51
|
França A, Carvalhais V, Maira-Litrán T, Vilanova M, Cerca N, Pier G. Alterations in the Staphylococcus epidermidis biofilm transcriptome following interaction with whole human blood. Pathog Dis 2014; 70:444-8. [PMID: 24391077 DOI: 10.1111/2049-632x.12130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 01/17/2023] Open
Abstract
Staphylococcus epidermidis biofilm formation on the surface of intravenous catheters is responsible for 22% of the cases of bloodstream infections, in patients in intensive care units in the USA. The ability of S. epidermidis to withstand the high bactericidal activity of human blood is therefore crucial for systemic dissemination. To identify the genes involved in the bacterium's survival, the transcriptome of S. epidermidis biofilms, upon contact with human blood, was assessed using an ex vivo model. Our results showed an increased transcription of genes involved in biosynthesis and metabolism of amino acids, small molecules, carboxylic and organic acids, and cellular ketones. One of the striking changes observed 4 h of S. epidermidis exposure to human blood was an increased expression of genes involved in iron utilization. This finding suggests that iron acquisition is an important event for S. epidermidis survival in human blood.
Collapse
Affiliation(s)
- Angela França
- CEB-IBB, Centro de Engenharia Biológica, Instituto de Biotecnologia e Bioengenharia, Universidade do Minho, Braga, Portugal; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
52
|
Anderson AS, Jansen KU, Eiden J. New frontiers in meningococcal vaccines. Expert Rev Vaccines 2014; 10:617-34. [DOI: 10.1586/erv.11.50] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
53
|
Titov LP, Siniuk KV, Wollenberg KK, Unemo M, Hedberg ST, Glazkova SE, Lebedzeu FA, Nosava AS, Yanovich VO, Xirasagar S, Hurt D, Huyen Y. Evolutionary epidemiology of Neisseria meningitidis strains in Belarus compared to other European countries. Acta Microbiol Immunol Hung 2013; 60:397-410. [PMID: 24292084 DOI: 10.1556/amicr.60.2013.4.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Meningococcal infections are major causes of death in children globally. In Belarus, the incidence of cases and fatality rate of meningococcal infections are low and comparable to the levels in other European countries. AIM In the present study, the molecular and epidemiological traits of Neisseria meningitidis strains circulating in Belarus were characterized and compared to isolates from other European countries. MATERIALS AND METHODS Twenty N. meningitidis strains isolated from patients (n = 13) and healthy contacts (n = 7) during 2006–2012 in Belarus were selected for multilocus sequence typing (MLST), genosubtyping and FetA typing. TheSTs of the Belarusian strains were phylogenetically compared to the STs of 110 selected strains from 22 other European countries. RESULTS Overall, eleven different genosubtypes were observed, there were seven variants of variable region of the fet Agene detected. The majority of the STs (95%) found in Belarus were novel and allthose were submitted to the Neisseria MLST database for assignment. Several newly discovered alleles of fumC (allele 451) and gdh (allele 560 and 621) appeared to be descendants of alleles which are widespread in Europe, and single aroE alleles (602 and 603) occurred as a result of separate evolution. CONCLUSIONS N. meningitidis strains circulating in Belarus are heterogeneous and include sequence types, possibly, locally evolved in Belarus as well as representatives of widespread European hyperinvasive clonal complexes.
Collapse
Affiliation(s)
- Leonid P Titov
- Republic Research and Practical Centre for Epidemiology and Microbiology 23 Filimonova street Minsk Belarus
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Galdiero S, Falanga A, Cantisani M, Tarallo R, Della Pepa ME, D'Oriano V, Galdiero M. Microbe-host interactions: structure and role of Gram-negative bacterial porins. Curr Protein Pept Sci 2013; 13:843-54. [PMID: 23305369 PMCID: PMC3706956 DOI: 10.2174/138920312804871120] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/13/2022]
Abstract
Gram negative bacteria have evolved many mechanisms of attaching to and invading host epithelial and immune cells. In particular, many outer membrane proteins (OMPs) are involved in this initial interaction between the pathogen and their host. The outer membrane (OM) of Gram-negative bacteria performs the crucial role of providing an extra layer of protection to the organism without compromising the exchange of material required for sustaining life. The OM, therefore, represents a sophisticated macromolecular assembly, whose complexity has yet to be fully elucidated. This review will summarize the structural information available for porins, a class of OMP, and highlight their role in bacterial pathogenesis and their potential as therapeutic targets. The functional role of porins in microbe-host interactions during various bacterial infections has emerged only during the last few decades, and their interaction with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms have placed bacterial porins at the forefront of research in bacterial pathogenesis. This review will discuss the role that porins play in activating immunological responses, in inducing signaling pathways and their influence on antibiotic resistance mechanisms that involve modifications of the properties of the OM lipid barrier.
Collapse
Affiliation(s)
- Stefania Galdiero
- Department of Biological Sciences, Division of Biostructures, University of Naples "Federico II" and Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
55
|
Kristiansen PA, Ba AK, Sanou I, Ouédraogo AS, Ouédraogo R, Sangaré L, Diomandé F, Kandolo D, Thomas JD, Clark TA, Laforce M, Caugant DA. Phenotypic and genotypic characterization of meningococcal carriage and disease isolates in Burkina Faso after mass vaccination with a serogroup a conjugate vaccine. BMC Infect Dis 2013; 13:363. [PMID: 23914778 PMCID: PMC3750508 DOI: 10.1186/1471-2334-13-363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/12/2013] [Indexed: 01/09/2023] Open
Abstract
Background The conjugate vaccine against serogroup A Neisseria meningitidis (NmA), MenAfriVac, was first introduced in mass vaccination campaigns of the 1-29-year-olds in Burkina Faso in 2010. The aim of this study was to genetically characterize meningococcal isolates circulating in Burkina Faso before and up to 13 months after MenAfriVac mass vaccination. Methods A total of 1,659 meningococcal carriage isolates were collected in a repeated cross-sectional carriage study of the 1-29-year-olds in three districts of Burkina Faso in 2010 and 2011, before and up to 13 months after mass vaccination. Forty-two invasive isolates were collected through the national surveillance in Burkina Faso in the same period. All the invasive isolates and 817 carriage isolates were characterized by serogroup, multilocus sequence typing and porA-fetA sequencing. Results Seven serogroup A isolates were identified, six in 2010, before vaccination (4 from carriers and 2 from patients), and one in 2011 from an unvaccinated patient; all were assigned to sequence type (ST)-2859 of the ST-5 clonal complex. No NmA carriage isolate and no ST-2859 isolate with another capsule were identified after vaccination. Serogroup X carriage and disease prevalence increased before vaccine introduction, due to the expansion of ST-181, which comprised 48.5% of all the characterized carriage isolates. The hypervirulent serogroup W ST-11 clone that was responsible for most of meningococcal disease in 2011 and 2012 was not observed in 2010; it appeared during the epidemic season of 2011, when it represented 40.6% of the serogroup W carriage isolates. Conclusions Successive clonal waves of ST-181 and ST-11 may explain the changing epidemiology in Burkina Faso after the virtual disappearance of NmA disease and carriage. No ST-2859 strain of any serogroup was found after vaccination, suggesting that capsule switching of ST-2859 did not occur, at least not during the first 13 months after vaccination.
Collapse
|
56
|
Comparative proteome analysis of spontaneous outer membrane vesicles and purified outer membranes of Neisseria meningitidis. J Bacteriol 2013; 195:4425-35. [PMID: 23893116 DOI: 10.1128/jb.00625-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane vesicles (OMVs) of Gram-negative bacteria receive increasing attention because of various biological functions and their use as vaccines. However, the mechanisms of OMV release and selective sorting of proteins into OMVs remain unclear. Comprehensive quantitative proteome comparisons between spontaneous OMVs (SOMVs) and the outer membrane (OM) have not been conducted so far. Here, we established a protocol for metabolic labeling of neisserial proteins with (15)N. SOMV and OM proteins labeled with (15)N were used as an internal standard for proteomic comparison of the SOMVs and OMs of two different strains. This labeling approach, coupled with high-sensitivity mass spectrometry, allowed us to comprehensively unravel the proteome of the SOMVs and OMs. We quantified the relative distribution of 155 proteins between SOMVs and the OM. Complement regulatory proteins, autotransporters, proteins involved in iron and zinc acquisition, and a two-partner secretion system were enriched in SOMVs. The highly abundant porins PorA and PorB and proteins connecting the OM with peptidoglycan or the inner membrane, such as RmpM, MtrE, and PilQ, were depleted in SOMVs. Furthermore, the three lytic transglycosylases MltA, MltB, and Slt were less abundant in SOMVs. In conclusion, SOMVs are likely to be released from surface areas with a low local abundance of membrane-anchoring proteins and lytic transglycosylases. The enrichment of complement regulatory proteins, autotransporters, and trace metal binding and transport proteins needs to be explored in the context of the pathogenesis of meningococcal disease.
