51
|
Sheh A, Artim SC, Burns MA, Molina-Mora JA, Lee MA, Dzink-Fox J, Muthupalani S, Fox JG. Analysis of gut microbiome profiles in common marmosets (Callithrix jacchus) in health and intestinal disease. Sci Rep 2022; 12:4430. [PMID: 35292670 PMCID: PMC8924212 DOI: 10.1038/s41598-022-08255-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets. To understand the role of the microbiome in GI diseases, we characterized the gut microbiome of 91 healthy marmosets (303 samples) and 59 marmosets diagnosed with inflammatory bowel disease (IBD) (200 samples). Healthy marmosets exhibited "humanized," Bacteroidetes-dominant microbiomes. After up to 2 years of standardized diet, housing and husbandry, marmoset microbiomes could be classified into four distinct marmoset sources based on Prevotella and Bacteroides levels. Using a random forest (RF) model, marmosets were classified by source with an accuracy of 93% with 100% sensitivity and 95% specificity using abundance data from 4 Prevotellaceae amplicon sequence variants (ASVs), as well as single ASVs from Coprobacter, Parabacteroides, Paraprevotella, Phascolarctobacterium, Oribacterium and Fusobacterium. A single dysbiotic IBD state was not found across all marmoset sources, but IBD was associated with lower alpha diversity and a lower Bacteroides:Prevotella copri ratio within each source. IBD was highest in a Prevotella-dominant cohort, and consistent with Prevotella-linked diseases, pro-inflammatory genes in the jejunum were upregulated. RF analysis of serum biomarkers identified serum calcium, hemoglobin and red blood cell (RBC) counts as potential biomarkers for marmoset IBD. This study characterizes the microbiome of healthy captive common marmosets and demonstrates that source-specific microbiomes can be retained despite standardized diets and husbandry practices. Marmosets with IBD had decreased alpha diversity and a shift in the ratio of Bacteroides:Prevotella copri compared to healthy marmosets.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Stephen C Artim
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Merck Research Laboratories, Merck, South San Francisco, CA, USA
| | - Monika A Burns
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Mary Anne Lee
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - JoAnn Dzink-Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
52
|
Dicks LMT, Deane SM, Grobbelaar MJ. Could the COVID-19-Driven Increased Use of Ivermectin Lead to Incidents of Imbalanced Gut Microbiota and Dysbiosis? Probiotics Antimicrob Proteins 2022; 14:217-223. [PMID: 35218001 PMCID: PMC8881049 DOI: 10.1007/s12602-022-09925-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
The microfilaricidal anthelmintic drug ivermectin (IVM) has been used since 1988 for treatment of parasitic infections in animals and humans. The discovery of IVM’s ability to inactivate the eukaryotic importin α/β1 heterodimer (IMPα/β1), used by some viruses to enter the nucleus of susceptible hosts, led to the suggestion of using the drug to combat SARS-CoV-2 infection. Since IVM has antibacterial properties, prolonged use may affect commensal gut microbiota. In this review, we investigate the antimicrobial properties of IVM, possible mode of activity, and the concern that treatment of individuals diagnosed with COVID-19 may lead to dysbiosis.
Collapse
Affiliation(s)
- Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| | - Shelly M Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Matthew J Grobbelaar
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
53
|
Alterations in Intestinal Antioxidant and Immune Function and Cecal Microbiota of Laying Hens Fed on Coated Sodium Butyrate Supplemented Diets. Animals (Basel) 2022; 12:ani12050545. [PMID: 35268114 PMCID: PMC8908843 DOI: 10.3390/ani12050545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
This study was designed to evaluate the effects of dietary coated sodium butyrate (CSB) on the intestinal antioxidant, immune function, and cecal microbiota of laying hens. A total of 720 52-week-old Huafeng laying hens were randomly allocated into five groups and fed a basal diet supplemented with CSB at levels of 0 (control), 250 (S250), 500 (S500), 750 (S750), and 1000 (S1000) mg/kg for eight weeks. The results revealed that CSB supplementation quadratically decreased the malondialdehyde content and increased the superoxide dismutase activity of the jejunum as well as the total antioxidative capacity activity of the ileum (p < 0.05). Dietary CSB supplementation linearly decreased the diamine oxidase and D-lactic acid content of the serum (p < 0.05). Compared with the control group, the addition of CSB resulted in linear and/or quadratic effects on the mRNA expression of inflammatory cytokines TNF-α, IL-6, and IL-10 in the jejunum and ileum (p < 0.05). The short-chain fatty acid concentrations increased quadratically as supplemental CSB improved (p < 0.05). Additionally, dietary CSB levels had no effect on microbial richness estimators, but ameliorated cecal microbiota by raising the abundance of probiotics and lowering pathogenic bacteria enrichment. In conclusion, our results suggest that dietary supplementation with CSB could improve the intestinal health of laying hens via positively influencing the antioxidant capacity, inflammatory cytokines, short-chain fatty acids, and gut microbiota. In this study, 500 mg/kg CSB is the optimal supplement concentration in the hens’ diet.
Collapse
|
54
|
Oral and Intestinal Bacterial Substances Associated with Disease Activities in Patients with Rheumatoid Arthritis: A Cross-Sectional Clinical Study. J Immunol Res 2022; 2022:6839356. [PMID: 35224112 PMCID: PMC8881124 DOI: 10.1155/2022/6839356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Intestinal bacterial compositions of rheumatoid arthritis (RA) patients have been reported to be different from those of healthy people. Dysbiosis, imbalance of the microbiota, is widely known to cause gut barrier damage, resulting in an influx of bacteria and their substances into host bloodstreams in animal studies. However, few studies have investigated the effect of bacterial substances on the pathophysiology of RA. In this study, eighty-seven active RA patients who had inadequate responses to conventional synthetic disease-modifying antirheumatic drugs or severe comorbidities were analyzed for correlations between many factors such as disease activities, disease biomarkers, intestinal bacterial counts, fecal and serum lipopolysaccharide (LPS), LPS-binding protein (LBP), endotoxin neutralizing capacity (ENC), and serum antibacterial substance IgG and IgA antibody levels by multiple regression analysis with consideration for demographic factors such as age, sex, smoking, and methotrexate treatment. Serum LBP levels, fecal LPS levels, total bacteria counts, serum anti-LPS from Porphyromonas gingivalis (Pg-LPS) IgG antibody levels, and serum anti-Pg-LPS IgA antibody levels were selected for multiple regression analysis using Spearman’s correlation analysis. Serum LBP levels were correlated with disease biomarker levels, such as erythrocyte sedimentation rate (
), C-reactive protein (
), matrix metalloproteinase-3 (
), and IL-6 (
), and were inversely correlated with hemoglobin (
). Anti-Pg-LPS IgG antibody levels were inversely correlated with activity indices such as patient global assessments using visual analogue scale (VAS) (
) and painVAS (
). Total bacteria counts were correlated with ENC (
), and inversely correlated with serum LPS (
) and anti-Pg-LPS IgA antibody levels (
). These results suggest that substances from oral and gut microbiota may influence disease activity in RA patients.
Collapse
|
55
|
Deng L, Guo H, Wang S, Liu X, Lin Y, Zhang R, Tan W. The Attenuation of Chronic Ulcerative Colitis by (R)-salbutamol in Repeated DSS-Induced Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9318721. [PMID: 35178163 PMCID: PMC8843997 DOI: 10.1155/2022/9318721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Racemic salbutamol ((RS)-sal), which consist of the same amount of (R)-sal and (S)-sal, has been used for asthma and COPD due to its bronchodilation effect. However, the effect of (R)-sal on repeated dextran sulfate sodium (DSS)-induced chronic colitis has not yet been investigated. In this study evaluated the potential effect of (R)-, (S)-, and (RS)-sal in mice with repeated DSS-induced chronic colitis and investigated the underlying mechanisms. Here, we verified that chronic colitis was significantly attenuated by (R)-sal, which was evidenced by notably mitigated body weight loss, disease activity index (DAI), splenomegaly, colonic lengths shortening, and histopathological scores. (R)-sal treatment noticeably diminished the levels of inflammatory cytokines (such as TNF-α, IL-6, IL-1β, and IFN-γ). Notably, the efficacy of (R)-sal was better than that of (RS)-sal. Further research revealed that (R)-sal mitigated colonic CD4 leukocyte infiltration, decreased NF-κB signaling pathway activation, improved the Nrf-2/HO-1 signaling pathway, and increased the expression of ZO-1 and occludin. In addition, (R)-sal suppressed the levels of TGF-β1, α-SMA, and collagen in mice with chronic colitis. Furthermore, the 16S rDNA sequences analyzed of the intestinal microbiome revealed that (R)-sal could mitigate the intestinal microbiome structure and made it more similar to the control group, which mainly by relieving the relative abundance of pathogens (such as Bacteroides) and increasing the relative abundance of probiotics (such as Akkermansia). Therefore, (R)-sal ameliorates repeated DSS-induced chronic colitis in mice by improving inflammation, suppressing oxidative stress, mitigating intestinal barrier function, relieving intestinal fibrosis, and regulating the intestinal microbiome community. These results indicate that (R)-sal maybe a novel treatment alternative for chronic colitis.
Collapse
Affiliation(s)
- Liangjun Deng
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Haihua Guo
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Shanping Wang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Xiaoming Liu
- Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Yue Lin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Rui Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006 Guangdong, China
| | - Wen Tan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Post-Doctoral Innovation Base, Jinan University Affiliation, Yuanzhi Health Technology Co., Ltd., Hengqin New District, Zhuhai, Guangdong 519000, China
| |
Collapse
|
56
|
Ghimire S, Cady NM, Lehman P, Peterson SR, Shahi SK, Rashid F, Giri S, Mangalam AK. Dietary Isoflavones Alter Gut Microbiota and Lipopolysaccharide Biosynthesis to Reduce Inflammation. Gut Microbes 2022; 14:2127446. [PMID: 36179318 PMCID: PMC9542810 DOI: 10.1080/19490976.2022.2127446] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
The etiopathogenesis of multiple sclerosis (MS) is strongly affected by environmental factors such as diet and the gut microbiota. An isoflavone-rich (ISO) diet was previously shown to reduce the severity of MS in the animal model experimental autoimmune encephalomyelitis (EAE). Translation of this concept to clinical trial where dietary isoflavones may be recommended for MS patients will require preliminary evidence that providing the isoflavone-rich diet to people with MS (PwMS) who lack phytoestrogen-metabolizing bacteria has beneficial effects. We have previously shown that the gut microbiota of PwMS resembles the gut microbiota of mice raised under a phytoestrogen-free (phyto-free) diet in that it lacks phytoestrogen-metabolizing bacteria. To investigate the effects of phytoestrogens on the microbiota inflammatory response and EAE disease severity we switched the diet of mice raised under a phyto-free (PF) diet to an isoflavone-rich diet. Microbiota analysis showed that the change in diet from one that is ISO to one that is PF reduces beneficial bacteria such as Bifidobacterium species. In addition we observed functional differences in lipopolysaccharide (LPS) biosynthesis pathways. Moreover LPS extracted from feces of mice fed an ISO diet induced increased production of anti-inflammatory cytokines from bone marrow-derived macrophages relative to fecal-LPS isolated from mice fed a PF diet. Eventually mice whose diet was switched from a PF diet to an ISO diet trended toward reduced EAE severity and mortality. Overall we show that an isoflavone-rich diet specifically modulates LPS biosynthesis of the gut microbiota imparts an anti-inflammatory response and decreases disease severity.
