthesis, from a common ancestor that possessed neither complete pathway. These findings provide significant insights on the role of tandem duplications in the evolution of plant specialized metabolism.
Collapse
Affiliation(s)
- Zhichao Xu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Xiangdong Pu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ranran Gao
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Olivia Costantina Demurtas
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res. Ctr, 00123, Rome, Italy
| | - Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Chunnian He
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China
| | - Aijia Ji
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jianqiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kaizhi Hu
- Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Fengming Ren
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.,Chongqing Institute of Medicinal Plant Cultivation, Chongqing, 408435, China
| | - Jiejie Song
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhe Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Ting Gao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Xiong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haoying Yu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tianyi Xin
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res. Ctr, 00123, Rome, Italy.
| | - Shilin Chen
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China. .,Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingyuan Song
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China. .,Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing, 100193, China. .,Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Jinghong, 666100, China.
| |
Collapse
|
90
|
An integrated Asian human SNV and indel benchmark established using multiple sequencing methods. Sci Rep 2020; 10:9821. [PMID: 32555294 PMCID: PMC7300012 DOI: 10.1038/s41598-020-66605-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 11/08/2022] Open
Abstract
Sequencing technologies have been rapidly developed recently, leading to the breakthrough of sequencing-based clinical diagnosis, but accurate and complete genome variation benchmark would be required for further assessment of precision medicine applications. Despite the human cell line of NA12878 has been successfully developed to be a variation benchmark, population-specific variation benchmark is still lacking. Here, we established an Asian human variation benchmark by constructing and sequencing a stabilized cell line of a Chinese Han volunteer. By using seven different sequencing strategies, we obtained ~3.88 Tb clean data from different laboratories, hoping to reach the point of high sequencing depth and accurate variation detection. Through the combination of variations identified from different sequencing strategies and different analysis pipelines, we identified 3.35 million SNVs and 348.65 thousand indels, which were well supported by our sequencing data and passed our strict quality control, thus should be high confidence variation benchmark. Besides, we also detected 5,913 high-quality SNVs which had 969 sites were novel and located in the high homologous regions supported by long-range information in both the co-barcoding single tube Long Fragment Read (stLFR) data and PacBio HiFi CCS data. Furthermore, by using the long reads data (stLFR and HiFi CCS), we were able to phase more than 99% heterozygous SNVs, which helps to improve the benchmark to be haplotype level. Our study provided comprehensive sequencing data as well as the integrated variation benchmark of an Asian derived cell line, which would be valuable for future sequencing-based clinical development.
Collapse
|
91
|
Ali MW, Borrill P. Applying genomic resources to accelerate wheat biofortification. Heredity (Edinb) 2020; 125:386-395. [PMID: 32528079 DOI: 10.1038/s41437-020-0326-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Wheat has low levels of the micronutrients iron and zinc in the grain, which contributes to 2 billion people suffering from micronutrient deficiency globally. While wheat flour is commonly fortified during processing, an attractive and more sustainable solution is biofortification, which could improve micronutrient content in the human diet, without the sustainability issues and costs associated with conventional fortification. Although many studies have used quantitative trait loci mapping and genome-wide association to identify genetic loci to improve micronutrient contents, recent developments in genomics offer an opportunity to accelerate marker discovery and use gene-focussed approaches to engineer improved micronutrient content in wheat. The recent publication of a high-quality wheat genome sequence, alongside gene expression atlases, variation datasets and sequenced mutant populations, provides a foundation to identify genetic loci and genes controlling micronutrient content in wheat. We discuss how novel genomic resources can identify candidate genes for biofortification, integrating knowledge from other cereal crops, and how these genes can be tested using gene editing, transgenic and TILLING approaches. Finally, we highlight key challenges remaining to develop wheat cultivars with high levels of iron and zinc.
