51
|
Mukherjee K, Moroz LL. Evolution of g-type lysozymes in metazoa: insights into immunity and digestive adaptations. Front Cell Dev Biol 2024; 12:1487920. [PMID: 39568508 PMCID: PMC11576321 DOI: 10.3389/fcell.2024.1487920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Exploring the evolutionary dynamics of lysozymes is critical for advancing our knowledge of adaptations in immune and digestive systems. Here, we characterize the distribution of a unique class of lysozymes known as g-type, which hydrolyze key components of bacterial cell walls. Notably, ctenophores, and choanoflagellates (the sister group of Metazoa), lack g-type lysozymes. We reveal a mosaic distribution of these genes, particularly within lophotrochozoans/spiralians, suggesting the horizontal gene transfer events from predatory myxobacteria played a role in their acquisition, enabling specialized dietary and defensive adaptations. We further identify two major groups of g-type lysozymes based on their widespread distribution in gastropods. Despite their sequence diversity, these lysozymes maintain conserved structural integrity that is crucial for enzymatic activity, underscoring independent evolutionary pathways where g-type lysozymes have developed functionalities typically associated with different lysozyme types in other species. Specifically, using Aplysia californica as a reference species, we identified three distinct g-type lysozyme genes: two are expressed in organs linked to both feeding and defense, and the third exhibits broader distribution, likely associated with immune functions. These findings advance our understanding of the evolutionary dynamics shaping the recruitment and mosaic functional diversification of these enzymes across metazoans, offering new insights into ecological physiology and physiological evolution as emerging fields.
Collapse
Affiliation(s)
- Krishanu Mukherjee
- Whitney Laboratory for Marine Biosciences, University of Florida, Saint Augustine, FL, United States
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, Saint Augustine, FL, United States
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Saint Augustine, FL, United States
| |
Collapse
|
52
|
Sonntag T, Omi S, Andreeva A, Eichelbrenner J, Chisholm AD, Ward JD, Pujol N. A defining member of the new cysteine-cradle family is an aECM protein signalling skin damage in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.589058. [PMID: 39574764 PMCID: PMC11580886 DOI: 10.1101/2024.04.11.589058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Apical extracellular matrices (aECMs) act as crucial barriers, and communicate with the epidermis to trigger protective responses following injury or infection. In Caenorhabditis elegans, the skin aECM, the cuticle, is produced by the epidermis and is decorated with periodic circumferential furrows. We previously showed that mutants lacking cuticle furrows exhibit persistent immune activation (PIA). In a genetic suppressor screen, we identified spia-1 as a key gene downstream of furrow collagens and upstream of immune signalling. spia-1 expression oscillates during larval development, peaking between each moult together with patterning cuticular components. It encodes a secreted protein that localises to furrows. SPIA-1 shares a novel cysteine-cradle domain with other aECM proteins. SPIA-1 mediates immune activation in response to furrow loss and is proposed to act as a sensor of cuticle damage. This research provides a molecular insight into intricate interplay between cuticle integrity and epidermal immune activation in C. elegans.
Collapse
Affiliation(s)
- Thomas Sonntag
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Shizue Omi
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Antonina Andreeva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Jeanne Eichelbrenner
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Andrew D Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Nathalie Pujol
- Aix Marseille Univ, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
53
|
Petit C, Kojak E, Webster S, Marra M, Sweeney B, Chaikin C, Jemc JC, Kanzok SM. The evolutionarily conserved PhLP3 is essential for sperm development in Drosophila melanogaster. PLoS One 2024; 19:e0306676. [PMID: 39480878 PMCID: PMC11527243 DOI: 10.1371/journal.pone.0306676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 11/02/2024] Open
Abstract
Phosducin-like proteins (PhLP) are thioredoxin domain-containing proteins that are highly conserved across unicellular and multicellular organisms. PhLP family proteins are hypothesized to function as co-chaperones in the folding of cytoskeletal proteins. Here, we present the initial molecular, biochemical, and functional characterization of CG4511 as Drosophila melanogaster PhLP3. We cloned the gene into a bacterial expression vector and produced enzymatically active recombinant PhLP3, which showed similar kinetics to previously characterized orthologues. A fly strain homozygous for a P-element insertion in the 5' UTR of the PhLP3 gene exhibited significant downregulation of PhLP3 expression. We found these male flies to be sterile. Microscopic analysis revealed altered testes morphology and impairment of spermiogenesis, leading to a lack of mature sperm. Among the most significant observations was the lack of actin cones during sperm maturation. Excision of the P-element insertion in PhLP3 restored male fertility, spermiogenesis, and seminal vesicle size. Given the high level of conservation of PhLP3, our data suggests PhLP3 may be an important regulator of sperm development across species.
Collapse
Affiliation(s)
- Christopher Petit
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Elizabeth Kojak
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Samantha Webster
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Michela Marra
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Brendan Sweeney
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Claire Chaikin
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Jennifer C. Jemc
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- Bioinformatics Program, Loyola University Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
54
|
Ortiz-Morazán AS, Moncada MM, Escobar D, Cabrera-Moreno LA, Fontecha G. Coevolutionary Analysis of the Pfs47-P47Rec Complex: A Bioinformatics Approach. Bioinform Biol Insights 2024; 18:11779322241284223. [PMID: 39386977 PMCID: PMC11462556 DOI: 10.1177/11779322241284223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background The ability to predict and comprehend molecular interactions offers significant insights into the biological functions of proteins. The interaction between surface protein 47 of Plasmodium falciparum (Pfs47) and receptor of the protein 47 (P47Rec) has attracted increased attention due to their role in parasite evasion of the mosquito immune system and the concept of geographical coevolution between species. The aims of this study were as follows: to apply a bioinformatics approach to investigate the interaction between Pfs47 and P47Rec proteins and to identify the potential binding sites, protein orientations and receptor specificity sites concerning the geographical origins of the vectors and the parasite. Methods Public sequences of the pfs47 and p47rec genes were downloaded and subsequently filtered to predict functional and structural annotations of the Pfs47-P47Rec complex. Phylogenetic analyses of both proteins were carried out. In addition, the p47Rec gene was subjected to sequencing and subsequent analysis in 2 distinct Anopheles species collected in Honduras. Results The examination of motifs reveals a significant degree of conservation in pfs47, suggesting that Pfs47 might have undergone recent evolutionary development and adaptation. Structural models and docking analyses supported the theory of selectivity of Plasmodium falciparum strains towards their vectors in diverse geographical regions. A detailed description of the putative interaction between the Pfs47-P47Rec complex is shown. Conclusions The study identifies coevolutionary patterns between P47Rec and Pfs47 related to the speciation and geographic dispersion of Anopheles species and Plasmodium falciparum, with Pfs47 evolving more recently than P47Rec. This suggests a link between the parasite's adaptability and existing anopheline species across different regions. P47Rec likely has a cytoplasmic localization due to its lack of membrane attachment elements. However, these findings are based on simulations and require validation through methods like cryo-electron microscopy. A significant limitation is the scarcity of sequences in global databases, which restricts precise interaction modelling. Further research with diverse parasite isolates and anopheline species is recommended to enhance understanding of these proteins' structure and interaction.
Collapse
Affiliation(s)
- Andrés S Ortiz-Morazán
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Marcela María Moncada
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Denis Escobar
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Leonardo A Cabrera-Moreno
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Gustavo Fontecha
- Instituto de Investigaciones en Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| |
Collapse
|
55
|
Hamilton GE, Wadkovsky KN, Gladfelter AS. A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers. Mol Biol Cell 2024; 35:ar132. [PMID: 39196657 PMCID: PMC11481698 DOI: 10.1091/mbc.e24-05-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024] Open
Abstract
Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. Knufia petricola is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized KpAspE, a Group 5 septin from K. petricola. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. KpAspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in K. petricola cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.
Collapse
Affiliation(s)
- Grace E. Hamilton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Amy S. Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708
| |
Collapse
|
56
|
Ononugbo CM, Shimura Y, Yamano-Adachi N, Omasa T, Koga Y. Rational design approach to improve the solubility of the β-sandwich domain 1 of a thermophilic protein. J Biosci Bioeng 2024; 138:271-282. [PMID: 39074993 DOI: 10.1016/j.jbiosc.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
The β-sandwich domain 1 (SD1) of islandisin is a stable thermophilic protein with surface loops that can be redesigned for specific target binding, architecturally comparable to the variable domain of immunoglobulin (IgG). SD1's propensity to aggregate due to incorrect folding and subsequent accumulation in Escherichia coli inclusion bodies limits its use in biotechnological applications. We rationally designed SD1 for improved variants that were expressed in soluble forms in E. coli while maintaining the intrinsic thermal stability of the protein (melting temperature (Tm) = 73). We used FoldX's ΔΔG predictions to find beneficial mutations and aggregation-prone regions (APRs) using Tango. The S26K substitution within protein core residues did not affect protein stability. Among the soluble mutants studied, the S26K/Q91P combination significantly improved the expression and solubility of SD1. We also examined the effects of the surface residue, pH, and concentration on the solubility of SD1. We showed that the surface polarity of proteins had little or no effect on solubility, whereas surface charges played a substantial role. The storage stability of several SD1 variants was impaired at pH values near their isoelectric point, and pH levels resulting in highly charged groups. We observed that mutations that create an uneven distribution of charged groups on the SD1 surface could enhance protein solubility by eliminating favorable protein-protein surface charge interactions. Our findings suggest that SD1 is mutationally tolerant to new functionalities, thus providing a novel perspective for the application of rational design to improve the solubility of targeted proteins.
