51
|
Abstract
Candida auris is a multidrug-resistant nosocomial fungal pathogen. While the marine environment was recently identified as a natural niche for C. auris, the environment(s) that might have contributed to the development and spread of antifungal resistance in C. auris remains a mystery. Because stored fruits are often treated with fungicides to prevent postharvest spoilage, we hypothesized that stored fruits could serve as a possible selective force for and a transmission reservoir of antifungal-resistant isolates of pathogenic yeasts, including C. auris. To test this hypothesis, we screened fruits to study the diversity of pathogenic yeasts and their antifungal susceptibility profiles. Among the 62 screened apples, the surfaces of 8 were positive for C. auris, and all were stored apples. Whole-genome sequencing (WGS) showed that C. auris strains from apples were genetically diverse and exhibited broad phylogenetic distribution among the subclades within clade I. Interestingly, strains from apples had closely related strains from other sources in India, including from patients, hospitals, and marine environments, and from clinical strains from other parts of the world. A broad range of fungicides, including dimethyl inhibitors (DMIs), were detected in stored apples, and all C. auris isolates exhibited reduced sensitivity to DMIs. Interestingly, C. auris was not isolated from freshly picked apples. Together, the results suggest a potentially complex ecology for C. auris with agriculture fungicide application on stored fruits as a significant selective force for drug resistance in clinics.
Collapse
|
52
|
A Tale of Four Danish Cities: Legionella pneumophila Diversity in Domestic Hot Water and Spatial Variations in Disease Incidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052530. [PMID: 35270223 PMCID: PMC8909801 DOI: 10.3390/ijerph19052530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Denmark has one of the highest Legionnaires' disease notification rates within Europe, averaging 4.7 cases per 100,000 population annually (2017 to 2020). The relatively high incidence of disease is not uniform across the country, and approximately 70% of all domestically acquired cases in Denmark are caused by Legionella pneumophila (LP) strains that are considered less virulent. The aim of this study was to investigate if colonization rates, levels of colonization, and/or types of LP present in hot water systems were associated with geographic differences in Legionnaires' disease incidence. Domestic water systems from four cities in Denmark were analyzed via culture and qPCR. Serogrouping and sequence typing was performed on randomly selected isolates. Single nucleotide polymorphism was used to identify clonal relationship among isolates from the four cities. The results revealed a high LP colonization rate from 68% to 87.5% among systems, composed primarily of non-serogroup 1. LP serogroup 1 reacting with the monoclonal antibody (MAb) 3/1 was not identified in any of the systems tested, while MAb 3/1 negative serogroup 1 strains were isolated from 10 systems (9.6%). We hypothesize that a combination of factors influences the incidence rate of LD in each city, including sequence type and serogroup distribution, colonization rate, concentration of Legionella in Pre-flush and Flush samples, and potentially building characteristics such as water temperature measured at the point of use.
Collapse
|
53
|
Williamson CHD, Stone NE, Nunnally AE, Roe CC, Vazquez AJ, Lucero SA, Hornstra H, Wagner DM, Keim P, Rupnik M, Janezic S, Sahl JW. Identification of novel, cryptic Clostridioides species isolates from environmental samples collected from diverse geographical locations. Microb Genom 2022; 8. [PMID: 35166655 PMCID: PMC8942030 DOI: 10.1099/mgen.0.000742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a pathogen often associated with hospital-acquired infection or antimicrobial-induced disease; however, increasing evidence indicates infections can result from community or environmental sources. Most genomic sequencing of C. difficile has focused on clinical strains, although evidence is growing that C. difficile spores are widespread in soil and water in the environment. In this study, we sequenced 38 genomes collected from soil and water isolates in Flagstaff (AZ, USA) and Slovenia in an effort targeted towards environmental surveillance of C. difficile. At the average nucleotide identity (ANI) level, the genomes were divergent to C. difficile at a threshold consistent with different species. A phylogenetic analysis of these divergent genomes together with Clostridioides genomes available in public repositories confirmed the presence of three previously described, cryptic Clostridioides species and added two additional clades. One of the cryptic species (C-III) was almost entirely composed of Arizona and Slovenia genomes, and contained distinct sub-groups from each region (evidenced by SNP and gene-content differences). A comparative genomics analysis identified multiple unique coding sequences per clade, which can serve as markers for subsequent environmental surveys of these cryptic species. Homologues to the C. difficile toxin genes, tcdA and tcdB, were found in cryptic species genomes, although they were not part of the typical pathogenicity locus observed in C. difficile, and in silico PCR suggested that some would not amplify with widely used PCR diagnostic tests. We also identified gene homologues in the binary toxin cluster, including some present on phage and, for what is believed to be the first time, on a plasmid. All isolates were obtained from environmental samples, so the function and disease potential of these toxin homologues is currently unknown. Enzymatic profiles of a subset of cryptic isolates (n=5) demonstrated differences, suggesting that these isolates contain substantial metabolic diversity. Antimicrobial resistance (AMR) was observed across a subset of isolates (n=4), suggesting that AMR mechanisms are intrinsic to the genus, perhaps originating from a shared environmental origin. This study greatly expands our understanding of the genomic diversity of Clostridioides. These results have implications for C. difficile One Health research, for more sensitive C. difficile diagnostics, as well as for understanding the evolutionary history of C. difficile and the development of pathogenesis.
Collapse
Affiliation(s)
| | - Nathan E Stone
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Amalee E Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Chandler C Roe
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Adam J Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Samantha A Lucero
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Heidie Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska Ulica 1, 2000 Maribor, Slovenia
| | - Sandra Janezic
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| | - Jason William Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| |
Collapse
|
54
|
Larsen J, Raisen CL, Ba X, Sadgrove NJ, Padilla-González GF, Simmonds MSJ, Loncaric I, Kerschner H, Apfalter P, Hartl R, Deplano A, Vandendriessche S, Černá Bolfíková B, Hulva P, Arendrup MC, Hare RK, Barnadas C, Stegger M, Sieber RN, Skov RL, Petersen A, Angen Ø, Rasmussen SL, Espinosa-Gongora C, Aarestrup FM, Lindholm LJ, Nykäsenoja SM, Laurent F, Becker K, Walther B, Kehrenberg C, Cuny C, Layer F, Werner G, Witte W, Stamm I, Moroni P, Jørgensen HJ, de Lencastre H, Cercenado E, García-Garrote F, Börjesson S, Hæggman S, Perreten V, Teale CJ, Waller AS, Pichon B, Curran MD, Ellington MJ, Welch JJ, Peacock SJ, Seilly DJ, Morgan FJE, Parkhill J, Hadjirin NF, Lindsay JA, Holden MTG, Edwards GF, Foster G, Paterson GK, Didelot X, Holmes MA, Harrison EM, Larsen AR. Emergence of methicillin resistance predates the clinical use of antibiotics. Nature 2022; 602:135-141. [PMID: 34987223 PMCID: PMC8810379 DOI: 10.1038/s41586-021-04265-w] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics1. Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two β-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development.
Collapse
Affiliation(s)
- Jesper Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.
| | - Claire L Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | | | | | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine, Vienna, Austria
| | - Heidrun Kerschner
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Petra Apfalter
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections, Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Ariane Deplano
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Stien Vandendriessche
- National Reference Centre-Staphylococcus aureus, Department of Microbiology, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
- Laboratory for Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Barbora Černá Bolfíková
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Hulva
- Department of Zoology, Charles University, Prague, Czech Republic
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czech Republic
| | - Maiken C Arendrup
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Rasmus K Hare
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Céline Barnadas
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
- European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Marc Stegger
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Raphael N Sieber
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Robert L Skov
- Infectious Disease Preparedness, Statens Serum Institut, Copenhagen, Denmark
| | - Andreas Petersen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sophie L Rasmussen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Wildlife Conservation Research Unit (WildCRU), Department of Zoology, University of Oxford, Tubney, UK
| | - Carmen Espinosa-Gongora
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura J Lindholm
- Expert Microbiology Unit, Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Frederic Laurent
- Bacteriology Department and French National Reference Center for Staphylococci, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Birgit Walther
- Institute of Microbiology and Epizootics, Veterinary Faculty, Freie Universität Berlin, Berlin, Germany
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Berlin, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Justus-Liebig University Giessen, Giessen, Germany
| | - Christiane Cuny
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Franziska Layer
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | - Wolfgang Witte
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany
| | | | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Lodi, Italy
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, USA
| | | | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, ITQB NOVA, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Emilia Cercenado
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
| | - Fernando García-Garrote
- Servicio de Microbiología, Hospital Universitario Lucus Augusti, Lugo, Spain
- Servicio de Microbiología, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Stefan Börjesson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute (SVA), Uppsala, Sweden
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Sara Hæggman
- Department of Microbiology, Public Health Agency of Sweden, Solna, Sweden
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Andrew S Waller
- Animal Health Trust, Newmarket, UK
- Intervacc AB, Stockholm, Stockholm, Sweden
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bruno Pichon
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - Martin D Curran
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
| | - Matthew J Ellington
- Clinical Microbiology and Public Health Laboratory, UK Health Security Agency, Addenbrooke's Hospital, Cambridge, UK
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, UK Health Security Agency, London, UK
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - David J Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Fiona J E Morgan
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nazreen F Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jodi A Lindsay
- Institute of Infection and Immunity, St George's, University of London, London, UK
| | | | - Giles F Edwards
- Scottish MRSA Reference Laboratory, NHS Greater Glasgow and Clyde, Stobhill Hospital, Glasgow, UK
| | | | - Gavin K Paterson
- The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, UK
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Warwick, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ewan M Harrison
- Department of Medicine, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Anders R Larsen
- Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
55
|
Ramasindrazana B, Parany MNJ, Rasoamalala F, Rasoanoro M, Rahajandraibe S, Vogler AJ, Sahl JW, Andrianaivoarimanana V, Rajerison M, Wagner DM. Local-scale diversity of Yersinia pestis: A case study from Ambohitromby, Ankazobe District, Madagascar. Zoonoses Public Health 2022; 69:61-70. [PMID: 34480413 DOI: 10.1111/zph.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 12/30/2022]
Abstract
Plague is a re-emerging zoonotic disease and a major public health concern in several portions of the world, especially in Madagascar. We report on the presence of different subtypes of Yersinia pestis co-occurring in the same locality. After confirmation of a human plague case in Ambohitromby Commune (Ankazobe District) via isolation of Y. pestis, we undertook small mammal trapping to identify the circulation of Y. pestis amongst rodents in this locality; blood samples were collected from rodents for seroprevalence analysis. Of the 60 individuals of Rattus rattus captured, one yielded an isolate of Y. pestis, 13 others were positive for F1 antigen of Y. pestis using a rapid diagnostic test, and 4 were PCR positive targeting the caf1 and pla genes; 28/60 (46.7%) of the captured R. rattus were seropositive for Y. pestis. Whole-genome SNP analyses revealed that the two isolates obtained from the human case, and the R. rattus belonged to two different subtypes of Y. pestis (s05 and s13, respectively) that were circulating concurrently in Ambohitromby in 2016. Three Y. pestis subtypes (s03, s05 and s13) have now been isolated from Ambohitromby. Subtype s05 had been persisting there for >10 years but one or both of the other subtypes may have been introduced from the Central Highlands region as they were not observed in previous years (s13) or only observed once previously (s03). High seroprevalence against Y. pestis in R. rattus suggests that a portion of the local murine population may have acquired resistance to Y. pestis. Future research should focus on genomically characterizing Y. pestis strains circulating in Ankazobe District and other plague-endemic regions of Madagascar to better understand the overall phylogeography of Y. pestis.
Collapse
Affiliation(s)
- Beza Ramasindrazana
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Domaine Sciences et Technologies, Université d'Antananarivo, Antananarivo, Madagascar
| | - Mamionah N J Parany
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Domaine Sciences et Technologies, Université d'Antananarivo, Antananarivo, Madagascar
| | - Fanohinjanaharinirina Rasoamalala
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Domaine Sciences et Technologies, Université d'Antananarivo, Antananarivo, Madagascar
| | - Mercia Rasoanoro
- Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Domaine Sciences et Technologies, Université d'Antananarivo, Antananarivo, Madagascar
| | | | | | | | | | | | | |
Collapse
|
56
|
Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC, Kaestli M, Schupp J, Martz M, Settles EW, Busch JD, Sidak-Loftis L, Thomas A, Kreutzer L, Georgi E, Schweizer HP, Warner JM, Keim P, Currie BJ, Wagner DM. Expanding the Burkholderia pseudomallei Complex with the Addition of Two Novel Species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol 2022; 88:e0158321. [PMID: 34644162 PMCID: PMC8752149 DOI: 10.1128/aem.01583-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022] Open
Abstract
Distinct Burkholderia strains were isolated from soil samples collected in tropical northern Australia (Northern Territory and the Torres Strait Islands, Queensland). Phylogenetic analysis of 16S rRNA and whole genome sequences revealed these strains were distinct from previously described Burkholderia species and assigned them to two novel clades within the B. pseudomallei complex (Bpc). Because average nucleotide identity and digital DNA-DNA hybridization calculations are consistent with these clades representing distinct species, we propose the names Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Strains assigned to B. mayonis sp. nov. include type strain BDU6T (=TSD-80; LMG 29941; ASM152374v2) and BDU8. Strains assigned to B. savannae sp. nov. include type strain MSMB266T (=TSD-82; LMG 29940; ASM152444v2), MSMB852, BDU18, and BDU19. Comparative genomics revealed unique coding regions for both putative species, including clusters of orthologous genes associated with phage. Type strains of both B. mayonis sp. nov. and B. savannae sp. nov. yielded biochemical profiles distinct from each other and from other species in the Bpc, and profiles also varied among strains within B. mayonis sp. nov. and B. savannae sp. nov. Matrix-assisted laser desorption ionization time-of-flight (MLST) analysis revealed a B. savannae sp. nov. cluster separate from other species, whereas B. mayonis sp. nov. strains did not form a distinct cluster. Neither B. mayonis sp. nov. nor B. savannae sp. nov. caused mortality in mice when delivered via the subcutaneous route. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species currently within the Bpc. IMPORTANCEBurkholderia species can be important sources of novel natural products, and new species are of interest to diverse scientific disciplines. Although many Burkholderia species are saprophytic, Burkholderia pseudomallei is the causative agent of the disease melioidosis. Understanding the genomics and virulence of the closest relatives to B. pseudomallei, i.e., the other species within the B. pseudomallei complex (Bpc), is important for identifying robust diagnostic targets specific to B. pseudomallei and for understanding the evolution of virulence in B. pseudomallei. Two proposed novel species, B. mayonis sp. nov. and B. savannae sp. nov., were isolated from soil samples collected from multiple locations in northern Australia. The two proposed species belong to the Bpc but are phylogenetically distinct from all other members of this complex. The addition of B. mayonis sp. nov. and B. savannae sp. nov. results in a total of eight species within this significant complex of bacteria that are available for future studies.