Collapse
Affiliation(s)
- Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Philippa Borrill
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
92
|
Zhao M, Yuan J, Shen Z, Dong M, Liu H, Wen T, Li R, Shen Q. Predominance of soil vs root effect in rhizosphere microbiota reassembly. FEMS Microbiol Ecol 2020; 95:5558233. [PMID: 31504451 DOI: 10.1093/femsec/fiz139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/01/2019] [Indexed: 11/14/2022] Open
Abstract
Rhizosphere community assembly is simultaneously affected by both plants and bulk soils and is vital for plant health. However, it is still unclear how and to what extent disease-suppressive rhizosphere microbiota can be constructed from bulk soil, and the underlying agents involved in the process that render the rhizosphere suppressive against pathogenic microbes remain elusive. In this study, the evolutionary processes of the rhizosphere microbiome were explored based on transplanting plants previously growing in distinct disease-incidence soils to one disease-suppressive soil. Our results showed that distinct rhizoplane bacterial communities were assembled on account of the original bulk soil communities with different disease incidences. Furthermore, the bacterial communities in the transplanted rhizosphere were noticeably influenced by the second disease-suppressive microbial pool, rather than that of original formed rhizoplane microbiota and homogenous nontransplanted rhizosphere microbiome, contributing to a significant decrease in the pathogen population. In addition, Spearman's correlations between relative abundances of bacterial taxa and the abundance of Ralstonia solanacearum indicated Anoxybacillus, Flavobacterium, Permianibacter and Pseudomonas were predicted to be associated with disease-suppressive function formation. Altogether, our results showed that bulk soil played an important role in the process of assembling and reassembling the rhizosphere microbiome of plants.
Collapse
Affiliation(s)
- Mengli Zhao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Jun Yuan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Menghui Dong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Tao Wen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| |
Collapse
|
93
|
Weldenegodguad M, Pokharel K, Ming Y, Honkatukia M, Peippo J, Reilas T, Røed KH, Kantanen J. Genome sequence and comparative analysis of reindeer (Rangifer tarandus) in northern Eurasia. Sci Rep 2020; 10:8980. [PMID: 32488117 PMCID: PMC7265531 DOI: 10.1038/s41598-020-65487-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Reindeer are semi-domesticated ruminants that have adapted to the challenging northern Eurasian environment characterized by long winters and marked annual fluctuations in daylight. We explored the genetic makeup behind their unique characteristics by de novo sequencing the genome of a male reindeer and conducted gene family analyses with nine other mammalian species. We performed a population genomics study of 23 additional reindeer representing both domestic and wild populations and several ecotypes from various geographic locations. We assembled 2.66 Gb (N50 scaffold of 5 Mb) of the estimated 2.92 Gb reindeer genome, comprising 27,332 genes. The results from the demographic history analysis suggested marked changes in the effective population size of reindeer during the Pleistocene period. We detected 160 reindeer-specific and expanded genes, of which zinc finger proteins (n = 42) and olfactory receptors (n = 13) were the most abundant. Comparative genome analyses revealed several genes that may have promoted the adaptation of reindeer, such as those involved in recombination and speciation (PRDM9), vitamin D metabolism (TRPV5, TRPV6), retinal development (PRDM1, OPN4B), circadian rhythm (GRIA1), immunity (CXCR1, CXCR2, CXCR4, IFNW1), tolerance to cold-triggered pain (SCN11A) and antler development (SILT2). The majority of these characteristic reindeer genes have been reported for the first time here. Moreover, our population genomics analysis suggested at least two independent reindeer domestication events with genetic lineages originating from different refugial regions after the Last Glacial Maximum. Taken together, our study has provided new insights into the domestication, evolution and adaptation of reindeer and has promoted novel genomic research of reindeer.
