51
|
Michalski N, Petit C. Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems. Annu Rev Neurosci 2019; 42:67-86. [DOI: 10.1146/annurev-neuro-070918-050428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
- Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
- Collège de France, 75005 Paris, France
| |
Collapse
|
52
|
Ocak E, Duman D, Tekin M. Genetic Causes of Inner Ear Anomalies: a Review from the Turkish Study Group for Inner Ear Anomalies. Balkan Med J 2019; 36:206-211. [PMID: 31131597 PMCID: PMC6636654 DOI: 10.4274/balkanmedj.galenos.2019.2019.4.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inner ear anomalies diagnosed using a radiological study are detected in almost 30% of cases with congenital or prelingual-onset sensorineural hearing loss. Inner ear anomalies can be isolated or occur along with a part of a syndrome involving other systems. Although astonishing progress has been made in research aimed at revealing the genetic causes of hearing loss in the past few decades, only a few genes have been linked to inner ear anomalies. The aim of this review is to discuss the known genetic causes of inner ear anomalies. Identifying the genetic causes of inner ear anomalies is important for guiding clinical care that includes empowered reproductive decisions provided to the affected individuals. Furthermore, understanding the molecular underpinnings of the development of the inner ear in humans is important to develop novel treatment strategies for people with hearing loss.
Collapse
Affiliation(s)
- Emre Ocak
- Department of Otolaryngology, Ankara University School of Medicine, Ankara, Turkey
| | - Duygu Duman
- Division of Genetics, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey,Department of Audiology, Ankara University Faculty of Health Sciences, Ankara, Turkey
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, USA,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, USA,Dr. John T. Macdonald Department of Human Genetics, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
53
|
Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development. Proc Natl Acad Sci U S A 2019; 116:4661-4670. [PMID: 30765517 DOI: 10.1073/pnas.1813244116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of the cerebellum depends on intricate processes of neurogenesis, migration, and differentiation of neural stem cells (NSCs) and progenitor cells. Defective cerebellar development often results in motor dysfunctions and psychiatric disorders. Understanding the molecular mechanisms that underlie the complex development of the cerebellum will facilitate the development of novel treatment options. Here, we report that the receptor for activated C kinase (Rack1), a multifaceted signaling adaptor protein, regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Rack1 in mouse NSCs or granule neuron progenitors (GNPs), but not Bergmann glial cells (BGs), causes severe defects in cerebellar morphogenesis, including impaired folia and fissure formation. NSCs and GNPs lacking Rack1 exhibit enhanced Wnt/β-catenin signaling but reduced Sonic hedgehog (Shh) signaling. Simultaneous deletion of β-catenin in NSCs, but not GNPs, significantly rescues the Rack1 mutant phenotype. Interestingly, Rack1 controls the activation of Shh signaling by regulating the ubiquitylation and stability of histone deacetylase 1 (HDAC1)/HDAC2. Suppression of HDAC1/HDAC2 activity in the developing cerebellum phenocopies the Rack1 mutant. Together, these results reveal a previously unknown role of Rack1 in controlling mammalian cerebellar development by opposite regulation of Wnt/β-catenin and Shh signaling pathways.
Collapse
|
54
|
Shinozuka T, Takada R, Yoshida S, Yonemura S, Takada S. Wnt produced by stretched roof-plate cells is required for the promotion of cell proliferation around the central canal of the spinal cord. Development 2019; 146:146/2/dev159343. [PMID: 30651295 DOI: 10.1242/dev.159343] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2018] [Indexed: 01/23/2023]
Abstract
Cell morphology changes dynamically during embryogenesis, and these changes create new interactions with surrounding cells, some of which are presumably mediated by intercellular signaling. However, the effects of morphological changes on intercellular signaling remain to be fully elucidated. In this study, we examined the effect of morphological changes in Wnt-producing cells on intercellular signaling in the spinal cord. After mid-gestation, roof-plate cells stretched along the dorsoventral axis in the mouse spinal cord, resulting in new contact at their tips with the ependymal cells that surround the central canal. Wnt1 and Wnt3a were produced by the stretched roof-plate cells and delivered to the cell process tip. Whereas Wnt signaling was activated in developing ependymal cells, Wnt activation in dorsal ependymal cells, which were close to the stretched roof plate, was significantly suppressed in embryos with roof plate-specific conditional knockout of Wls, which encodes a factor that is essential for Wnt secretion. Furthermore, proliferation of these cells was impaired in Wls conditional knockout mice during development and after induced spinal cord injury in adults. Therefore, morphological changes in Wnt-producing cells appear to generate new Wnt signal targets.