Collapse
|
57
|
Genetic distribution of noncapsular meningococcal group B vaccine antigens in Neisseria lactamica. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1360-9. [PMID: 23803905 DOI: 10.1128/cvi.00090-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The poor immunogenicity of the meningococcal serogroup B (MenB) capsule has led to the development of vaccines targeting subcapsular antigens, in particular the immunodominant and diverse outer membrane porin, PorA. These vaccines are largely strain specific; however, they offer limited protection against the diverse MenB-associated diseases observed in many industrialized nations. To broaden the scope of its protection, the multicomponent vaccine (4CMenB) incorporates a PorA-containing outer membrane vesicle (OMV) alongside relatively conserved recombinant protein components, including factor H-binding protein (fHbp), Neisseria adhesin A (NadA), and neisserial heparin-binding antigen (NHBA). The expression of PorA is unique to meningococci (Neisseria meningitidis); however, many subcapsular antigens are shared with nonpathogenic members of the genus Neisseria that also inhabit the nasopharynx. These organisms may elicit cross-protective immunity against meningococci and/or occupy a niche that might otherwise accommodate pathogens. The potential for 4CMenB responses to impact such species (and vice versa) was investigated by determining the genetic distribution of the primary 4CMenB antigens among diverse members of the common childhood commensal, Neisseria lactamica. All the isolates possessed nhba but were devoid of fhbp and nadA. The nhba alleles were mainly distinct from but closely related to those observed among a representative panel of invasive MenB isolates from the same broad geographic region. We made similar findings for the immunogenic typing antigen, FetA, which constitutes a major part of the 4CMenB OMV. Thus, 4CMenB vaccine responses may impact or be impacted by nasopharyngeal carriage of commensal neisseriae. This highlights an area for further research and surveillance should the vaccine be routinely implemented.
Collapse
|
58
|
Barra GN, Araya PA, Fernandez JO, Gabastou JM, Hormazábal JC, Seoane M, Pidal PC, Valenzuela MT, Ibarz-Pavón AB. Molecular characterization of invasive Neisseria meningitidis strains isolated in Chile during 2010-2011. PLoS One 2013; 8:e66006. [PMID: 23776590 PMCID: PMC3679051 DOI: 10.1371/journal.pone.0066006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Background With the upcoming licensure of Outer Membrane Protein-based vaccines against meningococcal disease, data on disease incidence and molecular characteristic of circulating N. meningitidis strains in Latin American countries is needed. Chile is, to date, one of the few countries in the region that has performed this type of work in a comprehensive collection of disease-associated strains from two consecutive years, 2010–2011. Methods A total of 119 N. meningitidis strains isolated from patients with invasive disease in Chile in 2010–2011 were characterized by the National Reference Laboratory. Serogroup determination, MLST and porA typing were performed. Results Serogroup B was predominant in both study years, but W135 experienced a noticeable increase in 2011 compared to 2010. ST-11 complex, ST-41/44 complex ST-32 complex were the most prevalent among the isolates, and were strongly associated with serogroups W135 (ST-11 Complex) and B (ST-41/44 and ST-32 complexes). Likewise, the major porA types detected were strongly associated with these three clonal complexes: P1.5,2 was found exclusively among W135:ST-11 isolates, whereas P1.7, 2–3 was only detected in C:ST-11. ST-41/44 isolates mainly had P1.10-8, and ST-32 complex were associated with a P1.18-8 porA. Conclusions Our data show disease-associated N. meningitidis circulating in Chile are similar to those found in other parts of the world. The increase on W135:ST-11 isolates observed in 2011 foretold the unusual epidemiological situation experienced in the country in 2012, and MLST data show that this strain is indistinguishable from the one linked to the global Hajj 2000-related outbreak that occurred in 2001. Finally, this work demonstrates the importance of maintaining a strong national surveillance program integrating clinical, epidemiological and laboratory data and incorporating gold standard diagnostic and characterization techniques that allow the data to be compared all over the world.
Collapse
Affiliation(s)
- Gisselle N. Barra
- Sub-Department of Molecular Genetics, Institute of Public Health, Santiago, Chile
| | - Pamela A. Araya
- Section of Bacteriology, Institute of Public Health, Santiago, Chile
| | - Jorge O. Fernandez
- Sub-Department of Molecular Genetics, Institute of Public Health, Santiago, Chile
- * E-mail: (ABIP); (JF)
| | - Jean-Marc Gabastou
- Pan American Health Organization, Washington, D.C., United States of America
| | | | - Mabel Seoane
- Section of Bacteriology, Institute of Public Health, Santiago, Chile
| | - Paola C. Pidal
- Biomedical laboratory department, Institute of Public Health, Santiago, Chile
| | - Maria T. Valenzuela
- Biomedical laboratory department, Institute of Public Health, Santiago, Chile
| | - Ana Belén Ibarz-Pavón
- Pan American Health Organization, Washington, D.C., United States of America
- * E-mail: (ABIP); (JF)
| |
Collapse
|
59
|
Sorhouet-Pereira C, Efron A, Gagetti P, Faccone D, Regueira M, Corso A, Argentinean SIREVA II Working Group, Gabastou JM, Ibarz-Pavón AB. Phenotypic and genotypic characteristics of Neisseria meningitidis disease-causing strains in Argentina, 2010. PLoS One 2013; 8:e58065. [PMID: 23483970 PMCID: PMC3587574 DOI: 10.1371/journal.pone.0058065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/29/2013] [Indexed: 11/19/2022] Open
Abstract
Phenotypic and genotypic characterization of 133 isolates of Neisseria meningitidis obtained from meningococcal disease cases in Argentina during 2010 were performed by the National Reference Laboratory as part of a project coordinated by the PAHO within the SIREVA II network. Serogroup, serotype, serosubtype and MLST characterization were performed. Minimum Inhibitory Concentration to penicillin, ampicillin, ceftriaxone, rifampin, chloramphenicol, tetracycline and ciprofloxacin were determined and interpreted according to CLSI guidelines. Almost 49% of isolates were W135, and two serotype:serosubtype combinations, W135:2a:P1.5,2:ST-11 and W135:2a:P1.2:ST-11 accounted for 78% of all W135 isolates. Serogroup B accounted for 42.1% of isolates, and was both phenotypically and genotypically diverse. Serogroup C isolates represented 5.3% of the dataset, and one isolate belonging to the ST-198 complex was non-groupable. Isolates belonged mainly to the ST-11 complex (48%) and to a lesser extent to the ST-865 (18%), ST-32 (9,8%) and the ST-35 complexes (9%). Intermediate resistance to penicillin and ampicillin was detected in 35.4% and 33.1% of isolates respectively. Two W135:2a:P1.5,2:ST-11:ST-11 isolates presented resistance to ciprofloxacin associated with a mutation in the QRDR of gyrA gene Thr91-Ile. These data show serogroup W135 was the first cause of disease in Argentina in 2010, and was strongly associated with the W135:2a:P1.5,2:ST-11 epidemic clone. Serogroup B was the second cause of disease and isolates belonging to this serogroup were phenotypically and genotypically diverse. The presence of isolates with intermediate resistance to penicillin and the presence of fluorquinolone-resistant isolates highlight the necessity and importance of maintaining and strengthening National Surveillance Programs.
Collapse
Affiliation(s)
- Cecilia Sorhouet-Pereira
- Clinical Bacteriology Service, Department of Bacteriology, National Institute for Infectious Diseases (ANLIS-INEI), ‘Dr Carlos G. Malbrán’, Ministry of Health, Buenos Aires, Argentina
| | - Adriana Efron
- Clinical Bacteriology Service, Department of Bacteriology, National Institute for Infectious Diseases (ANLIS-INEI), ‘Dr Carlos G. Malbrán’, Ministry of Health, Buenos Aires, Argentina
| | - Paula Gagetti
- Antimicrobial Resistance Service, Department of Bacteriology, National Institute for Infectious Diseases (ANLIS-INEI), ‘Dr Carlos G. Malbrán’, Ministry of Health, Buenos Aires, Argentina
| | - Diego Faccone
- Antimicrobial Resistance Service, Department of Bacteriology, National Institute for Infectious Diseases (ANLIS-INEI), ‘Dr Carlos G. Malbrán’, Ministry of Health, Buenos Aires, Argentina
| | - Mabel Regueira
- Clinical Bacteriology Service, Department of Bacteriology, National Institute for Infectious Diseases (ANLIS-INEI), ‘Dr Carlos G. Malbrán’, Ministry of Health, Buenos Aires, Argentina
| | - Alejandra Corso
- Antimicrobial Resistance Service, Department of Bacteriology, National Institute for Infectious Diseases (ANLIS-INEI), ‘Dr Carlos G. Malbrán’, Ministry of Health, Buenos Aires, Argentina
| | | | - Jean-Marc Gabastou
- Pan American Health Organization, Washington, DC, United States of America
| | | |
Collapse
|
60
|
Saleem M, Prince SM, Rigby SEJ, Imran M, Patel H, Chan H, Sanders H, Maiden MCJ, Feavers IM, Derrick JP. Use of a molecular decoy to segregate transport from antigenicity in the FrpB iron transporter from Neisseria meningitidis. PLoS One 2013; 8:e56746. [PMID: 23457610 PMCID: PMC3574120 DOI: 10.1371/journal.pone.0056746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022] Open
Abstract
FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe3+ with high affinity. EPR spectra of the bound Fe3+ ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe3+ binding was reduced or abolished on mutation of the Fe3+-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe3+. The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a ‘molecular decoy’ to distract immune surveillance.