Collapse
Affiliation(s)
- Sudeep Ghimire
- Department of Pathology University of IowaIowa CityIowaUSA
| | - Nicole M. Cady
- Department of Pathology University of IowaIowa CityIowaUSA
| | - Peter Lehman
- Department of Pathology University of IowaIowa CityIowaUSA
- Department of Pathology Graduate Program University of IowaIowa CityIAUSA
| | - Stephanie R. Peterson
- Department of Pathology University of IowaIowa CityIowaUSA
- Graduate Program in Immunology University of IowaIowa CityIowaUSA
| | | | - Faraz Rashid
- Department of Neurology Henry Ford Health SystemDetroitMIUSA
| | - Shailendra Giri
- Department of Neurology Henry Ford Health SystemDetroitMIUSA
| | - Ashutosh K. Mangalam
- Department of Pathology University of IowaIowa CityIowaUSA
- Graduate Program in Immunology University of IowaIowa CityIowaUSA
| |
Collapse
|
57
|
Edwards V, Smith DL, Meylan F, Tiffany L, Poncet S, Wu WW, Phue JN, Santana-Quintero L, Clouse KA, Gabay O. Analyzing the Role of Gut Microbiota on the Onset of Autoimmune Diseases Using TNF ΔARE Murine Model. Microorganisms 2021; 10:73. [PMID: 35056521 PMCID: PMC8779571 DOI: 10.3390/microorganisms10010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022] Open
Abstract
Very little is known about disease transmission via the gut microbiome. We hypothesized that certain inflammatory features could be transmitted via the gut microbiome and tested this hypothesis using an animal model of inflammatory diseases. Twelve-week-old healthy C57 Bl/6 and Germ-Free (GF) female and male mice were fecal matter transplanted (FMT) under anaerobic conditions with TNFΔARE-/+ donors exhibiting spontaneous Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease (IBD) or with conventional healthy mice control donors. The gut microbiome analysis was performed using 16S rRNA sequencing amplification and bioinformatics analysis with the HIVE bioinformatics platform. Histology, immunohistochemistry, ELISA Multiplex analysis, and flow cytometry were conducted to confirm the inflammatory transmission status. We observed RA and IBD features transmitted in the GF mice cohort, with gut tissue disruption, cartilage alteration, elevated inflammatory mediators in the tissues, activation of CD4/CD8+ T cells, and colonization and transmission of the gut microbiome similar to the donors' profile. We did not observe a change or transmission when conventional healthy mice were FMT with TNFΔARE-/+ donors, suggesting that a healthy microbiome might withstand an unhealthy transplant. These findings show the potential involvement of the gut microbiome in inflammatory diseases. We identified a cluster of bacteria playing a role in this mechanism.
Collapse
Affiliation(s)
- Vivienne Edwards
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Dylan L. Smith
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Francoise Meylan
- Translational Immunology Section, NIH, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA;
| | - Linda Tiffany
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Sarah Poncet
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Wells W. Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Je-Nie Phue
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (W.W.W.); (J.-N.P.)
| | - Luis Santana-Quintero
- U.S. Food and Drug Administration, Center for Biologics Evaluation & Research, Office of Biostatistics and Epidemiology, HIVE, Silver Spring, MD 20993, USA;
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Office of Hematology and Oncology Products, Silver Spring, MD 20993, USA
| | - Kathleen A. Clouse
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| | - Odile Gabay
- Division of Biotechnology Review and Research I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Office of Biotechnology Products, Office of Pharmaceutical Quality, Silver Spring, MD 20993, USA; (V.E.); (D.L.S.); (L.T.); (S.P.); (K.A.C.)
| |
Collapse
|
58
|
The role of enteric dysbacteriosis and modulation of gut microbiota in the treatment of inflammatory bowel disease. Microb Pathog 2021; 165:105381. [PMID: 34974123 DOI: 10.1016/j.micpath.2021.105381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022]
Abstract
The incidence of inflammatory bowel disease (IBD) is globally increasing. This disorder seriously affects the quality of life in patients. Interestingly, studies have detected that the intestinal flora imbalance is a critical factor in the progression of IBD. One potential treatment strategy for IBD involves regulating the composition and function of the intestinal flora. To date, a multitude of experiments have confirmed the relationship between intestinal flora, immune regulation, and anti-inflammation. The intestinal flora can reduce intestinal inflammation by regulating immunity and increasing the secretion of metabolic short-chain fatty acids. In this review, we discuss the composition and function of the intestinal flora, the relationship between the intestinal flora and the host, the role of intestinal flora disorders in IBD, and the progress in IBD treatment. Combining the regulation of the intestinal flora with probiotics treatment is considered a promising strategy for substantially improving the treatment of IBD.
Collapse
|
59
|
McWhorter N, Dhillon J, Hoffman J. Preliminary Investigation of Microbiome and Dietary Differences in Patients with Phenylketonuria on Enzyme Substitution Therapy Compared to Traditional Therapies. J Acad Nutr Diet 2021; 122:1283-1295.e3. [PMID: 34968752 DOI: 10.1016/j.jand.2021.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is an inborn error of metabolism that impairs the function of the enzyme phenylalanine hydroxylase (PAH). Historical treatment includes limiting dietary phenylalanine (Phe) consumption while supplementing with medical food; however, this treatment has been associated with complications, such as nutritional deficiencies and disruptions in the gut microbiota. OBJECTIVE The study aim was to compare dietary and gut microbiome differences between adult patients on a traditional PKU diet to those receiving the enzyme substitution therapy Palynziq on a liberalized diet while controlling blood Phe levels to <600 μmol/L. DESIGN A cross-sectional study was conducted comparing patients on a traditional Phe-restricted diet with patients receiving Palynziq eating a liberalized diet. PARTICIPANTS/SETTING Six patients eating a traditional Phe-restricted diet with medical food and six patients on Palynziq eating a liberalized diet without medical food intake for >3 years were selected from the University of Kentucky Metabolic Clinic August to December 2019. MAIN OUTCOME MEASURES Nutrient intake from three-day diet records and fecal microbiome taxonomic abundances were analyzed. STATISTICAL ANALYSIS Mann-Whitney U-tests were used for dietary data analysis. Differential abundance analysis for microbiome taxa and pathway data was done using DESeq2 analysis. RESULTS Dietary data showed Palynziq patients consumed a lower percent of kilocalories from total protein and lower amounts of most micronutrients but consumed greater amounts of intact protein and cholesterol (P<0.05). Microbiome data revealed a greater abundance of the phylum Verrucomicrobia and genus Lachnobacterium in the Traditional group and a greater abundance of the genus Prevotella in the Palynziq group (P<0.05). Pathway analysis depicted greater enrichment in carotenoid and amino acid metabolism pathways in the Traditional group (P<0.05). Protein (%kcal), dietary fiber (g), fat (%kcal), linolenic acid (%DRI), and age were correlated with the underlying microbial community structure for both groups combined. CONCLUSIONS Patients with PKU treated with Palynziq on a liberalized diet manifest significant differences in diet composition compared to those treated with traditional Phe-restricted diets. Several of these dietary differences may affect the microbiome architecture.
Collapse
Affiliation(s)
- Nicole McWhorter
- Metabolic Dietitian, Department of Pediatrics, Division of Genetics and Metabolism, University of Kentucky, 138 Leader Ave., Lexington, KY 40508, USA, Synlogic Therapeutics, 301 Binney St #402, Cambridge, MA 02142.
| | - Jaapna Dhillon
- Assistant Professor, Department of Nutrition and Exercise Physiology, School of Medicine, University of Missouri-Columbia, Gwynn Hall, Room 312, 520 Hitt Street
| | - Jessie Hoffman
- Assistant Professor, Department of Human Nutrition, College of Arts & Sciences, Winthrop University, Dalton Hall 306A, Rock Hill, SC 29733
| |
Collapse
|
60
|
Jia J, Zhang P, Zhang C, Jiang G, Zheng W, Song S, Ai C. Sulfated polysaccharides from pacific abalone attenuated DSS-induced acute and chronic ulcerative colitis in mice via regulating intestinal micro-ecology and the NF-κB pathway. Food Funct 2021; 12:11351-11365. [PMID: 34668909 DOI: 10.1039/d1fo02431k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to potential side effects of current drugs in colitis treatment, polysaccharides with anti-inflammatory activities can be considered as alternative molecules for colitis treatment. Sulfated polysaccharide from pacific abalone (AGSP) reduced the level of lipopolysaccharides (LPS) and increased the production of short chain fatty acids in the colon of mice, and it reduced the levels of interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α and increased the IL-10 level in in vitro cell models, suggesting that it can be used as a probiotic agent to inhibit intestinal inflammation. Furthermore, AGSP reduced the disease activity index and intestinal damage, improved the mucosal immune response, and inhibited oxidative damage in mice with DSS-induced acute and chronic colitis, which can be associated with modulation of the NF-κB signaling pathway and gut microbiota. AGSP regulated the structure of the gut microbiota and reduced the level of Bacteroides that had positive correlation with the colitis symptoms. The in vitro result showed that AGSP may inhibit mucin degradation by Bacteroides via the change of the polysaccharide utilization strategy, which can protect intestinal barrier integrity. This study is useful to understand the mechanism by which AGSP ameliorates colitis and related diseases and promotes further development of AGSP.
Collapse
Affiliation(s)
- Jinhui Jia
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Panpan Zhang
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Chenxi Zhang
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Guoping Jiang
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Weiyun Zheng
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Shuang Song
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Chunqing Ai
- School of Food Science and Technology; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China. .,National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
61
|
Kim N, Jeon SH, Ju IG, Gee MS, Do J, Oh MS, Lee JK. Transplantation of gut microbiota derived from Alzheimer's disease mouse model impairs memory function and neurogenesis in C57BL/6 mice. Brain Behav Immun 2021; 98:357-365. [PMID: 34500036 DOI: 10.1016/j.bbi.2021.09.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive decline. Although many studies have attempted to clarify the causes of AD occurrence, it is not clearly understood. Recently, the emerging role of the gut microbiota in neurodegenerative diseases, including AD, has received much attention. The gut microbiota composition of AD patients and AD mouse models is different from that of healthy controls, and these changes may affect the brain environment. However, the specific mechanisms by which gut microbiota that influence memory decline are currently unclear. In this study, we performed fecal microbiota transplantation (FMT) to clarify the role of 5xFAD mouse-derived microbiota in memory decline. We observed that FMT from 5xFAD mice into normal C57BL/6 mice (5xFAD-FMT) decreased adult hippocampal neurogenesis and brain-derived neurotrophic factor expression and increased p21 expression, resulting in memory impairment. Microglia in the hippocampus of the 5xFAD-FMT mice were activated, which caused the elevation of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1β). Moreover, we observed that pro-inflammatory cytokines increased in the colon and plasma of 5xFAD-FMT mice. The gut microbiota composition of the 5xFAD-FMT mice was different from that of the control mice or wild type-FMT mice. Collectively, 5xFAD mouse-derived microbiota decreased neurogenesis by increasing colonic inflammation, thereby contributing to memory loss. Our findings provide further evidence concerning the role of gut microbial dysbiosis in AD pathogenesis and suggest that targeting the gut microbiota may be a useful therapeutic strategy for the development of novel candidates for the treatment of AD.
Collapse
Affiliation(s)
- Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Republic of Korea
| | - Seung Ho Jeon
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Republic of Korea
| | - In Gyoung Ju
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Republic of Korea
| | - Min Sung Gee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Republic of Korea
| | - Jimin Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Republic of Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Republic of Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Republic of Korea.
| |
Collapse
|
62
|
Prasoodanan P K V, Sharma AK, Mahajan S, Dhakan DB, Maji A, Scaria J, Sharma VK. Western and non-western gut microbiomes reveal new roles of Prevotella in carbohydrate metabolism and mouth-gut axis. NPJ Biofilms Microbiomes 2021; 7:77. [PMID: 34620880 PMCID: PMC8497558 DOI: 10.1038/s41522-021-00248-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/09/2021] [Indexed: 01/22/2023] Open
Abstract
The abundance and diversity of host-associated Prevotella species have a profound impact on human health. To investigate the composition, diversity, and functional roles of Prevotella in the human gut, a population-wide analysis was carried out on 586 healthy samples from western and non-western populations including the largest Indian cohort comprising of 200 samples, and 189 Inflammatory Bowel Disease samples from western populations. A higher abundance and diversity of Prevotella copri species enriched in complex plant polysaccharides metabolizing enzymes, particularly pullulanase containing polysaccharide-utilization-loci (PUL), were found in Indian and non-western populations. A higher diversity of oral inflammations-associated Prevotella species and an enrichment of virulence factors and antibiotic resistance genes in the gut microbiome of western populations speculates an existence of a mouth-gut axis. The study revealed the landscape of Prevotella composition in the human gut microbiome and its impact on health in western and non-western populations.