Collapse
Affiliation(s)
- Chukwuebuka M Ononugbo
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusaku Shimura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriko Yamano-Adachi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Omasa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Koga
- Department of Applied Chemistry, Faculty of Engineering, Okayama University of Science, 1-1 Ridaicho, Kitaku, Okayama 700-0005, Japan.
| |
Collapse
|
57
|
Sisodia R, Sarmadhikari D, Mazumdar PA, Asthana S, Madhurantakam C. Molecular analysis of dUTPase of Helicobacter pylori for identification of novel inhibitors using in silico studies. J Biomol Struct Dyn 2024; 42:8598-8623. [PMID: 37587906 DOI: 10.1080/07391102.2023.2247080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The human gastric pathogen Helicobacter pylori chronically affects the gastric mucosal layer of approximately half of world's population. The emergence of resistant strains urges the need for identification of novel and selective drug against new molecular targets. A ubiquitous enzyme, Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase), is considered as first line of defense against uracil mis-incorporation into DNA, and essential for genome integrity. Lack of dUTPase triggers an elevated recombination frequency, DNA breaks and ultimately cell death. Hence, dUTPase can be considered as a promising target for development of novel lead inhibitor compounds in H. pylori treatment. Herein, we report the generation of three-dimensional model of the target protein using comparative modelling and its validation. To identify dUTPase inhibitors, a high throughput virtual screening approach utilizing Knowledge-based inhibitors and DrugBank database was implemented. Top ranked compounds were scrutinized based on investigations of the protein-ligand interaction fingerprints, molecular interaction maps and binding affinities and the drug potentiality. The best ligands were studied further for complex stability and intermolecular interaction profiling with respect to time under 100 ns classical molecular dynamic stimulation, establishing significant stability in dynamic states as observed from RMSD and RMSF parameters and interactions with the catalytic site residues. The binding free energy calculation computed using MM-GBSA method from the MD simulation trajectories demonstrated that our molecules possess strong binding affinity towards the Helicobacter pylori dUTPase protein. We conclude that our proposed molecules may be potential lead molecules for effective inhibition against the H. pylori dUTPase protein subject to experimental validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rinki Sisodia
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| | - Debapriyo Sarmadhikari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | | | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Chaithanya Madhurantakam
- Structural and Molecular Biology Laboratory (SMBL), Department of Biotechnology, TERI School of Advanced Studies (TERI SAS), New Delhi, India
| |
Collapse
|
58
|
Bonny SQ, Zhou X, Khan MF, Rahman MM, Xin Y, Vankadari N, Tikhomirova A, Homman-Ludiye J, Roujeinikova A. Functional and biochemical characterisation of remote homologues of type IV pili proteins PilN and PilO in Helicobacter pylori. IUBMB Life 2024; 76:780-787. [PMID: 38748402 DOI: 10.1002/iub.2828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/03/2024] [Indexed: 10/19/2024]
Abstract
Helicobacter pylori encodes homologues of PilM, PilN and PilO from bacteria with Type IV pili, where these proteins form a pilus alignment complex. Inactivation of pilO changes H. pylori motility in semi-solid media, suggesting a link to the chemosensory pathways or flagellar motor. Here, we showed that mutation of the pilO or pilN gene in H. pylori strain SS1 reduced the mean linear swimming speed in liquid media, implicating PilO and PilN in the function, or regulation of, the flagellar motor. We also demonstrated that the soluble variants of H. pylori PilN and PilO share common biochemical properties with their Type IV pili counterparts which suggests their adapted function in the bacterial flagellar motor may be similar to that in the Type IV pili.
Collapse
Affiliation(s)
- Sharmin Q Bonny
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Xiaotian Zhou
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Mohammad F Khan
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Mohammad M Rahman
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Yue Xin
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Naveen Vankadari
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Alexandra Tikhomirova
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Jihane Homman-Ludiye
- Monash Micro Imaging, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Anna Roujeinikova
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
59
|
Schlötzer J, Schmalix A, Hügelschäffer S, Rieger D, Sauer F, Tully MD, Rudel T, Wiesner S, Kisker C. Linkage-specific ubiquitin binding interfaces modulate the activity of the chlamydial deubiquitinase Cdu1 towards poly-ubiquitin substrates. PLoS Pathog 2024; 20:e1012630. [PMID: 39432525 PMCID: PMC11527256 DOI: 10.1371/journal.ppat.1012630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/31/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
The chlamydial deubiquitinase Cdu1 of the obligate intracellular human pathogenic bacterium Chlamydia trachomatis plays important roles in the maintenance of chlamydial infection. Despite the structural similarities shared with its homologue Cdu2, both DUBs display remarkable differences in their enzymatic activity towards poly-UB chain substrates. Whereas Cdu1 is highly active towards K48- and K63- poly-UB chains, Cdu2 activity is restricted mostly to mono-UB substrates. Here, we shed light on the molecular mechanisms of the differential activity and the substrate specificity of Cdu1 to better understand the cellular processes it is involved in, including infection-related events. We found that the strikingly elevated activity of Cdu1 relative to its paralogue Cdu2 can be attributed to an N-terminally extended α-helix, which has not been observed in Cdu2. Moreover, by employing isothermal titration calorimetry and nuclear magnetic resonance spectroscopy, we demonstrate the differential recognition of K48- and K63-linked poly-UB substrates by Cdu1. Whereas K63-linked poly-UB substrates appear to be recognized by Cdu1 with only two independent ubiquitin interaction sites, up to four different binding interfaces are present for K48-linked ubiquitin chains. Combined, our data suggest that Cdu1 possesses a poly-UB chain directed activity that may enable its function as a multipurpose DUB with a broad substrate specificity.
Collapse
Affiliation(s)
- Jan Schlötzer
- Institute for Structural Biology, Rudolf-Virchow-Zentrum—Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Alexander Schmalix
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sophie Hügelschäffer
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dominic Rieger
- Institute for Structural Biology, Rudolf-Virchow-Zentrum—Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Florian Sauer
- Institute for Structural Biology, Rudolf-Virchow-Zentrum—Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Mark D. Tully
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Silke Wiesner
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Caroline Kisker
- Institute for Structural Biology, Rudolf-Virchow-Zentrum—Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
60
|
Sanjeevi M, Mohan A, Ramachandran D, Jeyaraman J, Sekar K. CSSP-2.0: A refined consensus method for accurate protein secondary structure prediction. Comput Biol Chem 2024; 112:108158. [PMID: 39053174 DOI: 10.1016/j.compbiolchem.2024.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Studying the relationship between sequences and their corresponding three-dimensional structure assists structural biologists in solving the protein-folding problem. Despite several experimental and in-silico approaches, still understanding or decoding the three-dimensional structures from the sequence remains a mystery. In such cases, the accuracy of the structure prediction plays an indispensable role. To address this issue, an updated web server (CSSP-2.0) has been created to improve the accuracy of our previous version of CSSP by deploying the existing algorithms. It uses input as probabilities and predicts the consensus for the secondary structure as a highly accurate three-state Q3 (helix, strand, and coil). This prediction is achieved using six recent top-performing methods: MUFOLD-SS, RaptorX, PSSpred v4, PSIPRED, JPred v4, and Porter 5.0. CSSP-2.0 validation includes datasets involving various protein classes from the PDB, CullPDB, and AlphaFold databases. Our results indicate a significant improvement in the accuracy of the consensus Q3 prediction. Using CSSP-2.0, crystallographers can sort out the stable regular secondary structures from the entire complex structure, which would aid in inferring the functional annotation of hypothetical proteins. The web server is freely available at https://bioserver3.physics.iisc.ac.in/cgi-bin/cssp-2/.
Collapse
Affiliation(s)
- Madhumathi Sanjeevi
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India; Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi 630004, India
| | - Ajitha Mohan
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India
| | | | - Jeyakanthan Jeyaraman
- Structural Biology and Bio-Computing Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi 630004, India.
| | - Kanagaraj Sekar
- Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
61
|
Zheng Y, Kan CH, Tsang TF, Liu Y, Liu T, Tsang MW, Lam LY, Yang X, Ma C. Discovery of Inhibitors Targeting Protein-Protein Interaction between Bacterial RNA Polymerase and NusG as Novel Antimicrobials. J Med Chem 2024; 67:16556-16575. [PMID: 39196895 DOI: 10.1021/acs.jmedchem.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Bacterial RNA polymerase (RNAP), the core enzyme responsible for bacterial transcription, requires the NusG factor for efficient transcription elongation and termination. As the primary binding site for NusG, the RNAP clamp-helix (CH) domain represents a potential protein-protein interaction (PPI) target for novel antimicrobial agent design and discovery. In this study, we designed a pharmacophore model based on the essential amino acids of the CH for binding to NusG, such as R270, R278, and R281 (Escherichia coli numbering), and identified a hit compound with mild antimicrobial activity. Subsequent rational design and synthesis of this hit compound led to improved antimicrobial activity against Streptococcus pneumoniae, with the minimum inhibitory concentration (MIC) reduced from 128 to 1 μg/mL. Additional characterization of the antimicrobial activity, inhibitory activity against RNAP-NusG interaction, and cell-based transcription and fluorescent assays of the optimized compounds demonstrated their potential for further lead optimization.
Collapse
Affiliation(s)
- Yingbo Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Cheuk Hei Kan
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Tsz Fung Tsang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Yanpeng Liu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Tiankuang Liu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Man Wai Tsang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Long Yin Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Xiao Yang
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Cong Ma
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
62
|
Zhou X, Khan M, Xin Y, Chan K, Roujeinikova A. Biochemical characterization of paralyzed flagellum proteins A (PflA) and B (PflB) from Helicobacter pylori flagellar motor. Biosci Rep 2024; 44:BSR20240692. [PMID: 39105472 PMCID: PMC11392913 DOI: 10.1042/bsr20240692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024] Open
Abstract
Motility by means of flagella plays an important role in the persistent colonization of Helicobacter pylori in the human stomach. The H. pylori flagellar motor has a complex structure that includes a periplasmic scaffold, the components of which are still being identified. Here, we report the isolation and characterization of the soluble forms of two putative essential H. pylori motor scaffold components, proteins PflA and PflB. We developed an on-column refolding procedure, overcoming the challenge of inclusion body formation in Escherichia coli. We employed mild detergent sarkosyl to enhance protein recovery and n-dodecyl-N,N-dimethylamine-N-oxide (LDAO)-containing buffers to achieve optimal solubility and monodispersity. In addition, we showed that PflA lacking the β-rich N-terminal domain is expressed in a soluble form, and behaves as a monodisperse monomer in solution. The methods for producing the soluble, folded forms of H. pylori PflA and PflB established in this work will facilitate future biophysical and structural studies aimed at deciphering their location and their function within the flagellar motor.