Collapse
Affiliation(s)
- Carina M. Hall
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Anthony L. Baker
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Jason W. Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Mark Mayo
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | - Mirjam Kaestli
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - James Schupp
- Translational Genomics Research Institute, Flagstaff, Arizona, USA
| | - Madison Martz
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Erik W. Settles
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Joseph D. Busch
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Lindsay Sidak-Loftis
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Astrid Thomas
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Lisa Kreutzer
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Enrico Georgi
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Herbert P. Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Jeffrey M. Warner
- Discipline of Biomedicine and Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bart J. Currie
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - David M. Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
| |
Collapse
|
57
|
Population genomic analyses reveal evidence for limited recombination in the superbug Candida auris in nature. Comput Struct Biotechnol J 2022; 20:3030-3040. [PMID: 35782746 PMCID: PMC9218166 DOI: 10.1016/j.csbj.2022.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/22/2022] Open
Abstract
Candida auris is a recently emerged, multidrug-resistant pathogenic yeast capable of causing a diversity of human infections worldwide. Genetic analyses based on whole-genome sequences have clustered strains in this species into five divergent clades, with each clade containing limited genetic variation and one of two mating types, MTLa or MTLα. The patterns of genetic variations suggest simultaneous emergence and clonal expansion of multiple clades of this pathogen across the world. At present, it is unclear whether recombination has played any role during the evolution of C. auris. In this study, we analyzed patterns of associations among single nucleotide polymorphisms in both the nuclear and the mitochondrial genomes of 1,285 strains to investigate potential signatures of recombination in natural C. auris populations. Overall, we found that polymorphisms in the nuclear and mitochondrial genomes clustered the strains similarly into the five clades, consistent with a lack of evidence for recombination among the clades after their divergence. However, variable percentages of SNP pairs showed evidence of phylogenetic incompatibility and linkage equilibrium among samples in both the nuclear and the mitochondrial genomes, with the percentages higher in the total population than those within individual clades. Our results are consistent with limited but greater frequency of recombination before the divergence of the clades than afterwards. SNPs at loci related to antifungal resistance showed frequencies of recombination similar to or lower than those observed for SNPs in other parts of the genome. Together, though very limited, evidence for the observed recombination for both before and after the divergence of the clades suggests the possibility for continuous genetic exchange in natural populations of this important yeast pathogen.
Collapse
|
58
|
Rubin IMC, Stevnsborg L, Mollerup S, Petersen AM, Pinholt M. Bacteraemia caused by Lactobacillus rhamnosus given as a probiotic in a patient with a central venous catheter: a WGS case report. Infect Prev Pract 2022; 4:100200. [PMID: 35146406 PMCID: PMC8802096 DOI: 10.1016/j.infpip.2022.100200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/04/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Lactobacilli, especially Lactobacillus (L.) rhamnosus, are common and well-documented components of commercial probiotics [1]. Whole genome sequencing (WGS) is often used to compare bacterial genomes and their relatedness. In outbreak situations, it is used to investigate the transmission of pathogenic bacteria. WGS has also been used to determine safety in probiotics, by looking at potential virulence factors and resistance genes. Case presentation This case report describes a 56-year old multi-traumatised, immunocompetent woman who was given L. rhamnosus GG as a probiotic, and later developed a blood stream infection with L. rhamnosus GG. The patient was fed by a nasogastric tube, and she also had a central venous catheter for parenteral feeding. When the patient developed diarrhoea after long-term hospitalisation, she was given L. rhamnosus GG, as a probiotic, which was standard care on the ward where she was hospitalised. In this case report we describe the use of WGS to demonstrate that a patient fed with L. rhamnosus GG as a probiotic, developed a blood stream infection with the same strain. Conclusion In this case WGS was applied to show the relatedness of a probiotic and a pathogenic strain of L. rhamnosus GG. This case emphasises the need for caution when administering probiotics to patients with indwelling catheters. The patient was immunocompetent and she cleared the infection without the need for antibiotics.
Collapse
Affiliation(s)
- Ingrid Maria Cecilia Rubin
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Corresponding author. Address: Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.
| | - Lea Stevnsborg
- Department of Neurorehabilitation/Traumatic Brain Injury, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Sarah Mollerup
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Andreas Munk Petersen
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- Gastrounit, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Mette Pinholt
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
59
|
One Health Genomic Study of Human and Animal Klebsiella pneumoniae Isolated at Diagnostic Laboratories on a Small Caribbean Island. Antibiotics (Basel) 2021; 11:antibiotics11010042. [PMID: 35052919 PMCID: PMC8772961 DOI: 10.3390/antibiotics11010042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/15/2023] Open
Abstract
Klebsiella pneumoniae causes a variety of infections in both humans and animals. In this study, we characterised the genomes of human and animal isolates from two diagnostic laboratories on St. Kitts, a small Caribbean island inhabited by a large population of vervet monkeys. In view of the increased chances of direct or indirect contact with humans and other animal species, we used the One Health approach to assess transmission of K. pneumoniae across host species by sequencing 82 presumptive K. pneumoniae clinical isolates from humans (n = 51), vervets (n = 21), horses (n = 5), dogs (n = 4) and a cat (n = 1). Whole genome sequencing (WGS) was carried out using Illumina technology. De novo assembly was performed in CLC Genomics Workbench v.11.0. Single nucleotide polymorphisms were detected using NASP followed by phylogenetic analysis using IQ-TREE. Virulence and antimicrobial resistance gene contents were analysed using the Kleborate and CGE pipelines. WGS-based analysis showed that 72 isolates were K. pneumoniae sensu stricto and five K. quasipneumoniae and five K. variicola. K. pneumoniae isolates belonged to 35 sequence types (ST), three of which were occasionally shared between humans and animals: ST23, ST37 and ST307. The ST23 strains from vervets formed a separate cluster amongst publicly available sequenced ST23 strains, indicating the presence of a specific vervet sublineage. Animal strains harbored fewer resistance genes and displayed distinct virulence traits that appeared to be host-specific in vervet isolates. Our results show that K. pneumoniae infections on this Caribbean island are usually caused by host-specific lineages.
Collapse
|
60
|
Larsen SAH, Kyhl K, Baig S, Petersen A, av Steinum MR, Clemmensen S, Jensen E, á Steig T, Gaini S. Life-Threatening Necrotizing Pneumonia with Panton-Valentine Leukocidin-Producing, Methicillin-Sensitive Staphylococcus aureus in a Healthy Male Co-Infected with Influenza B. Infect Dis Rep 2021; 14:12-19. [PMID: 35076575 PMCID: PMC8788275 DOI: 10.3390/idr14010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
A previously healthy male was rushed into a hospital critically ill with confusion, sepsis, and acute respiratory distress syndrome only 43 h after having a normal chest X-ray and with blood samples showing only minimally elevated C-reactive protein. Two days earlier, the patient had returned to his home country, the Faroe Islands, from a 10-day work trip aboard a Scandinavian ship in Colombia. The diagnosis turned out to be an influenza B infection and necrotizing pneumonia with Panton-Valentine leukocidin (PVL)-producing methicillin-sensitive Staphylococcus aureus (MSSA). It was influenza season in Colombia but not in the Faroe Islands. The frequency of MSSA with PVL-encoding genes among pediatric infection patients is very low in the Kingdom of Denmark and Faroe Islands and very high in Colombia, and the frequency generally varies highly by region. The patient in this case now suffers severe sequelae from the infection. With this case, we would like to remind clinicians of this rare but severe condition. PVL-producing S. aureus pneumonia should be considered in critically ill, previously healthy patients, especially during influenza season and if the patient has been traveling in countries with high frequencies of PVL-producing S. aureus.
Collapse
Affiliation(s)
- Sara Agnete Hjort Larsen
- Medical Department, National Hospital Faroe Islands, 100 Tórshavn, Faroe Islands; (K.K.); (M.R.a.S.); (T.á.S.); (S.G.)
| | - Kasper Kyhl
- Medical Department, National Hospital Faroe Islands, 100 Tórshavn, Faroe Islands; (K.K.); (M.R.a.S.); (T.á.S.); (S.G.)
- Department of Cardiology, Copenhagen University Hospital, 2100 Rigshospitalet, Denmark
| | - Sharmin Baig
- Bacteria, Parasites & Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (S.B.); (A.P.)
| | - Andreas Petersen
- Bacteria, Parasites & Fungi, Statens Serum Institute, 2300 Copenhagen, Denmark; (S.B.); (A.P.)
| | | | - Sissal Clemmensen
- Department of Radiology, National Hospital Faroe Islands, 100 Tórshavn, Faroe Islands;
| | - Elin Jensen
- Department of Intensive Care and Anesthesiology, National Hospital Faroe Islands, 100 Tórshavn, Faroe Islands;
| | - Torkil á Steig
- Medical Department, National Hospital Faroe Islands, 100 Tórshavn, Faroe Islands; (K.K.); (M.R.a.S.); (T.á.S.); (S.G.)
| | - Shahin Gaini
- Medical Department, National Hospital Faroe Islands, 100 Tórshavn, Faroe Islands; (K.K.); (M.R.a.S.); (T.á.S.); (S.G.)
- Infectious Diseases Research Unit, Odense University Hospital, University of Southern Denmark, 5000 Odense, Denmark
- Centre of Health Research, Department of Science and Technology, University of the Faroe Islands, 100 Tórshavn, Faroe Islands
| |
Collapse
|
61
|
Sørensen PE, Baig S, Stegger M, Ingmer H, Garmyn A, Butaye P. Spontaneous Phage Resistance in Avian Pathogenic Escherichia coli. Front Microbiol 2021; 12:782757. [PMID: 34966369 PMCID: PMC8711792 DOI: 10.3389/fmicb.2021.782757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 01/19/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the most important bacterial pathogens affecting poultry worldwide. The emergence of multidrug-resistant pathogens has renewed the interest in the therapeutic use of bacteriophages (phages). However, a major concern for the successful implementation of phage therapy is the emergence of phage-resistant mutants. The understanding of the phage-host interactions, as well as underlying mechanisms of resistance, have shown to be essential for the development of a successful phage therapy. Here, we demonstrate that the strictly lytic Escherichia phage vB_EcoM-P10 rapidly selected for resistance in the APEC ST95 O1 strain AM621. Whole-genome sequence analysis of 109 spontaneous phage-resistant mutant strains revealed 41 mutants with single-nucleotide polymorphisms (SNPs) in their core genome. In 32 of these, a single SNP was detected while two SNPs were identified in a total of nine strains. In total, 34 unique SNPs were detected. In 42 strains, including 18 strains with SNP(s), gene losses spanning 17 different genes were detected. Affected by genetic changes were genes known to be involved in phage resistance (outer membrane protein A, lipopolysaccharide-, O- antigen-, or cell wall-related genes) as well as genes not previously linked to phage resistance, including two hypothetical genes. In several strains, we did not detect any genetic changes. Infecting phages were not able to overcome the phage resistance in host strains. However, interestingly the initial infection was shown to have a great fitness cost for several mutant strains, with up to ∼65% decrease in overall growth. In conclusion, this study provides valuable insights into the phage-host interaction and phage resistance in APEC. Although acquired resistance to phages is frequently observed in pathogenic E. coli, it may be associated with loss of fitness, which could be exploited in phage therapy.
Collapse
Affiliation(s)
- Patricia E. Sørensen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Sharmin Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hanne Ingmer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
62
|
Butaye P, Halliday-Simmonds I, Van Sauers A. Salmonella in Pig Farms and on Pig Meat in Suriname. Antibiotics (Basel) 2021; 10:antibiotics10121495. [PMID: 34943707 PMCID: PMC8698551 DOI: 10.3390/antibiotics10121495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella is one of the most important food borne zoonotic pathogens. While mainly associated with poultry, it has also been associated with pigs. Compared to the high-income countries, there is much less known on the prevalence of Salmonella in low- and middle-income countries, especially in the Caribbean area. Therefore, we investigated the prevalence of Salmonella in pigs and pig meat in Suriname. A total of 53 farms and 53 meat samples were included, and Salmonella was isolated using standard protocols. Strains were subjected to whole genome sequencing. No Salmonella was found on pig meat. Five farms were found to be positive for Salmonella, and a total of eight different strains were obtained. Serotypes were S. Anatum (n = 1), S. Ohio (n = 2), a monophasic variant of S. Typhimurium (n = 3), one S. Brandenburg, and one S. Javaniana. The monophasic variant of S. Typhimurium belonged to the ST34 pandemic clone, and the three strains were very similar. A few resistance genes, located on mobile genetic elements, were found. Several plasmids were detected, though only one was carrying resistance genes. This is the first study on the prevalence of Salmonella in pigs in the Caribbean and that used whole genome sequencing for characterization. The strains were rather susceptible. Local comparison of similar serotypes showed a mainly clonal spread of certain serotypes.