Collapse
Affiliation(s)
- Vishnu Prasoodanan P K
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Ashok K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
- Department of Animal Science, Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, 55455, USA
| | - Shruti Mahajan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
| | - Darshan B Dhakan
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
- Behaviour and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Lisboa, Portugal
| | - Abhijit Maji
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India
- Animal Disease Research & Diagnostic Laboratory, South Dakota State University, Brookings, SD, 57007, USA
| | - Joy Scaria
- Animal Disease Research & Diagnostic Laboratory, South Dakota State University, Brookings, SD, 57007, USA
| | - Vineet K Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, 462066, India.
| |
Collapse
|
63
|
Kriaa A, Jablaoui A, Rhimi S, Soussou S, Mkaouar H, Mariaule V, Gruba N, Gargouri A, Maguin E, Lesner A, Rhimi M. SP-1, a Serine Protease from the Gut Microbiota, Influences Colitis and Drives Intestinal Dysbiosis in Mice. Cells 2021; 10:2658. [PMID: 34685638 PMCID: PMC8534766 DOI: 10.3390/cells10102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Increased protease activity has been linked to the pathogenesis of IBD. While most studies have been focusing on host proteases in gut inflammation, it remains unclear how to address the potential contribution of their bacterial counterparts. In the present study, we report a functional characterization of a newly identified serine protease, SP-1, from the human gut microbiota. The serine protease repertoire of gut Clostridium was first explored, and the specificity of SP-1 was analyzed using a combinatorial chemistry method. Combining in vitro analyses and a mouse model of colitis, we show that oral administration of recombinant bacteria secreting SP-1 (i) compromises the epithelial barrier, (ii) alters the microbial community, and (ii) exacerbates colitis. These findings suggest that gut microbial protease activity may constitute a valuable contributor to IBD and could, therefore, represent a promising target for the treatment of the disease.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Souha Soussou
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Natalia Gruba
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland; (N.G.); (A.L.)
| | - Ali Gargouri
- Laboratory of Molecular Biotechnology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax Bp ‘1177’ 3018, Tunisia;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Uniwersytet Gdanski, Chemistry, Wita Stwosza 63, PL80-308 Gdansk, Poland; (N.G.); (A.L.)
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute-UMR1319, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (A.K.); (A.J.); (S.R.); (S.S.); (H.M.); (V.M.); (E.M.)
| |
Collapse
|
64
|
Stotz MK, Henry DD, Crossland WL. Characterization of bacterial DNA identified in abscessed and non-abscessed bovine hepatic tissue at the time of harvest. J Anim Sci 2021; 99:6381665. [PMID: 34610106 PMCID: PMC8525596 DOI: 10.1093/jas/skab280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
Bacteriological characterization of bovine liver abscesses has been accomplished by cultural methods but DNA methods are still needed, as many bacteria are not conducive to laboratory culture. In addition to this gap in research, there have been no studies which identify the bacterial presence within healthy, non-abscessed liver tissue. The objective of this study was to compare the bacteriome of both abscessed and non-abscessed bovine livers in an observational case-control study design. Fifty-six livers, obtained from Holstein steers, were scored according to a modified Elanco liver abscess score description where A- was partitioned into active abscesses or scarred where only scars were present. Parenchyma tissue was collected from non-abscessed livers (n = 22) and scarred livers (n = 7), and purulent material was collected from abscessed livers (n = 24), and DNA was extracted for 16s rRNA gene sequence-based bacterial analysis. Across liver samples, 21 total phyla were identified with a mean of 14. Predominant phyla, accounting for >98% of reads, were Fusobacteria (51.7%), Bacteroidetes (26.9%), Proteobacteria (8.03%), Firmicutes (5.39%), Cyanobacteria (3.85%), and Actinobacteria (2.21%). Proteobacteria, Cyanobacteria, and Firmicutes were greater in non-abscessed and scarred livers, whereas Fusobacteria and Bacteroidetes prevailed in abscessed livers. Non-abscessed livers shared 3,059 operational taxonomic units (OTU) with abscessed livers (total OTU of all livers = 4,167), but non-abscessed livers had greater richness and evenness, whereas abscessed livers had greater dominance (P ≤ 0.0014). Liver score affected the relative abundance of OTU (R = 0.463; P = 0.001) but abscessed livers shared ≥ 40% similarity and were not different from each other (P ≥ 0.370). Of the predominant OTU (top 10 as a % of reads), three OTU (Fusobacteria necrophorum, Bacteroides spp., and Trueperella pyogenes) were shared across both abscessed and non-abscessed livers. Fusobacterium necrophorum was the dominant OTU regardless of liver score, and the single most abundant OTU, even among non-abscessed livers. We describe bacterial DNA detected in non-abscessed bovine liver tissue for the first time, which indicates possible presence of viable bacteria with pathogenic potential in apparently healthy liver tissue.
Collapse
Affiliation(s)
- Miranda K Stotz
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Darren D Henry
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| | - Whitney L Crossland
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
65
|
Breitrück A, Weigel M, Hofrichter J, Sempert K, Kerkhoff C, Mohebali N, Mitzner S, Hain T, Kreikemeyer B. Smectite as a Preventive Oral Treatment to Reduce Clinical Symptoms of DSS Induced Colitis in Balb/c Mice. Int J Mol Sci 2021; 22:8699. [PMID: 34445403 PMCID: PMC8395406 DOI: 10.3390/ijms22168699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.
Collapse
Affiliation(s)
- Anne Breitrück
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Jacqueline Hofrichter
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, 4072 St Lucia, Brisbane 4000, Australia;
| | - Claus Kerkhoff
- Department of Human Sciences, School of Human Sciences, University of Osnabrück, 49076 Osnabrück, Germany;
| | - Nooshin Mohebali
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Steffen Mitzner
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| |
Collapse
|
66
|
Kieft K, Breister AM, Huss P, Linz AM, Zanetakos E, Zhou Z, Rahlff J, Esser SP, Probst AJ, Raman S, Roux S, Anantharaman K. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep 2021; 36:109471. [PMID: 34348151 DOI: 10.1016/j.celrep.2021.109471] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/07/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023] Open
Abstract
Viruses influence the fate of nutrients and human health by killing microorganisms and altering metabolic processes. Organosulfur metabolism and biologically derived hydrogen sulfide play dynamic roles in manifestation of diseases, infrastructure degradation, and essential biological processes. Although microbial organosulfur metabolism is well studied, the role of viruses in organosulfur metabolism is unknown. Here, we report the discovery of 39 gene families involved in organosulfur metabolism encoded by 3,749 viruses from diverse ecosystems, including human microbiomes. The viruses infect organisms from all three domains of life. Six gene families encode for enzymes that degrade organosulfur compounds into sulfide, whereas others manipulate organosulfur compounds and may influence sulfide production. We show that viral metabolic genes encode key enzymatic domains, are translated into protein, and are maintained after recombination, and sulfide provides a fitness advantage to viruses. Our results reveal viruses as drivers of organosulfur metabolism with important implications for human and environmental health.
Collapse
Affiliation(s)
- Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam M Breister
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Phil Huss
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra M Linz
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Zanetakos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhichao Zhou
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Janina Rahlff
- Department of Chemistry, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Department of Chemistry, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Srivatsan Raman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | |
Collapse
|
67
|
Abdulla OA, Neamah W, Sultan M, Alghetaa HK, Singh N, Busbee PB, Nagarkatti M, Nagarkatti P. The Ability of AhR Ligands to Attenuate Delayed Type Hypersensitivity Reaction Is Associated With Alterations in the Gut Microbiota. Front Immunol 2021; 12:684727. [PMID: 34267755 PMCID: PMC8277436 DOI: 10.3389/fimmu.2021.684727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that regulates T cell function. The aim of this study was to investigate the effects of AhR ligands, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), and 6-Formylindolo[3,2-b]carbazole (FICZ), on gut-associated microbiota and T cell responses during delayed-type hypersensitivity (DTH) reaction induced by methylated bovine serum albumin (mBSA) in a mouse model. Mice with DTH showed significant changes in gut microbiota including an increased abundance of Bacteroidetes and decreased Firmicutes at the phylum level. Also, there was a decrease in Clostridium cluster XIV and IV, which promote anti-inflammatory responses, and an increase in Prevotella copri that facilitates pro-inflammatory responses. Interestingly, treatment of mice with TCDD attenuated the DTH response, induced Tregs, suppressed Th17 cells in the mesenteric lymph nodes (MLNs), and reversed the gut microbiota composition toward normalcy. In contrast, FICZ exacerbated the DTH response, induced heightened Th17 cells, and failed to cause a major shift in gut microbiota. Furthermore, TCDD but not FICZ caused an increase in the levels of short-chain fatty acids (SCFA), n-butyric acid, and acetic acid. Administration of sodium butyrate into mice with DTH suppressed the response, increased Tregs, and reduced Th17 cells IL17. Butyrate also caused an increase in the abundance of Clostridium and a decrease in Prevotella. Lastly, TCDD, as well as butyrate but not FICZ, were able to inhibit proinflammatory Histone deacetylases (HDACs) class I and II. Together, our data suggest that AhR ligands, such as TCDD that suppress DTH response, may mediate this effect by reversing the gut dysbiosis induced during this inflammatory response, while FICZ may fail to suppress the DTH response because of its inability to overturn the dysbiosis.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Butyric Acid/pharmacology
- Carbazoles/toxicity
- Cytokines/genetics
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Gastrointestinal Microbiome/drug effects
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/metabolism
- Hypersensitivity, Delayed/prevention & control
- Ligands
- Mice
- Mice, Inbred C57BL
- Polychlorinated Dibenzodioxins/toxicity
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
68
|
Protective Effect of Gochujang on Inflammation in a DSS-Induced Colitis Rat Model. Foods 2021; 10:foods10051072. [PMID: 34066160 PMCID: PMC8150376 DOI: 10.3390/foods10051072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 12/27/2022] Open
Abstract
Gochujang is a traditional Korean fermented soy-based spicy paste made of meju (fermented soybean), red pepper powder, glutinous rice, and salt. This study investigated the anti-inflammatory effects of Gochujang containing salt in DSS-induced colitis. Sprague-Dawley (SD) rats were partitioned into five groups: normal control, DSS control, DSS + salt, DSS + mesalamine, and DSS + Gochujang groups. They were tested for 14 days. Gochujang improved the disease activity index (DAI), colon weight/length ratio, and colon histomorphology, with outcomes similar to results of mesalamine administration. Moreover, Gochujang decreased the serum levels of IL-1β and IL-6 and inhibited TNF-α, IL-6, and IL-1β mRNA expression in the colon. Gochujang downregulated the expression of iNOS and COX-2 and decreased the activation of NF-κB in the colon. Gochujang induced significant modulation in gut microbiota by significantly increasing the number of Akkermansia muciniphila while decreasing the numbers of Enterococcus faecalis and Staphylococcus sciuri. However, compared with the DSS group, the salt group did not significantly change the symptoms of colitis or cytokine levels in serum and colon. Moreover, the salt group significantly decreased the gut microflora diversity. Gochujang mitigated DSS-induced colitis in rats by modulating inflammatory factors and the composition of gut microflora, unlike the intake of salt alone.