Collapse
Affiliation(s)
- Xiaotian Zhou
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Muhammad F. Khan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Yue Xin
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Kar L. Chan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Anna Roujeinikova
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
63
|
Reuter N, Kropff B, Chen X, Britt WJ, Sticht H, Mach M, Thomas M. The Autonomous Fusion Activity of Human Cytomegalovirus Glycoprotein B Is Regulated by Its Carboxy-Terminal Domain. Viruses 2024; 16:1482. [PMID: 39339958 PMCID: PMC11437439 DOI: 10.3390/v16091482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human cytomegalovirus (HCMV) glycoprotein B (gB) is the viral fusogen required for entry into cells and for direct cell-to-cell spread of the virus. We have previously demonstrated that the exchange of the carboxy-terminal domain (CTD) of gB for the CTD of the structurally related fusion protein G of the vesicular stomatitis virus (VSV-G) resulted in an intrinsically fusion-active gB variant (gB/VSV-G). In this present study, we employed a dual split protein (DSP)-based cell fusion assay to further characterize the determinants of fusion activity in the CTD of gB. We generated a comprehensive library of gB CTD truncation mutants and identified two mutants, gB-787 and gB-807, which were fusion-competent and induced the formation of multinucleated cell syncytia in the absence of other HCMV proteins. Structural modeling coupled with site-directed mutagenesis revealed that gB fusion activity is primarily mediated by the CTD helix 2, and secondarily by the recruitment of cellular SH2/WW-domain-containing proteins. The fusion activity of gB-807 was inhibited by gB-specific monoclonal antibodies (MAbs) targeting the antigenic domains AD-1 to AD-5 within the ectodomain and not restricted to MAbs directed against AD-4 and AD-5 as observed for gB/VSV-G. This finding suggested a differential regulation of the fusion-active conformational state of both gB variants. Collectively, our findings underscore a pivotal role of the CTD in regulating the fusogenicity of HCMV gB, with important implications for understanding the conformations of gB that facilitate membrane fusion, including antigenic structures that could be targeted by antibodies to block this essential step in HCMV infection.
Collapse
Affiliation(s)
- Nina Reuter
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Kropff
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Xiaohan Chen
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, AL 35233-1771, USA
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael Mach
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
64
|
Alamri AM, Alkhilaiwi FA, Khan NU, Mashat RM, Tasleem M. Exploring pathogenic SNPs and estrogen receptor alpha interactions in breast cancer: An in silico approach. Heliyon 2024; 10:e37297. [PMID: 39286133 PMCID: PMC11403482 DOI: 10.1016/j.heliyon.2024.e37297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
The estrogen receptor 1 gene (ESR1) plays a crucial role in breast and mammary development in humans. Alterations such as gene amplification, genomic rearrangements, and missense mutations in the ESR1 gene are reported to increase the risk of breast cancer in humans. The purpose of this study is to analyze the missense mutations and molecular modeling of ESR1, focusing on the pathogenic SNP H516N, for a better understanding of disease risk and future benefits for therapeutic benefits. This SNP was selected based on its location in the binding pocket of ESR1 and its predicted impact on drug binding. The in silico analysis was performed by applying various computational approaches to identify highly pathogenic SNPs in the binding pocket of ESR1. The effect of the SNP was explored through docking and intra-molecular interaction studies. All SNPs in ESR1 were identified followed by the identification of the highly pathogenic variant located in the binding pocket of ESR1. The mutant model of the pathogenic SNP H516N was generated, and hydroxytamoxifen was docked with the wild-type and the mutant model. The mutant model lost the formation of stable hydrogen bonds with the active site residues and hydroxytamoxifen, which may result in reduced binding affinity and therefore, will predict the patient's response to estrogenic inhibitors.
Collapse
Affiliation(s)
- Ahmad M Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61413, Saudi Arabia
- Cancer Research Unit, King Khalid University, Abha, 61413, Saudi Arabia
| | - Faris A Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture Peshawar, 25130, Pakistan
| | - Reham Mahmoud Mashat
- College of Science, Department of Biology, King Khalid University, Abha, 61413, Saudi Arabia
| | - Munazzah Tasleem
- Center for Global Health and Research, Saveetha Medical College and Hospital, Chennai, 602105, India
| |
Collapse
|
65
|
Adams JC, Tucker RP. The evolution of tenascins. BMC Ecol Evol 2024; 24:121. [PMID: 39277743 PMCID: PMC11401434 DOI: 10.1186/s12862-024-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The evolution of extracellular matrix is tightly linked to the evolution of organogenesis in metazoans. Tenascins are extracellular matrix glycoproteins of chordates that participate in integrin-signaling and morphogenetic events. Single tenascins are encoded by invertebrate chordates, and multiple tenascin paralogs are found in vertebrates (designated tenascin-C, tenascin-R, tenascin-W and tenascin-X) yet, overall, the evolution of this family has remained unclear. RESULTS This study examines the genomes of hemichordates, cephalochordates, tunicates, agnathans, cartilaginous fishes, lobe-finned fishes, ray-finned fishes and representative tetrapods to identify predicted tenascin proteins. We comprehensively assess their evolutionary relationships by sequence conservation, molecular phylogeny and examination of conservation of synteny of the encoding genes. The resulting new evolutionary model posits the origin of tenascin in an ancestral chordate, with tenascin-C-like and tenascin-R-like paralogs emerging after a whole genome duplication event in an ancestral vertebrate. Tenascin-X appeared following a second round of whole genome duplication in an ancestral gnathostome, most likely from duplication of the gene encoding the tenascin-R homolog. The fourth gene, encoding tenascin-W (also known as tenascin-N), apparently arose from a local duplication of tenascin-R. CONCLUSIONS The diversity of tenascin paralogs observed in agnathans and gnathostomes has evolved through selective retention of novel genes that arose from a combination of whole genome and local duplication events. The evolutionary appearance of specific tenascin paralogs coincides with the appearance of vertebrate-specific cell and tissue types where the paralogs are abundantly expressed, such as the endocranium and facial skeleton (tenascin-C), an expanded central nervous system (tenascin-R), and bone (tenascin-W).
Collapse
Affiliation(s)
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
66
|
Parashara P, Medina-Pritchard B, Abad MA, Sotelo-Parrilla P, Thamkachy R, Grundei D, Zou J, Spanos C, Kumar CN, Basquin C, Das V, Yan Z, Al-Murtadha AA, Kelly DA, McHugh T, Imhof A, Rappsilber J, Jeyaprakash AA. PLK1-mediated phosphorylation cascade activates Mis18 complex to ensure centromere inheritance. Science 2024; 385:1098-1104. [PMID: 39236175 DOI: 10.1126/science.ado8270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
Accurate chromosome segregation requires the attachment of microtubules to centromeres, epigenetically defined by the enrichment of CENP-A nucleosomes. During DNA replication, CENP-A nucleosomes undergo dilution. To preserve centromere identity, correct amounts of CENP-A must be restored in a cell cycle-controlled manner orchestrated by the Mis18 complex (Mis18α-Mis18β-Mis18BP1). We demonstrate here that PLK1 interacts with the Mis18 complex by recognizing self-primed phosphorylations of Mis18α (Ser54) and Mis18BP1 (Thr78 and Ser93) through its Polo-box domain. Disrupting these phosphorylations perturbed both centromere recruitment of the CENP-A chaperone HJURP and new CENP-A loading. Biochemical and functional analyses showed that phosphorylation of Mis18α and PLK1 binding were required to activate Mis18α-Mis18β and promote Mis18 complex-HJURP interaction. Thus, our study reveals key molecular events underpinning the licensing role of PLK1 in ensuring accurate centromere inheritance.
Collapse
Affiliation(s)
- Pragya Parashara
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Maria Alba Abad
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - Reshma Thamkachy
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David Grundei
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Juan Zou
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chandni Natalia Kumar
- Protein Analysis Unit, Biomedical Centre Munich, Faculty of Medicine, Ludwig-Maximilians-University, 82152 Munich, Germany
| | - Claire Basquin
- Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Vimal Das
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhaoyue Yan
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | | | - David A Kelly
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Toni McHugh
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Axel Imhof
- Department of Structural Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - A Arockia Jeyaprakash
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Gene Center Munich, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
67
|
Zak H, Rozenfeld E, Levi M, Deng P, Gorelick D, Pozeilov H, Israel S, Paas Y, Paas Y, Li JB, Parnas M, Shohat-Ophir G. A highly conserved A-to-I RNA editing event within the glutamate-gated chloride channel GluClα is necessary for olfactory-based behaviors in Drosophila. SCIENCE ADVANCES 2024; 10:eadi9101. [PMID: 39231215 PMCID: PMC11373593 DOI: 10.1126/sciadv.adi9101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/29/2024] [Indexed: 09/06/2024]
Abstract
A-to-I RNA editing is a cellular mechanism that generates transcriptomic and proteomic diversity, which is essential for neuronal and immune functions. It involves the conversion of specific adenosines in RNA molecules to inosines, which are recognized as guanosines by cellular machinery. Despite the vast number of editing sites observed across the animal kingdom, pinpointing critical sites and understanding their in vivo functions remains challenging. Here, we study the function of an evolutionary conserved editing site in Drosophila, located in glutamate-gated chloride channel (GluClα). Our findings reveal that flies lacking editing at this site exhibit reduced olfactory responses to odors and impaired pheromone-dependent social interactions. Moreover, we demonstrate that editing of this site is crucial for the proper processing of olfactory information in projection neurons. Our results highlight the value of using evolutionary conservation as a criterion for identifying editing events with potential functional significance and paves the way for elucidating the intricate link between RNA modification, neuronal physiology, and behavior.
Collapse
Affiliation(s)
- Hila Zak
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mali Levi
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Patricia Deng
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - David Gorelick
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Pozeilov
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shai Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yoav Paas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yoav Paas
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galit Shohat-Ophir
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Bar-Ilan University, Ramat Gan 5290002, Israel
- The Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
68
|
Martínez-Navarro SM, de Iceta Soler X, Martínez-Martínez M, Olazábal-Morán M, Santos-Moriano P, Gómez S. Structural and Phylogenetic In Silico Characterization of Vitis vinifera PRR Protein as Potential Target for Plasmopara viticola Infection. Int J Mol Sci 2024; 25:9553. [PMID: 39273500 PMCID: PMC11395273 DOI: 10.3390/ijms25179553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Fungi infection, especially derived from Plasmopara viticola, causes severe grapevine economic losses worldwide. Despite the availability of chemical treatments, looking for eco-friendly ways to control Vitis vinifera infection is gaining much more attention. When a plant is infected, multiple disease-control molecular mechanisms are activated. PRRs (Pattern Recognition Receptors) and particularly RLKs (receptor-like kinases) take part in the first barrier of the immune system, and, as a consequence, the kinase signaling cascade is activated, resulting in an immune response. In this context, discovering new lectin-RLK (LecRLK) membrane-bounded proteins has emerged as a promising strategy. The genome-wide localization of potential LecRLKs involved in disease defense was reported in two grapevine varieties of great economic impact: Chardonnay and Pinot Noir. A total of 23 potential amino acid sequences were identified, exhibiting high-sequence homology and evolution related to tandem events. Based on the domain architecture, a carbohydrate specificity ligand assay was conducted with docking, revealing two sequences as candidates for specific Vitis vinifera-Plasmopara viticola host-pathogen interaction. This study confers a starting point for designing new effective antifungal treatments directed at LecRLK targets in Vitis vinifera.