Collapse
Affiliation(s)
- Muhammad Saleem
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Stephen M. Prince
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, United Kingdom
| | - Stephen E. J. Rigby
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, United Kingdom
| | - Muhammad Imran
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Hema Patel
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Hannah Chan
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Holly Sanders
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Martin C. J. Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy P. Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
61
|
|
62
|
Hong E, Giorgini D, Deghmane AE, Taha MK. Functional impacts of the diversity of the meningococcal factor H binding protein. Vaccine 2012; 31:183-9. [DOI: 10.1016/j.vaccine.2012.10.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 08/29/2012] [Accepted: 10/20/2012] [Indexed: 11/27/2022]
|
63
|
Huber CA, Pflüger V, Hamid AWM, Forgor AA, Hodgson A, Sié A, Junghanss T, Pluschke G. Lack of antigenic diversification of major outer membrane proteins during clonal waves of Neisseria meningitidis serogroup A colonization and disease. Pathog Dis 2012; 67:4-10. [PMID: 23620114 DOI: 10.1111/2049-632x.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022] Open
Abstract
In particular in the 'meningitis belt' of sub-Saharan Africa, epidemic meningococcal meningitis is a severe public health problem. In the past decades, serogroup A lineages have been the dominant etiologic agents, but also other serogroups have caused outbreaks. A comprehensive vaccine based on subcapsular outer membrane proteins (OMPs) is not available. Here, we have investigated whether meningococcal populations overcome herd immunity by changing antigenic properties of their OMPs. Meningococcal isolates were collected in the context of longitudinal studies in Ghana between 2002 and 2008 and in Burkina Faso between 2006 and 2007. Serogroup A strains isolated during two clonal waves of colonization and disease showed no diversification in the genes encoding their PorA, PorB, and FetA proteins. However, we detected occasional allelic exchange of opa genes, as well as wide variation in the number of intragenic tandem repeats, showing that phase variation of Opa protein expression is a frequent event. Altogether we observed a remarkable antigenic stability of the PorA, PorB and FetA proteins over years. Our results indicate that while herd immunity may be responsible for the disappearance of meningococcal clones over time, it is not a strong driving force for antigenic diversification of the major OMPs analyzed here.
Collapse
|
64
|
Tsang RSW, Lefebvre B, Jamieson FB, Gilca R, Deeks SL, Zhou J. Identification and proposal of a potentially new clonal complex that is a common cause of MenB disease in Central and Eastern Canada. Can J Microbiol 2012; 58:1236-40. [PMID: 23051561 DOI: 10.1139/w2012-103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined serogroup B meningococci (MenB) from invasive meningococcal disease (IMD) cases in the provinces of Québec and Ontario in the last decade by multilocus sequence typing (MLST) to determine their sequence types (STs) and clonal complexes (CCs). Forty isolates from individual MenB IMD cases were found to belong to 8 related STs, with ST-336 being the founding ST and the other 7 STs being single locus variants of ST-336. Eleven isolates belonged to ST-336, 23 belonged to ST-5571, and the other 6 were represented individually by a single different ST. All but 1 of these 40 isolates have the PorA variable-region type of P1.22,14,36. Interrogation of the Neisseria MLST web site with the present finding did not put any of the 8 related STs into known CCs. Since these 8 related STs were common causes of IMD, with ST-5571 being the most frequently identified ST in Ontario and ST-336 the third most common ST identified in Québec, we propose that ST-336 and its related STs is a potentially new meningococcal clonal complex that is endemic in the Canadian provinces of Québec and Ontario, and they constitute a common cause of IMD.
Collapse
Affiliation(s)
- Raymond S W Tsang
- Vaccine Preventable Bacterial Diseases, National Microbiology Laboratory, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada.
| | | | | | | | | | | |
Collapse
|
65
|
Watkins ER, Maiden MCJ. Persistence of hyperinvasive meningococcal strain types during global spread as recorded in the PubMLST database. PLoS One 2012; 7:e45349. [PMID: 23028953 PMCID: PMC3460945 DOI: 10.1371/journal.pone.0045349] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/15/2012] [Indexed: 01/10/2023] Open
Abstract
Neisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for 'serogroup B substitute' vaccines are outer membrane protein antigens including the typing antigens PorA and FetA. The web-accessible PubMLST database (www.pubmlst.org) was used to investigate the temporal and geographical patterns of associations among PorA and FetA protein variants and lineages defined by combinations of housekeeping genes, known as clonal complexes. The sample contained 3460 isolates with genotypic information from 57 countries over a 74 year period. Although shifting associations among antigen variants and clonal complexes were evident, a subset of strain types associated with several serogroups persisted for decades and proliferated globally. Genetic stability among outer membrane proteins of serogroup A meningococci has been described previously, but here long-lived genetic associations were also observed among meningococci belonging to serogroups B and C. The patterns of variation were consistent with behaviour predicted by models that invoke inter-strain competition mediated by immune selection. There was also substantial geographic and temporal heterogeneity in antigenic repertoires, providing both opportunities and challenges for the design of broad coverage protein-based meningococcal vaccines.
Collapse
|
66
|
Caugant DA, Kristiansen PA, Wang X, Mayer LW, Taha MK, Ouédraogo R, Kandolo D, Bougoudogo F, Sow S, Bonte L. Molecular characterization of invasive meningococcal isolates from countries in the African meningitis belt before introduction of a serogroup A conjugate vaccine. PLoS One 2012; 7:e46019. [PMID: 23029368 PMCID: PMC3459830 DOI: 10.1371/journal.pone.0046019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 08/23/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The serogroup A conjugate meningococcal vaccine, MenAfriVac, was introduced in mass vaccination campaigns in December 2010 in Burkina Faso, Mali and Niger. In the coming years, vaccination will be extended to other African countries at risk of epidemics. To document the molecular characteristics of disease-causing meningococcal strains circulating in the meningitis belt of Africa before vaccine introduction, the World Health Organization Collaborating Centers on Meningococci in Europe and United States established a common strain collection of 773 isolates from cases of invasive meningococcal disease collected between 2004 and 2010 from 13 sub-Saharan countries. METHODOLOGY All isolates were characterized by multilocus sequence typing, and 487 (62%) were also analyzed for genetic variation in the surface antigens PorA and FetA. Antibiotic susceptibility was tested for part of the collection. PRINCIPAL FINDINGS Only 19 sequence types (STs) belonging to 6 clonal complexes were revealed. ST-5 clonal complex dominated with 578 (74.8%) isolates. All ST-5 complex isolates were remarkably homogeneous in their PorA (P1.20,9) and FetA (F3-1) and characterized the serogroup A strains which have been responsible for most epidemics during this time period. Sixty-eight (8.8%) of the 773 isolates belonged to the ST-11 clonal complex which was mainly represented by serogroup W135, while an additional 38 (4.9%) W135 isolates belonged to the ST-175 complex. Forty-eight (6.2%) serogroup X isolates from West Africa belonged to the ST-181 complex, while serogroup X cases in Kenya and Uganda were caused by an unrelated clone, ST-5403. Serogroup X, ST-181, emerged in Burkina Faso before vaccine introduction. CONCLUSIONS In the seven years preceding introduction of a new serogroup A conjugate vaccine, serogroup A of the ST-5 clonal complex was identified as the predominant disease-causing strain.
Collapse
Affiliation(s)
- Dominique A Caugant
- WHO Collaborating Centre for Reference and Research on Meningococci, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Norheim G, Tunheim G, Naess LM, Kristiansen PA, Caugant DA, Rosenqvist E. An Outer Membrane Vesicle Vaccine for Prevention of Serogroup A and W-135 Meningococcal Disease in the African Meningitis Belt. Scand J Immunol 2012; 76:99-107. [DOI: 10.1111/j.1365-3083.2012.02709.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
68
|
de Filippis I, de Lemos APS, Hostetler JB, Wollenberg K, Sacchi CT, Harrison LH, Bash MC, Prevots DR. Molecular epidemiology of Neisseria meningitidis serogroup B in Brazil. PLoS One 2012; 7:e33016. [PMID: 22431994 PMCID: PMC3303791 DOI: 10.1371/journal.pone.0033016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/03/2012] [Indexed: 11/23/2022] Open
Abstract
Background Neisseria meningitidis serogroup B has been predominant in Brazil, but no broadly effective vaccine is available to prevent endemic meningococcal disease. To understand genetic diversity among serogroup B strains in Brazil, we selected a nationally representative sample of clinical disease isolates from 2004, and a temporally representative sample for the state of São Paulo (1988–2006) for study (n = 372). Methods We performed multi-locus sequence typing (MLST) and sequence analysis of five outer membrane protein (OMP) genes, including novel vaccine targets fHbp and nadA. Results In 2004, strain B:4:P1.15,19 clonal complex ST-32/ET-5 (cc32) predominated throughout Brazil; regional variation in MLST sequence type (ST), fetA, and porB was significant but diversity was limited for nadA and fHbp. Between 1988 and 1996, the São Paulo isolates shifted from clonal complex ST-41/44/Lineage 3 (cc41/44) to cc32. OMP variation was associated with but not predicted by cc or ST. Overall, fHbp variant 1/subfamily B was present in 80% of isolates and showed little diversity. The majority of nadA were similar to reference allele 1. Conclusions A predominant serogroup B lineage has circulated in Brazil for over a decade with significant regional and temporal diversity in ST, fetA, and porB, but not in nadA and fHbp.