Collapse
|
69
|
Altomare A, Del Chierico F, Rocchi G, Emerenziani S, Nuglio C, Putignani L, Angeletti S, Lo Presti A, Ciccozzi M, Russo A, Cocca S, Ribolsi M, Muscaritoli M, Cicala M, Guarino MPL. Association between Dietary Habits and Fecal Microbiota Composition in Irritable Bowel Syndrome Patients: A Pilot Study. Nutrients 2021; 13:1479. [PMID: 33925672 PMCID: PMC8170891 DOI: 10.3390/nu13051479] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Intestinal dysbiosis seems to play a role in the pathophysiology of irritable bowel syndrome (IBS). The present pilot study aimed to elucidate the association between nutrient intake and Mediterranean diet (MD) adherence with IBS symptoms and gut microbiota in IBS patients. The nutrient intake of 28 IBS patients and 21 controls was assessed through a food diary, the reference intake ranges (RIs) for energy-yielding macronutrients and the MD serving score (MDSS) index. MD adherence and nutrients intake were compared to IBS symptoms and fecal microbiota, obtained by 16S rRNA targeted-metagenomics. In IBS patients MDSS index was altered compared to controls (p < 0.01). IBS patients with low-MD score reported severe abdominal pain and higher flatulence point-scales. Through Linear discriminant analysis effect size (LEfSe), Erysipelotrichaceae were detected as a microbial biomarker in IBS patients with altered RIs for macronutrients intake, compared to controls. Lactobacillaceae and Lactobacillus were associated to an altered carbohydrates intake in IBS patients, while specific taxonomic biomarkers, such as Aldercreuzia, Mogibacteriaceae, Rikenellaceae, Parabacteroides and F. prausnitzii were associated with an adequate intake of nutrient in these patients. This study supports an association between dietary patterns and gut microbial biomarkers in IBS patients. Further investigations are needed to clarify these connections.
Collapse
Affiliation(s)
- Annamaria Altomare
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| | - Federica Del Chierico
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00147 Rome, Italy; (F.D.C.); (A.R.)
| | - Giulia Rocchi
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| | - Sara Emerenziani
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| | - Chiara Nuglio
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| | - Lorenza Putignani
- Unit of Parasitology and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00147 Rome, Italy;
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Alessandra Lo Presti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Alessandra Russo
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00147 Rome, Italy; (F.D.C.); (A.R.)
| | - Silvia Cocca
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| | - Mentore Ribolsi
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| | - Maurizio Muscaritoli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Michele Cicala
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (G.R.); (S.E.); (C.N.); (S.C.); (M.R.); (M.C.); (M.P.L.G.)
| |
Collapse
|
70
|
Sazal M, Stebliankin V, Mathee K, Yoo C, Narasimhan G. Causal effects in microbiomes using interventional calculus. Sci Rep 2021; 11:5724. [PMID: 33707536 PMCID: PMC7970971 DOI: 10.1038/s41598-021-84905-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Causal inference in biomedical research allows us to shift the paradigm from investigating associational relationships to causal ones. Inferring causal relationships can help in understanding the inner workings of biological processes. Association patterns can be coincidental and may lead to wrong conclusions about causality in complex systems. Microbiomes are highly complex, diverse, and dynamic environments. Microbes are key players in human health and disease. Hence knowledge of critical causal relationships among the entities in a microbiome, and the impact of internal and external factors on microbial abundance and their interactions are essential for understanding disease mechanisms and making appropriate treatment recommendations. In this paper, we employ causal inference techniques to understand causal relationships between various entities in a microbiome, and to use the resulting causal network to make useful computations. We introduce a novel pipeline for microbiome analysis, which includes adding an outcome or "disease" variable, and then computing the causal network, referred to as a "disease network", with the goal of identifying disease-relevant causal factors from the microbiome. Internventional techniques are then applied to the resulting network, allowing us to compute a measure called the causal effect of one or more microbial taxa on the outcome variable or the condition of interest. Finally, we propose a measure called causal influence that quantifies the total influence exerted by a microbial taxon on the rest of the microiome. Our pipeline is robust, sensitive, different from traditional approaches, and able to predict interventional effects without any controlled experiments. The pipeline can be used to identify potential eubiotic and dysbiotic microbial taxa in a microbiome. We validate our results using synthetic data sets and using results on real data sets that were previously published.
Collapse
Affiliation(s)
- Musfiqur Sazal
- grid.65456.340000 0001 2110 1845Bioinformatics Research Group (BioRG), Florida International University, Miami, 33199 USA
| | - Vitalii Stebliankin
- grid.65456.340000 0001 2110 1845Bioinformatics Research Group (BioRG), Florida International University, Miami, 33199 USA
| | - Kalai Mathee
- grid.65456.340000 0001 2110 1845Herbert Wertheim College of Medicine, Florida International University, Miami, 33199 USA ,grid.65456.340000 0001 2110 1845Biomolecular Sciences Institute, Florida International University, Miami, 33199 USA
| | - Changwon Yoo
- grid.65456.340000 0001 2110 1845Department of Biostatistics, Florida International University, Miami, 33199 USA
| | - Giri Narasimhan
- grid.65456.340000 0001 2110 1845Bioinformatics Research Group (BioRG), Florida International University, Miami, 33199 USA ,grid.65456.340000 0001 2110 1845Biomolecular Sciences Institute, Florida International University, Miami, 33199 USA
| |
Collapse
|
71
|
Internal connections between dietary intake and gut microbiota homeostasis in disease progression of ulcerative colitis: a review. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
72
|
Sheh A. The Gastrointestinal Microbiota of the Common Marmoset (Callithrix jacchus). ILAR J 2021; 61:188-198. [PMID: 33620078 DOI: 10.1093/ilar/ilaa025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
The microbiota is heavily involved in both health and disease pathogenesis, but defining a normal, healthy microbiota in the common marmoset has been challenging. The aim of this review was to systematically review recent literature involving the gastrointestinal microbiome of common marmosets in health and disease. Twelve sources were included in this review. The gut microbiome composition was reviewed across institutions worldwide, and taxonomic shifts between healthy individuals were described. Unlike the human gut microbiome, which is dominated by Firmicutes and Bacteroidetes, the marmoset gut microbiome shows great plasticity across institutions, with 5 different phyla described as dominant in different healthy cohorts. Genera shared across institutions include Anaerobiospirillum, Bacteroides, Bifidobacterium, Collinsella, Fusobacterium, Megamonas, Megasphaera, Phascolarctobacterium, and Prevotella. Shifts in the abundance of Prevotella or Bifidobacterium or invasion by pathogens like Clostridium perfringens may be associated with disease. Changes in microbial composition have been described in healthy and diseased marmosets, but factors influencing the severe changes in microbial composition have not been established. Multi-institutional, prospective, and longitudinal studies that utilize multiple testing methodologies are required to determine sources of variability in the reporting of marmoset microbiomes. Furthermore, methods of microbial manipulation, whether by diet, enrichment, fecal microbiome transplantation, etc, need to be established to modulate and maintain robust and resilient microbiome communities in marmoset colonies and reduce the incidence of idiopathic gastrointestinal disease.
Collapse
Affiliation(s)
- Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
73
|
Honarbakhsh M, Ericsson A, Zhong G, Isoherranen N, Zhu C, Bromberg Y, Van Buiten C, Malta K, Joseph L, Sampath H, Lackey AI, Storch J, Vetriani C, Chikindas ML, Breslin P, Quadro L. Impact of vitamin A transport and storage on intestinal retinoid homeostasis and functions. J Lipid Res 2021; 62:100046. [PMID: 33587919 PMCID: PMC8020483 DOI: 10.1016/j.jlr.2021.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Lecithin:retinol acyltransferase and retinol-binding protein enable vitamin A (VA) storage and transport, respectively, maintaining tissue homeostasis of retinoids (VA derivatives). The precarious VA status of the lecithin:retinol acyltransferase-deficient (Lrat-/-) retinol-binding protein-deficient (Rbp-/-) mice rapidly deteriorates upon dietary VA restriction, leading to signs of severe vitamin A deficiency (VAD). As retinoids impact gut morphology and functions, VAD is often linked to intestinal pathological conditions and microbial dysbiosis. Thus, we investigated the contribution of VA storage and transport to intestinal retinoid homeostasis and functionalities. We showed the occurrence of intestinal VAD in Lrat-/-Rbp-/- mice, demonstrating the critical role of both pathways in preserving gut retinoid homeostasis. Moreover, in the mutant colon, VAD resulted in a compromised intestinal barrier as manifested by reduced mucins and antimicrobial defense, leaky gut, increased inflammation and oxidative stress, and altered mucosal immunocytokine profiles. These perturbations were accompanied by fecal dysbiosis, revealing that the VA status (sufficient vs. deficient), rather than the amount of dietary VA per se, is likely a major initial discriminant of the intestinal microbiome. Our data also pointed to a specific fecal taxonomic profile and distinct microbial functionalities associated with VAD. Overall, our findings revealed the suitability of the Lrat-/-Rbp-/- mice as a model to study intestinal dysfunctions and dysbiosis promoted by changes in tissue retinoid homeostasis induced by the host VA status and/or intake.
Collapse
Affiliation(s)
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, WA, USA
| | - Chengsheng Zhu
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Charlene Van Buiten
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Kiana Malta
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Laurie Joseph
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | | | - Paul Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
74
|
Modulation of inflammatory responses by gastrointestinal Prevotella spp. - From associations to functional studies. Int J Med Microbiol 2021; 311:151472. [PMID: 33461110 DOI: 10.1016/j.ijmm.2021.151472] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have associated alterations in the gut microbiota composition with almost every known inflammatory disease. However, proving the biological relevance of distinct microbial signatures and linking specific microorganisms to host phenotypes, remains a considerable challenge. Correspondingly, increased abundance of members of Prevotella genus within microbial communities colonizing distinct mucosal surfaces has been found in individuals diagnosed with rheumatoid arthritis, periodontitis, metabolic disorders, and intestinal and vaginal dysbiosis. Still, the role of Prevotella spp. in the incidence of these diseases continues to be debated. For many years, poor understanding of Prevotella biology could be in large part attributed to the lack of experimental tools. However, in the recent years significant advances have been made towards overcoming these limitations, including increased number of isolates and improved understanding of genetic diversity. Besides discussing the most relevant associations between Prevotella spp. and inflammatory disorders, in the present review we examine the recent efforts to expand the Prevotella experimental "toolbox" and we highlight remaining experimental challenges that should advance future research and our understanding of Prevotella-host interplay.
Collapse
|
75
|
Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A, Amend L, Will SE, Hofmann JD, Pils MC, Schmidt-Hohagen K, Neumann-Schaal M, Strowig T. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 2021; 14:113-124. [PMID: 32433514 PMCID: PMC7790746 DOI: 10.1038/s41385-020-0296-4] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Diverse microbial signatures within the intestinal microbiota have been associated with intestinal and systemic inflammatory diseases, but whether these candidate microbes actively modulate host phenotypes or passively expand within the altered microbial ecosystem is frequently not known. Here we demonstrate that colonization of mice with a member of the genus Prevotella, which has been previously associated to colitis in mice, exacerbates intestinal inflammation. Our analysis revealed that Prevotella intestinalis alters composition and function of the ecosystem resulting in a reduction of short-chain fatty acids, specifically acetate, and consequently a decrease in intestinal IL-18 levels during steady state. Supplementation of IL-18 to Prevotella-colonized mice was sufficient to reduce intestinal inflammation. Hence, we conclude that intestinal Prevotella colonization results in metabolic changes in the microbiota, which reduce IL-18 production and consequently exacerbate intestinal inflammation, and potential systemic autoimmunity.
Collapse
Affiliation(s)
- Aida Iljazovic
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urmi Roy
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
- Hannover Medical School, Hannover, Germany
| | - Till R Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Bei Zhao
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Achim Gronow
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Sabine E Will
- Bacterial Metabolomics, Leibniz institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia D Hofmann
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marina C Pils
- Mouse Pathology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Kerstin Schmidt-Hohagen
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany.
- Hannover Medical School, Hannover, Germany.