Collapse
Affiliation(s)
| | | | | | | | - Paloma Santos-Moriano
- Innovative Seed Lab (ISL), Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain; (S.M.M.-N.); (X.d.I.S.); (M.M.-M.); (M.O.-M.); (S.G.)
| | | |
Collapse
|
69
|
Xue Y, Wu Z, Kang X. Crystal structure of the Rib domain of the cell-wall-anchored surface protein from Limosilactobacillus reuteri. Acta Crystallogr F Struct Biol Commun 2024; 80:228-233. [PMID: 39196706 PMCID: PMC11376279 DOI: 10.1107/s2053230x24007970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/13/2024] [Indexed: 08/30/2024] Open
Abstract
The immunoglobulin (Ig)-like domain is found in a broad range of proteins with diverse functional roles. While an essential β-sandwich fold is maintained, considerable structural variations exist and are critical for functional diversity. The Rib-domain family, primarily found as tandem-repeat modules in the surface proteins of Gram-positive bacteria, represents another significant structural variant of the Ig-like fold. However, limited structural and functional exploration of this family has been conducted, which significantly restricts the understanding of its evolution and significance within the Ig superclass. In this work, a high-resolution crystal structure of a Rib domain derived from the probiotic bacterium Limosilactobacillus reuteri is presented. This protein, while sharing significant structural similarity with homologous domains from other bacteria, exhibits a significantly increased thermal resistance. The potential structural features contributing to this stability are discussed. Moreover, the presence of two copper-binding sites, with one positioned on the interface, suggests potential functional roles that warrant further investigation.
Collapse
Affiliation(s)
- Yi Xue
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zhen Wu
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xue Kang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
70
|
Sajko S, Skeens E, Schinagl A, Ferhat M, Mirkina I, Mayer J, Rossmueller G, Thiele M, Lisi GP. Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies. Redox Biol 2024; 75:103264. [PMID: 38972295 PMCID: PMC11263951 DOI: 10.1016/j.redox.2024.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024] Open
Abstract
MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.
Collapse
Affiliation(s)
- Sara Sajko
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Erin Skeens
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| | | | - Maroua Ferhat
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Irina Mirkina
- OncoOne Research and Development GmbH, Vienna, Austria
| | - Julia Mayer
- OncoOne Research and Development GmbH, Vienna, Austria
| | | | | | - George P Lisi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, USA
| |
Collapse
|
71
|
Back PS, Senthilkumar V, Choi CP, Quan JJ, Lou Q, Snyder AK, Ly AM, Lau JG, Zhou ZH, Ward GE, Bradley PJ. Alveolin proteins in the Toxoplasma inner membrane complex form a highly interconnected structure that maintains parasite shape and replication. PLoS Biol 2024; 22:e3002809. [PMID: 39264987 PMCID: PMC11421793 DOI: 10.1371/journal.pbio.3002809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 09/24/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
Apicomplexan parasites possess several specialized structures to invade their host cells and replicate successfully. One of these is the inner membrane complex (IMC), a peripheral membrane-cytoskeletal system underneath the plasma membrane. It is composed of a series of flattened, membrane-bound vesicles and a cytoskeletal subpellicular network (SPN) comprised of intermediate filament-like proteins called alveolins. While the alveolin proteins are conserved throughout the Apicomplexa and the broader Alveolata, their precise functions and interactions remain poorly understood. Here, we describe the function of one of these alveolin proteins in Toxoplasma, IMC6. Disruption of IMC6 resulted in striking morphological defects that led to aberrant invasion and replication but surprisingly minor effects on motility. Deletion analyses revealed that the alveolin domain alone is largely sufficient to restore localization and partially sufficient for function. As this highlights the importance of the IMC6 alveolin domain, we implemented unnatural amino acid photoreactive crosslinking to the alveolin domain and identified multiple binding interfaces between IMC6 and 2 other cytoskeletal IMC proteins-IMC3 and ILP1. This provides direct evidence of protein-protein interactions in the alveolin domain and supports the long-held hypothesis that the alveolin domain is responsible for filament formation. Collectively, our study features the conserved alveolin proteins as critical components that maintain the parasite's structural integrity and highlights the alveolin domain as a key mediator of SPN architecture.
Collapse
Affiliation(s)
- Peter S Back
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Vignesh Senthilkumar
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Charles P Choi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Justin J Quan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Qing Lou
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Anne K Snyder
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Andrew M Ly
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Justin G Lau
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Z Hong Zhou
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Gary E Ward
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, United States of America
| | - Peter J Bradley
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
72
|
Fattouh N, Hdayed D, Hijazi A, Tokajian S, Khalaf RA. UPC2 mutations and development of azole resistance in Candida albicans hospital isolates from Lebanon. J Glob Antimicrob Resist 2024; 38:341-348. [PMID: 39059553 DOI: 10.1016/j.jgar.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVES This study evaluated the role of Upc2 in the development of azole resistance in Candida albicans isolates from Lebanese hospitalized patients and determined a correlation between resistance and virulence. METHODS The UPC2 gene which codes for an ergosterol biosynthesis regulator was sequenced and analysed in two azole-resistant and one azole-susceptible C. albicans isolates. An amino acid substitution screening was carried out on Upc2 with a focus on its ligand binding domain (LBD) known to interact with ergosterol. Then, Upc2 protein secondary structure prediction and homology modelling were conducted, followed by total plasma membrane ergosterol and cell wall chitin quantifications. For virulence, mouse models of systemic infection were generated and an agar adhesion and invasion test was performed. RESULTS Azole-resistant isolates harboured novel amino acid substitutions in the LBD of Upc2 and changes in protein secondary structures were observed. In addition, these isolates exhibited a significant increase in plasma membrane ergosterol content. Resistance and virulence were inversely correlated while increased cell wall chitin concentration does not seem to be linked to resistance since even though we observed an increase in chitin concentration, it was not statistically significant. CONCLUSIONS The azole-resistant C. albicans isolates harboured novel amino acid substitutions in the LBD of Upc2 which are speculated to induce an increase in plasma membrane ergosterol content, preventing the binding of azoles to their target, resulting in resistance.
Collapse
Affiliation(s)
- Nour Fattouh
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon; Department of Biology, Saint George University of Beirut, Beirut, Lebanon
| | - Dana Hdayed
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Ahmad Hijazi
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Sima Tokajian
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Roy A Khalaf
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
73
|
Martin A, Schabort J, Bartke-Croughan R, Tran S, Preetham A, Lu R, Ho R, Gao J, Jenkins S, Boyle J, Ghanim GE, Jagota M, Song YS, Li H, Hockemeyer D. Dissecting the oncogenic mechanisms of POT1 cancer mutations through deep scanning mutagenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608636. [PMID: 39229243 PMCID: PMC11370387 DOI: 10.1101/2024.08.19.608636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mutations in the shelterin protein POT1 are associated with diverse cancers, but their role in cancer progression remains unclear. To resolve this, we performed deep scanning mutagenesis in POT1 locally haploid human stem cells to assess the impact of POT1 variants on cellular viability and cancer-associated telomeric phenotypes. Though POT1 is essential, frame-shift mutants are rescued by chemical ATR inhibition, indicating that POT1 is not required for telomere replication or lagging strand synthesis. In contrast, a substantial fraction of clinically-validated pathogenic mutations support normal cellular proliferation, but still drive ATR-dependent telomeric DNA damage signaling and ATR-independent telomere elongation. Moreover, this class of cancer-associated POT1 variants elongates telomeres more rapidly than POT1 frame-shifts, indicating they actively drive oncogenesis and are not simple loss-of-function mutations.
Collapse
|
74
|
Grabski M, Gawor J, Cegłowska M, Gromadka R, Mazur-Marzec H, Węgrzyn G. Genome Mining of Pseudanabaena galeata CCNP1313 Indicates a New Scope in the Search for Antiproliferative and Antiviral Agents. Microorganisms 2024; 12:1628. [PMID: 39203471 PMCID: PMC11356792 DOI: 10.3390/microorganisms12081628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Compounds derived from natural sources pave the way for novel drug development. Cyanobacteria is an ubiquitous phylum found in various habitats. The fitness of those microorganisms, within different biotopes, is partially dependent on secondary metabolite production. Their enhanced production under biotic/abiotic stress factors accounts for better survival rates of cells, and thereby cyanobacteria are as an enticing source of bioactive compounds. Previous studies have shown the potent activity of extracts and fractions from Pseudanabaena galeata (Böcher 1949) strain CCNP1313 against cancer cells and viruses. However, active agents remain unknown, as the selected peptides had no effect on the tested cell lines. Here, we present a bottom-up approach, pinpointing key structures involved in secondary metabolite production. Consisting of six replicons, a complete genome sequence of P. galeata strain CCNP1313 was found to carry genes for non-ribosomal peptide/polyketide synthetases embedded within chromosome spans (4.9 Mbp) and for a ribosomally synthesized peptide located on one of the plasmids (0.2 Mbp). Elucidation of metabolite synthesis pathways led to prediction of their structure. While none of the synthesis-predicted products were found in mass spectrometry analysis, unexplored synthetases are characterized by structural similarities to those producing potent bioactive compounds.
Collapse
Affiliation(s)
- Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdańsk, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland;
| | - Robert Gromadka
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Piłsudskiego 46, 81-378 Gdynia, Poland;
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| |
Collapse
|
75
|
Yuthithum T, Phuphisut O, Reamtong O, Kosoltanapiwat N, Chaimon S, Kobpornchai P, Thawornkuno C, Malaithong P, Sawatdichaikul O, Adisakwattana P. Identification of the protease inhibitory domain of Trichinella spiralis novel cystatin (TsCstN). PARASITES, HOSTS AND DISEASES 2024; 62:330-341. [PMID: 39218632 PMCID: PMC11366547 DOI: 10.3347/phd.24026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
The Trichinella spiralis novel cystatin (TsCstN) inhibits cathepsin L (CatL) activity and inflammation of macrophages during lipopolysaccharide (LPS) induction. To identify the protease inhibitory region, this study applied an in silico modeling approach to simulate truncation sites of TsCstN (Ts01), which created four truncated forms, including TsCstN∆1-39 (Ts02), TsCstN∆1-71 (Ts03), TsCstN∆1-20, ∆73-117 (Ts04), and TsCstN∆1-20, ∆42-117 (Ts05). The superimposition of these truncates modeled with AlphaFold Colab indicated that their structures were more akin to Ts01 than those modeled with I-TASSER. Moreover, Ts04 exhibited the closest resemblance to the structure of Ts01. The recombinant Ts01 (rTs01) and truncated proteins (rTs02, rTs03, and rTs04) were successfully expressed in a prokaryotic expression system while Ts05 was synthesized, with sizes of approximately 14, 12, 8, 10, and 2.5 kDa, respectively. When determining the inhibition of CatL activity, both rTs01 and rTs04 effectively reduced CatL activity in vitro. Thus, the combination of the α1 and L1 regions may be sufficient to inhibit CatL. This study provides comprehensive insights into TsCstN, particularly regarding its protein function and inhibitory domains against CatL.