Collapse
Affiliation(s)
- Patrick Butaye
- Department of Biosciences, School of Veterinary Medicine, Ross University, Basseterre 00334, Saint Kitts and Nevis;
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
- Correspondence:
| | - Iona Halliday-Simmonds
- Department of Biosciences, School of Veterinary Medicine, Ross University, Basseterre 00334, Saint Kitts and Nevis;
| | - Astrid Van Sauers
- The Veterinary Services, Ministry of Agriculture, Paramaribo, Suriname;
| |
Collapse
|
63
|
Naicker SD, Maphanga TG, Chow NA, Allam M, Kwenda S, Ismail A, Govender NP. Clade distribution of Candida auris in South Africa using whole genome sequencing of clinical and environmental isolates. Emerg Microbes Infect 2021; 10:1300-1308. [PMID: 34176429 PMCID: PMC8253216 DOI: 10.1080/22221751.2021.1944323] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 11/07/2022]
Abstract
In South Africa, Candida auris was the third most common cause of candidemia in 2016-2017. We performed single nucleotide polymorphism (SNP) genome-wide analysis of 115 C. auris isolates collected between 2009 and 2018 from national laboratory-based surveillance, an environmental survey at four hospitals and a colonization study during a neonatal unit outbreak. The first known South African C. auris strain from 2009 clustered in clade IV. Overall, 98 strains clustered within clade III (85%), 14 within clade I (12%) and three within clade IV (3%). All environmental and colonizing strains clustered in clade III. We also identified known clade-specific resistance mutations in the ERG11 and FKS1 genes. Identification of clade I strains between 2016 and 2018 suggests introductions from South Asia followed by local transmission. SNP analysis characterized most C. auris strains into clade III, the clade first reported from South Africa, but the presence of clades I and IV strains also suggest early introductions from other regions.
Collapse
Affiliation(s)
- Serisha D. Naicker
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tsidiso G. Maphanga
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nancy A. Chow
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mushal Allam
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stanford Kwenda
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Arshad Ismail
- National Institute for Communicable Diseases (Core Sequencing Facility), a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelesh P. Govender
- National Institute for Communicable Diseases (Centre for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses), a Division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
64
|
Bossé JT, Li Y, Cohen LM, Stegger M, Angen Ø, Lacouture S, Gottschalk M, Lei L, Koene M, Kuhnert P, Bandara AB, Inzana TJ, Holden MTG, Harris D, Oshota O, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, On Behalf Of The BRaDP T Consortium. Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405: comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation. Microb Genom 2021; 7. [PMID: 34818145 PMCID: PMC8743550 DOI: 10.1099/mgen.0.000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the complete genome sequence of the widely studied Actinobacillus pleuropneumoniae serovar 8 reference strain 405, generated using the Pacific Biosciences (PacBio) RS II platform. Furthermore, we compared draft sequences generated by Illumina sequencing of six stocks of this strain, including the same original stock used to generate the PacBio sequence, held in different countries and found little genetic variation, with only three SNPs identified, all within the degS gene. However, sequences of two small plasmids, pARD3079 and p405tetH, detected by Illumina sequencing of the draft genomes were not identified in the PacBio sequence of the reference strain.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Liza Miriam Cohen
- Department of Production Animal Clinical Sciences Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, P.R China
| | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, Universität Bern, Bern, Switzerland
| | - Aloka B Bandara
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Thomas J Inzana
- Present address: College of Veterinary Medicine, Long Island University, Brookville, USA.,Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Matthew T G Holden
- Present address: School of Medicine, University of St Andrews, St Andrews, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK
| | - David Harris
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Olusegun Oshota
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|
65
|
Abstract
Coccidioides immitis and Coccidioides posadasii are causative agents of Valley fever, a serious fungal disease endemic to regions with hot, arid climate in the United States, Mexico, and Central and South America. The environmental niche of Coccidioides spp. is not well defined, and it remains unknown whether these fungi are primarily associated with rodents or grow as saprotrophs in soil. To better understand the environmental reservoir of these pathogens, we used a systematic soil sampling approach, quantitative PCR (qPCR), culture, whole-genome sequencing, and soil chemical analysis to identify factors associated with the presence of C. immitis at a known colonization site in Washington State linked to a human case in 2010. We found that the same strain colonized an area of over 46,000 m2 and persisted in soil for over 6 years. No association with rodent burrows was observed, as C. immitis DNA was as likely to be detected inside rodent holes as it was in the surrounding soil. In addition, the presence of C. immitis DNA in soil was correlated with elevated levels of boron, calcium, magnesium, sodium, and silicon in soil leachates. We also observed differences in the microbial communities between C. immitis-positive and -negative soils. Our artificial soil inoculation experiments demonstrated that C. immitis can use soil as a sole source of nutrients. Taken together, these results suggest that soil parameters need to be considered when modeling the distribution of this fungus in the environment. IMPORTANCE Coccidioidomycosis is considered a highly endemic disease for which geographic range is likely to expand from climate change. A better understanding of the ecological niche of Coccidioides spp. is essential for generating accurate distribution maps and predicting future changes in response to the changing environment. Our study used a systematic sampling strategy, advanced molecular detection methods, and soil chemical analysis to identify environmental factors associated with the presence of C. immitis in soil. Our results demonstrate the fungus can colonize the same areas for years and is associated with chemical and microbiological soil characteristics. Our results suggest that in addition to climate parameters, soil characteristics need to be considered when building habitat distribution models for this pathogen.
Collapse
|
66
|
Almeida-Silva F, de Melo Teixeira M, Matute DR, de Faria Ferreira M, Barker BM, Almeida-Paes R, Guimarães AJ, Zancopé-Oliveira RM. Genomic Diversity Analysis Reveals a Strong Population Structure in Histoplasma capsulatum LAmA ( Histoplasma suramericanum). J Fungi (Basel) 2021; 7:jof7100865. [PMID: 34682286 PMCID: PMC8540737 DOI: 10.3390/jof7100865] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Histoplasmosis is a severe mycotic disease affecting thousands of immunocompetent and immunocompromised individuals with high incidence in Latin America, where the disease agents are Histoplasma capsulatum and Histoplasma suramericanum. In this work, we used whole-genome sequencing to infer the species diversity and the population structure of H. suramericanum in South America. We find evidence for strong population structure and little admixture within the species. Genome-level phylogenetic trees indicate the existence of at least three different discrete populations. We recovered the existence of a previously identified population, LAmB, and confirm that it is highly differentiated along the whole genome. We also find that H. suramericanum is composed of two populations, one in Northern South America, and another in the southern portion of the continent. Moreover, one of the lineages from the southern population is endemic to Rio de Janeiro and there was no association with clinical data and species isolated from patients with histoplasmosis. Our results point out the need to characterize the symptomatology of histoplasmosis caused by different species and lineages of Histoplasma spp.
Collapse
Affiliation(s)
- Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz-INI/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.d.F.F.); (R.A.-P.)
- Correspondence: (F.A.-S.); (R.M.Z.-O.)
| | - Marcus de Melo Teixeira
- Faculdade de Medicina, Universidadede Brasília, Brasília 70910-900, Brazil;
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | - Daniel R. Matute
- Biology Department, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Marcela de Faria Ferreira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz-INI/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.d.F.F.); (R.A.-P.)
- Serviço Ambulatorial do Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz-INI/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Bridget M. Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA;
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz-INI/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.d.F.F.); (R.A.-P.)
| | - Allan J. Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24210-130, Brazil;
| | - Rosely M. Zancopé-Oliveira
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz-INI/Fiocruz, Rio de Janeiro 21040-360, Brazil; (M.d.F.F.); (R.A.-P.)
- Correspondence: (F.A.-S.); (R.M.Z.-O.)
| |
Collapse
|
67
|
Widerström M, Stegger M, Johansson A, Gurram BK, Larsen AR, Wallinder L, Edebro H, Monsen T. Heterogeneity of Staphylococcus epidermidis in prosthetic joint infections: time to reevaluate microbiological criteria? Eur J Clin Microbiol Infect Dis 2021; 41:87-97. [PMID: 34599708 PMCID: PMC8732909 DOI: 10.1007/s10096-021-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 11/24/2022]
Abstract
Prosthetic joint infection (PJI) is a feared and challenging to diagnose complication after arthroplasty, with Staphylococcus epidermidis as the major pathogen. One important criteria to define PJI is the detection of phenotypically indistinguishable microorganisms with identical antibiotic susceptibility pattern in at least two different samples. However, owing to phenotypical variation within genetic clones and clonal variation within a phenotype, the criteria may be ambiguous. We investigated the extent of diversity among coagulase-negative staphylococci (CoNS) in PJI and characterised S. epidermidis isolates from PJI samples, specifically multiple S. epidermidis isolates identified in individual PJI patients. We performed a retrospective cohort study on 62 consecutive patients with PJI caused by CoNS from two hospitals in Northern Sweden. In 16/62 (26%) PJIs, multiple S. epidermidis isolates were available for whole-genome analyses. Hospital-adapted multidrug-resistant genetic clones of S. epidermidis were identified in samples from 40/62 (65%) of the patients using a combination of pulsed-field gel electrophoresis and multilocus sequence typing. Whole-genome sequencing showed the presence of multiple sequence types (STs) in 7/16 (44%) PJIs where multiple S. epidermidis isolates were available. Within-patient phenotypical variation in the antibiotic susceptibility and/or whole-genome antibiotic resistance gene content was frequent (11/16, 69%) among isolates with the same ST. The results highlight the ambiguity of S. epidermidis phenotypic characterisation as a diagnostic method in PJI and call for larger systematic studies for determining the frequency of CoNS diversity in PJIs, the implications of such diversity for microbiological diagnostics, and the therapeutic outcomes in patients.
Collapse
Affiliation(s)
- Micael Widerström
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden.
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Bharat Kumar Gurram
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Lars Wallinder
- Department of Orthopaedics, University Hospital of Umeå, Umeå, Sweden
| | - Helen Edebro
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| | - Tor Monsen
- Department of Clinical Microbiology, Umeå University, SE-901 85, Umeå, Sweden
| |
Collapse
|
68
|
Cohen LM, Bossé JT, Stegger M, Li Y, Langford PR, Kielland C, Klem TB, Gulliksen SM, Ranheim B, Grøntvedt CA, Angen Ø. Comparative Genome Sequence Analysis of Actinobacillus pleuropneumoniae Serovar 8 Isolates From Norway, Denmark, and the United Kingdom Indicates Distinct Phylogenetic Lineages and Differences in Distribution of Antimicrobial Resistance Genes. Front Microbiol 2021; 12:729637. [PMID: 34566934 PMCID: PMC8461171 DOI: 10.3389/fmicb.2021.729637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a disease of major impact on pig health, welfare, and productivity globally. Serovar 8 (APP) is the predominant clinical serovar in Norway and the United Kingdom (UK), and has been isolated from clinical cases in Denmark. The primary objective of this study was to characterize the genetic variability of isolates of A. pleuropneumoniae APP8 in the Norwegian population. The secondary objectives were to determine the within-host variability of APP8; to compare the APP8 bacterial populations in Norway, Denmark, and the UK, including antimicrobial resistance (AMR) gene profiles and to assess the effect of national differences in antimicrobial drug use and restricted animal movement on the occurrence of resistance. Isolates of APP8 from the UK (n=67), Denmark (n=22), and Norway (n=123) collected between 1983 and 2020 were compared using whole genome sequencing. To investigate genetic variability within individual hosts, an additional 104 APP8 isolates from the lungs of six Norwegian pigs were compared. Very low within-host variation was observed (≤ 2 single nucleotide polymorphisms). The phylogeny of 123 Norwegian APP8 isolates from 76 herds revealed some within-herd genetic variation, but substantial geographical clustering. When inferring the relatedness of the three international APP8 collections, the topology highlighted the existence of two distinct monophyletic branches characterized by the Norwegian and UK isolates, respectively. Three Danish isolates were scattered across the UK branch, whereas the remaining 19 Danish isolates clustered in two monophyletic groups nested in the Norwegian branch. Coalescence analysis, performed to estimate the divergences from a common ancestor, indicated a last common ancestor several centuries ago. The phylogenetic analyses also revealed striking differences in occurrence of AMR genes, as these were 23-times more prevalent among the UK isolates than among the Norwegian isolates. An increased understanding of the effects of population strategies is helpful in surveillance and control of infectious diseases.
Collapse
Affiliation(s)
- Liza Miriam Cohen
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Janine T Bossé
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Yanwen Li
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Camilla Kielland
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | - Birgit Ranheim
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
69
|
Eriksen HB, Petersen A, Pedersen M, Overballe-Petersen S, Larsen AR, Holzknecht BJ. Possible misinterpretation of penicillin susceptibility in Staphylococcus aureus blood isolate due to in vitro loss of the blaZ gene. Eur J Clin Microbiol Infect Dis 2021; 41:163-167. [PMID: 34529167 DOI: 10.1007/s10096-021-04344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
We describe a case of recurrent catheter-related blood stream infections (BSI) with Staphylococcus aureus, in which the first isolate tested susceptible to penicillin, while subsequent isolates were resistant. Phenotypic susceptibility correlated with the absence/presence of the blaZ gene. The in vitro stability of penicillin resistance was investigated by subculturing single colonies. In two out of five colonies, phenotypical resistance was lost after a single subculture, which correlated with loss of the blaZ gene. This in vitro phenomenon probably resulted in a very major error in the microbiology report of the first BSI, where penicillin had been recommended as treatment.