- Centre for Individualised Infection Medicine, Hannover, Germany.
| |
Collapse
|
76
|
Brown RL, Larkinson MLY, Clarke TB. Immunological design of commensal communities to treat intestinal infection and inflammation. PLoS Pathog 2021; 17:e1009191. [PMID: 33465156 PMCID: PMC7846104 DOI: 10.1371/journal.ppat.1009191] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 01/29/2021] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immunological impact of individual commensal species within the microbiota is poorly understood limiting the use of commensals to treat disease. Here, we systematically profile the immunological fingerprint of commensals from the major phyla in the human intestine (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) to reveal taxonomic patterns in immune activation and use this information to rationally design commensal communities to enhance antibacterial defenses and combat intestinal inflammation. We reveal that Bacteroidetes and Firmicutes have distinct effects on intestinal immunity by differentially inducing primary and secondary response genes. Within these phyla, the immunostimulatory capacity of commensals from the Bacteroidia class (Bacteroidetes phyla) reflects their robustness of TLR4 activation and Bacteroidia communities rely solely on this receptor for their effects on intestinal immunity. By contrast, within the Clostridia class (Firmicutes phyla) it reflects the degree of TLR2 and TLR4 activation, and communities of Clostridia signal via both of these receptors to exert their effects on intestinal immunity. By analyzing the receptors, intracellular signaling components and transcription factors that are engaged by different commensal species, we identify canonical NF-κB signaling as a critical rheostat which grades the degree of immune stimulation commensals elicit. Guided by this immunological analysis, we constructed a cross-phylum consortium of commensals (Bacteroides uniformis, Bacteroides ovatus, Peptostreptococcus anaerobius and Clostridium histolyticum) which enhances innate TLR, IL6 and macrophages-dependent defenses against intestinal colonization by vancomycin resistant Enterococci, and fortifies mucosal barrier function during pathological intestinal inflammation through the same pathway. Critically, the setpoint of intestinal immunity established by this consortium is calibrated by canonical NF-κB signaling. Thus, by profiling the immunological impact of major human commensal species our work paves the way for rational microbiota reengineering to protect against antibiotic resistant infections and to treat intestinal inflammation.
Collapse
Affiliation(s)
- Rebecca L. Brown
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Max L. Y. Larkinson
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Thomas B. Clarke
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
77
|
Lin YF, Sung CM, Ke HM, Kuo CJ, Liu WA, Tsai WS, Lin CY, Cheng HT, Lu MJ, Tsai IJ, Hsieh SY. The rectal mucosal but not fecal microbiota detects subclinical ulcerative colitis. Gut Microbes 2021; 13:1-10. [PMID: 33525983 PMCID: PMC7872041 DOI: 10.1080/19490976.2020.1832856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
Ulcerative colitis (UC), a subtype of inflammatory bowel disease, is characterized by repetitive remission and relapse. Gut microbiome is critically involved in pathogenesis of UC. The shifts in microbiome profile during disease remission remain under-investigated. Recent studies revealed that UC pathogenesis is likely to originate in the mucosal barrier. Therefore, we investigated the effectiveness of mucosal tissue microbiomes to differentiate patients with subclinical UC from healthy individuals. The microbiomes of cecal and rectal biopsies and feces were characterized from 13 healthy individuals and 45 patients with subclinical UC. Total genomic DNA was extracted from the samples, and their microbial communities determined using next-generation sequencing. We found that changes in relative abundance of subclinical UC were marked by a decrease in Proteobacteria and an increase in Bacteroidetes phyla in microbiome derived from rectal tissues but not cecal tissue nor feces. Only in the microbiome of rectal tissue had significantly higher community richness and evenness in subclinical UC patients than controls. Twenty-seven operational taxonomic units were enriched in subclinical UC cohort with majority of the taxa from the Firmicutes phylum. Inference of putative microbial functional pathways from rectal biopsy microbiome suggested a differential increase in interleukin-17 signaling and T-helper cell differentiation pathways. Rectal biopsy tissue was suggested to be more suitable than fecal samples for microbiome assays to distinguish patients with subclinical UC from healthy adults. Assessment of the rectal biopsy microbiome may offer clinical insight into UC disease progression and predict relapse of the diseases.
Collapse
Affiliation(s)
- Yu-Fei Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chang Mu Sung
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Science, Chang Gung University, Taoyuan, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Jung Kuo
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-an Liu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Sy Tsai
- Division of Colorectal Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Yu Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hao-Tsai Cheng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Meiyeh J Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Isheng. J. Tsai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
78
|
Carrillo-Salinas FJ, Anastasiou M, Ngwenyama N, Kaur K, Tai A, Smolgovsky SA, Jetton D, Aronovitz M, Alcaide P. Gut dysbiosis induced by cardiac pressure overload enhances adverse cardiac remodeling in a T cell-dependent manner. Gut Microbes 2020; 12:1-20. [PMID: 33103561 PMCID: PMC7588211 DOI: 10.1080/19490976.2020.1823801] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the existing association of gut dysbiosis and T cell inflammation in heart failure (HF), whether and how gut microbes contribute to T cell immune responses, cardiac fibrosis and dysfunction in HF remains largely unexplored. Our objective was to investigate whether gut dysbiosis is induced by cardiac pressure overload, and its effect in T cell activation, adverse cardiac remodeling, and cardiac dysfunction. We used 16S rRNA sequencing of fecal samples and discovered that cardiac pressure overload-induced by transverse aortic constriction (TAC) results in gut dysbiosis, characterized by a reduction of tryptophan and short-chain fatty acids producing bacteria in WT mice, but not in T cell-deficient mice (Tcra-/- ) mice. These changes did not result in T cell activation in the gut or gut barrier disruption. Strikingly, microbiota depletion in WT mice resulted in decreased heart T cell infiltration, decreased cardiac fibrosis, and protection from systolic dysfunction in response to TAC. Spontaneous reconstitution of the microbiota partially reversed these effects. We observed decreased cardiac expression of the Aryl hydrocarbon receptor (AhR) and enzymes associated with tryptophan metabolism in WT mice, but not in Tcra-/- mice, or in mice depleted of the microbiota. These findings demonstrate that cardiac pressure overload induced gut dysbiosis and T cell immune responses contribute to adverse cardiac remodeling, and identify the potential contribution of tryptophan metabolites and the AhR to protection from adverse cardiac remodeling and systolic dysfunction in HF.
Collapse
Affiliation(s)
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Department of Internal Medicine, University of Crete Medical School, Crete, Greece
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Department of Immunology, Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, MA, USA
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Albert Tai
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Sasha A. Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Department of Immunology, Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, MA, USA
| | - David Jetton
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Department of Immunology, Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, MA, USA
| | - Mark Aronovitz
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
- Department of Immunology, Tufts Graduate School for Biomedical Sciences Immunology Program, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
79
|
Maldonado-Contreras A, Ferrer L, Cawley C, Crain S, Bhattarai S, Toscano J, Ward DV, Hoffman A. Dysbiosis in a canine model of human fistulizing Crohn's disease. Gut Microbes 2020; 12:1785246. [PMID: 32730134 PMCID: PMC7524328 DOI: 10.1080/19490976.2020.1785246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Crohn's disease (CD) is a chronic immune-mediated inflammatory condition caused by the loss of mucosal tolerance toward the commensal microbiota. On average, 29.5% and 42.7% CD patients experience perianal complications at 10 and 20 y after diagnosis, respectively. Perianal CD (pCD) result in high disease burden, diminished quality of life, and elevated health-care costs. Overall pCD are predictors of poor long-term outcomes. Animal models of gut inflammation have failed to fully recapitulate the human manifestations of fistulizing CD. Here, we evaluated dogs with spontaneous canine anal furunculosis (CAF), a disease with clinical similarities to pCD, as a surrogate model for understanding the microbial contribution of human pCD pathophysiology. By comparing the gut microbiomes between dogs suffering from CAF (CAF dogs) and healthy dogs, we show CAF-dog microbiomes are either very dissimilar (dysbiotic) or similar (healthy-like), yet unique, to healthy dog's microbiomes. Compared to healthy or healthy-like CAF microbiomes, dysbiotic CAF microbiomes showed an increased abundance of Bacteroides vulgatus and Escherichia coli and a decreased abundance of Megamonas species and Prevotella copri. Our results mirror what have been reported in previous microbiome studies of patients with CD; particularly, CAF dogs exhibited two distinct microbiome composition: dysbiotic and healthy-like, with determinant bacterial taxa such as E. coli and P. copri that overlap what it has been found on their human counterpart. Thus, our results support the use of CAF dogs as a surrogate model to advance our understanding of microbial dynamics in pCD.
Collapse
Affiliation(s)
- Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA,CONTACT Ana Maldonado-Contreras Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Lluís Ferrer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sarah Crain
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Shakti Bhattarai
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Juan Toscano
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andrew Hoffman
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| |
Collapse
|
80
|
Siddiqui S, Bao D, Doyle-Meyers L, Dufour J, Wu Y, Liu YZ, Ling B. Alterations of the gut bacterial microbiota in rhesus macaques with SIV infection and on short- or long-term antiretroviral therapy. Sci Rep 2020; 10:19056. [PMID: 33149234 PMCID: PMC7642356 DOI: 10.1038/s41598-020-76145-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022] Open
Abstract
Gut dysbiosis and microbial translocation are associated with chronic systemic immune activation and inflammation in HIV-1 infection. However, the extent of restoration of gut microbiota in HIV-1 patients with short or long-term antiretroviral therapy (ART) is unclear. To understand the impact of ART on the gut microbiota, we used the rhesus macaque model of SIV infection to characterize and compare the gut microbial community upon SIV infection and during ART. We observed altered taxonomic compositions of gut microbiota communities upon SIV infection and at different time points of ART. SIV-infected animals showed decreased diversity of gut microbiome composition, while the ART group appeared to recover towards the diversity level of the healthy control. Animals undergoing ART for various lengths of time were observed to have differential gut bacterial abundance across different time points. In addition, increased blood lipopolysaccharide (LPS) levels during SIV infection were reduced to near normal upon ART, indicating that microbial translocation and immune activation can be improved during therapy. In conclusion, while short ART may be related to transient increase of certain pathogenic bacterial microbiome, ART may promote microbiome diversity compromised by SIV infection, improve the gut microbiota towards the healthy compositions and alleviate immune activation.
Collapse
Affiliation(s)
- Summer Siddiqui
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Duran Bao
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | | | - Jason Dufour
- Tulane National Primate Research Center, Covington, LA, 70433, USA
| | - Yuntao Wu
- Department of Molecular and Microbiology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA
| | - Yao-Zhong Liu
- Department of Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Binhua Ling
- Tulane National Primate Research Center, Covington, LA, 70433, USA. .,Tulane Center for Aging, School of Medicine, Tulane University, New Orleans, LA, 70112, USA. .,Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA. .,Texas Biomedical Research Institute, 8715 W Military Dr, San Antonio, TX, 78227, USA.
| |
Collapse
|
81
|
Liu J, Huang S, Li G, Zhao J, Lu W, Zhang Z. High housing density increases stress hormone- or disease-associated fecal microbiota in male Brandt's voles (Lasiopodomys brandtii). Horm Behav 2020; 126:104838. [PMID: 32791065 DOI: 10.1016/j.yhbeh.2020.104838] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022]
Abstract
Density-dependence is an important mechanism in the population regulation of small mammals. Stressors induced by high-density (e.g., crowding and aggression) can cause physiological and neurological disorders, and are hypothesized to be associated with alterations in gut microbiota, which may in turn reduce the fitness of animals by increasing stress- or disease-associated microbes. In this study, we examined the effects of housing density on the hormone levels, immunity, and composition of gut microbiota in male Brandt's voles (Lasiopodomys brandtii) by conducting two specific housing density experiments with or without physical contact between voles. Voles in high density groups exhibited higher serum corticosterone (CORT), serotonin (5-HT), and immunoglobulin G (IgG) levels, as well as higher testosterone (T) levels only in the experiment with physical contact. Meanwhile, high-density treatments induced significant changes in the composition of gut microbiota by increasing disease-associated microbes. The levels of hormones and immunity (i.e., CORT, 5-HT, and IgG) elevated by the high density treatment were significantly correlated with some specific microbes. These results imply that high-density-induced stress may shape the fitness of animals under natural conditions by altering their gut microbiota. Our study provides novel insights into the potential roles of gut microbiota in the density-dependent population regulation of small rodents as well as the potential mechanisms underlying psychological disorders in humans and animals under crowded conditions.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuli Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jidong Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
82
|
Wu ZC, Feng HX, Wu L, Zhang M, Zhou WL. Quorum Sensing System in Bacteroides thetaiotaomicron Strain Identified by Genome Sequence Analysis. ACS OMEGA 2020; 5:27502-27513. [PMID: 33134713 PMCID: PMC7594123 DOI: 10.1021/acsomega.0c03986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
This study is a bioinformatics assay on the microbial genome of Bacteroides thetaiotaomicron. The study focuses on the problem of quorum sensing as a result of adverse factors such as chemotherapy and antibiotic therapy. In patients with severe intestinal diseases, two strains of microorganisms were identified that were distinguished as new. Strains were investigated by conducting genome sequencing. The current concepts concerned with the quorum sensing system regulation by stationary-phase sigma factor and their coregulation of target genes in B. thetaiotaomicron were considered. The study suggested using bioinformatics data for the diagnosis of gastrointestinal disorders. In the course of the study, 402 genes having a greater than twofold change were identified with the 95% confidence level. The shortest and longest coding genes were predicted; the noncoding genes were detected. Biological pathways (KEGG pathways) were classified into the following categories: cellular processes, environmental information processing, genetic information processing, human disease, metabolism, and organismic systems. Among notable changes in the biofilm population observed in parallel to the planktonic B. thetaiotaomicron was the expression of genes in the polysaccharide utilization loci that were involved in the synthesis of O-glycans.