Collapse
Affiliation(s)
- Ivano de Filippis
- National Quality Control Institute (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
- Epidemiology Unit, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | | | - Kurt Wollenberg
- Office of Cyberinfrastructure and Computational Biology (OCICB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | | | - Lee H. Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Margaret C. Bash
- Laboratory of Bacterial Polysaccharides, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, Maryland, United States of America
| | - D. Rebecca Prevots
- Epidemiology Unit, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
69
|
Saleem M, Prince SM, Patel H, Chan H, Feavers IM, Derrick JP. Refolding, purification and crystallization of the FrpB outer membrane iron transporter from Neisseria meningitidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:231-5. [PMID: 22298007 PMCID: PMC3274411 DOI: 10.1107/s1744309111056028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/28/2011] [Indexed: 11/10/2022]
Abstract
FrpB is an integral outer membrane protein from the human pathogen Neisseria meningitidis. It is a member of the TonB-dependent transporter family and promotes the uptake of iron across the outer membrane. There is also evidence that FrpB is an antigen and hence a potential component of a vaccine against meningococcal meningitis. FrpB incorporating a polyhistidine tag was overexpressed in Escherichia coli into inclusion bodies. The protein was then solubilized in urea, refolded and purified to homogeneity. Two separate antigenic variants of FrpB were crystallized by sitting-drop vapour diffusion. Crystals of the F5-1 variant diffracted to 2.4 Å resolution and belonged to space group C2, with unit-cell parameters a = 176.5, b = 79.4, c = 75.9 Å, β = 98.3°. Crystal-packing calculations suggested the presence of a monomer in the asymmetric unit. Crystals of the F3-3 variant also diffracted to 2.4 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 85.3, b = 104.6, c = 269.1 Å. Preliminary analysis suggested the presence of an FrpB trimer in the asymmetric unit.
Collapse
Affiliation(s)
- Muhammad Saleem
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, England
| | - Stephen M. Prince
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, Princess Street, Manchester, England
| | - Hema Patel
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, England
| | - Hannah Chan
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, England
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, Health Protection Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, England
| | - Jeremy P. Derrick
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, England
| |
Collapse
|
70
|
Abstract
Meningococcal disease is communicable by close contact or droplet aerosols. Striking features are high case fatality rates and peak incidences of invasive disease in infants, toddlers and adolescents. Vaccine development is hampered by bacterial immune evasion strategies including molecular mimicry.As for Haemophilus influenzae and Streptococcus pneumoniae, no vaccine has therefore been developed that targets all serogroups of Neisseria meningitidis. Polysaccharide vaccines available both in protein conjugated and non-conjugated form, have been introduced against capsular serogroups A, C,W-135 and Y, but are ineffective against serogroup B meningococci, which cause a significant burden of disease in many parts of the world. Detoxified outer membrane vesicles are used since decades to elicit protection against epidemic serogroup B disease. Genome mining and biochemical approaches have provided astounding progress recently in the identification of immunogenic, yet reasonably conserved outer membrane proteins. As subcapsular proteins nevertheless are unlikely to immunize against all serogroup B variants, thorough investigation by surrogate assays and molecular epidemiology approaches are needed prior to introduction and post-licensure of protein vaccines. Research currently addresses the analysis of life vaccines, meningococcus B polysaccharide modifications and mimotopes, as well as the use of N. lactamica outer membrane vesicles.
Collapse
Affiliation(s)
- Ulrich Vogel
- University of Würzburg, Institute for Hygiene and Microbiology, Reference Laboratory for Meningococci, Germany.
| | | |
Collapse
|
71
|
Claus H, Jördens MS, Kriz P, Musilek M, Jarva H, Pawlik MC, Meri S, Vogel U. Capsule null locus meningococci: Typing of antigens used in an investigational multicomponent meningococcus serogroup B vaccine. Vaccine 2012; 30:155-60. [DOI: 10.1016/j.vaccine.2011.11.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 06/22/2011] [Accepted: 11/13/2011] [Indexed: 01/13/2023]
|
72
|
Hollander A, Mercante AD, Shafer WM, Cornelissen CN. The iron-repressed, AraC-like regulator MpeR activates expression of fetA in Neisseria gonorrhoeae. Infect Immun 2011; 79:4764-76. [PMID: 21947770 PMCID: PMC3232672 DOI: 10.1128/iai.05806-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/05/2011] [Accepted: 09/13/2011] [Indexed: 12/23/2022] Open
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that causes the common sexually transmitted infection gonorrhea. Gonococcal infections cause significant morbidity, particularly among women, as the organism ascends to the upper reproductive tract, resulting in pelvic inflammatory disease, ectopic pregnancy, and infertility. In the last few years, antibiotic resistance rates have risen dramatically, leading to severe restriction of treatment options for gonococcal disease. Gonococcal infections do not elicit protective immunity, nor is there an effective vaccine to prevent the disease. Thus, further understanding of the expression, function, and regulation of surface antigens could lead to better treatment and prevention modalities in the future. In the current study, we determined that an iron-repressed regulator, MpeR, interacted specifically with the DNA sequence upstream of fetA and activated FetA expression. Interestingly, MpeR was previously shown to regulate the expression of gonococcal antimicrobial efflux systems. We confirmed that the outer membrane transporter FetA allows gonococcal strain FA1090 to utilize the xenosiderophore ferric enterobactin as an iron source. However, we further demonstrated that FetA has an extended range of substrates that encompasses other catecholate xenosiderophores, including ferric salmochelin and the dimers and trimers of dihydroxybenzoylserine. We demonstrated that fetA is part of an iron-repressed, MpeR-activated operon which putatively encodes other iron transport proteins. This is the first study to describe a regulatory linkage between antimicrobial efflux and iron transport in N. gonorrhoeae. The regulatory nidus that links these systems, MpeR, is expressed exclusively by pathogenic neisseriae and is therefore expected to be an important virulence factor.
Collapse
Affiliation(s)
- Aimee Hollander
- Department of Microbiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298
| | - Alexandra Dubon Mercante
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
- Laboratories of Bacterial Pathogenesis and Antimicrobial Resistance, VA Medical Center (Atlanta), Decatur, Georgia 30033
| | - Cynthia Nau Cornelissen
- Department of Microbiology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298
| |
Collapse
|
73
|
Harrison OB, Brueggemann AB, Caugant DA, van der Ende A, Frosch M, Gray S, Heuberger S, Krizova P, Olcen P, Slack M, Taha MK, Maiden MCJ. Molecular typing methods for outbreak detection and surveillance of invasive disease caused by Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae, a review. MICROBIOLOGY (READING, ENGLAND) 2011; 157:2181-2195. [PMID: 21622526 PMCID: PMC3980633 DOI: 10.1099/mic.0.050518-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Invasive disease caused by the encapsulated bacteria Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae remains an important cause of morbidity and mortality worldwide, despite the introduction of successful conjugate polysaccharide vaccines that target disease-associated strains. In addition, resistance, or more accurately reduced susceptibility, to therapeutic antibiotics is spreading in populations of these organisms. There is therefore a continuing requirement for the surveillance of vaccine and non-vaccine antigens and antibiotic susceptibilities among isolates from invasive disease, which is only partially met by conventional methods. This need can be met with molecular and especially nucleotide sequence-based typing methods, which are fully developed in the case of N. meningitidis and which could be more widely deployed in clinical laboratories for S. pneumoniae and H. influenzae.
Collapse
Affiliation(s)
- Odile B. Harrison
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | | | - Dominique A. Caugant
- Department of Bacteriology and Immunology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Arie van der Ende
- Academic Medical Center, Department of Medical Microbiology, Reference Laboratory for Bacterial Meningitis, PO Box 22660, 1100 DD Amsterdam, The Netherlands
| | - Matthias Frosch
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Josef-Schneider Strasse 2, 97080 Würzburg, Germany
| | - Stephen Gray
- Meningococcal Reference Unit, Health Protection Agency, PO Box 209, Clinical Sciences Building 2, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, UK
| | - Sigrid Heuberger
- Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH, Bereich Humanmedizin, Institut für medizinische Mikrobiologie und Hygiene, Beethovenstraße 6, A-8010 Graz, Austria
| | - Paula Krizova
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Srobarova 48, Prague, Czech Republic
| | - Per Olcen
- Department of Laboratory Medicine, Clinical Microbiology and Immunology, Orebro University Hospital, SE-701 85 Orebro, Sweden
| | - Mary Slack
- Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, 61 Colindale Avenue, London NW9 5EQ, UK
| | | | - Martin C. J Maiden
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| |
Collapse
|
74
|
Tauseef I, Harrison OB, Wooldridge KG, Feavers IM, Neal KR, Gray SJ, Kriz P, Turner DPJ, Ala’Aldeen DAA, Maiden MCJ, Bayliss CD. Influence of the combination and phase variation status of the haemoglobin receptors HmbR and HpuAB on meningococcal virulence. MICROBIOLOGY (READING, ENGLAND) 2011; 157:1446-1456. [PMID: 21310784 PMCID: PMC3352162 DOI: 10.1099/mic.0.046946-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis can utilize haem, haemoglobin and haemoglobin-haptoglobin complexes as sources of iron via two TonB-dependent phase variable haemoglobin receptors, HmbR and HpuAB. HmbR is over-represented in disease isolates, suggesting a link between haemoglobin acquisition and meningococcal disease. This study compared the distribution of HpuAB and phase variation (PV) status of both receptors in disease and carriage isolates. Meningococcal disease (n = 214) and carriage (n = 305) isolates representative of multiple clonal complexes (CCs) were investigated for the distribution, polyG tract lengths and ON/OFF status of both haemoglobin receptors, and for the deletion mechanism for HpuAB. Strains with both receptors or only hmbR were present at similar frequencies among meningococcal disease isolates as compared with carriage isolates. However, >90 % of isolates from the three CCs CC5, CC8 and CC11 with the highest disease to carriage ratios contained both receptors. Strains with an hpuAB-only phenotype were under-represented among disease isolates, suggesting selection against this receptor during systemic disease, possibly due to the receptor having a high level of immunogenicity or being inefficient in acquisition of iron during systemic spread. Absence of hpuAB resulted from either complete deletion or replacement by an insertion element. In an examination of PV status, one or both receptors were found in an ON state in 91 % of disease and 71 % of carriage isolates. We suggest that expression of a haemoglobin receptor, either HmbR or HpuAB, is of major importance for systemic spread of meningococci, and that the presence of both receptors contributes to virulence in some strains.