Collapse
Affiliation(s)
- Takuma Shinozuka
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Shosei Yoshida
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Shigenobu Yonemura
- RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Cell Biology, Tokushima University Graduate School of Medical Science, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan .,National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.,Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
55
|
|
56
|
Yizhar-Barnea O, Valensisi C, Jayavelu ND, Kishore K, Andrus C, Koffler-Brill T, Ushakov K, Perl K, Noy Y, Bhonker Y, Pelizzola M, Hawkins RD, Avraham KB. DNA methylation dynamics during embryonic development and postnatal maturation of the mouse auditory sensory epithelium. Sci Rep 2018; 8:17348. [PMID: 30478432 PMCID: PMC6255903 DOI: 10.1038/s41598-018-35587-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The inner ear is a complex structure responsible for hearing and balance, and organ pathology is associated with deafness and balance disorders. To evaluate the role of epigenomic dynamics, we performed whole genome bisulfite sequencing at key time points during the development and maturation of the mouse inner ear sensory epithelium (SE). Our single-nucleotide resolution maps revealed variations in both general characteristics and dynamics of DNA methylation over time. This allowed us to predict the location of non-coding regulatory regions and to identify several novel candidate regulatory factors, such as Bach2, that connect stage-specific regulatory elements to molecular features that drive the development and maturation of the SE. Constructing in silico regulatory networks around sites of differential methylation enabled us to link key inner ear regulators, such as Atoh1 and Stat3, to pathways responsible for cell lineage determination and maturation, such as the Notch pathway. We also discovered that a putative enhancer, defined as a low methylated region (LMR), can upregulate the GJB6 gene and a neighboring non-coding RNA. The study of inner ear SE methylomes revealed novel regulatory regions in the hearing organ, which may improve diagnostic capabilities, and has the potential to guide the development of therapeutics for hearing loss by providing multiple intervention points for manipulation of the auditory system.
Collapse
Affiliation(s)
- Ofer Yizhar-Barnea
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Cristina Valensisi
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Naresh Doni Jayavelu
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Kamal Kishore
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, 20139, Italy
| | - Colin Andrus
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Tal Koffler-Brill
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Kobi Perl
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yoni Bhonker
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milano, 20139, Italy
| | - R David Hawkins
- Division of Medical Genetics, Department of Medicine, Department of Genome Sciences, Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
57
|
Durruthy-Durruthy R, Sperry ED, Bowen ME, Attardi LD, Heller S, Martin DM. Single Cell Transcriptomics Reveal Abnormalities in Neurosensory Patterning of the Chd7 Mutant Mouse Ear. Front Genet 2018; 9:473. [PMID: 30459807 PMCID: PMC6232929 DOI: 10.3389/fgene.2018.00473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022] Open
Abstract
The chromatin remodeling protein CHD7 is critical for proper formation of the mammalian inner ear. Humans with heterozygous pathogenic variants in CHD7 exhibit CHARGE syndrome, characterized by hearing loss and inner ear dysplasia, including abnormalities of the semicircular canals and Mondini malformations. Chd7Gt/+ heterozygous null mutant mice also exhibit dysplastic semicircular canals and hearing loss. Prior studies have demonstrated that reduced Chd7 dosage in the ear disrupts expression of genes involved in morphogenesis and neurogenesis, yet the relationships between these changes in gene expression and otic patterning are not well understood. Here, we sought to define roles for CHD7 in global regulation of gene expression and patterning in the developing mouse ear. Using single-cell multiplex qRT-PCR, we analyzed expression of 192 genes in FAC sorted cells from Pax2Cre;mT/mGFP wild type and Chd7Gt/+ mutant microdissected mouse otocysts. We found that Chd7 haploinsufficient otocysts exhibit a relative enrichment of cells adopting a neuroblast (vs. otic) transcriptional identity compared with wild type. Additionally, we uncovered disruptions in pro-sensory and pro-neurogenic gene expression with Chd7 loss, including genes encoding proteins that function in Notch signaling. Our results suggest that Chd7 is required for early cell fate decisions in the developing ear that involve highly specific aspects of otic patterning and differentiation.