Collapse
Affiliation(s)
- Zhi Cheng Wu
- Department
of Laboratory, First Affiliated Hospital
of Hainan Medical College, 31 Longhua Road, Haikou, Hainan 570102, China
| | - Hong Xin Feng
- School
of Tropical and Laboratory Medicine, Hainan
Medical University, Haikou, Hainan 571199, China
| | - Lin Wu
- School
of Tropical and Laboratory Medicine, Hainan
Medical University, Haikou, Hainan 571199, China
- Department
of Biotechnology and Biotechnics, National
Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”, Kyiv 03056, Ukraine
- Key
Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou Hainan 571199, China
| | - Meng Zhang
- Sanya
People’s Hospital, Jiefang Third Road, 558, Sanya 572000, China
| | - Wei Lan Zhou
- Department
of Laboratory, First Affiliated Hospital
of Hainan Medical College, 31 Longhua Road, Haikou, Hainan 570102, China
| |
Collapse
|
83
|
Prevotella in Pigs: The Positive and Negative Associations with Production and Health. Microorganisms 2020; 8:microorganisms8101584. [PMID: 33066697 PMCID: PMC7602465 DOI: 10.3390/microorganisms8101584] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/19/2022] Open
Abstract
A diverse and dynamic microbial community (known as microbiota) resides within the pig gastrointestinal tract (GIT). The microbiota contributes to host health and performance by mediating nutrient metabolism, stimulating the immune system, and providing colonization resistance against pathogens. Manipulation of gut microbiota to enhance growth performance and disease resilience in pigs has recently become an active area of research in an era defined by increasing scrutiny of antimicrobial use in swine production. In order to develop microbiota-targeted strategies, or to identify potential next-generation probiotic strains originating from the endogenous members of GIT microbiota in pigs, it is necessary to understand the role of key commensal members in host health. Many, though not all, correlative studies have associated members of the genus Prevotella with positive outcomes in pig production, including growth performance and immune response; therefore, a comprehensive review of the genus in the context of pig production is needed. In the present review, we summarize the current state of knowledge about the genus Prevotella in the intestinal microbial community of pigs, including relevant information from other animal species that provide mechanistic insights, and identify gaps in knowledge that must be addressed before development of Prevotella species as next-generation probiotics can be supported.
Collapse
|
84
|
Long X, Kim YG, Pyo YK, Yi R, Zhao X, Park KY. Inhibitory effect of Jangkanghwan (Korean traditional food) on experimental ulcerative colitis in mice. J Food Biochem 2020; 44:e13488. [PMID: 33015841 DOI: 10.1111/jfbc.13488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022]
Abstract
Jangkanghwan (JKH) can delay weight loss in mice, promote weight gain during recovery, and reduce colonic shortening and colon weight. In addition, the murine disease activity index was controlled after treatment using JKH. It can reduce the content of pro-inflammatory factors in serum and expression in tissues, such as interleukin (IL)-6, IL-1β, tumor necrosis factor-α, interferon-γ, cyclooxygenase-2, and nuclear factor kappa-B; in contrast, the content and expression of IL-10 and the inhibitor of nuclear factor kappa-B kinase-α in the serum and tissues were increased. The mRNA expression of the colitis characteristic biomarker monocyte chemoattractant protein-1 and macrophage inflammatory protein-3α were reduced in colon tissues. Using next-generation sequencing technology, the Bacteroidetes phylum in the JKH group decreased, while the Firmicutes phylum increased, and the number of beneficial bacteria-Bifidobacteriaceae, Lactobacillaceae, and Akkermansiaceae-increased. PRACTICAL APPLICATIONS: JKH is a mixture of colonic healthy foods composed of Atractylodes macrocephala koidzumi, radish leaves, Viscum album var. coloratum, dried Zingiber officinale Roscoe, etc. According to UPLC-Q-TOF MS analysis, JKH consists mainly of 17 active substances, such as pheophorbide A, nabumetone alcohol, dehydrocostus lactone, plantamajoside, kaempferol 3, 7-dirhamnoside, quercetin 3-D-glucuronide, and viscumneoside III. We investigated the preventive effects of JKH on dextran sulfate sodium (DSS)-induced ulcerative colitis in a murine model and found that JKH can reduce the damage in mice caused by DSS treatment.
Collapse
Affiliation(s)
- Xingyao Long
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | | | | | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| | - Kun-Young Park
- Department of Food Science and Biotechnology, Cha University, Seongnam, South Korea.,Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, P.R. China.,Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, P.R. China
| |
Collapse
|
85
|
Wang C, Zhao J, Zhang H, Lee YK, Zhai Q, Chen W. Roles of intestinal bacteroides in human health and diseases. Crit Rev Food Sci Nutr 2020; 61:3518-3536. [PMID: 32757948 DOI: 10.1080/10408398.2020.1802695] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Research Institute, Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine, Wuxi, China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P.R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, P.R. China
| |
Collapse
|
86
|
High abundance of genus Prevotella is associated with dysregulation of IFN-I and T cell response in HIV-1-infected patients. AIDS 2020; 34:1467-1473. [PMID: 32675560 DOI: 10.1097/qad.0000000000002574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE HIV-1-associated dysbiosis is most commonly characterized by overall decreased diversity, with abundance of the genus Prevotella, recently related to inflammatory responses. DESIGN A pilot study including 10 antiretroviral therapy-treated HIV-1-infected men and 50 uninfected controls was performed to identify the main gut dysbiosis determinants (e.g. Prevotella enrichment), that may affect mucosal antiviral defenses and T cell immunity in HIV-1-infected individuals. METHODS 16rRNA gene sequencing was applied to the HIV-1-infected individuals' fecal microbiota and compared with controls. Measurements of CD4 and CD8 T cell activation [CD38, human leukocyte antigen (HLA)-DR, CD38 HLA-DR] and frequencies of Th17, obtained from lamina propria lymphocytes isolated from five different intestinal sites, were performed by flow cytometry. IFNβ, IFNAR1 and MxA gene expression level was evaluated by real-time PCR in lamina propria lymphocytes. Nonparametric t tests were used for statistical analysis. RESULTS HIV-1-infected men had a significant fecal microbial communities' imbalance, including different levels of genera Faecalibacterium, Prevotella, Alistipes and Bacteroides, compared with controls. Notably, Prevotella abundance positively correlated with frequencies of CD4 T cells expressing CD38 or HLA-DR and coexpressing CD38 and HLA-DR (P < 0.05 for all these measures). The same trend was observed for the activated CD8 T cells. Moreover, Prevotella levels were inversely correlated with IFN-I genes (P < 0.05 for IFNβ, IFNAR1 and MxA genes) and the frequencies of Th17 cells (P < 0.05). By contrast, no statistically significant correlations were observed for the remaining bacterial genera. CONCLUSION Our findings suggest that Prevotella enrichment might affect gut mucosal IFN-I pathways and T cell response in HIV-1-infected patients, thus contributing to immune dysfunction.
Collapse
|
87
|
Huh JW, Roh TY. Opportunistic detection of Fusobacterium nucleatum as a marker for the early gut microbial dysbiosis. BMC Microbiol 2020; 20:208. [PMID: 32660414 PMCID: PMC7359021 DOI: 10.1186/s12866-020-01887-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background The essential roles of gut microbiome have been emphasized in modulating human health and disease. Fusobacterium nucleatum (F. nucleatum), an obligate Gram-negative microorganism residing in oral cavity, gastrointestinal tract and elsewhere, has been recently considered as a potential oncobacterium associated with human cancers. However, the consequence of its enrichment was not extensively explored in terms of microbial homeostasis and stability at the early stage of disease development. Result Our analysis on longitudinal metagenomic data generated by the Integrative Human Microbiome Project (iHMP) showed that F. nucleatum was frequently found in inflammatory bowel diseases (IBD) subjects with reduced microbial diversity. Using non-parametric logarithmic linear discriminant analysis (LDA) effect size (LEfSe) algorithm, 12 IBD- and 14 non-IBD-specific bacterial species were identified in the fecal metagenome and the IBD-specific ones were over-represented in the F. nucleatum-experienced subjects during long-term surveillance. In addition, F. nucleatum experience severely abrogated intra-personal stability of microbiome in IBD patients and induced highly variable gut microbiome between subjects. From the longitudinal comparison between microbial distributions prior and posterior to F. nucleatum detection, 41 species could be proposed as indicative “classifiers” for dysbiotic gut state. By multiple logistic regression models established on these classifiers, the high probability of experiencing F. nucleatum was significantly correlated with decreased alpha-diversity and increased number of biomarker species for IBD and colorectal cancer (CRC). Finally, microbial clustering confirmed that biomarker species for IBD and non-IBD conditions as well as CRC signature markers were well distinguishable and could be utilized for explaining gut symbiosis and dysbiosis. Conclusion F. nucleatum opportunistically appeared under early dysbiotic condition in gut, and discriminative classifier species associated with F. nucleatum were successfully applied to predict microbial alterations in both IBD and non-IBD conditions. Our prediction model and microbial classifier biomarkers for estimating gut dysbiosis should provide a novel aspect of microbial homeostasis/dynamics and useful information on non-invasive biomarker screening.
Collapse
Affiliation(s)
- Ji-Won Huh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Tae-Young Roh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,SysGenLab Inc, Pohang, 37673, Republic of Korea.
| |
Collapse
|
88
|
Cao Y, Wang X, Yang Q, Deng H, Liu Y, Zhou P, Xu H, Chen D, Feng D, Zhang H, Wang H, Zhou J. Critical Role of Intestinal Microbiota in ATF3-Mediated Gut Immune Homeostasis. THE JOURNAL OF IMMUNOLOGY 2020; 205:842-852. [PMID: 32571839 DOI: 10.4049/jimmunol.1901000] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/21/2020] [Indexed: 12/26/2022]
Abstract
Secretory Ig A (sIgA) plays an important role in the maintenance of intestinal homeostasis via cross-talk with gut microbiota. The defects in sIgA production could elicit dysbiosis of commensal microbiota and subsequently facilitate the development of inflammatory bowel disease. Our previous study revealed activating transcription factor 3 (ATF3) as an important regulator of follicular helper T (TFH) cells in gut. ATF3 deficiency in CD4+ T cells impaired the development of gut TFH cells, and therefore diminished sIgA production, which increased the susceptibility to murine colitis. However, the potential role of microbiota in ATF3-mediated gut homeostasis remains incompletely understood. In this study, we report that both Atf3-/- and CD4creAtf3fl/fl mice displayed profound dysbiosis of gut microbiota when compared with their littermate controls. The proinflammatory Prevotella taxa, especially Prevotella copri, were more abundant in ATF3-deficient mice when compared with littermate controls. This phenotype was obviously abrogated by adoptive transfer of either TFH cells or IgA+ B cells. Importantly, depletion of gut microbiota dramatically alleviated the severity of colitis in Atf3-/- mice, whereas transfer of microbiota from Atf3-/- mice to wild-type recipients increased their susceptibility to colitis. Collectively, these observations indicate the importance of IgA-microbiota interaction in ATF3-mediated gut homeostasis.