Collapse
Affiliation(s)
- Isfahan Tauseef
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | - Odile B. Harrison
- The Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Karl G. Wooldridge
- Molecular Bacteriology and Immunology Group, University of Nottingham, Nottingham, UK
| | - Ian M. Feavers
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Keith R. Neal
- School of Community Health Sciences, University of Nottingham, Nottingham, UK
| | - Stephen J. Gray
- Health Protection Agency, Meningococcal Reference Unit, Manchester Royal Infirmary, Manchester M13 9WL, UK
| | - Paula Kriz
- National Reference Laboratory for Meningococcal Infections, National Institute of Public Health, Prague, Czech Republic
| | - David P. J. Turner
- Molecular Bacteriology and Immunology Group, University of Nottingham, Nottingham, UK
| | | | - Martin C. J. Maiden
- The Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | | |
Collapse
|
75
|
Mothibeli KM, du Plessis M, von Gottberg A, Murphy E, Hoiseth SK, Zlotnick G, Klugman KP. Distribution of factor H binding protein beyond serogroup B: Variation among five serogroups of invasive Neisseria meningitidis in South Africa. Vaccine 2011; 29:2187-92. [PMID: 21144918 DOI: 10.1016/j.vaccine.2010.11.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/11/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
|
76
|
Kristiansen PA, Diomandé F, Wei SC, Ouédraogo R, Sangaré L, Sanou I, Kandolo D, Kaboré P, Clark TA, Ouédraogo AS, Absatou KB, Ouédraogo CD, Hassan-King M, Thomas JD, Hatcher C, Djingarey M, Messonnier N, Préziosi MP, LaForce M, Caugant DA. Baseline meningococcal carriage in Burkina Faso before the introduction of a meningococcal serogroup A conjugate vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:435-43. [PMID: 21228139 PMCID: PMC3067389 DOI: 10.1128/cvi.00479-10] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/01/2010] [Accepted: 12/17/2010] [Indexed: 12/21/2022]
Abstract
The serogroup A meningococcal conjugate vaccine MenAfriVac has the potential to confer herd immunity by reducing carriage prevalence of epidemic strains. To better understand this phenomenon, we initiated a meningococcal carriage study to determine the baseline carriage rate and serogroup distribution before vaccine introduction in the 1- to 29-year old population in Burkina Faso, the group chosen for the first introduction of the vaccine. A multiple cross-sectional carriage study was conducted in one urban and two rural districts in Burkina Faso in 2009. Every 3 months, oropharyngeal samples were collected from >5,000 randomly selected individuals within a 4-week period. Isolation and identification of the meningococci from 20,326 samples were performed by national laboratories in Burkina Faso. Confirmation and further strain characterization, including genogrouping, multilocus sequence typing, and porA-fetA sequencing, were performed in Norway. The overall carriage prevalence for meningococci was 3.98%; the highest prevalence was among the 15- to 19-year-olds for males and among the 10- to 14-year-olds for females. Serogroup Y dominated (2.28%), followed by serogroups X (0.44%), A (0.39%), and W135 (0.34%). Carriage prevalence was the highest in the rural districts and in the dry season, but serogroup distribution also varied by district. A total of 29 sequence types (STs) and 51 porA-fetA combinations were identified. The dominant clone was serogroup Y, ST-4375, P1.5-1,2-2/F5-8, belonging to the ST-23 complex (47%). All serogroup A isolates were ST-2859 of the ST-5 complex with P1.20,9/F3-1. This study forms a solid basis for evaluating the impact of MenAfriVac introduction on serogroup A carriage.
Collapse
Affiliation(s)
- Paul A. Kristiansen
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Fabien Diomandé
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Stanley C. Wei
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rasmata Ouédraogo
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lassana Sangaré
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Idrissa Sanou
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Denis Kandolo
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pascal Kaboré
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thomas A. Clark
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Abdoul-Salam Ouédraogo
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ki Ba Absatou
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Charles D. Ouédraogo
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Musa Hassan-King
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jennifer Dolan Thomas
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cynthia Hatcher
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mamoudou Djingarey
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Nancy Messonnier
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marie-Pierre Préziosi
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marc LaForce
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Dominique A. Caugant
- Norwegian Institute of Public Health, Oslo, Norway, WHO Inter Country Support Team, Ouagadougou, Burkina Faso, Centers for Disease Control and Prevention, Atlanta, Georgia, Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Centre Hospitalier Universitaire Yalgado, Ouagadougou, Burkina Faso, Centre Hospitalier Universitaire Souro Sanou, Bobo-Dioulasso, Burkina Faso, WHO Multi Disease Surveillance Center, Ouagadougou, Burkina Faso, Direction de la Lutte contre la Maladie, Ministry of Health, Laboratoire National de Santé Publique, Ouagadougou, Burkina Faso, Centre Hospitalier Régional Kaya, Kaya, Burkina Faso, Meningitis Vaccine Project, Ferney, France, WHO Initiative for Vaccine Research, Geneva, Switzerland, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
77
|
Lucidarme J, Newbold LS, Findlow J, Gilchrist S, Gray SJ, Carr AD, Hewitt J, Kaczmarski EB, Borrow R. Molecular targets in meningococci: efficient routine characterization and optimal outbreak investigation in conjunction with routine surveillance of the meningococcal group B vaccine candidate, fHBP. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:194-202. [PMID: 21123522 PMCID: PMC3067353 DOI: 10.1128/cvi.00401-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/25/2010] [Accepted: 11/22/2010] [Indexed: 11/20/2022]
Abstract
In 2007, recommendations were proposed for the molecular typing of meningococci. Multilocus sequence typing (MLST) was recommended to guide national and international disease management and facilitate studies of population biology and evolution. Sequencing of porA variable regions (VRs) 1 and 2 and the fetA VR was recommended for monitoring antigenic distribution and investigating potential outbreaks. porB characterization was recommended if further resolution was required. Several investigational "group B" meningococcal vaccines, including two in the advanced stages of development, incorporate factor H-binding protein (fHBP). The requirement for routine surveillance of fhbp places additional pressure on reference laboratories, both financially and in terms of labor. This study investigated the optimal and most efficient molecular typing schemes for (i) routine meningococcal characterization and (ii) the investigation of potential outbreaks, in conjunction with routine surveillance of fhbp. All invasive disease isolates received by the Health Protection Agency Meningococcal Reference Unit between July 2007 and June 2008 (n = 613) were characterized in terms of capsular group, porA, fetA VR, fhbp, and sequence type (ST). Following capsular grouping and porA genosubtyping, several predominant capsular group-porA combinations were identified. The levels of additional resolution afforded by fetA and fhbp were comparable and partially complementary. fhbp constitutes an effective substitute for fetA as a routine marker of antigenic distribution, thereby reducing costs in conjunction with fhbp surveillance. MLST afforded markedly superior resolution overall and is the optimal scheme for investigating outbreaks in which (i) typing data are unavailable for the index case or (ii) the index case possesses a known, predominant capsular group-porA repertoire.
Collapse
Affiliation(s)
- Jay Lucidarme
- Vaccine Evaluation Unit, Health Protection Agency, PO Box 209, Floor 2, Clinical Sciences Building 2, Manchester Royal Infirmary, Oxford Road, Manchester M13 9WZ, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Persistence, replacement, and rapid clonal expansion of meningococcal carriage isolates in a 2008 university student cohort. J Clin Microbiol 2010; 49:506-12. [PMID: 21123536 DOI: 10.1128/jcm.01322-10] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A study of meningococcal carriage dynamics was performed with a cohort of 190 first-year students recruited from six residential halls at Nottingham University, United Kingdom. Pharyngeal swabs were obtained on four occasions between November 2008 and May 2009. Direct plating and culture on selective media were succeeded by identification and characterization of meningococci using PCR-based methodologies. Three serogroup Y clones and one serogroup 29E clone were highly prevalent in particular residential halls in November 2008, which is indicative of rapid clonal expansion since the start of the academic year. Persistent carriage of the same meningococcal strain for at least 5 to 6 months was observed in 45% of carriers, with infrequent evidence of antigenic variation in PorA. Sequential carriage of heterologous meningococcal strains occurred in 36% of carriers and involved strains with different capsules and antigenic variants of PorA and FetA in 83% of the cases. These clonal replacement strains also exhibited frequent differences in the presence and antigenic structures of two other surface proteins, NadA and HmbR. This study highlights the low level of antigenic variation associated with persistent carriage but, conversely, the importance of alterations in the repertoire of antigenic variants for sequential carriage of meningococcal strains. Rapid clonal expansion of potentially pathogenic strains in residential halls has implications for the implementation of public health interventions in university populations.