Collapse
Affiliation(s)
- Melak Weldenegodguad
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, FI-70201, Kuopio, Finland
| | - Kisun Pokharel
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
| | - Yao Ming
- BGI-Genomics, BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Mervi Honkatukia
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
- Nordic Genetic Resource Centre - NordGen, c/o NMBU - Biovit Box 5003, Ås, NO-1432, Norway
| | - Jaana Peippo
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
| | - Tiina Reilas
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, P.O.Box 369 Centrum, 0102, Oslo, Norway
| | - Juha Kantanen
- Natural Resources Institute Finland, FI-31600, Jokioinen, Finland.
| |
Collapse
|
94
|
Jia X, Tang L, Mei X, Liu H, Luo H, Deng Y, Su J. Single-molecule long-read sequencing of the full-length transcriptome of Rhododendron lapponicum L. Sci Rep 2020; 10:6755. [PMID: 32317724 PMCID: PMC7174332 DOI: 10.1038/s41598-020-63814-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Rhododendron lapponicum L. is a familiar ornamental plant worldwide with important ornamental and economic value. However, a full-length R. lapponicum transcriptome is still lacking. In the present study, we used the Pacific Biosciences single-molecule real-time sequencing technology to generate the R. lapponicum transcriptome. A total of 346,270 full-length non-chimeric reads were generated, from which we obtained 75,002 high-quality full-length transcripts. We identified 55,255 complete open reading frames, 7,140 alternative splicing events and 2,011 long non-coding RNAs. In gene annotation analyses, 71,155, 33,653, 30,359 and 31,749 transcripts were assigned to the Nr, GO, COG and KEGG databases, respectively. Additionally, 3,150 transcription factors were detected. KEGG pathway analysis showed that 96 transcripts were identified coding for the enzymes associated with anthocyanin synthesis. Furthermore, we identified 64,327 simple sequence repeats from 45,319 sequences, and 150 pairs of primers were randomly selected to develop SSR markers. This study provides a large number of full-length transcripts, which will facilitate the further study of the genetics of R. lapponicum.
Collapse
Affiliation(s)
- Xinping Jia
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China.
| | - Ling Tang
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Xueying Mei
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Huazhou Liu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Hairong Luo
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Yanming Deng
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| | - Jiale Su
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210014, China
| |
Collapse
|
95
|
Ba H, Qin T, Cai Z, Liu W, Li C. Molecular evidence for adaptive evolution of olfactory-related genes in cervids. Genes Genomics 2020; 42:355-360. [PMID: 31902105 DOI: 10.1007/s13258-019-00911-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cervids have evolved very successful means for survival and thriving to adapt to various climates and environments. One of these successful means might be the effective and efficient way of communication. To support this notion, cervids are well equipped with a variety of skin glands that distribute in different body regions. However, studies relevant to adaptive evolution in cervids, particularly on olfactory reception at the molecular level, have thus far not been reported. OBJECTIVE To provide valuable insights into molecular evidence for the adaptive evolution of olfactory-related gene in cervids. METHODS Based on recently sequenced genomes of cervids and closely-related-species, we performed comparative genomic analysis at genome level using bioinformatics tools. RESULTS Tree topology strongly supported that Bovidae was the sister group of Moschidae and both formed a branch that was then clustered with Cervidae. Expansion of heavy chain genes of the dynein family and 51 rapidly evolving genes could be associated with adaptation of cilia that serve as sensory organelles and act as cellular antennae. Based on the branch-site model test along the deer branch spanning 7-21 mammalian species, 14 deer olfactory receptor genes were found to be undergoing positive selection pressure and 89 positive selection sites (probability > 60%) had amino acid substitutions unique to deer. CONCLUSION This study, for the first time, provides significant molecular evidence for adaption of olfactory-related genes of cervids according to their olfactory behavior.
Collapse
Affiliation(s)
- Hengxing Ba
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Tao Qin
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Zexi Cai
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, 8830, Tjele, Denmark
| | - Wenyuan Liu
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China
| | - Chunyi Li
- Changchun Sci-Tech University, Changchun, 130600, China.