Collapse
Affiliation(s)
- Thassanee Yuthithum
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand
| | - Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand
| | - Salisa Chaimon
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Klongluang, Pathumthani 12120,
Thailand
| | - Porntida Kobpornchai
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700,
Thailand
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand
| | - Preeyarat Malaithong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand
| | - Orathai Sawatdichaikul
- Institute of Food Research and Product Development, Kasetsart University, Chatuchak, Bangkok 10900,
Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400,
Thailand
| |
Collapse
|
76
|
Hamm JN, Liao Y, von Kügelgen A, Dombrowski N, Landers E, Brownlee C, Johansson EMV, Whan RM, Baker MAB, Baum B, Bharat TAM, Duggin IG, Spang A, Cavicchioli R. The parasitic lifestyle of an archaeal symbiont. Nat Commun 2024; 15:6449. [PMID: 39085207 PMCID: PMC11291902 DOI: 10.1038/s41467-024-49962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
DPANN archaea are a diverse group of microorganisms characterised by small cells and reduced genomes. To date, all cultivated DPANN archaea are ectosymbionts that require direct cell contact with an archaeal host species for growth and survival. However, these interactions and their impact on the host species are poorly understood. Here, we show that a DPANN archaeon (Candidatus Nanohaloarchaeum antarcticus) engages in parasitic interactions with its host (Halorubrum lacusprofundi) that result in host cell lysis. During these interactions, the nanohaloarchaeon appears to enter, or be engulfed by, the host cell. Our results provide experimental evidence for a predatory-like lifestyle of an archaeon, suggesting that at least some DPANN archaea may have roles in controlling host populations and their ecology.
Collapse
Affiliation(s)
- Joshua N Hamm
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ.
| | - Yan Liao
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Nina Dombrowski
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
| | - Evan Landers
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Christopher Brownlee
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Fluorescence Analysis Facility, Molecular Horizons, University of Wollongong, Keiraville, NSW, 2522, Australia
| | - Emma M V Johansson
- Biological Resources Imaging Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Renee M Whan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Matthew A B Baker
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Buzz Baum
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Iain G Duggin
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Hoorn, The Netherlands, 1797 SZ
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
77
|
Thurm AR, Finkel Y, Andrews C, Cai XS, Benko C, Bintu L. High-throughput discovery of regulatory effector domains in human RNA-binding proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604317. [PMID: 39071298 PMCID: PMC11275849 DOI: 10.1101/2024.07.19.604317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
RNA regulation plays an integral role in tuning gene expression and is controlled by thousands of RNA-binding proteins (RBPs). We develop and use a high-throughput recruitment assay (HT-RNA-Recruit) to identify regulatory domains within human RBPs by recruiting over 30,000 protein tiles from 367 RBPs to a reporter mRNA. We discover over 100 unique RNA-regulatory effectors in 86 distinct RBPs, presenting evidence that RBPs contain functionally separable domains that dictate their post-transcriptional control of gene expression, and identify some with unique activity at 5' or 3'UTRs. We identify some domains that downregulate gene expression both when recruited to DNA and RNA, and dissect their mechanisms of regulation. Finally, we build a synthetic RNA regulator that can stably maintain gene expression at desired levels that are predictable by a mathematical model. This work serves as a resource for human RNA-regulatory effectors and expands the synthetic repertoire of RNA-based genetic control tools. Highlights HT-RNA-Recruit identifies hundreds of RNA-regulatory effectors in human proteins.Recruitment to 5' and 3' UTRs identifies regulatory domains unique to each position.Some protein domains have both transcriptional and post-transcriptional regulatory activity.We develop a synthetic RNA regulator and a mathematical model to describe its behavior.
Collapse
|
78
|
Mészáros Z, Kulik N, Petrásková L, Bojarová P, Texidó M, Planas A, Křen V, Slámová K. Three-Step Enzymatic Remodeling of Chitin into Bioactive Chitooligomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15613-15623. [PMID: 38978453 PMCID: PMC11261597 DOI: 10.1021/acs.jafc.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of β-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Natalia Kulik
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Mònica Texidó
- Laboratory
of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, ES 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, ES 08017 Barcelona, Spain
| | - Vladimír Křen
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Kristýna Slámová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| |
Collapse
|
79
|
Proaño-Bolaños C, Morán-Marcillo G, Espinosa de Los Monteros-Silva N, Bermúdez-Puga S, Salazar MA, Blasco-Zúñiga A, Cuesta S, Molina C, Espinosa F, Meneses L, Rojas-Silva P, Zapata Mena S, Sáenz FE, Rivera I M, Costales JA. Bioactivity of synthetic peptides from Ecuadorian frog skin secretions against Leishmania mexicana, Plasmodium falciparum, and Trypanosoma cruzi. Microbiol Spectr 2024; 12:e0333923. [PMID: 39012112 DOI: 10.1128/spectrum.03339-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Chagas disease, leishmaniasis, and malaria are major parasitic diseases disproportionately affecting the underprivileged population in developing nations. Finding new, alternative anti-parasitic compounds to treat these diseases is crucial because of the limited number of options currently available, the side effects they cause, the need for long treatment courses, and the emergence of drug-resistant parasites. Anti-microbial peptides (AMPs) derived from amphibian skin secretions are small bioactive molecules capable of lysing the cell membrane of pathogens while having low toxicity against human cells. Here, we report the anti-parasitic activity of five AMPs derived from skin secretions of three Ecuadorian frogs: cruzioseptin-1, cruzioseptin-4 (CZS-4), and cruzioseptin-16 from Cruziohyla calcarifer; dermaseptin-SP2 from Agalychnis spurrelli; and pictuseptin-1 from Boana picturata. These five AMPs were chemically synthesized. Initially, the hemolytic activity of CZS-4 and its minimal inhibitory concentration against Escherichia coli, Staphylococcus aureus, and Candida albicans were determined. Subsequently, the cytotoxicity of the synthetic AMPs against mammalian cells and their anti-parasitic activity against Leishmania mexicana promastigotes, erythrocytic stages of Plasmodium falciparum and mammalian stages of Trypanosoma cruzi were evaluated in vitro. The five AMPs displayed activity against the pathogens studied, with different levels of cytotoxicity against mammalian cells. In silico molecular docking analysis suggests this bioactivity may occur via pore formation in the plasma membrane, resulting in microbial lysis. CZS-4 displayed anti-bacterial, anti-fungal, and anti-parasitic activities with low cytotoxicity against mammalian cells. Further studies about this promising AMP are required to gain a better understanding of its activity.IMPORTANCEChagas disease, malaria, and leishmaniasis are major tropical diseases that cause extensive morbidity and mortality, for which available treatment options are unsatisfactory because of limited efficacy and side effects. Frog skin secretions contain molecules with anti-microbial properties known as anti-microbial peptides. We synthesized five peptides derived from the skin secretions of different species of tropical frogs and tested them against cultures of the causative agents of these three diseases, parasites known as Trypanosoma cruzi, Plasmodium falciparum, and Leishmania mexicana. All the different synthetic peptides studied showed activity against one of more of the parasites. Peptide cruzioseptin-4 is of special interest since it displayed intense activity against parasites while being innocuous against cultured mammalian cells, which indicates it does not simply hold general toxic properties; rather, its activity is specific against the parasites.
Collapse
Affiliation(s)
- Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | - Giovanna Morán-Marcillo
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | | | - Sebastián Bermúdez-Puga
- Biomolecules Discovery Group, Laboratory of Molecular Biology and Biochemistry, Universidad Regional Amazónica Ikiam, Tena, Ecuador
- Department of Biochemical-Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mateo A Salazar
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Ailín Blasco-Zúñiga
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sebastián Cuesta
- Laboratorio de Química Computacional, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Carolina Molina
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Franklin Espinosa
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Lorena Meneses
- Laboratorio de Química Computacional, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Patricio Rojas-Silva
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sonia Zapata Mena
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Fabián E Sáenz
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Miryan Rivera I
- Laboratorio de Investigación en Citogenética y Biomoléculas de Anfibios (LICBA), Centro de Investigación para la Salud en América Latina (CISeAL), Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
80
|
Alderman C, Anderson R, Zhang L, Hughes CJ, Li X, Ebmeier C, Wagley ME, Ahn NG, Ford HL, Zhao R. Biochemical characterization of the Eya and PP2A-B55α interaction. J Biol Chem 2024; 300:107408. [PMID: 38796066 PMCID: PMC11328874 DOI: 10.1016/j.jbc.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 05/09/2024] [Indexed: 05/28/2024] Open
Abstract
The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.
Collapse
Affiliation(s)
- Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ryan Anderson
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Chris Ebmeier
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Marisa E Wagley
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Natalie G Ahn
- Department of Biochemistry, University of Colorado-Boulder, Boulder, Colorado, USA
| | - Heide L Ford
- Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
81
|
Shim JG, Chuon K, Kim JH, Lee SJ, Song MC, Cho SG, Hour C, Jung KH. Proton-pumping photoreceptor controls expression of ABC transporter by regulating transcription factor through light. Commun Biol 2024; 7:789. [PMID: 38951607 PMCID: PMC11217422 DOI: 10.1038/s42003-024-06471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Light is a significant factor for living organisms with photosystems, like microbial rhodopsin-a retinal protein that functions as an ion pump, channel, and sensory transduction. Gloeobacter violaceus PCC7421, has a proton-pumping rhodopsin gene, the Gloeobacter rhodopsin (GR). The helix-turn-helix family of transcriptional regulators has various motifs, and they regulate gene expression in the presence of various metal ions. Here, we report that active proton outward pumping rhodopsin interacted with the helix-turn-helix transcription regulator and regulated gene expression. This interaction is confirmed using ITC analysis (KD of 8 μM) and determined the charged residues required. During in vitro experiments using fluorescent and luciferase reporter systems, ATP-binding cassette (ABC) transporters and the self-regulation of G. violaceus transcriptional regulator (GvTcR) are regulated by light, and gene regulation is observed in G. violaceus using the real-time polymerase chain reaction. These results expand our understanding of the natural potential and limitations of microbial rhodopsin function.