Collapse
Affiliation(s)
- Robert Durruthy-Durruthy
- Departments of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Ethan D Sperry
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Margot E Bowen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University, Stanford, CA, United States
| | - Stefan Heller
- Departments of Otolaryngology - Head and Neck Surgery, Stanford University, Stanford, CA, United States
| | - Donna M Martin
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, United States.,Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States.,Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
58
|
Yang LM, Ornitz DM. Sculpting the skull through neurosensory epithelial-mesenchymal signaling. Dev Dyn 2018; 248:88-97. [PMID: 30117627 DOI: 10.1002/dvdy.24664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate skull is a complex structure housing the brain and specialized sensory organs, including the eye, the inner ear, and the olfactory system. The close association between bones of the skull and the sensory organs they encase has posed interesting developmental questions about how the tissues scale with one another. Mechanisms that regulate morphogenesis of the skull are hypothesized to originate in part from the encased neurosensory organs. Conversely, the developing skull is hypothesized to regulate the growth of neurosensory organs, through mechanical forces or molecular signaling. Here, we review studies of epithelial-mesenchymal interactions during inner ear and olfactory system development that may coordinate the growth of the two sensory organs with their surrounding bone. We highlight recent progress in the field and provide evidence that mechanical forces arising from bone growth may affect olfactory epithelium development. Developmental Dynamics 248:88-97, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
59
|
Ohta S, Schoenwolf GC. Dorsoventral differences in cAMP levels and correlated changes in the subcellular distribution of the PKA catalytic domain, provide further evidence that PKA signaling coordinates dorsoventral patterning of the otocyst. Dev Growth Differ 2018; 60:431-441. [PMID: 29920660 DOI: 10.1111/dgd.12543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 01/22/2023]
Abstract
Dorsoventral (DV) patterning of the otocyst gives rise to formation of the morphologically and functionally complex membranous labyrinth composed of unique dorsal and ventral sensory organs. DV patterning results from extracellular signaling by secreted growth factors, which presumably form reciprocal concentration gradients across the DV axis of the otocyst. Previous work suggested a model in which two important growth factors, bone morphogenetic protein (BMP) and SHH, undergo crosstalk through an intersecting pathway to coordinate DV patterning. cAMP-dependent protein kinase A (PKA) lies at the heart of this pathway. Here, we provide further evidence that PKA signaling coordinates DV patterning, showing that both BMPs and SHH regulate cAMP levels, with BMPs increasing levels in the dorsal otocyst and SHH decreasing levels in the ventral otocyst. This, in turn, results in regional changes in the subcellular distribution of the catalytic domain of PKA, as well as DV regulation of PKA activity, increasing it dorsally and decreasing it ventrally. These new results fill an important gap in our previous understanding of how ligand signaling acts intracellularly during otocyst DV patterning and early morphogenesis, thereby initiating the series of events leading to formation of the inner ear sensory organs that function in balance and hearing.
Collapse
Affiliation(s)
- Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
60
|
Hao QQ, Li L, Chen W, Jiang QQ, Ji F, Sun W, Wei H, Guo WW, Yang SM. Key Genes and Pathways Associated With Inner Ear Malformation in SOX10 p.R109W Mutation Pigs. Front Mol Neurosci 2018; 11:181. [PMID: 29922125 PMCID: PMC5996026 DOI: 10.3389/fnmol.2018.00181] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/11/2018] [Indexed: 12/24/2022] Open
Abstract
SRY-box 10 (SOX10) mutation may lead to inner ear deformities. However, its molecular mechanisms on inner ear development are not clear. In this work, the inner ear morphology was investigated at different embryonic stages of the SOX10 mutation miniature porcine model with sensorineural hearing loss, and high-throughput RNA-seq and bioinformatics analyses were applied. Our results indicated that the SOX10 mutation in the miniature pigs led to an incomplete partition (IP) of the cochlea, a cystic apex caused by fusion from middle and apical turns, cochlear modiolar defects and a shortened cochlear duct. The model demonstrated 173 differentially expressed genes (DEGs) and 185 differentially expressed long non-coding RNAs (lncRNAs). The down-regulated DEGs most significantly enriched the inflammatory mediator regulation of the TRP channels, arachidonic acid metabolism, and the salivary secretion pathways, while the up-regulated DEGs most significantly enriched the systemic lupus erythematosus and alcoholism pathways. Based on gene cluster analysis, we selected four gene groups: WNT1, KCNQ4, STRC and PAX6.