Collapse
|
79
|
Yero D, Vipond C, Climent Y, Sardiñas G, Feavers IM, Pajón R. Variation in the Neisseria meningitidis FadL-like protein: an evolutionary model for a relatively low-abundance surface antigen. MICROBIOLOGY-SGM 2010; 156:3596-3608. [PMID: 20817647 DOI: 10.1099/mic.0.043182-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular diversity of a novel Neisseria meningitidis antigen, encoded by the ORF NMB0088 of MC58 (FadL-like protein), was assessed in a panel of 64 diverse meningococcal strains. The panel consisted of strains belonging to different serogroups, serotypes, serosubtypes and MLST sequence types, of different clinical sources, years and countries of isolation. Based on the sequence variability of the protein, the FadL-like protein has been divided into four variant groups in this species. Antigen variants were associated with specific serogroups and MLST clonal complexes. Maximum-likelihood analyses were used to determine the relationships among sequences and to compare the selection pressures acting on the encoded protein. Furthermore, a model of population genetics and molecular evolution was used to detect natural selection in DNA sequences using the non-synonymous : synonymous substitution (d(N) : d(S)) ratio. The meningococcal sequences were also compared with those of the related surface protein in non-pathogenic commensal Neisseria species to investigate potential horizontal gene transfer. The N. meningitidis fadL gene was subject to only weak positive selection pressure and was less diverse than meningococcal major outer-membrane proteins. The majority of the variability in fadL was due to recombination among existing alleles from the same or related species that resulted in a discrete mosaic structure in the meningococcal population. In general, the population structuring observed based on the FadL-like membrane protein indicates that it is under intermediate immune selection. However, the emergence of a new subvariant within the hyperinvasive lineages demonstrates the phenotypic adaptability of N. meningitidis, probably in response to selective pressure.
Collapse
Affiliation(s)
- Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Caroline Vipond
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Havana, Cuba
| | - Gretel Sardiñas
- Division of Vaccines, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, UK
| | - Rolando Pajón
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| |
Collapse
|
80
|
Affiliation(s)
- Eric P Skaar
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
81
|
Multicenter study for defining the breakpoint for rifampin resistance in Neisseria meningitidis by rpoB sequencing. Antimicrob Agents Chemother 2010; 54:3651-8. [PMID: 20606072 DOI: 10.1128/aac.00315-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identification of clinical isolates of Neisseria meningitidis that are resistant to rifampin is important to avoid prophylaxis failure in contacts of patients, but it is hindered by the absence of a breakpoint for resistance, despite many efforts toward standardization. We examined a large number (n = 392) of clinical meningococcal isolates, spanning 25 years (1984 to 2009), that were collected in 11 European countries, Argentina, and the Central African Republic. The collection comprises all clinical isolates with MICs of > or = 0.25 mg/liter (n = 161) received by the national reference laboratories for meningococci in the participating countries. Representative isolates displaying rifampin MICs of < 0.25 mg/liter were also examined (n = 231). Typing of isolates was performed, and a 660-bp DNA fragment of the rpoB gene was sequenced. Sequences differing by at least one nucleotide were defined as unique rpoB alleles. The geometric mean of the MICs was calculated for isolates displaying the same allele. The clinical isolates displaying rifampin MICs of > 1 mg/liter possessed rpoB alleles with nonsynonymous mutations at four critical amino acid residues, D542, H552, S548, and S557, that were absent in the alleles found in all isolates with MICs of < or = 1 mg/liter. Rifampin-susceptible isolates could be defined as those with MICs of < or = 1 mg/liter. The rpoB allele sequence and isolate data have been incorporated into the PubMLST Neisseria database (http://pubmlst.org/neisseria/). The rifampin-resistant isolates belonged to diverse genetic lineages and were associated with lower levels of bacteremia and inflammatory cytokines in mice. This biological cost may explain the lack of clonal expansion of these isolates.
Collapse
|
82
|
Elias J, Schouls LM, van de Pol I, Keijzers WC, Martin DR, Glennie A, Oster P, Frosch M, Vogel U, van der Ende A. Vaccine preventability of meningococcal clone, Greater Aachen Region, Germany. Emerg Infect Dis 2010; 16:465-72. [PMID: 20202422 PMCID: PMC3322024 DOI: 10.3201/eid1603.091102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
An emerging serogroup B clone can be prevented by vaccines. Emergence of serogroup B meningococci of clonal complex sequence type (ST) 41/44 can cause high levels of disease, as exemplified by a recent epidemic in New Zealand. Multiplication of annual incidence rates (3.1 cases/100,000 population) of meningococcal disease in a defined German region, the city of Aachen and 3 neighboring countries (Greater Aachen) prompted us to investigate and determine the source and nature of this outbreak. Using molecular typing and geographic mapping, we analyzed 1,143 strains belonging to ST41/44 complex, isolated from persons with invasive meningococcal disease over 6 years (2001–2006) from 2 German federal states (total population 26 million) and the Netherlands. A spatially slowly moving clone with multiple-locus variable-number tandem repeat analysis type 19, ST42, and antigenic profile B:P1.7–2,4:F1–5 was responsible for the outbreak. Bactericidal activity in serum samples from the New Zealand MeNZB vaccination campaign confirmed vaccine preventability. Because this globally distributed epidemic strain spreads slowly, vaccination efforts could possibly eliminate meningococcal disease in this area.
Collapse
|
83
|
Harro JM, Peters BM, O'May GA, Archer N, Kerns P, Prabhakara R, Shirtliff ME. Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. ACTA ACUST UNITED AC 2010; 59:306-23. [PMID: 20602638 PMCID: PMC2936112 DOI: 10.1111/j.1574-695x.2010.00708.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vaccine development against pathogenic bacteria is an imperative initiative as bacteria are gaining resistance to current antimicrobial therapies and few novel antibiotics are being developed. Candidate antigens for vaccine development can be identified by a multitude of high-throughput technologies that were accelerated by access to complete genomes. While considerable success has been achieved in vaccine development against bacterial pathogens, many species with multiple virulence factors and modes of infection have provided reasonable challenges in identifying protective antigens. In particular, vaccine candidates should be evaluated in the context of the complex disease properties, whether planktonic (e.g. sepsis and pneumonia) and/or biofilm associated (e.g. indwelling medical device infections). Because of the phenotypic differences between these modes of growth, those vaccine candidates chosen only for their efficacy in one disease state may fail against other infections. This review will summarize the history and types of bacterial vaccines and adjuvants as well as present an overview of modern antigen discovery and complications brought about by polymicrobial infections. Finally, we will also use one of the better studied microbial species that uses differential, multifactorial protein profiles to mediate an array of diseases, Staphylococcus aureus, to outline some of the more recently identified problematic issues in vaccine development in this biofilm-forming species.
Collapse
Affiliation(s)
- Janette M Harro
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Molecular epidemiology of meningococci: application of DNA sequence typing. Int J Med Microbiol 2010; 300:415-20. [PMID: 20537945 DOI: 10.1016/j.ijmm.2010.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 04/08/2010] [Accepted: 04/19/2010] [Indexed: 11/22/2022] Open
Abstract
Neisseria meningitidis is an invasive pathogen contributing significantly to childhood mortality worldwide. The organism is adapted to the human host and transmitted by close contact or droplet aerosols. In comparison to healthy carriage, invasive disease is a rare event. Nevertheless, due to a high case-fatality rate and the fact that meningococcal infection is a communicable disease, molecular typing of meningococci has been driven forward considerably in the past decades. Multilocus and antigen sequence typing data are assembled in large databases accessible via the internet. For epidemiological purposes, representative case ascertainment strategies are necessary if data are to be exploited for trend analysis, geographic visualization, detection of abnormalities such as outbreaks, and prediction of vaccine coverage. In Europe, a consensus for molecular typing has been achieved.
Collapse
|
85
|
The genetic structure of Neisseria meningitidis populations in Cuba before and after the introduction of a serogroup BC vaccine. INFECTION GENETICS AND EVOLUTION 2010; 10:546-54. [DOI: 10.1016/j.meegid.2010.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/20/2022]
|
86
|
Harrison LH, Shutt KA, Schmink SE, Marsh JW, Harcourt BH, Wang X, Whitney AM, Stephens DS, Cohn AA, Messonnier NE, Mayer LW. Population structure and capsular switching of invasive Neisseria meningitidis isolates in the pre-meningococcal conjugate vaccine era--United States, 2000-2005. J Infect Dis 2010; 201:1208-24. [PMID: 20199241 PMCID: PMC2838939 DOI: 10.1086/651505] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND A quadrivalent meningococcal conjugate vaccine (MCV4) was licensed in the United States in 2005; no serogroup B vaccine is available. Neisseria meningitidis changes its capsular phenotype through capsular switching, which has implications for vaccines that do not protect against all serogroups. METHODS Meningococcal isolates from 10 Active Bacterial Core surveillance sites from 2000 through 2005 were analyzed to identify changes occurring after MCV4 licensure. Isolates were characterized by multilocus sequence typing (MLST) and outer membrane protein gene sequencing. Isolates expressing capsular polysaccharide different from that associated with the MLST lineage were considered to demonstrate capsular switching. RESULTS Among 1160 isolates, the most common genetic lineages were the sequence type (ST)-23, ST-32, ST-11, and ST-41/44 clonal complexes. Of serogroup B and Y isolates, 8 (1.5%) and 3 (0.9%), respectively, demonstrated capsular switching, compared with 36 (12.9%) for serogroup C (P < .001); most serogroup C switches were from virulent serogroup B and/or serogroup Y lineages. CONCLUSIONS A limited number of genetic lineages caused the majority of invasive meningococcal infections. A substantial proportion of isolates had evidence of capsular switching. The high prevalence of capsular switching requires surveillance to detect changes in the meningococcal population structure that may affect the effectiveness of meningococcal vaccines.