Collapse
Affiliation(s)
- Yingjiao Cao
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangyang Wang
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Yang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Deng
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongdong Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Pan Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Haixu Xu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Dubo Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Dingyun Feng
- Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China; and
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haikun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Zhou
- Joint Program in Immunology, Affiliated Guangzhou Women and Children's Medical Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510623, China; .,Department of Immunology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.,Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
89
|
Cortés A, Wills J, Su X, Hewitt RE, Robertson J, Scotti R, Price DRG, Bartley Y, McNeilly TN, Krause L, Powell JJ, Nisbet AJ, Cantacessi C. Infection with the sheep gastrointestinal nematode Teladorsagia circumcincta increases luminal pathobionts. MICROBIOME 2020; 8:60. [PMID: 32354347 PMCID: PMC7193420 DOI: 10.1186/s40168-020-00818-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/02/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND The multifaceted interactions between gastrointestinal (GI) helminth parasites, host gut microbiota and immune system are emerging as a key area of research within the field of host-parasite relationships. In spite of the plethora of data available on the impact that GI helminths exert on the composition of the gut microflora, whether alterations of microbial profiles are caused by direct parasite-bacteria interactions or, indirectly, by alterations of the GI environment (e.g. mucosal immunity) remains to be determined. Furthermore, no data is thus far available on the downstream roles that qualitative and quantitative changes in gut microbial composition play in the overall pathophysiology of parasite infection and disease. RESULTS In this study, we investigated the fluctuations in microbiota composition and local immune microenvironment of sheep vaccinated against, and experimentally infected with, the 'brown stomach worm' Teladorsagia circumcincta, a parasite of worldwide socio-economic significance. We compared the faecal microbial profiles of vaccinated and subsequently infected sheep with those obtained from groups of unvaccinated/infected and unvaccinated/uninfected animals. We show that alterations of gut microbial composition are associated mainly with parasite infection, and that this involves the expansion of populations of bacteria with known pro-inflammatory properties that may contribute to the immunopathology of helminth disease. Using novel quantitative approaches for the analysis of confocal microscopy-derived images, we also show that gastric tissue infiltration of T cells is driven by parasitic infection rather than anti-helminth vaccination. CONCLUSIONS Teladorsagia circumcincta infection leads to an expansion of potentially pro-inflammatory gut microbial species and abomasal T cells. This data paves the way for future experiments aimed to determine the contribution of the gut flora to the pathophysiology of parasitic disease, with the ultimate aim to design and develop novel treatment/control strategies focused on preventing and/or restricting bacterial-mediated inflammation upon infection by GI helminths. Video Abstract.
Collapse
Affiliation(s)
- Alba Cortés
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - John Wills
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Xiaopei Su
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Rachel E Hewitt
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Jack Robertson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Riccardo Scotti
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Daniel R G Price
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Yvonne Bartley
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | | | - Jonathan J Powell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alasdair J Nisbet
- Moredun Research Institute, Pentlands Science Park, Edinburgh, EH26 0PZ, UK
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| |
Collapse
|
90
|
Parajuli A, Hui N, Puhakka R, Oikarinen S, Grönroos M, Selonen VAO, Siter N, Kramna L, Roslund MI, Vari HK, Nurminen N, Honkanen H, Hintikka J, Sarkkinen H, Romantschuk M, Kauppi M, Valve R, Cinek O, Laitinen OH, Rajaniemi J, Hyöty H, Sinkkonen A. Yard vegetation is associated with gut microbiota composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136707. [PMID: 32019041 DOI: 10.1016/j.scitotenv.2020.136707] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Gut microbes play an essential role in the development and functioning of the human immune system. A disturbed gut microbiota composition is often associated with a number of health disorders including immune-mediated diseases. Differences in host characteristics such as ethnicity, living habit and diet have been used to explain differences in the gut microbiota composition in inter-continental comparison studies. As our previous studies imply that daily skin contact with organic gardening materials modify gut microflora, here we investigated the association between living environment and gut microbiota in a homogenous western population along an urban-rural gradient. We obtained stool samples from 48 native elderly Finns in province Häme in August and November 2015 and identified the bacterial phylotypes using 16S rRNA Illumina MiSeq sequencing. We assumed that yard vegetation and land cover classes surrounding homes explain the stool bacterial community in generalized linear mixed models. Diverse yard vegetation was associated with a reduced abundance of Clostridium sensu stricto and an increased abundance of Faecalibacterium and Prevotellaceae. The abundance of Bacteroides was positively and strongly associated with the built environment. Exclusion of animal owners did not alter the main associations. These results suggest that diverse vegetation around homes is associated with health-related changes in gut microbiota composition. Manipulation of the garden diversity, possibly jointly with urban planning, is a promising candidate for future intervention studies that aim to maintain gut homeostasis.
Collapse
Affiliation(s)
- Anirudra Parajuli
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nan Hui
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Riikka Puhakka
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Sami Oikarinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Mira Grönroos
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Ville A O Selonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Nathan Siter
- School of Architecture, Tampere University of Technology, Tampere, Finland
| | - Lenka Kramna
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marja I Roslund
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Heli K Vari
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Noora Nurminen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Hanna Honkanen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | | | - Martin Romantschuk
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | | | - Raisa Valve
- Division of Food and Nutrition Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Ondřej Cinek
- Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olli H Laitinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Juho Rajaniemi
- School of Architecture, Tampere University of Technology, Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Aki Sinkkonen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland; Natural Resources Institute Finland, Turku, Finland.
| |
Collapse
|
91
|
Liso M, De Santis S, Verna G, Dicarlo M, Calasso M, Santino A, Gigante I, Eri R, Raveenthiraraj S, Sobolewski A, Palmitessa V, Lippolis A, Mastronardi M, Armentano R, Serino G, De Angelis M, Chieppa M. A Specific Mutation in Muc2 Determines Early Dysbiosis in Colitis-Prone Winnie Mice. Inflamm Bowel Dis 2020; 26:546-556. [PMID: 31748792 PMCID: PMC7054774 DOI: 10.1093/ibd/izz279] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD), including Crohn disease (CD) and ulcerative colitis (UC), is a multifactorial disorder characterized by chronic inflammation and altered gut barrier function. Dysbiosis, a condition defined by dysregulation of the gut microbiome, has been reported in patients with IBD and in experimental models of colitis. Although several factors have been implicated in directly affecting gut microbial composition, the genetic determinants impacting intestinal dysbiosis in IBD remain relatively unknown. METHODS We compared the microbiome of normal, uninflamed wild-type (WT) mice with that of a murine model of UC (ie, Winnie strain). Winnie mice possess a missense mutation in Muc2 that manifests in altered mucus production as early as 4 weeks of age, with ensuing colonic inflammation. To better address the potential role of mutant Muc2 in promoting dysbiosis in Winnie mice, we evaluated homozygous mutant mice (Winnie-/-) with their WT littermates that, after weaning from common mothers, were caged separately according to genotype. Histologic and inflammatory status were assessed over time, along with changes in their respective microbiome compositions. RESULTS Dysbiosis in Winnie mice was already established at 4 weeks of age, before histologic evidence of gut inflammatory changes, in which microbial communities diverged from that derived from their mothers. Furthermore, dysbiosis persisted until 12 weeks of age, with peak differences in microbiome composition observed between Winnie and WT mice at 8 weeks of age. The relative abundance of Bacteroidetes was greater in Winnie compared with WT mice. Verrucomicrobia was detected at the highest relative levels in 4-week-old Winnie mice; in particular, Akkermansia muciniphila was among the most abundant species found at 4 weeks of age. CONCLUSIONS Our results demonstrate that mutant genetic determinants involved in the complex regulation of intestinal homeostasis, such as that observed in Winnie mice, are able to promote early gut dysbiosis that is independent from maternal microbial transfer, including breastfeeding. Our data provide evidence for intestinal dysbiosis attributed to a Muc2-driven mucus defect that leads to colonic inflammation and may represent an important target for the design of future interventional studies.
Collapse
Affiliation(s)
- Marina Liso
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Stefania De Santis
- Department of Pharmacy, School of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Giulio Verna
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Manuela Dicarlo
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Angelo Santino
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, Lecce, Italy
| | - Isabella Gigante
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Rajaraman Eri
- Mucosal Biology, School of Health Sciences, University of Tasmania, Launceston, TAS, Australia
| | | | - Anastasia Sobolewski
- School of Pharmacy University of East Anglia, Norwich Research Park, Norwich, UK
| | - Valeria Palmitessa
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Antonio Lippolis
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Mauro Mastronardi
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Raffaele Armentano
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Grazia Serino
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari, Bari, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy,Department of Immunology and Cell Biology, European Biomedical ResearchInstitute of Salerno (EBRIS), Salerno, Italy,Address correspondence to: Marcello Chieppa, PhD, National Institute of Gastroenterology “S. de Bellis,” Institute of Research, Castellana Grotte (BA), Italy ()
| |
Collapse
|
92
|
Butera A, Di Paola M, Vitali F, De Nitto D, Covotta F, Borrini F, Pica R, De Filippo C, Cavalieri D, Giuliani A, Pronio A, Boirivant M. IL-13 mRNA Tissue Content Identifies Two Subsets of Adult Ulcerative Colitis Patients With Different Clinical and Mucosa-Associated Microbiota Profiles. J Crohns Colitis 2020; 14:369-380. [PMID: 31501882 DOI: 10.1093/ecco-jcc/jjz154] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS A personalized approach to therapy hold great promise to improve disease outcomes. To this end, the identification of different subsets of patients according to the prevalent pathogenic process might guide the choice of therapeutic strategy. We hypothesize that ulcerative colitis [UC] patients might be stratified according to distinctive cytokine profiles and/or to a specific mucosa-associated microbiota. METHODS In a cohort of clinically and endoscopic active UC patients and controls, we used quantitative PCR to analyse the mucosal cytokine mRNA content and 16S rRNA gene sequencing to assess the mucosa-associated microbiota composition. RESULTS We demonstrate, by means of data-driven approach, the existence of a specific UC patient subgroup characterized by elevated IL-13 mRNA tissue content separate from patients with low IL-13 mRNA tissue content. The two subsets differ in clinical-pathological characteristics. High IL-13 mRNA patients are younger at diagnosis and have a higher prevalence of extensive colitis than low IL-13 mRNA patients. They also show more frequent use of steroid/immunosuppressant/anti-tumour necrosis factor α therapy during 1 year of follow-up. The two subgroups show differential enrichment of mucosa-associated microbiota genera with a prevalence of Prevotella in patients with high IL-13 mRNA tissue content and Sutterella and Acidaminococcus in patients with low IL-13 mRNA tissue content. CONCLUSION Assessment of mucosal IL-13 mRNA might help in the identification of a patient subgroup that might benefit from a therapeutic approach modulating IL-13. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Alessia Butera
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Monica Di Paola
- Department of Biology, University of Florence, Firenze, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | - Francesco Covotta
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | | | - Roberta Pica
- Sandro Pertini Hospital, IBD, GE Unit, Rome, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | | | - Annamaria Pronio
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | - Monica Boirivant
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| |
Collapse
|
93
|
Li X, Hu Y, Lv Y, Gao Y, Yuwen L, Yang W, Weng L, Teng Z, Wang L. Gut microbiota and lipid metabolism alterations in mice induced by oral cadmium telluride quantum dots. J Appl Toxicol 2020; 40:1131-1140. [PMID: 32167196 DOI: 10.1002/jat.3972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023]
Abstract
The potential toxicity of cadmium-containing quantum dots (QDs) has received much attention because of increasing biomedical applications. However, little has been known about how cadmium telluride (CdTe) QDs influence the gut microbiota and lipid metabolism. In this study, mice were exposed orally to CdTe QDs (200 μL of 0.2, 2, 20 or 200 μm; twice per week) for 4 weeks. The oral experiments showed CdTe QD exposure led to a decrease of the Firmicutes/Bacteroidetes (F/B) ratio of gut microbiota, which highly negatively correlated with the low-density lipoprotein (LDL), triglyceride (TG) and total cholesterol (TC) levels in serum. In addition, the low-dose (0.2 and 2 μm) CdTe QDs significantly increased the diversity of gut microbiota, and did not elevate the LDL, TG and TC levels in serum. The medium dose (20 μm) of CdTe QDs caused the biggest decrease of the F/B ratio, so it significantly increased the LDL, TG and TC levels compared with the control. Furthermore, high-dose (200 μm) CdTe QDs caused various toxicities in the histopathology of liver and intestine, liver function and intestinal immunity, but did not significantly lead to changes of the LDL, TG and TC levels in serum. This study demonstrates that high-dose oral CdTe QDs mainly lead to tissue damage of the liver and intestine, while the medium and low doses of oral CdTe QDs induce shifts of gut microbiota structure, which are associated with blood lipid levels.