Collapse
Affiliation(s)
- Helle Brander Eriksen
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev and Gentofte, Borgmester Ib Juuls Vej 52, 5., 2730, Copenhagen, Herlev, Denmark.
| | - Andreas Petersen
- National Reference Laboratory for Antimicrobial Resistance, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Søren Overballe-Petersen
- National Reference Laboratory for Antimicrobial Resistance, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Rhod Larsen
- National Reference Laboratory for Antimicrobial Resistance, Statens Serum Institut, Copenhagen, Denmark
| | - Barbara Juliane Holzknecht
- Department of Clinical Microbiology, Copenhagen University Hospital, Herlev and Gentofte, Borgmester Ib Juuls Vej 52, 5., 2730, Copenhagen, Herlev, Denmark
| |
Collapse
|
70
|
Bramanti B, Wu Y, Yang R, Cui Y, Stenseth NC. Assessing the origins of the European Plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proc Natl Acad Sci U S A 2021; 118:e2101940118. [PMID: 34465619 PMCID: PMC8433512 DOI: 10.1073/pnas.2101940118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The second plague pandemic started in Europe with the Black Death in 1346 and lasted until the 19th century. Based on ancient DNA studies, there is a scientific disagreement over whether the bacterium, Yersinia pestis, came into Europe once (Hypothesis 1) or repeatedly over the following four centuries (Hypothesis 2). Here, we synthesize the most updated phylogeny together with historical, archeological, evolutionary, and ecological information. On the basis of this holistic view, we conclude that Hypothesis 2 is the most plausible. We also suggest that Y. pestis lineages might have developed attenuated virulence during transmission, which can explain the convergent evolutionary signals, including pla decay, that appeared at the end of the pandemics.
Collapse
Affiliation(s)
- Barbara Bramanti
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Department of Neuroscience and Rehabilitation, Faculty of Medicine, Pharmacy and Prevention, University of Ferrara, 44121 Ferrara, Italy
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China;
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, N-0316 Oslo, Norway;
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| |
Collapse
|
71
|
Dynamics of the Human Nasal Microbiota and Staphylococcus aureus CC398 Carriage in Pig Truck Drivers across One Workweek. Appl Environ Microbiol 2021; 87:e0122521. [PMID: 34191530 PMCID: PMC8388827 DOI: 10.1128/aem.01225-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Drivers of pig trucks constitute a potential route of human transmission of livestock-associated methicillin-resistant Staphylococcus aureus clonal complex 398 (LA-MRSA CC398). In this study, we determined MRSA prevalence in pig truck drivers (n = 47) and monitored the nasal microbiota of 9 drivers 3 times daily throughout 1 workweek (n = 113 samples) and compared it to that of their spouses (n = 25 samples from 6 spouses) and 89 nonexposed subjects. S. aureus isolates (n = 232) derived from a subset of nasal and truck samples were whole-genome sequenced. The nasal alpha diversity of drivers in the beginning of the workday was lower than that of nonexposed subjects. During the workday, it increased significantly. Similarly, the drivers’ nasal composition shifted during the workday, becoming increasingly different from that of their spouses and nonexposed individuals. Clustering into community state types (CSTs) revealed frequent switches from either S. aureus- or Corynebacterium-dominated CSTs in the mornings to a Psychrobacter-dominated CST during the workday. Six intermittent MRSA carriers were mostly MRSA negative in the mornings, and their nasal microbiota resembled that of nonexposed subjects. When acquiring MRSA during the workday, they switched to the Psychrobacter-dominated CST. In contrast, the nasal microbiota of two persistent MRSA carriers was dominated by staphylococci. In conclusion, we show that the nasal microbiota of pig truck drivers is very dynamic, undergoes drastic changes during workdays, and differs from that of nonexposed subjects even before pig contact. MRSA-carrying drivers may eventually introduce MRSA into the community and health care facilities. Carriage dynamics, however, showed that for most drivers, CC398 MRSA is rapidly lost and only rarely causes transmission to spouses. IMPORTANCE In Denmark, the number of human methicillin-resistant Staphylococcus aureus (MRSA) cases has increased dramatically since the early 2000s, starting from imported cases and spreading in the community. However, today, approximately one-third of all new cases are attributed to livestock-associated MRSA clonal complex 398 (LA-MRSA CC398). This mirrors the increase in pig farms, of which 95% are now positive for LA-MRSA, and this has been caused mainly by three dominant lineages enriched for a number of key antimicrobial resistance genes. Although most human LA-MRSA CC398 infections in Denmark are linked to livestock contact, still up to one-third are not. Pig truck drivers constitute a previously understudied occupation group which may transmit LA-MRSA CC398 to household members, the community, and hospitals. In this study, we demonstrate dramatic work-related changes in the nasal microbiota of pig truck drivers, as well as in their carriage of LA-MRSA CC398. However, they likely do not constitute an important reservoir for LA-MRSA CC398 dissemination.
Collapse
|
72
|
Roe CC, Urbanz J, Andrews L, Verocai GG, Engelthaler DM, Hepp CM, Sahl JW. Complete mitochondrial genome of Onchocerca lupi (Nematoda, Onchocercidae). MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:2572-2574. [PMID: 34377832 PMCID: PMC8344259 DOI: 10.1080/23802359.2021.1960211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Onchocerca lupi, Rodonaja 1967, is an emerging, zoonotic filarial nematode parasite that causes ocular disease in dogs, cats, wild canids, and humans. It is the causative agent of ocular onchocercosis in canines with increasing incidence in both North America and the Old World during the early twenty-first century. We report the complete mitochondrial genome of an O. lupi isolate from a dog from Arizona, southwestern USA, and its genetic differentiation from related Onchocerca species. The whole mitochondrial genome was obtained from whole genome sequencing of genomic DNA isolated from an adult worm. This mitogenome is 13,766 bp in size and contains 36 genes and a control region. This mitogenome provides a valuable resource for future studies involving epidemiological surveillance, population genetics, phylogeography, and comparative mitogenomics of this emerging pathogen and other parasitic nematodes.
Collapse
Affiliation(s)
- Chandler C Roe
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.,Translational Genomics Research Institute, Flagstaff, AZ, USA
| | | | - Lela Andrews
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Guilherme G Verocai
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Crystal M Hepp
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
73
|
Randad PR, Larsen J, Kaya H, Pisanic N, Ordak C, Price LB, Aziz M, Nadimpalli ML, Rhodes S, Stewart JR, Love DC, Mohr D, Davis MF, Miller LS, Hall D, Carroll KC, Perl TM, Heaney CD. Transmission of Antimicrobial-Resistant Staphylococcus aureus Clonal Complex 9 between Pigs and Humans, United States. Emerg Infect Dis 2021; 27:740-748. [PMID: 33622471 PMCID: PMC7920674 DOI: 10.3201/eid2703.191775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transmission of livestock-associated Staphylococcus aureus clonal complex 9 (LA-SA CC9) between pigs raised on industrial hog operations (IHOs) and humans in the United States is poorly understood. We analyzed whole-genome sequences from 32 international S. aureus CC9 isolates and 49 LA-SA CC9 isolates from IHO pigs and humans who work on or live near IHOs in 10 pig-producing counties in North Carolina, USA. Bioinformatic analysis of sequence data from the 81 isolates demonstrated 3 major LA-SA CC9 clades. North Carolina isolates all fell within a single clade (C3). High-resolution phylogenetic analysis of C3 revealed 2 subclades of intermingled IHO pig and human isolates differing by 0–34 single-nucleotide polymorphisms. Our findings suggest that LA-SA CC9 from pigs and humans share a common source and provide evidence of transmission of antimicrobial-resistant LA-SA CC9 between IHO pigs and humans who work on or live near IHOs in North Carolina.
Collapse
|
74
|
Joensen KG, Schjørring S, Gantzhorn MR, Vester CT, Nielsen HL, Engberg JH, Holt HM, Ethelberg S, Müller L, Sandø G, Nielsen EM. Whole genome sequencing data used for surveillance of Campylobacter infections: detection of a large continuous outbreak, Denmark, 2019. ACTA ACUST UNITED AC 2021; 26. [PMID: 34085631 PMCID: PMC8176674 DOI: 10.2807/1560-7917.es.2021.26.22.2001396] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Campylobacter is one of the most frequent causes of bacterial gastroenteritis. Campylobacter outbreaks are rarely reported, which could be a reflection of a surveillance without routine molecular typing. We have previously shown that numerous small outbreak-like clusters can be detected when whole genome sequencing (WGS) data of clinical Campylobacter isolates was applied. Aim Typing-based surveillance of Campylobacter infections was initiated in 2019 to enable detection of large clusters of clinical isolates and to match them to concurrent retail chicken isolates in order to react on ongoing outbreaks. Methods We performed WGS continuously on isolates from cases (n = 701) and chicken meat (n = 164) throughout 2019. Core genome multilocus sequence typing was used to detect clusters of clinical isolates and match them to isolates from chicken meat. Results Seventy-two clusters were detected, 58 small clusters (2–4 cases) and 14 large clusters (5–91 cases). One third of the clinical isolates matched isolates from chicken meat. One large cluster persisted throughout the whole year and represented 12% of all studied Campylobacter cases. This cluster type was detected in several chicken samples and was traced back to one slaughterhouse, where interventions were implemented to control the outbreak. Conclusion Our WGS-based surveillance has contributed to an improved understanding of the dynamics of the occurrence of Campylobacter strains in chicken meat and the correlation to clusters of human cases.
Collapse
Affiliation(s)
| | - Susanne Schjørring
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| | | | | | - Hans Linde Nielsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Steen Ethelberg
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Copenhagen, Denmark
| | - Luise Müller
- Statens Serum Institut, Department of Infectious Disease Epidemiology and Prevention, Copenhagen, Denmark
| | - Gudrun Sandø
- Danish Veterinary and Food Administration, Glostrup, Denmark
| | - Eva Møller Nielsen
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Copenhagen, Denmark
| |
Collapse
|
75
|
Chan AP, Choi Y, Clarke TH, Brinkac LM, White RC, Jacobs MR, Bonomo RA, Adams MD, Fouts DE. AbGRI4, a novel antibiotic resistance island in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates. J Antimicrob Chemother 2021; 75:2760-2768. [PMID: 32681170 PMCID: PMC7556812 DOI: 10.1093/jac/dkaa266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To investigate the genomic context of a novel resistance island (RI) in multiply antibiotic-resistant Acinetobacter baumannii clinical isolates and global isolates. METHODS Using a combination of long and short reads generated from the Oxford Nanopore and Illumina platforms, contiguous chromosomes and plasmid sequences were determined. BLAST-based analysis was used to identify the RI insertion target. RESULTS Genomes of four multiply antibiotic-resistant A. baumannii clinical strains, from a US hospital system, belonging to prevalent MLST ST2 (Pasteur scheme) and ST281 (Oxford scheme) clade F isolates were sequenced to completion. A class 1 integron carrying aadB (tobramycin resistance) and aadA2 (streptomycin/spectinomycin resistance) was identified. The class 1 integron was 6.8 kb, bounded by IS26 at both ends, and embedded in a new target location between an α/β-hydrolase and a reductase. Due to its novel insertion site and unique RI composition, we suggest naming this novel RI AbGRI4. Molecular analysis of global A. baumannii isolates identified multiple AbGRI4 RI variants in non-ST2 clonal lineages, including variations in the resistance gene cassettes, integron backbone and insertion breakpoints at the hydrolase gene. CONCLUSIONS A novel RI insertion target harbouring a class 1 integron was identified in a subgroup of ST2/ST281 clinical isolates. Variants of the RI suggested evolution and horizontal transfer of the RI across clonal lineages. Long- and short-read hybrid assembly technology completely resolved the genomic context of IS-bounded RIs, which was not possible using short reads alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael R Jacobs
- Department of Pathology, University Hospitals Cleveland Medical Center and Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | |
Collapse
|
76
|
Bowers JR, Monroy-Nieto J, Gade L, Travis J, Refojo N, Abrantes R, Santander J, French C, Dignani MC, Hevia AI, Roe CC, Lemmer D, Lockhart SR, Chiller T, Litvintseva AP, Clara L, Engelthaler DM. Rhizopus microsporus Infections Associated with Surgical Procedures, Argentina, 2006-2014. Emerg Infect Dis 2021; 26:937-944. [PMID: 32310081 PMCID: PMC7181922 DOI: 10.3201/eid2605.191045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rhizopus spp. fungi are ubiquitous in the environment and a rare but substantial cause of infection in immunosuppressed persons and surgery patients. During 2005–2017, an abnormally high number of Rhizopus infections in surgery patients, with no apparent epidemiologic links, were reported in Argentina. To determine the likelihood of a common source of the cluster, we performed whole-genome sequencing on samples collected during 2006–2014. Most isolates were separated by >60 single-nucleotide polymorphisms, and we found no evidence for recombination or nonneutral mutation accumulation; these findings do not support common source or patient-to-patient transmission. Assembled genomes of most isolates were ≈25 Mbp, and multiple isolates had substantially larger assembled genomes (43–51 Mbp), indicative of infections with strain types that underwent genome expansion. Whole-genome sequencing has become an essential tool for studying epidemiology of fungal infections. Less discriminatory techniques may miss true relationships, possibly resulting in inappropriate attribution of point source.
Collapse
|
77
|
Wood C, Sahl J, Maltinsky S, Coyne B, Russakoff B, Yagüe DP, Bowers J, Pearson T. SaQuant: a real-time PCR assay for quantitative assessment of Staphylococcus aureus. BMC Microbiol 2021; 21:174. [PMID: 34103012 PMCID: PMC8188689 DOI: 10.1186/s12866-021-02247-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022] Open
Abstract
Background Molecular assays are important tools for pathogen detection but need to be periodically re-evaluated with the discovery of additional genetic diversity that may cause assays to exclude target taxa or include non-target taxa. A single well-developed assay can find broad application across research, clinical, and industrial settings. Pathogen prevalence within a population is estimated using such assays and accurate results are critical for formulating effective public health policies and guiding future research. A variety of assays for the detection of Staphylococcus aureus are currently available. The utility of commercial assays for research is limited, given proprietary signatures and lack of transparent validation. Results In silico testing of existing peer-reviewed assays show that most suffer from a lack of sensitivity and specificity. We found no assays that were specifically designed and validated for quantitative use. Here we present a qPCR assay, SaQuant, for the detection and quantification of S. aureus as might be collected on sampling swabs. Sensitivity and specificity of the assay was 95.6 and 99.9 %, respectively, with a limit of detection of between 3 and 5 genome equivalents and a limit of quantification of 8.27 genome equivalents. The presence of DNA from non-target species likely to be found in a swab sample, did not impact qualitative or quantitative abilities of the assay. Conclusions This assay has the potential to serve as a valuable tool for the accurate detection and quantification of S. aureus collected from human body sites in order to better understand the dynamics of prevalence and transmission in community settings. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02247-6.