Collapse
Affiliation(s)
- Qing-Qing Hao
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Liang Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Wei Chen
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Qing-Qing Jiang
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Fei Ji
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Wei Sun
- Department of Communicative Disorders & Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Wei-Wei Guo
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| | - Shi-Ming Yang
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Key Laboratory of Hearing Impairment Science, Chinese PLA Medical School, Beijing, China
| |
Collapse
|
61
|
Reciprocal Negative Regulation Between Lmx1a and Lmo4 Is Required for Inner Ear Formation. J Neurosci 2018; 38:5429-5440. [PMID: 29769265 PMCID: PMC5990987 DOI: 10.1523/jneurosci.2484-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/07/2018] [Accepted: 02/11/2018] [Indexed: 02/07/2023] Open
Abstract
LIM-domain containing transcription factors (LIM-TFs) are conserved factors important for embryogenesis. The specificity of these factors in transcriptional regulation is conferred by the complexes that they form with other proteins such as LIM-domain-binding (Ldb) proteins and LIM-domain only (LMO) proteins. Unlike LIM-TFs, these proteins do not bind DNA directly. LMO proteins are negative regulators of LIM-TFs and function by competing with LIM-TFs for binding to Ldb's. Although the LIM-TF Lmx1a is expressed in the developing mouse hindbrain, which provides many of the extrinsic signals for inner ear formation, conditional knock-out embryos of both sexes show that the inner ear source of Lmx1a is the major contributor of ear patterning. In addition, we have found that the reciprocal interaction between Lmx1a and Lmo4 (a LMO protein within the inner ear) mediates the formation of both vestibular and auditory structures. Lmo4 negatively regulates Lmx1a to form the three sensory cristae, the anterior semicircular canal, and the shape of the utricle in the vestibule. Furthermore, this negative regulation blocks ectopic sensory formation in the cochlea. In contrast, Lmx1a negatively regulates Lmo4 in mediating epithelial resorption of the canal pouch, which gives rise to the anterior and posterior semicircular canals. We also found that Lmx1a is independently required for the formation of the endolymphatic duct and hair cells in the basal cochlear region. SIGNIFICANCE STATEMENT The mammalian inner ear is a structurally complex organ responsible for detecting sound and maintaining balance. Failure to form the intricate 3D structure of this organ properly during development most likely will result in sensory deficits on some level. Here, we provide genetic evidence that a transcription factor, Lmx1a, interacts with its negative regulator, Lmo4, to pattern various vestibular and auditory components of the mammalian inner ear. Identifying these key molecules that mediate formation of this important sensory organ will be helpful for designing strategies and therapeutics to alleviate hearing loss and balance disorders.
Collapse
|
62
|
Spatiotemporal coordination of cellular differentiation and tissue morphogenesis in organ of Corti development. Med Mol Morphol 2018. [PMID: 29536272 DOI: 10.1007/s00795-018-0185-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organ of Corti, an acoustic sensory organ, is a specifically differentiated epithelium of the cochlear duct, which is a part of the membranous labyrinth in the inner ear. Cells in the organ of Corti are generally classified into two kinds; hair cells, which transduce the mechanical stimuli of sound to the cell membrane electrical potential differences, and supporting cells. These cells emerge from homogeneous prosensory epithelium through cell fate determination and differentiation. In the organ of Corti organogenesis, cell differentiation and the rearrangement of their position proceed in parallel, resulting in a characteristic alignment of mature hair cells and supporting cells. Recently, studies have focused on the signaling molecules and transcription factors that regulate cell fate determination and differentiation processes. In comparison, less is known about the mechanism of the formation of the tissue architecture; however, this is important in the morphogenesis of the organ of Corti. Thus, this review will introduce previous findings that focus on how cell fate determination, cell differentiation, and whole tissue morphogenesis proceed in a spatiotemporally and finely coordinated manner. This overview provides an insight into the regulatory mechanisms of the coordination in the developing organ of Corti.