Collapse
Affiliation(s)
- Jin-Gon Shim
- Department of Life Science, Sogang University, Seoul, South Korea
- Pharmacology Department, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kimleng Chuon
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Ji-Hyun Kim
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Sang-Ji Lee
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Myung-Chul Song
- Department of Life Science, Sogang University, Seoul, South Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Shin-Gyu Cho
- Department of Life Science, Sogang University, Seoul, South Korea
- Research Institute for Basic Science, Sogang University, Seoul, Korea
| | - Chenda Hour
- Department of Life Science, Sogang University, Seoul, South Korea
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul, South Korea.
| |
Collapse
|
82
|
Zhang Y, Wang G, Zhu Y, Cao X, Liu F, Li H, Liu S. Exploring the role of endogenous retroviruses in seasonal reproductive cycles: a case study of the ERV-V envelope gene in mink. Front Cell Infect Microbiol 2024; 14:1404431. [PMID: 39081866 PMCID: PMC11287128 DOI: 10.3389/fcimb.2024.1404431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Endogenous retroviruses (ERVs), which originated from exogenous retroviral infections of germline cells millions of years ago and were inherited by subsequent generations as per Mendelian inheritance patterns, predominantly comprise non-protein-coding sequences due to the accumulation of mutations, insertions, deletions, and truncations. Nevertheless, recent studies have revealed that ERVs play a crucial role in diverse biological processes by encoding various proteins. Methods In this study, we successfully identified an ERV envelope (env) gene in a mink species. A phylogenetic tree of mink ERV-V env and reference sequences was constructed using Bayesian methods and maximum-likelihood inference. Results Phylogenetic analyses indicated a significant degree of sequence conservation and positive selection within the env-surface open reading frame. Additionally, qRT-PCR revealed diverse patterns of mink ERV-V env expression in various tissues. The expression of mink ERV-V env gene in testicular tissue strongly correlated with the seasonal reproductive cycles of minks. Discussion Our study suggests that the ERV-V env gene in mink may have been repurposed for host functions.
Collapse
Affiliation(s)
- Yufei Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Gaofeng Wang
- Ulanqab Center for Animal Disease Control and Prevention, Ulanqab, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xiaodong Cao
- School of pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fang Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Huiping Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuying Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- College of Veterinary Medicine, Key Laboratory of Basic Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, China
| |
Collapse
|
83
|
Purushothaman M, Chang L, Zhong RJ, Morinaka BI. The Triceptide Maturase OscB Catalyzes Uniform Cyclophane Topology and Accepts Diverse Gly-Rich Precursor Peptides. ACS Chem Biol 2024; 19:1229-1236. [PMID: 38742762 DOI: 10.1021/acschembio.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Triceptides are a class of ribosomally synthesized and post-translationally modified peptides defined by an aromatic C(sp2) to Cβ(sp3) bond. The Gly-rich repeat family of triceptide maturases (TIGR04261) are paired with precursor peptides (TIGR04260) containing a Gly-rich core peptide. These maturases are prevalent in cyanobacteria and catalyze cyclophane formation on multiple Ω1-X2-X3 motifs (Ω1 = Trp and Phe) of the Gly-rich precursor peptide. The topology of the individual rings has not been completely elucidated, and the promiscuity of these enzymes is not known. In this study, we characterized all the cyclophane rings formed by the triceptide maturase OscB and show the ring topology is uniform with respect to the substitution at Trp-C7 and the atropisomerism (planar chirality). Additionally, the enzyme OscB demonstrated substrate promiscuity on Gly-rich precursors and can accommodate a diverse array of engineered sequences. These findings highlight the versatility and implications for using OscB as a biocatalyst for producing polycyclophane-containing peptides for biotechnological applications.
Collapse
Affiliation(s)
- Mugilarasi Purushothaman
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Litao Chang
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Ryan Jian Zhong
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| | - Brandon I Morinaka
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 4 Science Dr 2, Singapore 117544
| |
Collapse
|
84
|
Pumchan A, Proespraiwong P, Sawatdichaikul O, Phurahong T, Hirono I, Unajak S. Computational design of novel chimeric multiepitope vaccine against bacterial and viral disease in tilapia (Oreochromis sp.). Sci Rep 2024; 14:14048. [PMID: 38890454 PMCID: PMC11189486 DOI: 10.1038/s41598-024-64383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Regarding several infectious diseases in fish, multiple vaccinations are not favorable. The chimeric multiepitope vaccine (CMEV) harboring several antigens for multi-disease prevention would enhance vaccine efficiency in terms of multiple disease prevention. Herein, the immunogens of tilapia's seven pathogens including E. tarda, F. columnare, F. noatunensis, S. iniae, S. agalactiae, A. hydrophila, and TiLV were used for CMEV design. After shuffling and annotating the B-cell epitopes, 5,040 CMEV primary protein structures were obtained. Secondary and tertiary protein structures were predicted by AlphaFold2 creating 25,200 CMEV. Proper amino acid alignment in the secondary structures was achieved by the Ramachandran plot. In silico determination of physiochemical and other properties including allergenicity, antigenicity, glycosylation, and conformational B-cell epitopes were determined. The selected CMEV (OSLM0467, OSLM2629, and OSLM4294) showed a predicted molecular weight (MW) of 70 kDa, with feasible sites of N- and O-glycosylation, and a number of potentially conformational B-cell epitope residues. Molecular docking, codon optimization, and in-silico cloning were tested to evaluate the possibility of protein expression. Those CMEVs will further elucidate in vitro and in vivo to evaluate the efficacy and specific immune response. This research will highlight the new era of vaccines designed based on in silico structural vaccine design.
Collapse
Affiliation(s)
- Ansaya Pumchan
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand
| | - Porranee Proespraiwong
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand
| | - Thararat Phurahong
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand
| | - Ikuo Hirono
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-KU, Tokyo, 108-8477, Japan
| | - Sasimanas Unajak
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand.
- Kasetsart Vaccines and Bio-Product Innovation Centre, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, 10900, Bangkok, Thailand.
| |
Collapse
|
85
|
Peng F, Ke Z, Jin H, Wang W, Zhang H, Li Y. Structural insights into the regulation mechanism of Mycobacterium tuberculosis MftR. FASEB J 2024; 38:e23724. [PMID: 38837712 DOI: 10.1096/fj.202302409rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Mycobacterium tuberculosis, the pathogen of the deadly disease tuberculosis, depends on the redox cofactor mycofactocin (MFT) to adapt to and survive under hypoxic conditions. MftR is a TetR family transcription regulator that binds upstream of the MFT gene cluster and controls MFT synthesis. To elucidate the structural basis underlying MftR regulation, we determined the crystal structure of Mycobacterium tuberculosis MftR (TB-MftR). The structure revealed an interconnected hydrogen bond network in the α1-α2-α3 helices of helix-turn-helix (HTH) DNA-binding domain that is essential for nucleic acid interactions. The ligand-binding domain contains a hydrophobic cavity enclosing long-chain fatty acyl-CoAs like the key regulatory ligand oleoyl-CoA. Despite variations in ligand-binding modes, comparative analyses suggest regulatory mechanisms are largely conserved across TetR family acyl-CoA sensors. By elucidating the intricate structural mechanisms governing DNA and ligand binding by TB-MftR, our study enhances understanding of the regulatory roles of this transcription factor under hypoxic conditions, providing insights that could inform future research into Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zunhui Ke
- Department of Blood Transfusion, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoruo Jin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Medical Subcenter of HUST Analytical & Testing Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| |
Collapse
|
86
|
Ridges JT, Bladen J, King TD, Brown NC, Large CRL, Cooper JC, Jones AJ, Loppin B, Dubruille R, Phadnis N. Overdrive is essential for targeted sperm elimination by Segregation Distorter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597441. [PMID: 38895353 PMCID: PMC11185633 DOI: 10.1101/2024.06.04.597441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Intra-genomic conflict driven by selfish chromosomes is a powerful force that shapes the evolution of genomes and species. In the male germline, many selfish chromosomes bias transmission in their own favor by eliminating spermatids bearing the competing homologous chromosomes. However, the mechanisms of targeted gamete elimination remain mysterious. Here, we show that Overdrive (Ovd), a gene required for both segregation distortion and male sterility in Drosophila pseudoobscura hybrids, is broadly conserved in Dipteran insects but dispensable for viability and fertility. In D. melanogaster, Ovd is required for targeted Responder spermatid elimination after the histone-to-protamine transition in the classical Segregation Distorter system. We propose that Ovd functions as a general spermatid quality checkpoint that is hijacked by independent selfish chromosomes to eliminate competing gametes.
Collapse
Affiliation(s)
- Jackson T. Ridges
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jackson Bladen
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas D. King
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nora C. Brown
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | | | - Jacob C. Cooper
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Amanda J. Jones
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Benjamin Loppin
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Raphaëlle Dubruille
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France
| | - Nitin Phadnis
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
87
|
Kang MD, Choi GE, Jang JH, Hong SC, Park HS, Kim DH, Kim WC, Murphy NP, Jung YH. A lipase from Lacticaseibacillus rhamnosus IDCC 3201 with thermostability and pH resistance for use as a detergent additive. Appl Microbiol Biotechnol 2024; 108:365. [PMID: 38842543 PMCID: PMC11156721 DOI: 10.1007/s00253-024-13185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Lipases are important biocatalysts and ubiquitous in plants, animals, and microorganisms. The high growth rates of microorganisms with low production costs have enabled the wide application of microbial lipases in detergent, food, and cosmetic industries. Herein, a novel lipase from Lacticaseibacillus rhamnosus IDCC 3201 (Lac-Rh) was isolated and its activity analyzed under a range of reaction conditions to evaluate its potential industrial application. The isolated Lac-Rh showed a molecular weight of 24 kDa and a maximum activity of 3438.5 ± 1.8 U/mg protein at 60 °C and pH 8. Additionally, Lac-Rh retained activity in alkaline conditions and in 10% v/v concentrations of organic solvents, including glycerol and acetone. Interestingly, after pre-incubation in the presence of multiple commercial detergents, Lac-Rh maintained over 80% of its activity and the stains from cotton were successfully removed under a simulated laundry setting. Overall, the purified lipase from L. rhamnosus IDCC 3201 has potential for use as a detergent in industrial applications. KEY POINTS: • A novel lipase (Lac-Rh) was isolated from Lacticaseibacillus rhamnosus IDCC 3201 • Purified Lac-Rh exhibited its highest activity at a temperature of 60 °C and a pH of 8, respectively • Lac-Rh remains stable in commercial laundry detergent and enhances washing performance.