Collapse
Affiliation(s)
- Colin Wood
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Jason Sahl
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Sara Maltinsky
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Briana Coyne
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Benjamin Russakoff
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | | | - Jolene Bowers
- Translational Genomics Research Institute, Flagstaff, AZ, USA
| | - Talima Pearson
- Pathogen & Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
78
|
Naicker SD, Magobo RE, Maphanga TG, Firacative C, van Schalkwyk E, Monroy-Nieto J, Bowers J, Engelthaler DM, Shuping L, Meyer W, Govender NP. Genotype, Antifungal Susceptibility, and Virulence of Clinical South African Cryptococcus neoformans Strains from National Surveillance, 2005-2009. J Fungi (Basel) 2021; 7:jof7050338. [PMID: 33925754 PMCID: PMC8146981 DOI: 10.3390/jof7050338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
In South Africa, Cryptococcus neoformans is the most common cause of adult meningitis. We performed multi locus sequence typing and fluconazole susceptibility testing of clinical C. neoformans isolates collected from 251 South African patients with cryptococcosis through national surveillance from 2005 to 2009. We examined the association between clinical characteristics of patients and genotype, and the effect of genotype on in-hospital mortality. We performed whole genome phylogenetic analysis of fifteen C. neoformans isolates with the molecular type VNB and tested their virulence in a Galleria mellonella model. Most isolates had the molecular type VNI (206/251, 82%), followed by VNII (25/251, 10%), VNB (15/251, 6%), and VNIV (5/251, 2%); 67 sequence types were identified. There were no differences in fluconazole minimum inhibitory concentration (MIC) values among molecular types and the majority of strains had low MIC values (MIC50 of 1 µg/mL and MIC90 of 4 µg/mL). Males were almost twice as likely of being infected with a non-VNI genotype (adjusted odds ratio [OR]: 1.65, 95% confidence interval [CI]: 0.25–10.99; p = 0.61). Compared to patients infected with a VNI genotype, those with a non-VNI genotype had a 50% reduced adjusted odds of dying in hospital (95% CI: 0.03–7.57; p = 0.62). However, for both these analyses, our estimates had wide confidence intervals spanning 1 with large p-values. Fifteen VNB strains were not as virulent in a G. mellonella larval model as the H99 reference strain. A majority of these VNB strains belonged to the VNBII clade and were very closely related by phylogenetic analysis.
Collapse
Affiliation(s)
- Serisha D. Naicker
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
- Correspondence: ; Tel.: +27-11-555-0491
| | - Rindidzani E. Magobo
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Tsidiso G. Maphanga
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad del Rosario, 111611 Bogota, Colombia;
| | - Erika van Schalkwyk
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Juan Monroy-Nieto
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (J.M.-N.); (J.B.); (D.M.E.)
| | - Jolene Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (J.M.-N.); (J.B.); (D.M.E.)
| | - David M. Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (J.M.-N.); (J.B.); (D.M.E.)
| | - Liliwe Shuping
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Center for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, University of Sydney, Sydney, NSW 2006, Australia
- Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Research and Educational Network, Westmead Hospital, Western Sydney Local Health District, Westmead, NSW 2145, Australia
| | - Nelesh P. Govender
- Center for Healthcare-Associated Infections, Antimicrobial Resistance and Mycoses, National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg 2192, South Africa; (R.E.M.); (T.G.M.); (E.v.S.); (L.S.); (N.P.G.)
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2001, South Africa
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town 7701, South Africa
| |
Collapse
|
79
|
Whatmore AM, Foster JT. Emerging diversity and ongoing expansion of the genus Brucella. INFECTION GENETICS AND EVOLUTION 2021; 92:104865. [PMID: 33872784 DOI: 10.1016/j.meegid.2021.104865] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Remarkable genetic diversity and breadth of host species has been uncovered in the Brucella genus over the past decade, fundamentally changing our concept of what it means to be a Brucella. From ocean fishes and marine mammals, to pond dwelling amphibians, forest foxes, desert rodents, and cave-dwelling bats, Brucella have revealed a variety of previously unknown niches. Classical microbiological techniques have been able to help us classify many of these new strains but at times have limited our ability to see the true relationships among or within species. The closest relatives of Brucella are soil bacteria and the adaptations of Brucella spp. to live intracellularly suggest that the genus has evolved to live in vertebrate hosts. Several recently discovered species appear to have phenotypes that are intermediate between soil bacteria and core Brucella, suggesting that they may represent ancestral traits that were subsequently lost in the traditional species. Remarkably, the broad relationships among Brucella species using a variety of sequence and fragment-based approaches have been upheld when using comparative genomics with whole genomes. Nonetheless, genomes are required for fine-scale resolution of many of the relationships and for understanding the evolutionary history of the genus. We expect that the coming decades will reveal many more hosts and previously unknown diversity in a wide range of environments.
Collapse
Affiliation(s)
- Adrian M Whatmore
- OIE and FAO Brucellosis Reference Laboratory, Department of Bacteriology, Animal and Plant Health Agency (APHA), Woodham Lane, Addlestone, Surrey, United Kingdom.
| | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
80
|
Slotved HC, Fuursted K, Kavalari ID, Hoffmann S. Molecular Identification of Invasive Non-typeable Group B Streptococcus Isolates From Denmark (2015 to 2017). Front Cell Infect Microbiol 2021; 11:571901. [PMID: 33854981 PMCID: PMC8039440 DOI: 10.3389/fcimb.2021.571901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Abstract
The number of invasive Streptococcus agalactiae (GBS) non-typeable (NT) isolates in Denmark received since 1999 has in general accounted for 10% of all invasive GBS isolates. We present data on 55 clinical NT isolates based on clinical manifestations, clonal relationship, antimicrobial resistance (AMR) determinants, and virulence factors. The GBS isolates included in this study were phenotypic-based NT obtained from 2015 to 2017, as well as 10 reference isolates. Whole genome sequencing (WGS) was performed on all isolates and the data were analyzed for the presence of both species specific genes, capsular genes (genotype), and other relevant genes. We furthermore compared different procedures for detection of serotype specific capsular genes. Overall we were able to genotype 54 of the 55 isolates. After retesting the isolates a phenotype was detected for 20 (36%) isolates, of which the initial phenotyping problem for 13 isolates was found to be due to a problem with serotype Ia specific antiserum. Thirty-five isolates remained phenotypic non-typeable with a majority of genotype V isolates which do not express a capsular gene. From all the Danish invasive GBS isolates from 2015 to 2017, the 35 NT isolates were all detected in the age group above 21 years with bacteremia. The 35 NT isolates belonged to six different well-known human pathogenic clonal complexes. The CDC recommended sequences for capsule genotyping were the most optimal for serotype prediction, because of the sequence simplicity and clear cutoff values. However we recommend to also use other capsular sequences for the NT isolates, if they cannot be genotyped by the CDC method.
Collapse
Affiliation(s)
- Hans-Christian Slotved
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kurt Fuursted
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Ioanna Drakaki Kavalari
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Steen Hoffmann
- Neisseria and Streptococcus Reference Laboratory, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
81
|
Smith TJ, Williamson CHD, Hill KK, Johnson SL, Xie G, Anniballi F, Auricchio B, Fernández RA, Caballero PA, Keim P, Sahl JW. The Distinctive Evolution of orfX Clostridium parabotulinum Strains and Their Botulinum Neurotoxin Type A and F Gene Clusters Is Influenced by Environmental Factors and Gene Interactions via Mobile Genetic Elements. Front Microbiol 2021; 12:566908. [PMID: 33716993 PMCID: PMC7952441 DOI: 10.3389/fmicb.2021.566908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Of the seven currently known botulinum neurotoxin-producing species of Clostridium, C. parabotulinum, or C. botulinum Group I, is the species associated with the majority of human botulism cases worldwide. Phylogenetic analysis of these bacteria reveals a diverse species with multiple genomic clades. The neurotoxins they produce are also diverse, with over 20 subtypes currently represented. The existence of different bont genes within very similar genomes and of the same bont genes/gene clusters within different bacterial variants/species indicates that they have evolved independently. The neurotoxin genes are associated with one of two toxin gene cluster types containing either hemagglutinin (ha) genes or orfX genes. These genes may be located within the chromosome or extrachromosomal elements such as large plasmids. Although BoNT-producing C parabotulinum bacteria are distributed globally, they are more ubiquitous in certain specific geographic regions. Notably, northern hemisphere strains primarily contain ha gene clusters while southern hemisphere strains have a preponderance of orfX gene clusters. OrfX C. parabotulinum strains constitute a subset of this species that contain highly conserved bont gene clusters having a diverse range of bont genes. While much has been written about strains with ha gene clusters, less attention has been devoted to those with orfX gene clusters. The recent sequencing of 28 orfX C. parabotulinum strains and the availability of an additional 91 strains for analysis provides an opportunity to compare genomic relationships and identify unique toxin gene cluster characteristics and locations within this species subset in depth. The mechanisms behind the independent processes of bacteria evolution and generation of toxin diversity are explored through the examination of bacterial relationships relating to source locations and evidence of horizontal transfer of genetic material among different bacterial variants, particularly concerning bont gene clusters. Analysis of the content and locations of the bont gene clusters offers insights into common mechanisms of genetic transfer, chromosomal integration, and development of diversity among these genes.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Charles H D Williamson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Karen K Hill
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Fabrizio Anniballi
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Bruna Auricchio
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Rafael A Fernández
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia A Caballero
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
82
|
Smith TJ, Xie G, Williamson CHD, Hill KK, Fernández RA, Sahl JW, Keim P, Johnson SL. Genomic Characterization of Newly Completed Genomes of Botulinum Neurotoxin-Producing Species from Argentina, Australia, and Africa. Genome Biol Evol 2021; 12:229-242. [PMID: 32108238 DOI: 10.1093/gbe/evaa043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 11/14/2022] Open
Abstract
Botulinum neurotoxin-producing clostridia are diverse in the types of toxins they produce as well as in their overall genomic composition. They are globally distributed, with prevalent species and toxin types found within distinct geographic regions, but related strains containing the same toxin types may also be located on distinct continents. The mechanisms behind the spread of these bacteria and the independent movements of their bont genes may be understood through examination of their genetic backgrounds. The generation of 15 complete genomic sequences from bacteria isolated in Argentina, Australia, and Africa allows for a thorough examination of genome features, including overall relationships, bont gene cluster locations and arrangements, and plasmid comparisons, in bacteria isolated from various areas in the southern hemisphere. Insights gained from these examinations provide an understanding of the mechanisms behind the independent movements of these elements among distinct species.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory
| | | | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory
| | | | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University
| | | |
Collapse
|
83
|
Månsson E, Bech Johannesen T, Nilsdotter-Augustinsson Å, Söderquist B, Stegger M. Comparative genomics of Staphylococcus epidermidis from prosthetic-joint infections and nares highlights genetic traits associated with antimicrobial resistance, not virulence. Microb Genom 2021; 7:000504. [PMID: 33439116 PMCID: PMC8208700 DOI: 10.1099/mgen.0.000504] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022] Open
Abstract
There is increased awareness of the worldwide spread of specific epidemic multidrug-resistant (MDR) lineages of the human commensal Staphylococcus epidermidis. Here, using bioinformatic analyses accounting for population structure, we determined genomic traits (genes, SNPs and k-mers) that distinguish S. epidermidis causing prosthetic-joint infections (PJIs) from commensal isolates from nares, by analysing whole-genome sequencing data from S. epidermidis from PJIs prospectively collected over 10 years in Sweden, and contemporary S. epidermidis from the nares of patients scheduled for arthroplasty surgery. Previously suggested virulence determinants and the presence of genes and mutations linked to antimicrobial resistance (AMR) were also investigated. Publicly available S. epidermidis sequences were used for international extrapolation and validation of findings. Our data show that S. epidermidis causing PJIs differed from nasal isolates not by virulence but by traits associated with resistance to compounds used in prevention of PJIs: β-lactams, aminoglycosides and chlorhexidine. Almost a quarter of the PJI isolates did not belong to any of the previously described major nosocomial lineages, but the AMR-related traits were also over-represented in these isolates, as well as in international S. epidermidis isolates originating from PJIs. Genes previously associated with virulence in S. epidermidis were over-represented in individual lineages, but failed to reach statistical significance when adjusted for population structure. Our findings suggest that the current strategies for prevention of PJIs select for nosocomial MDR S. epidermidis lineages that have arisen from horizontal gene transfer of AMR-related traits into multiple genetic backgrounds.