Collapse
Affiliation(s)
- Lee H Harrison
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
No broadly effective vaccines are available for prevention of group B meningococcal disease, which accounts for >50% of all cases. The group B capsule is an autoantigen and is not a suitable vaccine target. Outer-membrane vesicle vaccines appear to be safe and effective, but serum bactericidal responses in infants are specific for a porin protein, PorA, which is antigenically variable. To broaden protection, outer-membrane vesicle vaccines have been prepared from >1 strain, from mutants with >1 PorA, or from mutants with genetically detoxified endotoxin and overexpressed desirable antigens, such as factor H binding protein. Also, recombinant protein vaccines such as factor H binding protein, given alone or in combination with other antigens, are in late-stage clinical development and may be effective against the majority of group B strains. Thus, the prospects have never been better for developing vaccines for prevention of meningococcal disease, including that caused by group B strains.
Collapse
Affiliation(s)
- Dan M Granoff
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, California, USA.
| |
Collapse
|
88
|
Buckee CO, Gupta S, Kriz P, Maiden MCJ, Jolley KA. Long-term evolution of antigen repertoires among carried meningococci. Proc Biol Sci 2010; 277:1635-41. [PMID: 20129981 PMCID: PMC2871849 DOI: 10.1098/rspb.2009.2033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Most studies of bacterial pathogen populations have been based on isolates collected from individuals with disease, or their contacts, over short time periods. For commensal organisms that occasionally cause disease, such as Neisseria meningitidis, however, the analysis of isolates from long-term asymptomatic carriage is necessary to elucidate their evolution and population structure. Here, we use mathematical models to analyse the structuring and dynamics of three vaccine-candidate antigens among carried meningococcal isolates collected over nearly 30 years in the Czech Republic. The data indicate that stable combinations of antigenic alleles were maintained over this time period despite evidence for high rates of recombination, consistent with theoretical models in which strong immune selection can maintain non-overlapping combinations of antigenic determinants in the presence of recombination. We contrast this antigenic structure with the overlapping but relatively stable combinations of the housekeeping genes observed among the same isolates, and use a novel network approach to visualize these relationships.
Collapse
|
89
|
Lemos APS, Harrison LH, Lenser M, Sacchi CT. Phenotypic and molecular characterization of invasive serogroup W135 Neisseria meningitidis strains from 1990 to 2005 in Brazil. J Infect 2010; 60:209-17. [PMID: 20056121 DOI: 10.1016/j.jinf.2009.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 10/02/2009] [Accepted: 11/25/2009] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Neisseria meningitidis serogroup W135 has been associated with global outbreaks since the 2000 Hajj. Considering that N. meningitidis serogroup W135 is the third most prevalent serogroup isolated in Brazil in the last 10 years, and the possibility that the Hajj-related N. meningitidis serogroup W135 clone has been causing disease in Brazil, the present study characterized invasive N. meningitidis serogroup W135 isolates recovered in Brazil from 1990 to 2005. METHODS The isolates were characterized by serotyping, PorA and PorB VR typing, FetA and 16S rRNA typing, multilocus sequence typing (MLST) and pulsed field gel electrophoresis (PFGE). RESULTS Based on MLST, 73% of the isolates were clustered in one major clone of ST-11 complex/ET37 complex. Strains of this clone had the same STs, serotypes and PorA VR types as found in Hajj-related N. meningitidis serogroup W135 clone. One of these strains had the Hajj-2000 outbreak strain genotype, including 16S rRNA gene sequence 31 and 84% relatedness by PFGE. CONCLUSION Taken together, these data suggest that the Hajj-related N. meningitidis serogroup W135 clone is present in Brazil but has not yet caused a substantial number of infections. Given the emergence of N. meningitidis serogroup W135 globally and the unpredictability of meningococcal disease epidemiology, continued surveillance for this invasive N. meningitidis serogroup W135 clone is needed for control and prevention strategies.
Collapse
|
90
|
Brehony C, Wilson DJ, Maiden MCJ. Variation of the factor H-binding protein of Neisseria meningitidis. MICROBIOLOGY (READING, ENGLAND) 2009; 155:4155-4169. [PMID: 19729409 PMCID: PMC2801853 DOI: 10.1099/mic.0.027995-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 08/13/2009] [Accepted: 08/27/2009] [Indexed: 12/29/2022]
Abstract
There is currently no comprehensive meningococcal vaccine, due to difficulties in immunizing against organisms expressing serogroup B capsules. To address this problem, subcapsular antigens, particularly the outer-membrane proteins (OMPs), are being investigated as candidate vaccine components. If immunogenic, however, such antigens are often antigenically variable, and knowledge of the extent and structuring of this diversity is an essential part of vaccine formulation. Factor H-binding protein (fHbp) is one such protein and is included in two vaccines under development. A survey of the diversity of the fHbp gene and the encoded protein in a representative sample of meningococcal isolates confirmed that variability in this protein is structured into two or three major groups, each with a substantial number of alleles that have some association with meningococcal clonal complexes and serogroups. A unified nomenclature scheme was devised to catalogue this diversity. Analysis of recombination and selection on the allele sequences demonstrated that parts of the gene are subject to positive selection, consistent with immune selection on the protein generating antigenic variation, particularly in the C-terminal region of the peptide sequence. The highest levels of selection were observed in regions corresponding to epitopes recognized by previously described bactericidal monoclonal antibodies.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Base Sequence
- DNA Primers/genetics
- DNA, Bacterial/genetics
- Genes, Bacterial
- Genetic Variation
- Humans
- Meningococcal Infections/microbiology
- Meningococcal Vaccines/genetics
- Meningococcal Vaccines/immunology
- Models, Molecular
- Molecular Sequence Data
- Neisseria meningitidis/classification
- Neisseria meningitidis/genetics
- Neisseria meningitidis/immunology
- Neisseria meningitidis, Serogroup A/classification
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/immunology
- Neisseria meningitidis, Serogroup B/classification
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Recombination, Genetic
- Selection, Genetic
- Sequence Homology, Amino Acid
- Serotyping
Collapse
Affiliation(s)
- Carina Brehony
- Department of Zoology, University of Oxford, OX1 3PS, UK
| | - Daniel J. Wilson
- Department of Human Genetics, University of Chicago, 920 East 58th Street, CLSC #410, Chicago, IL 60637, USA
| | | |
Collapse
|
91
|
Olcén P, Fredlund H. Isolation and characterization of Neisseria meningitidis in the vaccine era. Who needs what and when? ACTA ACUST UNITED AC 2009; 42:4-11. [DOI: 10.3109/00365540903311177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
92
|
de Filippis I. Quest for a broad-range vaccine against Neisseria meningitidis serogroup B: implications of genetic variations of the surface-exposed proteins. J Med Microbiol 2009; 58:1127-1132. [DOI: 10.1099/jmm.0.011189-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the development of new vaccine formulations using new biotechnology resources to combat emerging and re-emerging diseases, serogroup B meningococcal disease is still a worldwide burden, accounting for many deaths and disabilities every year. The successful approach of coupling a polysaccharide (PS) with a carrier protein in order to increase long-lasting immunity could not be exploited againstNeisseria meningitidisB because of the limitations of using the capsular PS of serogroup B meningococci. Tailor-made vaccines based on exposed proteins were shown to be a promising approach to overcome these flaws. However, the continuous adaptation of surface meningococcal structures to the external environment has led to genetic shifts of potential vaccine-target epitopes, hampering the quest for a broad-range vaccine that could be used against all serogroups, especially against serogroup B.
Collapse
Affiliation(s)
- Ivano de Filippis
- Fundacao Oswaldo Cruz, Instituto Nacional de Controle de Qualidade em Saúde, Departamento de Microbiologia, Rio de Janeiro 21045-900, Brazil
| |
Collapse
|
93
|
Beddek AJ, Li MS, Kroll JS, Jordan TW, Martin DR. Evidence for capsule switching between carried and disease-causing Neisseria meningitidis strains. Infect Immun 2009; 77:2989-94. [PMID: 19451248 PMCID: PMC2708544 DOI: 10.1128/iai.00181-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 03/25/2009] [Accepted: 05/05/2009] [Indexed: 11/20/2022] Open
Abstract
Changing antigenic structure such as with capsule polysaccharide is a common strategy for bacterial pathogens to evade a host immune system. The recent emergence of an invasive W:2a:P1.7-2,4 sequence type 11 (ST-11) strain of Neisseria meningitidis in New Zealand, an uncommon serogroup/serotype in New Zealand disease cases, was investigated for its genetic origins. Molecular typing of 107 meningococcal isolates with similar serotyping characteristics was undertaken to determine genetic relationships. Results indicated that the W:2a:P1.7-2,4 strain had emerged via capsule switching from a group C strain (C:2a:P1.7-2,4). Neither the upstream nor downstream sites of recombination could be elucidated, but sequence analysis demonstrated that at least 45 kb of DNA was involved in the recombination, including the entire capsule gene cluster. The oatWY gene carried by the W:2a:P1.7-2,4 strain contained the insertion sequence element IS1301, one of five variants of oatWY found in group W135 strains belonging to the carriage-associated ST-22 clonal complex. This suggested that the origin of the capsule genes carried by the invasive W:2a:P1.7-2,4 strain is carriage associated. These results provide novel evidence for the long-standing dogma that disease-associated strains acquire antigenic structure from carriage-associated strains. Moreover, the capsule switch described here has arisen from the exchange of the entire capsule locus.