- State Key Laboratory for Molecular Biology of Special Wild Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| |
Collapse
|
96
|
Ranallo-Benavidez TR, Jaron KS, Schatz MC. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat Commun 2020; 11:1432. [PMID: 32188846 PMCID: PMC7080791 DOI: 10.1038/s41467-020-14998-3] [Citation(s) in RCA: 859] [Impact Index Per Article: 171.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
An important assessment prior to genome assembly and related analyses is genome profiling, where the k-mer frequencies within raw sequencing reads are analyzed to estimate major genome characteristics such as size, heterozygosity, and repetitiveness. Here we introduce GenomeScope 2.0 (https://github.com/tbenavi1/genomescope2.0), which applies combinatorial theory to establish a detailed mathematical model of how k-mer frequencies are distributed in heterozygous and polyploid genomes. We describe and evaluate a practical implementation of the polyploid-aware mixture model that quickly and accurately infers genome properties across thousands of simulated and several real datasets spanning a broad range of complexity. We also present a method called Smudgeplot (https://github.com/KamilSJaron/smudgeplot) to visualize and estimate the ploidy and genome structure of a genome by analyzing heterozygous k-mer pairs. We successfully apply the approach to systems of known variable ploidy levels in the Meloidogyne genus and the extreme case of octoploid Fragaria × ananassa.
Collapse
Affiliation(s)
| | - Kamil S Jaron
- University of Lausanne, Lausanne, CH, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, CH, Switzerland
| | - Michael C Schatz
- Johns Hopkins University, Baltimore, MD, USA.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| |
Collapse
|
97
|
Tang AD, Soulette CM, van Baren MJ, Hart K, Hrabeta-Robinson E, Wu CJ, Brooks AN. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat Commun 2020; 11:1438. [PMID: 32188845 PMCID: PMC7080807 DOI: 10.1038/s41467-020-15171-6] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/06/2020] [Indexed: 01/01/2023] Open
Abstract
While splicing changes caused by somatic mutations in SF3B1 are known, identifying full-length isoform changes may better elucidate the functional consequences of these mutations. We report nanopore sequencing of full-length cDNA from CLL samples with and without SF3B1 mutation, as well as normal B cell samples, giving a total of 149 million pass reads. We present FLAIR (Full-Length Alternative Isoform analysis of RNA), a computational workflow to identify high-confidence transcripts, perform differential splicing event analysis, and differential isoform analysis. Using nanopore reads, we demonstrate differential 3' splice site changes associated with SF3B1 mutation, agreeing with previous studies. We also observe a strong downregulation of intron retention events associated with SF3B1 mutation. Full-length transcript analysis links multiple alternative splicing events together and allows for better estimates of the abundance of productive versus unproductive isoforms. Our work demonstrates the potential utility of nanopore sequencing for cancer and splicing research.
Collapse
Affiliation(s)
- Alison D Tang
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95062, USA
| | - Cameron M Soulette
- Department of Molecular Cell & Developmental Biology, University of California, Santa Cruz, CA, 95062, USA
| | - Marijke J van Baren
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95062, USA
| | - Kevyn Hart
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95062, USA
| | - Eva Hrabeta-Robinson
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95062, USA
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institiute of Harvard and MIT, Cambridge, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95062, USA.
| |
Collapse
|
98
|
Wang P, Luo Y, Huang J, Gao S, Zhu G, Dang Z, Gai J, Yang M, Zhu M, Zhang H, Ye X, Gao A, Tan X, Wang S, Wu S, Cahoon EB, Bai B, Zhao Z, Li Q, Wei J, Chen H, Luo R, Gong D, Tang K, Zhang B, Ni Z, Huang G, Hu S, Chen Y. The genome evolution and domestication of tropical fruit mango. Genome Biol 2020; 21:60. [PMID: 32143734 PMCID: PMC7059373 DOI: 10.1186/s13059-020-01959-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mango is one of the world’s most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. Results We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. Conclusions Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces.