Collapse
Affiliation(s)
- Emeli Månsson
- Department of Laboratory Medicine, Clinical Microbiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Centre for Clinical Research, Hospital of Västmanland, Region Västmanland – Uppsala University, Västerås, Sweden
| | - Thor Bech Johannesen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Åsa Nilsdotter-Augustinsson
- Department of Infectious Diseases, Linköping University, Norrköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Norrköping, Sweden
| | - Bo Söderquist
- Department of Laboratory Medicine, Clinical Microbiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marc Stegger
- Department of Laboratory Medicine, Clinical Microbiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
84
|
Månsson E, Tevell S, Nilsdotter-Augustinsson Å, Johannesen TB, Sundqvist M, Stegger M, Söderquist B. Methicillin-Resistant Staphylococcus epidermidis Lineages in the Nasal and Skin Microbiota of Patients Planned for Arthroplasty Surgery. Microorganisms 2021; 9:microorganisms9020265. [PMID: 33525409 PMCID: PMC7911009 DOI: 10.3390/microorganisms9020265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus epidermidis, ubiquitous in the human nasal and skin microbiota, is a common causative microorganism in prosthetic joint infections (PJIs). A high proportion of PJI isolates have been shown to harbor genetic traits associated with resistance to/tolerance of agents used for antimicrobial prophylaxis in joint arthroplasties. These traits were found within multidrug-resistant S. epidermidis (MDRSE) lineages of multiple genetic backgrounds. In this study, the aim was to study whether MDRSE lineages previously associated with PJIs are present in the nasal and skin microbiota of patients planned for arthroplasty surgery but before hospitalization. We cultured samples from nares, inguinal creases, and skin over the hip or knee (dependent on the planned procedure) taken two weeks (median) prior to admittance to the hospital for total joint arthroplasty from 66 patients on agar plates selecting for methicillin resistance. S. epidermidis colonies were identified and tested for the presence of mecA. Methicillin-resistant S. epidermidis (MRSE) were characterized by Illumina-based whole-genome sequencing. Using this method, we found that 30/66 (45%) of patients were colonized with MRSE at 1–3 body sites. A subset of patients, 10/66 (15%), were colonized with MDRSE lineages associated with PJIs. The qacA gene was identified in MRSE isolates from 19/30 (63%) of MRSE colonized patients, whereas genes associated with aminoglycoside resistance were less common, found in 11/30 (37%). We found that MDRSE lineages previously associated with PJIs were present in a subset of patients’ pre-admission microbiota, plausibly in low relative abundance, and may be selected for by the current prophylaxis regimen comprising whole-body cleansing with chlorhexidine-gluconate containing soap. To further lower the rate of S. epidermidis PJIs, the current prophylaxis may need to be modified, but it is important for possible perioperative MDRSE transmission events and specific risk factors for MDRSE PJIs to be investigated before reevaluating antimicrobial prophylaxis.
Collapse
Affiliation(s)
- Emeli Månsson
- School of Medical Sciencies, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; (S.T.); (M.S.); (B.S.)
- Centre for Clinical Research, Region Västmanland—Uppsala University, Hospital of Västmanland, Västerås, SE-721 89 Västerås, Sweden
- Correspondence:
| | - Staffan Tevell
- School of Medical Sciencies, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; (S.T.); (M.S.); (B.S.)
- Department of Infectious Diseases, Karlstad Hospital and Centre for Clinical Research and Education, County Council of Värmland, SE-651 82 Karlstad, Sweden
| | - Åsa Nilsdotter-Augustinsson
- Department of Infectious Diseases, and Department of Clinical and Experimental Medicine, Linköping University, SE-60182 Norrköping, Sweden;
| | - Thor Bech Johannesen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Martin Sundqvist
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden;
| | - Marc Stegger
- School of Medical Sciencies, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; (S.T.); (M.S.); (B.S.)
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark;
| | - Bo Söderquist
- School of Medical Sciencies, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; (S.T.); (M.S.); (B.S.)
- Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden;
| |
Collapse
|
85
|
Thunberg U, Hugosson S, Ehricht R, Monecke S, Müller E, Cao Y, Stegger M, Söderquist B. Long-Term Sinonasal Carriage of Staphylococcus aureus and Anti-Staphylococcal Humoral Immune Response in Patients with Chronic Rhinosinusitis. Microorganisms 2021; 9:256. [PMID: 33513900 PMCID: PMC7912147 DOI: 10.3390/microorganisms9020256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 12/02/2022] Open
Abstract
We investigated Staphylococcus aureus diversity, genetic factors, and humoral immune responses against antigens via genome analysis of S. aureus isolates from chronic rhinosinusitis (CRS) patients in a long-term follow-up. Of the 42 patients who provided S. aureus isolates and serum for a previous study, 34 could be included for follow-up after a decade. Clinical examinations were performed and bacterial samples were collected from the maxillary sinus and nares. S. aureus isolates were characterized by whole-genome sequencing, and specific anti-staphylococcal IgG in serum was determined using protein arrays. S. aureus was detected in the nares and/or maxillary sinus at both initial inclusion and follow-up in 15 of the 34 respondents (44%). Three of these (20%) had S. aureus isolates from the same genetic lineage as at inclusion. A low number of single-nucleotide polymorphisms (SNPs) were identified when comparing isolates from nares and maxillary sinus collected at the same time point. The overall change of antibody responses to staphylococcal antigens over time showed great variability, and no correlation was found between the presence of genes encoding antigens and the corresponding anti-staphylococcal IgG in serum; thus our findings did not support a role, in CRS, of the specific S. aureus antigens investigated.
Collapse
Affiliation(s)
- Ulrica Thunberg
- Department of Otorhinolaryngology, Örebro University Hospital, SE 70185 Örebro, Sweden;
- Faculty of Medicine and Health, Örebro University, SE 70182 Örebro, Sweden; (M.S.); (B.S.)
| | - Svante Hugosson
- Department of Otorhinolaryngology, Örebro University Hospital, SE 70185 Örebro, Sweden;
- Faculty of Medicine and Health, Örebro University, SE 70182 Örebro, Sweden; (M.S.); (B.S.)
| | - Ralf Ehricht
- InfectoGnostics Research Campus, 07743 Jena, Germany; (R.E.); (S.M.); (E.M.)
- Leibniz Institute of Photonic Technology (IPHT), 07743 Jena, Germany
- Institut fuer Medizinische Mikrobiologie und Hygiene, Medizinische Fakultaet “Carl Gustav Carus” Fiedlerstr. 42, D-01307 Dresden, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, 07743 Jena, Germany
| | - Stefan Monecke
- InfectoGnostics Research Campus, 07743 Jena, Germany; (R.E.); (S.M.); (E.M.)
- Leibniz Institute of Photonic Technology (IPHT), 07743 Jena, Germany
- Institut fuer Medizinische Mikrobiologie und Hygiene, Medizinische Fakultaet “Carl Gustav Carus” Fiedlerstr. 42, D-01307 Dresden, Germany
| | - Elke Müller
- InfectoGnostics Research Campus, 07743 Jena, Germany; (R.E.); (S.M.); (E.M.)
- Leibniz Institute of Photonic Technology (IPHT), 07743 Jena, Germany
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, SE 70182 Örebro, Sweden;
| | - Marc Stegger
- Faculty of Medicine and Health, Örebro University, SE 70182 Örebro, Sweden; (M.S.); (B.S.)
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Bo Söderquist
- Faculty of Medicine and Health, Örebro University, SE 70182 Örebro, Sweden; (M.S.); (B.S.)
- Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, SE 70185 Örebro, Sweden
| |
Collapse
|
86
|
Bagagli E, Matute DR, Garces HG, Tenório BG, Garces AG, Alves LGDB, Yamauchi DH, Hrycyk MF, Barker BM, Teixeira MDM. Paracoccidioides brasiliensis Isolated from Nine-Banded Armadillos ( Dasypus novemcinctus) Reveal Population Structure and Admixture in the Amazon Basin. J Fungi (Basel) 2021; 7:54. [PMID: 33467393 PMCID: PMC7829815 DOI: 10.3390/jof7010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Paracoccidioidomycosis is an endemic fungal disease to Latin America caused by at least five species-level genotypes of Paracoccidioides, named P. lutzii, P. brasiliensis (S1a and S1b populations), P. americana, P. restrepiensis, and P. venezuelensis. In this manuscript, we report on Paracoccidioides sp. sampling efforts in armadillos from two different areas in Brazil. We sequenced the genomes of seven Paracoccidioides isolates and used phylogenomics and populations genetics for genotyping. We found that P. brasiliensis and P. lutzii are both present in the Amazon region. Additionally, we identified two Paracoccidioides isolates that seem to be the result of admixture between divergent populations within P. brasiliensis sensu stricto. Both of these isolates were recovered from armadillos in a P. lutzii endemic area in Midwestern Brazil. Additionally, two isolates from human patients also show evidence of resulting from admixture. Our results suggest that the populations of P. brasiliensis sensu stricto exchange genes in nature. More generally, they suggest that population structure and admixture within species is an important source of variation for pathogenic fungi.
Collapse
Affiliation(s)
- Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | | | - Hans Garcia Garces
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | - Bernardo Guerra Tenório
- Faculdade de Medicina, Universidade de Brasília, Brasília DF 70910-900, Brazil; (B.G.T.); (L.G.d.B.A.)
| | - Adalberto Garcia Garces
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | | | - Danielle Hamae Yamauchi
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | - Marluce Francisca Hrycyk
- Faculdade de Ciências Biológicas e Agrárias, Universidade do Estado de Mato Grosso, Campus de Alta Floresta, Alta Floresta MT 78580-000, Brazil;
| | - Bridget Marie Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marcus de Melo Teixeira
- Faculdade de Medicina, Universidade de Brasília, Brasília DF 70910-900, Brazil; (B.G.T.); (L.G.d.B.A.)
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
87
|
Tevell S, Baig S, Hellmark B, Martins Simoes P, Wirth T, Butin M, Nilsdotter-Augustinsson Å, Söderquist B, Stegger M. Presence of the neonatal Staphylococcus capitis outbreak clone (NRCS-A) in prosthetic joint infections. Sci Rep 2020; 10:22389. [PMID: 33372186 PMCID: PMC7769963 DOI: 10.1038/s41598-020-79225-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus capitis is a coagulase-negative staphylococcus that has been described primarily as causing bloodstream infections in neonatal intensive care units (NICUs), but has also recently been described in prosthetic joint infections (PJIs). The multidrug-resistant S. capitis subsp. urealyticus clone NRCS-A, comprising three sublineages, is prevalent in NICUs across the world, but its impact on other patient groups such as those suffering from PJIs or among adults planned for arthroplasty is unknown. Genome sequencing and subsequent analysis were performed on a Swedish collection of PJI isolates (n = 21), nasal commensals from patients planned to undergo arthroplasty (n = 20), NICU blood isolates (n = 9), operating theatre air isolates (n = 4), and reference strains (n = 2), in conjunction with an international strain collection (n = 248). The NRCS-A Outbreak sublineage containing the composite type V SCCmec-SCCcad/ars/cop element was present in PJIs across three Swedish hospitals. However, it was not found among nasal carrier strains, where the less virulent S. capitis subsp. capitis was most prevalent. The presence of the NRCS-A Outbreak clone in adult patients with PJIs demonstrates that dissemination occurs beyond NICUs. As this clone has several properties which facilitate invasive infections in patients with medical implants or immunosuppression, such as biofilm forming ability and multidrug resistance including heterogeneous glycopeptide-intermediate susceptibility, further research is needed to understand the reservoirs and distribution of this hospital-associated pathogen.
Collapse
Affiliation(s)
- Staffan Tevell
- Department of Infectious Diseases, Karlstad Hospital and Centre for Clinical Research and Education, Värmland County Council, SE-65182, Karlstad, Sweden. .,School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Sharmin Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Bengt Hellmark
- Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Patricia Martins Simoes
- Department of Bacteriology, Institute for Infectious Agents, National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France.,Centre International de Référence en Infectiologie, INSERM U1111, CNRS UMR 5308, ENS, University of Lyon, Lyon, France
| | - Thierry Wirth
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR-CNRS 7205, Muséum National d'Histoire Naturelle, CNRS, EPHE, Sorbonne Université, Paris, France.,École Pratique des Hautes Études, PSL Université, Paris, France
| | - Marine Butin
- Centre International de Référence en Infectiologie, INSERM U1111, CNRS UMR 5308, ENS, University of Lyon, Lyon, France.,Neonatal Intensive Care Unit, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France
| | - Åsa Nilsdotter-Augustinsson
- Division of Inflammation and Infection, Department of Infectious Diseases, Linköping University, Norrköping, Sweden.,Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Norrköping, Sweden
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Laboratory Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Marc Stegger
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.,Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
88
|
Rendboe AK, Johannesen TB, Ingham AC, Månsson E, Iversen S, Baig S, Edslev S, Jensen JS, Söderquist B, Andersen PS, Stegger M. The Epidome - a species-specific approach to assess the population structure and heterogeneity of Staphylococcus epidermidis colonization and infection. BMC Microbiol 2020; 20:362. [PMID: 33243146 PMCID: PMC7691061 DOI: 10.1186/s12866-020-02041-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Although generally known as a human commensal, Staphylococcus epidermidis is also an opportunistic pathogen that can cause nosocomial infections related to foreign body materials and immunocompromized patients. Infections are often caused by multidrug-resistant (MDR) lineages that are difficult and costly to treat, and can have a major adverse impact on patients' quality of life. Heterogeneity is a common phenomenon in both carriage and infection, but present methodology for detection of this is laborious or expensive. In this study, we present a culture-independent method, labelled Epidome, based on an amplicon sequencing-approach to deliver information beyond species level on primary samples and to elucidate clonality, population structure and temporal stability or niche selection of S. epidermidis communities. RESULTS Based on an assessment of > 800 genes from the S. epidermidis core genome, we identified genes with variable regions, which in combination facilitated the differentiation of phylogenetic clusters observed in silico, and allowed classification down to lineage level. A duplex PCR, combined with an amplicon sequencing protocol, and a downstream analysis pipeline were designed to provide subspecies information from primary samples. Additionally, a probe-based qPCR was designed to provide valuable absolute abundance quantification of S. epidermidis. The approach was validated on isolates representing skin commensals and on genomic mock communities with a sensitivity of < 10 copies/μL. The method was furthermore applied to a sample set of primary skin and nasal samples, revealing a high degree of heterogeneity in the S. epidermidis populations. Additionally, the qPCR showed a high degree of variation in absolute abundance of S. epidermidis. CONCLUSIONS The Epidome method is designed for use on primary samples to obtain important information on S. epidermidis abundance and diversity beyond species-level to answer questions regarding the emergence and dissemination of nosocomial lineages, investigating clonality of S. epidermidis communities, population dynamics, and niche selection. Our targeted-sequencing method allows rapid differentiation and identification of clinically important nosocomial lineages in low-biomass samples such as skin samples.