Collapse
Affiliation(s)
- Amanda J Beddek
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | |
Collapse
|
94
|
Abad R, Agudelo CI, Brandileone MC, Chanto G, Gabastou JM, Hormazabal JC, O Gorla MC, Maldonado A, Moreno J, Muros-Le Rouzic E, Lersch R, Regueira M, Salcedo C, Sorhouet C, Vázquez JA. Molecular characterization of invasive serogroup Y Neisseria meningitidis strains isolated in the Latin America region. J Infect 2009; 59:104-14. [PMID: 19576638 DOI: 10.1016/j.jinf.2009.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/02/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To improve the understanding of serogroup Y invasive meningococcal disease (IMD) in Latin America, particularly IMD molecular epidemiology; 166 Y serogroup isolates received at the National Reference Laboratories of Argentina, Brazil, Chile, Colombia, and Costa Rica during 2000-2006 were characterized by their molecular markers. METHODS This analysis included serological assays to determine serogroup/serotype/serosubtype, DNA sequencing and genotyping of the porB and/or porA genes, multilocus sequence typing (MLST) and fetA allele determination. RESULTS Sixteen different antigenic combinations were observed. Sixty-two (37.3%) isolates were NT:P1.5 and 36 (21.7%) isolates were 14:NST. Thirty-two different STs appeared, but 3 STs (ST-1624, ST-23, and ST-5770) accounted for 69.9% (116) of the strains. Most of the IMD isolates belonged to the ST-23, ST-167 clonal complexes or the group composed by ST-5770 and related STs. CONCLUSIONS Isolates obtained in Colombia and Costa Rica were similar to that of the United States, in that most sequence types belonged to the ST-23 clonal complex. IMD isolates found in Argentina appear to be the result of an independent event and did not spread from nearby countries, being the sequence type ST-1624 (ST-167 clonal complex) the most frequently found. We were unable to correlate an antigenic shift of outer membrane proteins with an increase of serogroup Y meningococcal cases in our collection of isolates.
Collapse
Affiliation(s)
- Raquel Abad
- Reference Laboratory for Meningococci, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra Majadahonda-Pozuelo, Km2, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
The development of a comprehensive vaccine against meningococcal disease has been challenging. Recent developments in molecular genetics have provided both explanations for these challenges and possible solutions. Since genome sequence data became available there has been a marked increase in number of protein antigens that have been suggested as prospective vaccine components. This review catalogues the proposed vaccine candidates and examines the evidence for their inclusion in potential protein vaccine formulations.
Collapse
Affiliation(s)
- Ian M Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | |
Collapse
|
96
|
Abstract
As reviewed in this paper, meningococcal disease epidemiology varies substantially by geographic area and time. The disease can occur as sporadic cases, outbreaks, and large epidemics. Surveillance is crucial for understanding meningococcal disease epidemiology, as well as the need for and impact of vaccination. Despite limited data from some regions of the world and constant change, current meningococcal disease epidemiology can be summarized by region. By far the highest incidence of meningococcal disease occurs in the meningitis belt of sub-Saharan Africa. During epidemics, the incidence can approach 1000 per 100,000, or 1% of the population. Serogroup A has been the most important serogroup in this region. However, serogroup C disease has also occurred, as has serogroup X disease and, most recently, serogroup W-135 disease. In the Americas, the reported incidence of disease, in the range of 0.3-4 cases per 100,000 population, is much lower than in the meningitis belt. In addition, in some countries such as the United States, the incidence is at an historical low. The bulk of the disease in the Americas is caused by serogroups C and B, although serogroup Y causes a substantial proportion of infections in some countries and W-135 is becoming increasingly problematic as well. The majority of meningococcal disease in European countries, which ranges in incidence from 0.2 to 14 cases per 100,000, is caused by serogroup B strains, particularly in countries that have introduced serogroup C meningococcal conjugate vaccines. Serogroup B also predominates in Australia and New Zealand, in Australia because of the control of serogroup C disease through vaccination and in New Zealand because of a serogroup B epidemic. Based on limited data, most disease in Asia is caused by serogroup A and C strains. Although this review summarizes the current status of meningococcal disease epidemiology, the dynamic nature of this disease requires ongoing surveillance both to provide data for vaccine formulation and vaccine policy and to monitor the impact of vaccines following introduction.
Collapse
|
97
|
Katz LS, Bolen CR, Harcourt BH, Schmink S, Wang X, Kislyuk A, Taylor RT, Mayer LW, Jordan IK. Meningococcus genome informatics platform: a system for analyzing multilocus sequence typing data. Nucleic Acids Res 2009; 37:W606-11. [PMID: 19468047 PMCID: PMC2703879 DOI: 10.1093/nar/gkp288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Meningococcus Genome Informatics Platform (MGIP) is a suite of computational tools for the analysis of multilocus sequence typing (MLST) data, at http://mgip.biology.gatech.edu. MLST is used to generate allelic profiles to characterize strains of Neisseria meningitidis, a major cause of bacterial meningitis worldwide. Neisseria meningitidis strains are characterized with MLST as specific sequence types (ST) and clonal complexes (CC) based on the DNA sequences at defined loci. These data are vital to molecular epidemiology studies of N. meningitidis, including outbreak investigations and population biology. MGIP analyzes DNA sequence trace files, returns individual allele calls and characterizes the STs and CCs. MGIP represents a substantial advance over existing software in several respects: (i) ease of use-MGIP is user friendly, intuitive and thoroughly documented; (ii) flexibility--because MGIP is a website, it is compatible with any computer with an internet connection, can be used from any geographic location, and there is no installation; (iii) speed--MGIP takes just over one minute to process a set of 96 trace files; and (iv) expandability--MGIP has the potential to expand to more loci than those used in MLST and even to other bacterial species.
Collapse
Affiliation(s)
- Lee S Katz
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Buettner FFR, Bendalla IM, Bossé JT, Meens J, Nash JHE, Härtig E, Langford PR, Gerlach GF. Analysis of the Actinobacillus pleuropneumoniae HlyX (FNR) regulon and identification of iron-regulated protein B as an essential virulence factor. Proteomics 2009; 9:2383-98. [PMID: 19343711 DOI: 10.1002/pmic.200800439] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Indexed: 11/09/2022]
Abstract
The Gram-negative rod Actinobacillus pleuropneumoniae is a facultative anaerobic pathogen of the porcine respiratory tract, and HlyX, the A. pleuropneumoniae homologue of fumarate and nitrate reduction regulator (FNR), has been shown to be important for persistence. An A. pleuropneumoniae hlyX deletion mutant has a decreased generation time but highly prolonged survival in comparison to its wild type parent strain when grown anaerobically in glucose-supplemented medium. Applying a combination of proteomic and transcriptomic approaches as well as in silico analyses, we identified 23 different proteins and 418 genes to be modulated by HlyX (> or = twofold up- or down-regulated). A putative HlyX-box was identified upstream of 54 of these genes implying direct control by HlyX. Consistent with its role as a strong positive regulator, HlyX induced the expression of genes for anaerobic metabolism encoding alternative terminal reductases and hydrogenases. In addition, expression of virulence-associated genes encoding iron uptake systems, a putative DNA adenine modification system, and an autotransporter serine protease were induced by HlyX under anaerobic growth conditions. With respect to virulence-associated genes, we focused on the iron-regulated protein B (FrpB) as it is the outer membrane protein most strongly up-regulated by HlyX. An frpB deletion mutant of A. pleuropneumoniae had the same growth characteristics as wild type grown aerobically and anaerobically. In contrast, A. pleuropneumoniae DeltafrpB did not cause any disease and could not be re-isolated from experimentally infected pigs, thereby identifying FrpB as a previously unknown virulence factor.
Collapse
Affiliation(s)
- Falk F R Buettner
- Department of Infectious Diseases, Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
W135 invasive meningococcal strains spreading in South America: significant increase in incidence rate in Argentina. J Clin Microbiol 2009; 47:1979-80. [PMID: 19357205 DOI: 10.1128/jcm.02390-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
100
|
Yang L, Zhang X, Peng J, Zhu Y, Dong J, Xu J, Jin Q. Distribution of surface-protein variants of hyperinvasive meningococci in China. J Infect 2009; 58:358-67. [PMID: 19324418 DOI: 10.1016/j.jinf.2009.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Information regarding the different types of FetA and PorB meningococci that circulate in various regions of the world is still scarce. The present study investigated the distribution of FetA and PorB variable region (VR) types among meningococci belonging to hyperinvasive lineages circulating in China. METHODS The approach consisted of genotypic analysis of 201 Neisseria meningitidis strains belonging to hyperinvasive lineages isolated in China during the period 1956-2006. RESULTS Sixteen different PorB types were found, 8 of which were newly identified. Of the 24 different FetA VR types, 3 were determined to be novel. Particular combinations of FetA and PorB types associated with distinct clonal complexes were also observed. Most cases of invasive disease were caused by five individual clones: A: P1.7-1,10: F5-5: ST-3 (cc1) with P3.6,11,10,7 (class 3 PorB protein; VR1-6, VR2-11, VR3-10, and VR4-7); A: P1.20,9: F3-1: ST-5 (cc5) with P3.4,11,10,7; A: P1.20,9: F3-1: ST-5 (cc5) with P3.9,11,10,7; A: P1.20,9: F3-1: ST-7 (cc5) with P3.4,11,10,7; and C: P1.7-2,14: F3-3: ST-4821 (cc4821) with P3.9,15,6,7. CONCLUSION A number of antigen-gene variants and combinations exhibited broad temporal and geographic distributions, although several invasive clones were mainly associated with a specified timeframe. The changes that are increasingly emerging in circulating strains and the prevalent clone replacement describe the molecular epidemiology of meningococcal disease in China. Our findings have implications for both public-health monitoring and further study of this organism.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|