Collapse
Affiliation(s)
- Peng Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Jianfeng Huang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Shenghan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Guopeng Zhu
- School of Landscape and Horticulture, Hainan University, Haikou, 570208, Hainan, China
| | - Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Jiangtao Gai
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Meng Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Huangkai Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Xiuxu Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Aiping Gao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Xinyu Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China.,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Sen Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Shuangyang Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Beibei Bai
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China.,School of Landscape and Horticulture, Hainan University, Haikou, 570208, Hainan, China
| | - Zhichang Zhao
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Qian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Junya Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Huarui Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Ruixiong Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China
| | - Deyong Gong
- Guizhou Subtropical Crops Research Institute, Xingyi, Qianxinan, Guzhou, 562400, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bing Zhang
- Core Genomic Facility and CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhangguang Ni
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, 678005, Yunnan, China
| | - Guodi Huang
- Guangxi Subtropical Crops Research Institute, Nanning, 530001, Guangxi, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 1-3 West Beichen Road, Beijing, 100101, China. .,CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, No. 4 Xueyuan Road, Haikou, 571100, Hainan, China. .,School of Landscape and Horticulture, Hainan University, Haikou, 570208, Hainan, China.
| |
Collapse
|
99
|
Jo J, Oh J, Park C. Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists. J Microbiol 2020; 58:176-192. [PMID: 32108314 DOI: 10.1007/s12275-020-9525-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Microbial communities present in diverse environments from deep seas to human body niches play significant roles in the complex ecosystem and human health. Characterizing their structural and functional diversities is indispensable, and many approaches, such as microscopic observation, DNA fingerprinting, and PCR-based marker gene analysis, have been successfully applied to identify microorganisms. Since the revolutionary improvement of DNA sequencing technologies, direct and high-throughput analysis of genomic DNA from a whole environmental community without prior cultivation has become the mainstream approach, overcoming the constraints of the classical approaches. Here, we first briefly review the history of environmental DNA analysis applications with a focus on profiling the taxonomic composition and functional potentials of microbial communities. To this end, we aim to introduce the shotgun metagenomic sequencing (SMS) approach, which is used for the untargeted ("shotgun") sequencing of all ("meta") microbial genomes ("genomic") present in a sample. SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.
Collapse
Affiliation(s)
- Jihoon Jo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jooseong Oh
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
100
|
Liu Y, Luo J, Dou J, Yan B, Ren Q, Tang B, Wang K, Qiu Q. The sequence and de novo assembly of the wild yak genome. Sci Data 2020; 7:66. [PMID: 32094352 PMCID: PMC7039982 DOI: 10.1038/s41597-020-0400-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
Vulnerable populations of wild yak (Bos mutus), the wild ancestral species of domestic yak, survive in extremely cold, harsh and oxygen-poor regions of the Qinghai-Tibetan Plateau (QTP) and adjacent high-altitude regions. In this study, we sequenced and assembled its genome de novo. In total, six different insert-size libraries were sequenced, and 662 Gb of clean data were generated. The assembled wild yak genome is 2.83 Gb in length, with an N50 contig size of 63.2 kb and a scaffold size of 16.3 Mb. BUSCO assessment indicated that 93.8% of the highly conserved mammal genes were completely present in the genome assembly. Annotation of the wild yak genome assembly identified 1.41 Gb (49.65%) of repetitive sequences and a total of 22,910 protein-coding genes, including 20,660 (90.18%) annotated with functional terms. This first construction of the wild yak genome provides a variable genetic resource that will facilitate further study of the genetic diversity of bovine species and accelerate yak breeding efforts.
Collapse
Affiliation(s)
- Yanbin Liu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiayu Luo
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiajia Dou
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Biyao Yan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qingmiao Ren
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Bolin Tang
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kun Wang
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Qiang Qiu
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|