Collapse
Affiliation(s)
- Amalie Katrine Rendboe
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Thor Bech Johannesen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anna Cäcilia Ingham
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Emeli Månsson
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Centre for Clinical Research, Hospital of Västmanland, Region Västmanland - Uppsala University, Västerås, Sweden
| | - Søren Iversen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sharmin Baig
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sofie Edslev
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Jørgen Skov Jensen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Bo Söderquist
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
89
|
Manenzhe RI, Dube FS, Wright M, Lennard K, Mounaud S, Lo SW, Zar HJ, Nierman WC, Nicol MP, Moodley C. Characterization of Pneumococcal Colonization Dynamics and Antimicrobial Resistance Using Shotgun Metagenomic Sequencing in Intensively Sampled South African Infants. Front Public Health 2020; 8:543898. [PMID: 33072693 PMCID: PMC7536305 DOI: 10.3389/fpubh.2020.543898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background: There remains a significant proportion of deaths due to pneumococcal pneumonia in infants from low- and middle-income countries despite the marginal global declines recorded in the past decade. Monitoring changes in pneumococcal carriage is key to understanding vaccination-induced shifts in the ecology of carriage, patterns of antimicrobial resistance, and impact on health. We longitudinally investigated pneumococcal carriage dynamics in PCV-13 vaccinated infants by collecting nasopharyngeal (NP) samples at 2-weekly intervals from birth through the first year of life from 137 infants. As a proof of concept, 196 NP samples were retrieved from a subset of 23 infants to explore strain-level pneumococcal colonization patterns and associated antimicrobial-resistance determinants. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of pneumococcal and non-pneumococcal bacterial reads. Pneumococcal contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. In silico pneumococcal capsular and multilocus sequence typing were performed. Results: Of the 196 samples sequenced, 174 had corresponding positive cultures for pneumococci, of which, 152 were assigned an in silico serotype. Metagenomic sequencing detected a single pneumococcal serotype in 85% (129/152), and co-colonization in 15% (23/152) of the samples. Twenty-two different pneumococcal serotypes were identified, with 15B/15C and 16F being the most common non-PCV13 serotypes, while 23F and 19A were the most common PCV13 serotypes. Twenty-six different sequence types (STs), including four novel STs were identified in silico. Mutations in the folA and folP genes, associated with cotrimoxazole resistance, were detected in 89% (87/98) of cotrimoxazole-non-susceptible pneumococci, as well as in the pbp1a and pbp2x genes, in penicillin non-susceptible ST705215B/15C isolates. Conclusions: Metagenomic sequencing of NP samples is a valuable culture-independent technique for a detailed evaluation of the pneumococcal component and resistome of the NP microbiome. This method allowed for the detection of novel STs, as well as co-colonization, with a predominance of non-PCV13 serotypes in this cohort. Forty-eight resistance genes, as well as mutations associated with resistance were detected, but the correlation with phenotypic non-susceptibility was lower than expected.
Collapse
Affiliation(s)
- Rendani I Manenzhe
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Felix S Dube
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | | | - Katie Lennard
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Stephanie W Lo
- Parasites and Microbes Program, The Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African - Medical Research Council Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | - Mark P Nicol
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Division of Infection and Immunity, University of Western Australia, Perth, WA, Australia
| | - Clinton Moodley
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
90
|
Roe C, Williamson CHD, Vazquez AJ, Kyger K, Valentine M, Bowers JR, Phillips PD, Harrison V, Driebe E, Engelthaler DM, Sahl JW. Bacterial Genome Wide Association Studies (bGWAS) and Transcriptomics Identifies Cryptic Antimicrobial Resistance Mechanisms in Acinetobacter baumannii. Front Public Health 2020; 8:451. [PMID: 33014966 PMCID: PMC7493718 DOI: 10.3389/fpubh.2020.00451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance (AMR) in the nosocomial pathogen, Acinetobacter baumannii, is becoming a serious public health threat. While some mechanisms of AMR have been reported, understanding novel mechanisms of resistance is critical for identifying emerging resistance. One of the first steps in identifying novel AMR mechanisms is performing genotype/phenotype association studies; however, performing these studies is complicated by the plastic nature of the A. baumannii pan-genome. In this study, we compared the antibiograms of 12 antimicrobials associated with multiple drug families for 84 A. baumannii isolates, many isolated in Arizona, USA. in silico screening of these genomes for known AMR mechanisms failed to identify clear correlations for most drugs. We then performed a bacterial genome wide association study (bGWAS) looking for associations between all possible 21-mers; this approach generally failed to identify mechanisms that explained the resistance phenotype. In order to decrease the genomic noise associated with population stratification, we compared four phylogenetically-related pairs of isolates with differing susceptibility profiles. RNA-Sequencing (RNA-Seq) was performed on paired isolates and differentially-expressed genes were identified. In these isolate pairs, five different potential mechanisms were identified, highlighting the difficulty of broad AMR surveillance in this species. To verify and validate differential expression, amplicon sequencing was performed. These results suggest that a diagnostic platform based on gene expression rather than genomics alone may be beneficial in certain surveillance efforts. The implementation of such advanced diagnostics coupled with increased AMR surveillance will potentially improve A. baumannii infection treatment and patient outcomes.
Collapse
Affiliation(s)
- Chandler Roe
- Northern Arizona University, Flagstaff, AZ, United States
| | | | | | - Kristen Kyger
- Northern Arizona University, Flagstaff, AZ, United States
| | - Michael Valentine
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Jolene R. Bowers
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | | | - Veronica Harrison
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | - Elizabeth Driebe
- Translational Genomics Research Institute, Flagstaff, AZ, United States
| | | | - Jason W. Sahl
- Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
91
|
Temporal encoding of bacterial identity and traits in growth dynamics. Proc Natl Acad Sci U S A 2020; 117:20202-20210. [PMID: 32747578 DOI: 10.1073/pnas.2008807117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In biology, it is often critical to determine the identity of an organism and phenotypic traits of interest. Whole-genome sequencing can be useful for this but has limited power for trait prediction. However, we can take advantage of the inherent information content of phenotypes to bypass these limitations. We demonstrate, in clinical and environmental bacterial isolates, that growth dynamics in standardized conditions can differentiate between genotypes, even among strains from the same species. We find that for pairs of isolates, there is little correlation between genetic distance, according to phylogenetic analysis, and phenotypic distance, as determined by growth dynamics. This absence of correlation underscores the challenge in using genomics to infer phenotypes and vice versa. Bypassing this complexity, we show that growth dynamics alone can robustly predict antibiotic responses. These findings are a foundation for a method to identify traits not easily traced to a genetic mechanism.
Collapse
|
92
|
Roe C, Stegger M, Lilje B, Johannesen TB, Ng KL, Sieber RN, Driebe E, Engelthaler DM, Andersen PS. Genomic analyses of Staphylococcus aureus clonal complex 45 isolates does not distinguish nasal carriage from bacteraemia. Microb Genom 2020; 6:mgen000403. [PMID: 32667872 PMCID: PMC7641415 DOI: 10.1099/mgen.0.000403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a colonizing opportunistic pathogen and a leading cause of bloodstream infection with high morbidity and mortality. S. aureus carriage frequency is reportedly between 20 and 40 % among healthy adults, with S. aureus colonization considered to be a risk factor for S. aureus bacteraemia. It is unknown whether a genetic component of the bacterium is associated with S. aureus bacteraemia in comparison to nasal carriage strains. Previous association studies primarily focusing on the clinical outcome of an S. aureus infection have produced conflicting results, often limited by study design challenged by sample collections and the clonal diversity of S. aureus. To date, no study has investigated whether genomic features separate nasal carriage isolates from S. aureus bacteraemia isolates within a single clonal lineage. Here we have investigated whether genomic features, including single-nucleotide polymorphisms (SNPs), genes, or kmers, distinguish S. aureus nasal carriage isolates from bacteraemia isolates that all belong to the same clonal lineage [clonal complex 45 (CC45)] using whole-genome sequencing (WGS) and a genome-wide association (GWA) approach. From CC45, 100 isolates (50 bacteraemia and 50 nasal carriage, geographically and temporally matched) from Denmark were whole-genome sequenced and subjected to GWA analyses involving gene copy number variation, SNPs, gene content, kmers and gene combinations, while correcting for lineage effects. No statistically significant association involving SNPs, specific genes, gene variants, gene copy number variation, or a combination of genes was identified that could distinguish bacteraemia isolates from nasal carriage isolates. The presented results suggest that all S. aureus nasal CC45 isolates carry the potential to cause invasive disease, as no core or accessory genome content or variations were statistically associated with invasiveness.
Collapse
Affiliation(s)
- Chandler Roe
- Translational Genomics Research Institute, Flagstaff, AZ, USA
- Northern Arizona University, Flagstaff, AZ, USA
| | - Marc Stegger
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Kim Lee Ng
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Raphael N. Sieber
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Paal Skytt Andersen
- Translational Genomics Research Institute, Flagstaff, AZ, USA
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
93
|
Engsbro AL, Riis Jespersen HS, Goldschmidt MI, Mollerup S, Worning P, Pedersen MS, Westh H, Schneider UV. Ceftriaxone-resistant Salmonella enterica serotype Typhi in a pregnant traveller returning from Karachi, Pakistan to Denmark, 2019. ACTA ACUST UNITED AC 2020; 24. [PMID: 31138366 PMCID: PMC6540646 DOI: 10.2807/1560-7917.es.2019.24.21.1900289] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a ceftriaxone-resistant Salmonella Typhi bacteraemia in a pregnant woman returning from a family visit in Pakistan. Whole genome sequencing confirmed similarity to a Pakistani outbreak clone. Pregnancy and unawareness of this outbreak delayed appropriate antibiotic therapy. Concurrently, we detected faecal carriage of a carbapenemase-producing Escherichia coli. Awareness of the ongoing outbreak should affect empiric treatment of typhoid fever and hygiene precautions in travellers returning from Pakistan. Meropenem may be warranted in severe cases.
Collapse
Affiliation(s)
- Anne Line Engsbro
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | | | - Sarah Mollerup
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Peder Worning
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Martin Schou Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Henrik Westh
- University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Uffe Vest Schneider
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
94
|
Teixeira MDM, Cattana ME, Matute DR, Muñoz JF, Arechavala A, Isbell K, Schipper R, Santiso G, Tracogna F, Sosa MDLÁ, Cech N, Alvarado P, Barreto L, Chacón Y, Ortellado J, Lima CMD, Chang MR, Niño-Vega G, Yasuda MAS, Felipe MSS, Negroni R, Cuomo CA, Barker B, Giusiano G. Genomic diversity of the human pathogen Paracoccidioides across the South American continent. Fungal Genet Biol 2020; 140:103395. [PMID: 32325168 PMCID: PMC7385733 DOI: 10.1016/j.fgb.2020.103395] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/30/2022]
Abstract
Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis widely reported in the Gran Chaco ecosystem. The disease is caused by different species from the genus Paracoccidioides, which are all endemic to South and Central America. Here, we sequenced and analyzed 31 isolates of Paracoccidioides across South America, with particular focus on isolates from Argentina and Paraguay. The de novo sequenced isolates were compared with publicly available genomes. Phylogenetics and population genomics revealed that PCM in Argentina and Paraguay is caused by three distinct Paracoccidioides genotypes, P. brasiliensis (S1a and S1b) and P. restrepiensis (PS3). P. brasiliensis S1a isolates from Argentina are frequently associated with chronic forms of the disease. Our results suggest the existence of extensive molecular polymorphism among Paracoccidioides species, and provide a framework to begin to dissect the connection between genotypic differences in the pathogen and the clinical outcomes of the disease.
Collapse
Affiliation(s)
- Marcus de Melo Teixeira
- Northern Arizona University, Flagstaff, AZ, USA; Universidade de Brasília, Brasilia, Brazil.
| | - Maria Emilia Cattana
- Northern Arizona University, Flagstaff, AZ, USA; Hospital Dr. Julio C. Perrando, Resistencia, Chaco, Argentina
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - José F Muñoz
- Broad Institute of MIT and Harvard, Cambridge, USA
| | | | - Kristin Isbell
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Primavera Alvarado
- Servicio Autónomo Instituto de Biomedicina Dr. Jacinto Convit, Caracas, Venezuela
| | - Laura Barreto
- Instituto Superior de Formación Docente Salome Ureña, Santo Domingo, Dominican Republic
| | - Yone Chacón
- Hospital Señor del Milagro, Salta, Argentina
| | | | | | | | | | | | | | | | | | | | - Gustavo Giusiano
- Universidad Nacional del Nordeste, Resistencia, Chaco, Argentina.
| |
Collapse
|
95
|
Bush SJ, Connor TR, Peto TE, Crook DW, Walker AS. Evaluation of methods for detecting human reads in microbial sequencing datasets. Microb Genom 2020; 6:mgen000393. [PMID: 32558637 PMCID: PMC7478626 DOI: 10.1099/mgen.0.000393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Sequencing data from host-associated microbes can often be contaminated by the body of the investigator or research subject. Human DNA is typically removed from microbial reads either by subtractive alignment (dropping all reads that map to the human genome) or by using a read classification tool to predict those of human origin, and then discarding them. To inform best practice guidelines, we benchmarked eight alignment-based and two classification-based methods of human read detection using simulated data from 10 clinically prevalent bacteria and three viruses, into which contaminating human reads had been added. While the majority of methods successfully detected >99 % of the human reads, they were distinguishable by variance. The most precise methods, with negligible variance, were Bowtie2 and SNAP, both of which misidentified few, if any, bacterial reads (and no viral reads) as human. While correctly detecting a similar number of human reads, methods based on taxonomic classification, such as Kraken2 and Centrifuge, could misclassify bacterial reads as human, although the extent of this was species-specific. Among the most sensitive methods of human read detection was BWA, although this also made the greatest number of false positive classifications. Across all methods, the set of human reads not identified as such, although often representing <0.1 % of the total reads, were non-randomly distributed along the human genome with many originating from the repeat-rich sex chromosomes. For viral reads and longer (>300 bp) bacterial reads, the highest performing approaches were classification-based, using Kraken2 or Centrifuge. For shorter (c. 150 bp) bacterial reads, combining multiple methods of human read detection maximized the recovery of human reads from contaminated short read datasets without being compromised by false positives. A particularly high-performance approach with shorter bacterial reads was a two-stage classification using Bowtie2 followed by SNAP. Using this approach, we re-examined 11 577 publicly archived bacterial read sets for hitherto undetected human contamination. We were able to extract a sufficient number of reads to call known human SNPs, including those with clinical significance, in 6 % of the samples. These results show that phenotypically distinct human sequence is detectable in publicly archived microbial read datasets.