Collapse
Affiliation(s)
- Xiaohui Li
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China.,Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yun Hu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yangfan Lv
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yu Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Wenjing Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China.,Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
94
|
Lo Sasso G, Phillips BW, Sewer A, Battey JND, Kondylis A, Talikka M, Titz B, Guedj E, Peric D, Bornand D, Dulize R, Merg C, Corciulo M, Ouadi S, Yanuar R, Tung CK, Ivanov NV, Peitsch MC, Hoeng J. The reduction of DSS-induced colitis severity in mice exposed to cigarette smoke is linked to immune modulation and microbial shifts. Sci Rep 2020; 10:3829. [PMID: 32123204 PMCID: PMC7052152 DOI: 10.1038/s41598-020-60175-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure to cigarette smoke (CS) causes detrimental health effects, increasing the risk of cardiovascular, pulmonary diseases and carcinogenesis in exposed individuals. The impact of CS on Inflammatory Bowel Disease (IBD) has been established by a number of epidemiological and clinical studies. In fact, CS is associated with a higher risk of developing Crohn's disease (CD) while inversely correlates with the development, disease risks, and relapse rate of ulcerative colitis (UC). To investigate the effect of CS exposure on experimental colitis, we performed a comprehensive and integrated comparative analysis of colon transcriptome and microbiome in mice exposed to dextran sodium sulfate (DSS) and CS. Colon transcriptome analysis revealed that CS downregulated specific pathways in a concentration-dependent manner, affecting both the inflammatory state and composition of the gut microbiome. Metagenomics analysis demonstrated that CS can modulate DSS-induced dysbiosis of specific bacterial genera, contributing to resolve the inflammation or accelerate recovery. The risks of smoking far outweigh any possible benefit, thus smoking cessation must always be encouraged because of its significant health benefits. However, the inverse association between active smoking and the development of UC cannot be ignored and the present study lays the foundation for investigating potential molecular mechanisms responsible for the attenuation of colitis by certain compounds of tobacco when decoupled from combustion.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Blaine W Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - James N D Battey
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Maica Corciulo
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Sonia Ouadi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Rendy Yanuar
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Ching Keong Tung
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
95
|
Palmisano S, Campisciano G, Iacuzzo C, Bonadio L, Zucca A, Cosola D, Comar M, de Manzini N. Role of preoperative gut microbiota on colorectal anastomotic leakage: preliminary results. Updates Surg 2020; 72:1013-1022. [PMID: 32062786 DOI: 10.1007/s13304-020-00720-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND The dysbiosis is defined as a disturbed symbiotic relationship between microbiota and the host and can cause a pro-inflammatory imbalance impairing the healing process at anastomotic level. The aim of this study is to detect, in fecal samples collected in the preoperative time, a peculiar microbiota composition that could predict the onset of colorectal anastomotic leakage. MATERIALS AND METHODS We compared gut microbiota of healthy patients (Group A) and patients with colorectal cancer eligible for surgery (Group B). Group B was divided into patients who developed anastomotic leak (Group BL) and patients who had uneventful recovery (Group BNL). Stool samples were collected before surgery and after neoadjuvant treatment. RESULTS We analyzed stool samples from 48 patients, 27 belonging to Group A and 21 to Group B. In Group B, five patients developed anastomotic leakage (Group BL). Compared to healthy subjects, Group B showed a moderate increase of Bacteroidetes and Proteobacteria, a moderate reduction of Firmicutes and Actinobacteria, and a statistically significant reduction of Faecalibacterium prausnitzii. Group BL patients showed an array of bacterial species which promoted dysbiosis, such as Acinetobacter lwoffii and Hafnia alvei. Group BNL patients showed that bacterial species like Faecalibacterium prausnitzii and Barnesiella intestinihominis have a protective function. CONCLUSIONS The bacterial flora in subjects with colorectal cancer is statistically different compared to healthy patients. The presence of preoperative aggressive bacteria and the lack of protective strains has strengthened the hypothesis that a peculiar microbiota composition could represent a risk factor for the occurrence of anastomotic leakage.
Collapse
Affiliation(s)
- Silvia Palmisano
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy.
- Surgical Clinic Unit, Cattinara Hospital, ASUITS, Strada di Fiume 447, 34149, Trieste, Italy.
| | - Giuseppina Campisciano
- Institute for Maternal and Child Health IRCCS, Burlo Garofolo, Via dell' Istria 65/1, 34149, Trieste, Italy
| | - Cristiana Iacuzzo
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Laura Bonadio
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Annalisa Zucca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Davide Cosola
- Surgical Clinic Unit, Cattinara Hospital, ASUITS, Strada di Fiume 447, 34149, Trieste, Italy
| | - Manola Comar
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
- Institute for Maternal and Child Health IRCCS, Burlo Garofolo, Via dell' Istria 65/1, 34149, Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
- Surgical Clinic Unit, Cattinara Hospital, ASUITS, Strada di Fiume 447, 34149, Trieste, Italy
| |
Collapse
|
96
|
Lérias JR, Paraschoudi G, de Sousa E, Martins J, Condeço C, Figueiredo N, Carvalho C, Dodoo E, Castillo-Martin M, Beltrán A, Ligeiro D, Rao M, Zumla A, Maeurer M. Microbes as Master Immunomodulators: Immunopathology, Cancer and Personalized Immunotherapies. Front Cell Dev Biol 2020; 7:362. [PMID: 32039196 PMCID: PMC6989410 DOI: 10.3389/fcell.2019.00362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The intricate interplay between the immune system and microbes is an essential part of the physiological homeostasis in health and disease. Immunological recognition of commensal microbes, such as bacterial species resident in the gut or lung as well as dormant viral species, i.e., cytomegalovirus (CMV) or Epstein-Barr virus (EBV), in combination with a balanced immune regulation, is central to achieve immune-protection. Emerging evidence suggests that immune responses primed to guard against commensal microbes may cause unexpected pathological outcomes, e.g., chronic inflammation and/or malignant transformation. Furthermore, translocation of immune cells from one anatomical compartment to another, i.e., the gut-lung axis via the lymphatics or blood has been identified as an important factor in perpetrating systemic inflammation, tissue destruction, as well as modulating host-protective immune responses. We present in this review immune response patterns to pathogenic as well as non-pathogenic microbes and how these immune-recognition profiles affect local immune responses or malignant transformation. We discuss personalized immunological therapies which, directly or indirectly, target host biological pathways modulated by antimicrobial immune responses.
Collapse
Affiliation(s)
- Joana R. Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - João Martins
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Figueiredo
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | | | - Antonio Beltrán
- Department of Pathology, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação, Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Alimuddin Zumla
- Division of Infection and Immunity, NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
97
|
Busbee PB, Menzel L, Alrafas HR, Dopkins N, Becker W, Miranda K, Tang C, Chatterjee S, Singh UP, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol prevents colitis and associated microbial dysbiosis in an IL-22-dependent manner. JCI Insight 2020; 5:127551. [PMID: 31941837 PMCID: PMC7030851 DOI: 10.1172/jci.insight.127551] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 12/04/2019] [Indexed: 12/11/2022] Open
Abstract
Colitis, an inflammatory bowel disease, is caused by a variety of factors, but luminal microbiota are thought to play crucial roles in disease development and progression. Indole is produced by gut microbiota and is believed to protect the colon from inflammatory damage. In the current study, we investigated whether indole-3-carbinol (I3C), a naturally occurring plant product found in numerous cruciferous vegetables, can prevent colitis-associated microbial dysbiosis and attempted to identify the mechanisms. Treatment with I3C led to repressed colonic inflammation and prevention of microbial dysbiosis caused by colitis, increasing a subset of gram-positive bacteria known to produce butyrate. I3C was shown to increase production of butyrate, and when mice with colitis were treated with butyrate, there was reduced colonic inflammation accompanied by suppression of Th17 and induction of Tregs, protection of the mucus layer, and upregulation in Pparg expression. Additionally, IL-22 was increased only after I3C but not butyrate administration, and neutralization of IL-22 prevented the beneficial effects of I3C against colitis, as well as blocked I3C-mediated dysbiosis and butyrate induction. This study suggests that I3C attenuates colitis primarily through induction of IL-22, which leads to modulation of gut microbiota that promote antiinflammatory butyrate.
Collapse
Affiliation(s)
- Philip B. Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Lorenzo Menzel
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Nicholas Dopkins
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - William Becker
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Chaunbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina College of Arts and Sciences, Columbia, South Carolina, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia, South Carolina, USA
| | - Udai P. Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| |
Collapse
|
98
|
Wang X, Yu N, Wang Z, Qiu T, Jiang L, Zhu X, Sun Y, Xiong H. Akebia trifoliata pericarp extract ameliorates inflammation through NF-κB/MAPK signaling pathways and modifies gut microbiota. Food Funct 2020; 11:4682-4696. [DOI: 10.1039/c9fo02917f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Akebia trifoliata fruits, a kind of popular edible berry in Asia, are widely consumed as daily fruits or functional foods.
Collapse
Affiliation(s)
- Xiaoya Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Ningxiang Yu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Tingting Qiu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Xuemei Zhu
- School of Food Science and Technology
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- China
| |
Collapse
|
99
|
Sialylation and fucosylation modulate inflammasome-activating eIF2 Signaling and microbial translocation during HIV infection. Mucosal Immunol 2020; 13:753-766. [PMID: 32152415 PMCID: PMC7434596 DOI: 10.1038/s41385-020-0279-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
Abstract
An emerging paradigm suggests that gut glycosylation is a key force in maintaining the homeostatic relationship between the gut and its microbiota. Nevertheless, it is unclear how gut glycosylation contributes to the HIV-associated microbial translocation and inflammation that persist despite viral suppression and contribute to the development of several comorbidities. We examined terminal ileum, right colon, and sigmoid colon biopsies from HIV-infected virally-suppressed individuals and found that gut glycomic patterns are associated with distinct microbial compositions and differential levels of chronic inflammation and HIV persistence. In particular, high levels of the pro-inflammatory hypo-sialylated T-antigen glycans and low levels of the anti-inflammatory fucosylated glycans were associated with higher abundance of glycan-degrading microbial species (in particular, Bacteroides vulgatus), a less diverse microbiome, higher levels of inflammation, and higher levels of ileum-associated HIV DNA. These findings are linked to the activation of the inflammasome-mediating eIF2 signaling pathway. Our study thus provides the first proof-of-concept evidence that a previously unappreciated factor, gut glycosylation, is a force that may impact the vicious cycle between HIV infection, microbial translocation, and chronic inflammation.
Collapse
|
100
|
Zhao H, Cheng N, Zhou W, Chen S, Wang Q, Gao H, Xue X, Wu L, Cao W. Honey Polyphenols Ameliorate DSS‐Induced Ulcerative Colitis via Modulating Gut Microbiota in Rats. Mol Nutr Food Res 2019; 63:e1900638. [DOI: 10.1002/mnfr.201900638] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/08/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Haoan Zhao
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
- School of Chemical EngineeringNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Ni Cheng
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Wenqi Zhou
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Sinan Chen
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Qian Wang
- School of Chemical EngineeringNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Hui Gao
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| | - Xiaofeng Xue
- Institute of Apicultural ResearchChinese Academy of Agricultural Sciences Beijing 100093 China
| | - Liming Wu
- Institute of Apicultural ResearchChinese Academy of Agricultural Sciences Beijing 100093 China
| | - Wei Cao
- Collage of Food Science and TechnologyNorthwest University 229 North TaiBai Road Xi'an 710069 China
| |
Collapse
|