Collapse
Affiliation(s)
- Mi Dan Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Go Eun Choi
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Hwa Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Chul Hong
- Department of Food Science and Biotechnology, Kunsan National University, Gunsan, 54150, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Hyun Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Won Chan Kim
- Department of Applied Biosciences, Department of Integrative Biology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Natasha P Murphy
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
88
|
Prusén Mota I, Galova M, Schleiffer A, Nguyen TT, Kovacikova I, Farias Saad C, Litos G, Nishiyama T, Gregan J, Peters JM, Schlögelhofer P. Sororin is an evolutionary conserved antagonist of WAPL. Nat Commun 2024; 15:4729. [PMID: 38830897 PMCID: PMC11148194 DOI: 10.1038/s41467-024-49178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
Cohesin mediates sister chromatid cohesion to enable chromosome segregation and DNA damage repair. To perform these functions, cohesin needs to be protected from WAPL, which otherwise releases cohesin from DNA. It has been proposed that cohesin is protected from WAPL by SORORIN. However, in vivo evidence for this antagonism is missing and SORORIN is only known to exist in vertebrates and insects. It is therefore unknown how important and widespread SORORIN's functions are. Here we report the identification of SORORIN orthologs in Schizosaccharomyces pombe (Sor1) and Arabidopsis thaliana (AtSORORIN). sor1Δ mutants display cohesion defects, which are partially alleviated by wpl1Δ. Atsororin mutant plants display dwarfism, tissue specific cohesion defects and chromosome mis-segregation. Furthermore, Atsororin mutant plants are sterile and separate sister chromatids prematurely at anaphase I. The somatic, but not the meiotic deficiencies can be alleviated by loss of WAPL. These results provide in vivo evidence for SORORIN antagonizing WAPL, reveal that SORORIN is present in organisms beyond the animal kingdom and indicate that it has acquired tissue specific functions in plants.
Collapse
Affiliation(s)
- Ignacio Prusén Mota
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Marta Galova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tan-Trung Nguyen
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Ines Kovacikova
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
| | - Carolina Farias Saad
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, Vienna, Austria
| | - Gabriele Litos
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Tomoko Nishiyama
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Juraj Gregan
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria.
| | - Peter Schlögelhofer
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Chromosome Biology, Vienna, Austria.
| |
Collapse
|
89
|
Robeson L, Casanova‐Morales N, Burgos‐Bravo F, Alfaro‐Valdés HM, Lesch R, Ramírez‐Álvarez C, Valdivia‐Delgado M, Vega M, Matute RA, Schekman R, Wilson CAM. Characterization of the interaction between the Sec61 translocon complex and ppαF using optical tweezers. Protein Sci 2024; 33:e4996. [PMID: 38747383 PMCID: PMC11094780 DOI: 10.1002/pro.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.
Collapse
Affiliation(s)
- Luka Robeson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Nathalie Casanova‐Morales
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- Facultad de Artes LiberalesUniversidad Adolfo IbáñezSantiagoChile
| | - Francesca Burgos‐Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- California Institute for Quantitative Biosciences, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Hilda M. Alfaro‐Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Robert Lesch
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Carolina Ramírez‐Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Mauricio Valdivia‐Delgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Marcela Vega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Ricardo A. Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Randy Schekman
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| |
Collapse
|
90
|
Mizgalska D, Rodríguez-Banqueri A, Veillard F, Książęk M, Goulas T, Guevara T, Eckhard U, Potempa J, Gomis-Rüth FX. Structural and functional insights into the C-terminal signal domain of the Bacteroidetes type-IX secretion system. Open Biol 2024; 14:230448. [PMID: 38862016 DOI: 10.1098/rsob.230448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 06/13/2024] Open
Abstract
Gram-negative bacteria from the Bacteroidota phylum possess a type-IX secretion system (T9SS) for protein secretion, which requires cargoes to have a C-terminal domain (CTD). Structurally analysed CTDs are from Porphyromonas gingivalis proteins RgpB, HBP35, PorU and PorZ, which share a compact immunoglobulin-like antiparallel 3+4 β-sandwich (β1-β7). This architecture is essential as a P. gingivalis strain with a single-point mutant of RgpB disrupting the interaction of the CTD with its preceding domain prevented secretion of the protein. Next, we identified the C-terminus ('motif C-t.') and the loop connecting strands β3 and β4 ('motif Lβ3β4') as conserved. We generated two strains with insertion and replacement mutants of PorU, as well as three strains with ablation and point mutants of RgpB, which revealed both motifs to be relevant for T9SS function. Furthermore, we determined the crystal structure of the CTD of mirolase, a cargo of the Tannerella forsythia T9SS, which shares the same general topology as in Porphyromonas CTDs. However, motif Lβ3β4 was not conserved. Consistently, P. gingivalis could not properly secrete a chimaeric protein with the CTD of peptidylarginine deiminase replaced with this foreign CTD. Thus, the incompatibility of the CTDs between these species prevents potential interference between their T9SSs.
Collapse
Affiliation(s)
- Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arturo Rodríguez-Banqueri
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Florian Veillard
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mirosław Książęk
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, Karditsa 43100, Greece
| | - Tibisay Guevara
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Ulrich Eckhard
- Synthetic Structural Biology Group, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - F Xavier Gomis-Rüth
- Proteolysis Laboratory, Department of Structural Biology, Molecular Biology Institute of Barcelona (CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
91
|
Attia B, My L, Castaing JP, Dinet C, Le Guenno H, Schmidt V, Espinosa L, Anantharaman V, Aravind L, Sebban-Kreuzer C, Nouailler M, Bornet O, Viollier P, Elantak L, Mignot T. A molecular switch controls assembly of bacterial focal adhesions. SCIENCE ADVANCES 2024; 10:eadn2789. [PMID: 38809974 PMCID: PMC11135422 DOI: 10.1126/sciadv.adn2789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
Cell motility universally relies on spatial regulation of focal adhesion complexes (FAs) connecting the substrate to cellular motors. In bacterial FAs, the Adventurous gliding motility machinery (Agl-Glt) assembles at the leading cell pole following a Mutual gliding-motility protein (MglA)-guanosine 5'-triphosphate (GTP) gradient along the cell axis. Here, we show that GltJ, a machinery membrane protein, contains cytosolic motifs binding MglA-GTP and AglZ and recruiting the MreB cytoskeleton to initiate movement toward the lagging cell pole. In addition, MglA-GTP binding triggers a conformational shift in an adjacent GltJ zinc-finger domain, facilitating MglB recruitment near the lagging pole. This prompts GTP hydrolysis by MglA, leading to complex disassembly. The GltJ switch thus serves as a sensor for the MglA-GTP gradient, controlling FA activity spatially.
Collapse
Affiliation(s)
- Bouchra Attia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Laetitia My
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Jean Philippe Castaing
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Céline Dinet
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Hugo Le Guenno
- Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Victoria Schmidt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Leon Espinosa
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Corinne Sebban-Kreuzer
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Matthieu Nouailler
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Olivier Bornet
- Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Patrick Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/Centre Médical Universitaire, University of Geneva, 1211 Genève 4, Switzerland
| | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), CNRS - Aix-Marseille Université UMR7255, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne (LCB), Institut de Microbiologie de la Méditerranée (IMM), Turing Center for Living Systems, CNRS - Aix-Marseille Université UMR7283, 31 Chemin Joseph Aiguier CS70071, 13402 Marseille Cedex 20, France
| |
Collapse
|
92
|
Cornman RS. A genomic hotspot of diversifying selection and structural change in the hoary bat ( Lasiurus cinereus). PeerJ 2024; 12:e17482. [PMID: 38832043 PMCID: PMC11146322 DOI: 10.7717/peerj.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Background Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.
Collapse
Affiliation(s)
- Robert S. Cornman
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States
| |
Collapse
|
93
|
A R Oliveira G, G D V Morales B, M O Sousa R, S Pereira S, Antunes D, Caffarena ER, Zanchi FB. Exploring Novel Antimalarial Compounds Targeting Plasmodium falciparum Enoyl-ACP Reductase: Computational and Experimental Insights. ACS OMEGA 2024; 9:22777-22793. [PMID: 38826533 PMCID: PMC11137734 DOI: 10.1021/acsomega.3c09893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 06/04/2024]
Abstract
Malaria, caused by Plasmodium protozoa with Plasmodium falciparum as the most virulent species, continues to pose significant health challenges. Despite the availability of effective antimalarial drugs, the emergence of resistance has heightened the urgency for developing novel therapeutic compounds. In this study, we investigated the enoyl-ACP reductase enzyme of P. falciparum (PfENR) as a promising target for antimalarial drug discovery. Through a comprehensive analysis, we conducted a comparative evaluation of two lead compounds, LD1 (CID: 44405336, lead compounds 1) and LD2 (CID: 72703246, lead compounds 2), obtained from the PubChem/NCBI ligand database, to serve as reference molecules in the identification of potential derivatives using virtual screening assays. Among the newly identified candidates, Ligand 1 (LG1) and Ligand 2 (LG2) exhibited intriguing characteristics and underwent further investigation through docking and molecular dynamics simulations. Ligand 1 (LG1) demonstrated interactions similar to LD1, including hydrogen bonding with Asp218, while Ligand 2 (LG2) displayed superior binding energy comparable to LD1 and LD2, despite lacking hydrogen bonding interactions observed in the control compounds triclosan and its derivative 7-(4-chloro-2-hydroxyphenoxy)-4-methyl-2H-chromen-2-one (CHJ). Following computational validation using the MM/GBSA method to estimate binding free energy, commercially acquired LG1 and LG2 ligands were subjected to in vitro testing. Inhibition assays were performed to evaluate their potential as PfENR inhibitors alongside triclosan as a control compound. LG1 exhibited no inhibitory effects, while LG2 demonstrated inhibitory effects like triclosan. In conclusion, this study contributes valuable insights into developing novel antimalarial drugs by identifying LG2 as a potential ligand and employing a comprehensive approach integrating computational and experimental methodologies.