Collapse
Affiliation(s)
- Stephen J. Bush
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Thomas R. Connor
- Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, Wales, UK
- Public Health Wales, University Hospital of Wales, Cardiff, UK
| | - Tim E.A. Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Health Research Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - Derrick W. Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Health Research Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| | - A. Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- National Institute for Health Research Health Research Protection Unit in Healthcare Associated Infections and Antimicrobial Resistance at University of Oxford in partnership with Public Health England, Oxford, UK
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
96
|
Baig S, Rhod Larsen A, Martins Simões P, Laurent F, Johannesen TB, Lilje B, Tristan A, Schaumburg F, Egyir B, Cirkovic I, Nimmo GR, Spiliopoulou I, Blanc DS, Mernelius S, Moen AEF, David MZ, Andersen PS, Stegger M. Evolution and Population Dynamics of Clonal Complex 152 Community-Associated Methicillin-Resistant Staphylococcus aureus. mSphere 2020; 5:e00226-20. [PMID: 32611695 PMCID: PMC7333568 DOI: 10.1128/msphere.00226-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022] Open
Abstract
Since the late 1990s, changes in the epidemiology of methicillin-resistant Staphylococcus aureus (MRSA) were recognized with the emergence of community-associated MRSA (CA-MRSA). CA-MRSA belonging to clonal complex 152 (CC152), carrying the small staphylococcal cassette chromosome mec (SCCmec) type V and encoding the Panton-Valentine leukocidin (PVL), has been observed in Europe. The aim of this study was to investigate its origin, evolution, and dissemination. Whole-genome sequencing was performed on a global collection of 149 CC152 isolates spanning 20 years (93 methicillin-susceptible S. aureus [MSSA] and 56 MRSA isolates). Core genome phylogeny, Bayesian inference, in silico resistance analyses, and genomic characterization were applied. Phylogenetic analysis revealed two major distinct clades, one dominated by MSSA and the other populated only by MRSA. The MSSA isolates were predominately from sub-Saharan Africa, whereas MRSA was almost exclusively from Europe. The European MRSA isolates all harbored an SCCmec type V (5C2&5) element, whereas other SCCmec elements were sporadically detected in MRSA from the otherwise MSSA-dominated clade, including SCCmec types IV (2B), V (5C2), and XIII (9A). In total, 93% of the studied CC152 isolates were PVL positive. Bayesian coalescent inference suggests an emergence of the European CC152-MRSA in the 1990s, while the CC152 lineage dates back to the 1970s. The CA-MRSA CC152 clone mimics the European CC80 CA-MRSA lineage by its emergence from a PVL-positive MSSA ancestor from North Africa or Europe. The CC152 lineage has acquired SCCmec several times, but acquisition of SCCmec type V (5C2&5) seems associated with expansion of MRSA CC152 in Europe.IMPORTANCE Understanding the evolution of CA-MRSA is important in light of the increasing importance of this reservoir in the dissemination of MRSA. Here, we highlight the story of the CA-MRSA CC152 lineage using whole-genome sequencing on an international collection of CC152. We show that the evolution of this lineage is novel and that antibiotic usage may have the potential to select for the phage-encoded Panton-Valentine leukocidin. The diversity of the strains correlated highly to geography, with higher level of resistance observed among the European MRSA isolates. The mobility of the SCCmec element is mandatory for the emergence of novel MRSA lineages, and we show here distinct acquisitions, one of which is linked to the successful clone found throughout Europe today.
Collapse
Affiliation(s)
- Sharmin Baig
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anders Rhod Larsen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Patrícia Martins Simões
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Frédéric Laurent
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Thor Bech Johannesen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Berit Lilje
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Anne Tristan
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Beverly Egyir
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ivana Cirkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Graeme R Nimmo
- Pathology Queensland Central Laboratory, Griffith University School of Medicine, Queensland Health, Brisbane, Queensland, Australia
| | - Iris Spiliopoulou
- National Reference Laboratory for Staphylococci, Department of Microbiology, School of Medicine, University of Patras, Patras, Greece
| | - Dominique S Blanc
- Service of Hospital Preventive Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sara Mernelius
- Laboratory Medicine, Jönköping, Region Jönköping County, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Aina Elisabeth Fossum Moen
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
- University of Oslo, Oslo, Norway
| | - Michael Z David
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marc Stegger
- Department of Bacteria, Parasites, and Fungi, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
97
|
de Witt RN, Kroukamp H, Van Zyl WH, Paulsen IT, Volschenk H. QTL analysis of natural Saccharomyces cerevisiae isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Res 2020; 19:5528620. [PMID: 31276593 DOI: 10.1093/femsyr/foz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
Decoding the genetic basis of lignocellulosic inhibitor tolerance in Saccharomyces cerevisiae is crucial for rational engineering of bioethanol strains with enhanced robustness. The genetic diversity of natural strains present an invaluable resource for the exploration of complex traits of industrial importance from a pan-genomic perspective to complement the limited range of specialised, tolerant industrial strains. Natural S. cerevisiae isolates have lately garnered interest as a promising toolbox for engineering novel, genetically encoded tolerance phenotypes into commercial strains. To this end, we investigated the genetic basis for lignocellulosic inhibitor tolerance of natural S. cerevisiae isolates. A total of 12 quantitative trait loci underpinning tolerance were identified by next-generation sequencing linked bulk-segregant analysis of superior interbred pools. Our findings corroborate the current perspective of lignocellulosic inhibitor tolerance as a multigenic, complex trait. Apart from a core set of genetic variants required for inhibitor tolerance, an additional genetic background-specific response was observed. Functional analyses of the identified genetic loci revealed the uncharacterised ORF, YGL176C and the bud-site selection XRN1/BUD13 as potentially beneficial alleles contributing to tolerance to a complex lignocellulosic inhibitor mixture. We present evidence for the consideration of both regulatory and coding sequence variants for strain improvement.
Collapse
Affiliation(s)
- R N de Witt
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - H Kroukamp
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - W H Van Zyl
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| | - I T Paulsen
- Department of Molecular Sciences, Macquarie University, Balaclava Rd, North Ryde, NSW 2109, Australia
| | - H Volschenk
- Department of Microbiology, Stellenbosch University, De Beer Street, Stellenbosch 7600, Western Cape, South Africa
| |
Collapse
|
98
|
Local and Transboundary Transmissions of Methicillin-Resistant Staphylococcus aureus Sequence Type 398 through Pig Trading. Appl Environ Microbiol 2020; 86:AEM.00430-20. [PMID: 32358001 DOI: 10.1128/aem.00430-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus sequence type (ST) 398 (LA-MRSA ST398) is a genetic lineage for which pigs are regarded as the main reservoir. An increasing prevalence of LA-MRSA ST398 has been reported in areas with high livestock density throughout Europe. In this study, we investigated the drivers contributing to the introduction and spread of LA-MRSA ST398 through the pig farming system in southern Italy. Whole-genome sequencing (WGS) of LA-MRSA ST398 isolates collected in 2018 from pigs (n = 53) and employees (n = 14) from 10 farms in the Calabria region of Italy were comparatively analyzed with previously published WGS data from Italian ST398 isolates (n = 45), an international ST398 reference collection (n = 89), and isolates from Danish pig farms (n = 283), which are the main suppliers of pigs imported to Italy. Single-nucleotide polymorphisms (SNP) were used to infer isolate relatedness, and these data were used together with data from animal trading to identify factors contributing to LA-MRSA ST398 dissemination. The analyses support the existence of two concurrent pathways for the spread of LA-MRSA ST398 in southern Italy: (i) multiple introductions of LA-MRSA ST398 through the import of colonized pigs from other European countries, including Denmark and France, and (ii) the spread of distinct clones dependent on local trading of pigs between farms. Phylogenetically related Italian and Danish LA-MRSA ST398 isolates shared extensive similarities, including carriage of antimicrobial resistance genes. Our findings highlight the potential risk of transboundary transmission of antimicrobial-resistant bacterial clones with a high zoonotic potential during import of pigs from countries with high LA-MRSA prevalence.IMPORTANCE Over the past decade, livestock-associated methicillin-resistant Staphylococcus aureus sequence type 398 (LA-MRSA ST398) has spread among pig holdings throughout Europe, in parallel with the increased incidence of infections among humans, especially in intensive pig farming regions. Despite the growing prevalence of LA-MRSA ST398 in Italian pig farms, the transmission dynamics of this clone in Italy remains unclear. This work provides genome-based evidence to suggest transboundary LA-MRSA ST398 transmission through trading of colonized pigs between European countries and Italy, as well as between farms in the same Italian region. Our findings show that both international trading and local trading of colonized pigs are important factors contributing to the global spread of LA-MRSA ST398 and underscore the need for control measures on and off the farm to reduce the dissemination of this zoonotic pathogen.
Collapse
|
99
|
Emergence of Enteroaggregative Escherichia coli within the ST131 Lineage as a Cause of Extraintestinal Infections. mBio 2020; 11:mBio.00353-20. [PMID: 32430467 PMCID: PMC7240153 DOI: 10.1128/mbio.00353-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
E. coli ST131 is an important extraintestinal pathogenic lineage. A signature characteristic of ST131 is its ability to asymptomatically colonize the gastrointestinal tract and then opportunistically cause extraintestinal infections, such as cystitis, pyelonephritis, and urosepsis. In this study, we identified an ST131 H27 sublineage that has acquired the enteroaggregative diarrheagenic phenotype, spread across multiple continents, and caused multiple outbreaks of community-acquired ESBL-associated bloodstream infections in Denmark. The strain’s ability to both cause diarrhea and innocuously colonize the human gastrointestinal tract may facilitate its dissemination and establishment in the community. Escherichia coli sequence type 131 (ST131) is a major cause of urinary and bloodstream infections. Its association with extended-spectrum β-lactamases (ESBLs) significantly complicates treatment. Its best-described component is the rapidly expanding H30Rx clade, containing allele 30 of the type 1 fimbrial adhesin gene fimH. This lineage appears to have emerged in the United States and spread around the world in part due to the acquisition of the ESBL-encoding blaCTX-M-15 gene and resistance to fluoroquinolones. However, non-H30 ST131 sublineages with other acquired CTX-M-type resistance genes are also emerging. Based on whole-genome analyses, we describe here the presence of an (fimH) H27 E. coli ST131 sublineage that has recently caused an outbreak of community-acquired bacteremia and recurrent urinary tract infections (UTIs) in Denmark. This sublineage has acquired both a virulence plasmid (pAA) that defines the enteroaggregative E. coli (EAEC) diarrheagenic pathotype and multiple genes associated with extraintestinal E. coli (ExPEC); combined, these traits have made this particular ST131 sublineage successful at colonizing its human host and causing recurrent UTI. Moreover, using a historic World Health Organization (WHO) E. coli collection and publicly available genome sequences, we identified a global H27 EAEC ST131 sublineage that dates back as far as 1998. Most H27 EAEC ST131 isolates harbor pAA or pAA-like plasmids, and our analysis strongly implies a single ancestral acquisition among these isolates. These findings illustrate both the profound plasticity of this important pathogenic E. coli ST131 H27 sublineage and genetic acquisitions of EAEC-specific virulence traits that likely confer an enhanced ability to cause intestinal colonization.
Collapse
|
100
|
Hansen JE, Stegger M, Pedersen K, Sieber RN, Larsen J, Larsen G, Lilje B, Chriél M, Andersen PS, Larsen AR. Spread of LA-MRSA CC398 in Danish mink (Neovison vison) and mink farm workers. Vet Microbiol 2020; 245:108705. [PMID: 32456821 DOI: 10.1016/j.vetmic.2020.108705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 01/11/2023]
Abstract
More than 55 million mink skins were produced globally in 2017. As a consequence, a large number of people are employed in mink production worldwide. In Denmark, farmed mink were found to constitute a reservoir of methicillin-resistant Staphylococcus aureus (MRSA) clonal complex (CC) 398 and 6000 mink farm workers in Denmark are potentially exposed to LA-MRSA CC398. The study aim was to elucidate the source of LA-MRSA CC398 in mink farms and to investigate possible transmission to humans. In total, 161 LA-MRSA CC398 isolates from mink (n = 65), mink feed (n = 16) and humans (n = 80) with reported contact to mink, were whole-genome sequenced and compared to 183 LA-MRSA CC398 isolates from Danish pigs and an international collection of 89 S. aureus CC398 isolates. Most of the mink-associated isolates clustered within the predominant LA-MRSA CC398 lineages circulating in the Danish pig production, supporting that pigs are a source of LA-MRSA CC398 in mink feed, mink, and mink farmers.
Collapse
Affiliation(s)
- Julie E Hansen
- Technical University of Denmark, Søltofts Plads, DK-2800 Lyngby, Denmark.
| | - Marc Stegger
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Karl Pedersen
- National Veterinary Institute, Ulls väg 2B 751 89 Uppsala, Sweden
| | - Raphael N Sieber
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Jesper Larsen
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Gitte Larsen
- Technical University of Denmark, Søltofts Plads, DK-2800 Lyngby, Denmark
| | - Berit Lilje
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Mariann Chriél
- Technical University of Denmark, Søltofts Plads, DK-2800 Lyngby, Denmark
| | - Paal S Andersen
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Anders R Larsen
- Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| |
Collapse
|