Collapse
Affiliation(s)
- George A R Oliveira
- Laboratório
de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
| | - Bruno G D V Morales
- Laboratório
de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia
(UNIR), CEP: 76801-974 Porto Velho-RO, Brazil
| | - Rosa M O Sousa
- Laboratório
de Engenharia de Anticorpos, Fundação
Oswaldo Cruz de Rondônia, CEP: 76812-245 Porto Velho-RO, Brazil
| | - Soraya S Pereira
- Programa
de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia
(UNIR), CEP: 76801-974 Porto Velho-RO, Brazil
- Laboratório
de Engenharia de Anticorpos, Fundação
Oswaldo Cruz de Rondônia, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
| | - Deborah Antunes
- Laboratório
de Genômica Aplicada e Bioinovações, Instituto Oswaldo Cruz, Fundação Oswaldo
Cruz (FIOCRUZ), CEP: 21040-900 Rio de Janeiro-RJ, Brazil
| | - Ernesto R. Caffarena
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
- Programa
de Computação Científica—PROCC, Fundação
Oswaldo Cruz, CEP: 21040-900 Rio de Janeiro-RJ, Brazil
| | - Fernando B. Zanchi
- Laboratório
de Bioinformática e Química Medicinal, Fundação Oswaldo Cruz, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia
(UNIR), CEP: 76801-974 Porto Velho-RO, Brazil
- Instituto
Nacional de Epidemiologia na Amazônia Ocidental—EPIAMO, CEP: 76812-245 Porto Velho-RO, Brazil
- Programa
de Pós-graduação Stricto sensu em Biologia Computacional
e Sistemas do Instituto Oswaldo Cruz, CEP: 21040-360 Rio de Janeiro-RJ, Brazil
| |
Collapse
|
94
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
95
|
van den Noort M, Drougkas P, Paulino C, Poolman B. The substrate-binding domains of the osmoregulatory ABC importer OpuA transiently interact. eLife 2024; 12:RP90996. [PMID: 38695350 PMCID: PMC11065425 DOI: 10.7554/elife.90996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.
Collapse
Affiliation(s)
- Marco van den Noort
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Panagiotis Drougkas
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
- Biochemistry Center, Heidelberg UniversityHeidelbergGermany
| | - Cristina Paulino
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
- Biochemistry Center, Heidelberg UniversityHeidelbergGermany
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
96
|
Li J, Cheng R, Wang Z, Yuan W, Xiao J, Zhao X, Du X, Xia S, Wang L, Zhu B, Wang L. Structures and activation mechanism of the Gabija anti-phage system. Nature 2024; 629:467-473. [PMID: 38471529 DOI: 10.1038/s41586-024-07270-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.
Collapse
Affiliation(s)
- Jing Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Rui Cheng
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Wuliu Yuan
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jun Xiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xinyuan Zhao
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinran Du
- School of Electronic Information, Wuhan University, Wuhan, China
| | - Shiyu Xia
- Divison of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lianrong Wang
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Bin Zhu
- Key Laboratory of Molecular Biophysics, the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Longfei Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
97
|
Mansueto G, Fusco G, Colonna G. A Tiny Viral Protein, SARS-CoV-2-ORF7b: Functional Molecular Mechanisms. Biomolecules 2024; 14:541. [PMID: 38785948 PMCID: PMC11118181 DOI: 10.3390/biom14050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
This study presents the interaction with the human host metabolism of SARS-CoV-2 ORF7b protein (43 aa), using a protein-protein interaction network analysis. After pruning, we selected from BioGRID the 51 most significant proteins among 2753 proven interactions and 1708 interactors specific to ORF7b. We used these proteins as functional seeds, and we obtained a significant network of 551 nodes via STRING. We performed topological analysis and calculated topological distributions by Cytoscape. By following a hub-and-spoke network architectural model, we were able to identify seven proteins that ranked high as hubs and an additional seven as bottlenecks. Through this interaction model, we identified significant GO-processes (5057 terms in 15 categories) induced in human metabolism by ORF7b. We discovered high statistical significance processes of dysregulated molecular cell mechanisms caused by acting ORF7b. We detected disease-related human proteins and their involvement in metabolic roles, how they relate in a distorted way to signaling and/or functional systems, in particular intra- and inter-cellular signaling systems, and the molecular mechanisms that supervise programmed cell death, with mechanisms similar to that of cancer metastasis diffusion. A cluster analysis showed 10 compact and significant functional clusters, where two of them overlap in a Giant Connected Component core of 206 total nodes. These two clusters contain most of the high-rank nodes. ORF7b acts through these two clusters, inducing most of the metabolic dysregulation. We conducted a co-regulation and transcriptional analysis by hub and bottleneck proteins. This analysis allowed us to define the transcription factors and miRNAs that control the high-ranking proteins and the dysregulated processes within the limits of the poor knowledge that these sectors still impose.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Dipartimento di Scienze Mediche e Chirurgiche Avanzate, Università della Campania, L. Vanvitelli, 80138 Naples, Italy;
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Giovanni Colonna
- Medical Informatics AOU, Università della Campania, L. Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
98
|
Phan CS, Chang L, Nguyen TQN, Suarez AFL, Ho XH, Chen H, Koh IYF, Morinaka BI. Substrate Promiscuity of the Triceptide Maturase XncB Leads to Incorporation of Various Amino Acids and Detection of Oxygenated Products. ACS Chem Biol 2024; 19:855-860. [PMID: 38452396 DOI: 10.1021/acschembio.3c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Triceptides are cyclophane-containing ribosomally synthesized and post-translationally modified peptides. The characteristic cross-links are formed between an aromatic ring to Cβ on three-residue Ω1X2X3 motifs (Ω1 = aromatic). Here, we explored the promiscuity of the XYE family triceptide maturase, XncB from Xenorhabdus nematophila DSM 3370. Single amino acid variants were coexpressed with XncB in vivo in Escherichia coli, and we show that a variety of amino acids can be incorporated into the Phe-Gly-Asn cyclophane. Aromatic amino acids at the X3 position were accepted by the enzyme but yielded hydroxylated, rather than the typical cyclophane, products. These studies show that oxygen can be inserted but diverges in the final product formed relative to daropeptide maturases. Finally, truncations of the leader peptide showed that it is necessary for complete modification by XncB.
Collapse
Affiliation(s)
- Chin-Soon Phan
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Litao Chang
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Xuen Huei Ho
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Huiyi Chen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Ivan Yu Fan Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
99
|
da Costa Rodrigues T, Zorzete P, Miyaji EN, Gonçalves VM. Novel method for production and purification of untagged pneumococcal surface protein A from clade 1. Appl Microbiol Biotechnol 2024; 108:281. [PMID: 38570417 PMCID: PMC10990985 DOI: 10.1007/s00253-024-13098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Streptococcus pneumoniae can cause diseases with high mortality and morbidity. The licensed vaccines are based on capsular polysaccharides and induce antibodies with low cross reactivity, leading to restricted coverage of serotypes. For surpassing this limitation, new pneumococcal vaccines are needed for induction of broader protection. One important candidate is the pneumococcal surface protein A (PspA), which can be classified in 6 clades and 3 families. We have reported an efficient process for production and purification of untagged recombinant PspA from clade 4 (PspA4Pro). We now aim to obtain a highly pure recombinant PspA from clade 1 (PspA1) to be included, together with PspA4Pro, in a vaccine formulation to broaden response against pneumococci. The vector pET28a-pspA1 was constructed and used to transform Escherichia coli BL21(DE3) strain. One clone with high production of PspA1 was selected and adapted to high-density fermentation (HDF) medium. After biomass production in 6 L HDF using a bioreactor, the purification was defined after testing 3 protocols. During the batch bioreactor cultivation, plasmid stability remained above 90% and acetate formation was not detected. The final protein purification process included treatment with a cationic detergent after lysis, anion exchange chromatography, cryoprecipitation, cation exchange chromatography, and multimodal chromatography. The final purification process showed PspA1 purity of 93% with low endotoxin content and an overall recovery above 20%. The novel established process can be easily scaled-up and proved to be efficient to obtain a highly pure untagged PspA1 for inclusion in vaccine formulations. KEY POINTS: • Purification strategy for recombinant PspA1 from Streptococcus pneumoniae • Downstream processing for untagged protein antigens, the case of PspA1 • Purification strategy for PspA variants relies on buried amino acids in their sequences.
Collapse
Affiliation(s)
- Tasson da Costa Rodrigues
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Patricia Zorzete
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Eliane Namie Miyaji
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Viviane Maimoni Gonçalves
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Universidade de São Paulo, São Paulo, São Paulo, Brazil.
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, São Paulo, Brazil.
| |
Collapse
|
100
|
Moser C, Guschtschin-Schmidt N, Silber M, Flum J, Muhle-Goll C. Substrate Selection Criteria in Regulated Intramembrane Proteolysis. ACS Chem Neurosci 2024; 15:1321-1334. [PMID: 38525994 DOI: 10.1021/acschemneuro.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Alzheimer's disease is the most common form of dementia encountered in an aging population. Characteristic amyloid deposits of Aβ peptides in the brain are generated through cleavage of amyloid precursor protein (APP) by γ-secretase, an intramembrane protease. Cryo-EM structures of substrate γ-secretase complexes revealed details of the process, but how substrates are recognized and enter the catalytic site is still largely ignored. γ-Secretase cleaves a diverse range of substrate sequences without a common consensus sequence, but strikingly, single point mutations within the transmembrane domain (TMD) of specific substrates may greatly affect cleavage efficiencies. Previously, conformational flexibility was hypothesized to be the main criterion for substrate selection. Here we review the 3D structure and dynamics of several γ-secretase substrate TMDs and compare them with mutants shown to affect the cleavage efficiency. In addition, we present structural and dynamic data on ITGB1, a known nonsubstrate of γ-secretase. A comparison of biophysical details between these TMDs and changes generated by introducing crucial mutations allowed us to unravel common principles that differ between substrates and nonsubstrates. We identified three motifs in the investigated substrates: a highly flexible transmembrane domain, a destabilization of the cleavage region, and a basic signature at the end of the transmembrane helix. None of these appears to be exclusive. While conformational flexibility on its own may increase cleavage efficiency in well-known substrates like APP or Notch1, our data suggest that the three motifs seem to be rather variably combined to determine whether a transmembrane helix is efficiently recognized as a γ-secretase substrate.
Collapse
Affiliation(s)
- Celine Moser
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Nadja Guschtschin-Schmidt
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Mara Silber
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Julia Flum
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Claudia Muhle-Goll
- Institute for Biological Interfaces 4, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|