Collapse
|
63
|
Nojiri T, Werneburg I, Son NT, Tu VT, Sasaki T, Maekawa Y, Koyabu D. Prenatal cranial bone development of Thomas's horseshoe bat (Rhinolophus thomasi
): with special reference to petrosal morphology. J Morphol 2018. [DOI: 10.1002/jmor.20813] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Taro Nojiri
- Division of Biosphere Science, Graduate School of Environmental Science; Hokkaido University, Kita-ku, Sapporo; Hokkaido 060-0810 Japan
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Paleoenvironment an der Eberhard Karls Universität, Sigwartstraße 10; Tübingen D-72076 Germany
- Fachbereich Geowissenschaften der Eberhard-Karls-Universität Tübingen, Hölderlinstraße 12; Tübingen 72074 Germany
- Museum für Naturkunde, Leibniz-Institut für Evolutions- & Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43; Berlin 10115 Germany
| | - Nguyen Truong Son
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street; Hanoi Vietnam
- Graduate University of Sciences and Technology, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet Street, Cau Giay; Hanoi Vietnam
| | - Vuong Tan Tu
- Institute of Ecology and Biological Resources; Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street; Hanoi Vietnam
- Graduate University of Sciences and Technology, Vietnam Academy of Sciences and Technology, 18 Hoang Quoc Viet Street, Cau Giay; Hanoi Vietnam
| | - Takenori Sasaki
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku; Tokyo 113-0033 Japan
| | - Yu Maekawa
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku; Tokyo 113-0033 Japan
| | - Daisuke Koyabu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku; Tokyo 113-0033 Japan
- Humanities and Sciences; Musashino Art University, Ogawacho 1-736, Kodaira; Tokyo 187-8505 Japan
| |
Collapse
|
64
|
Schaefer SA, Higashi AY, Loomis B, Schrepfer T, Wan G, Corfas G, Dressler GR, Duncan RK. From Otic Induction to Hair Cell Production: Pax2 EGFP Cell Line Illuminates Key Stages of Development in Mouse Inner Ear Organoid Model. Stem Cells Dev 2018; 27:237-251. [PMID: 29272992 DOI: 10.1089/scd.2017.0142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Producing hair cells of the inner ear is the major goal of ongoing research that combines advances in developmental and stem cell biology. The recent advent of an inner ear organoid protocol-resulting in three-dimensional stem cell-derived tissues resembling vestibular sensory epithelia-has sparked interest in applications such as regeneration, drug discovery, and disease modeling. In this study, we adapted this protocol for a novel mouse embryonic stem cell line with a fluorescent reporter for Pax2 expression. We used Pax2EGFP/+ organoid formation to model otic induction, the pivotal developmental event when preplacodal tissue adopts otic fate. We found upregulation of Pax2 and activation of ERK downstream of fibroblast growth factor signaling in organoid formation as in embryonic inner ear development. Pax2 expression was evident from the EGFP reporter beginning at the vesicle formation stage and persisting through generation of the sensory epithelium. The native ventralizing signal sonic hedgehog was largely absent from the cell aggregates as otic vesicles began to form, confirming the dorsal vestibular organoid fate. Nonetheless, cochlear- or vestibular-like neurons appeared to delaminate from the derived otic vesicles and formed synaptic contacts with hair cells in the organoids. Cell lines with transcriptional reporters such as Pax2EGFP/+ facilitate direct evaluation of morphological changes during organoid production, a major asset when establishing and validating the culture protocol.
Collapse
Affiliation(s)
- Stacy A Schaefer
- 1 Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan , Ann Arbor, Michigan
| | - Atsuko Y Higashi
- 2 Department of Pathology, University of Michigan , Ann Arbor, Michigan
| | - Benjamin Loomis
- 1 Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan , Ann Arbor, Michigan
| | - Thomas Schrepfer
- 1 Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan , Ann Arbor, Michigan
| | - Guoqiang Wan
- 1 Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan , Ann Arbor, Michigan
| | - Gabriel Corfas
- 1 Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan , Ann Arbor, Michigan
| | | | - Robert Keith Duncan
- 1 Department of Otolaryngology, Kresge Hearing Research Institute, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
65
|
Zarei S, Zarei K, Fritzsch B, Elliott KL. Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear. Dev Neurobiol 2017; 77:1385-1400. [PMID: 29030893 PMCID: PMC5693645 DOI: 10.1002/dneu.22544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 02/06/2023]
Abstract
Sonic hedgehog (Shh) signaling plays a major role in vertebrate development, from regulation of proliferation to the patterning of various organs. In amniotes, Shh affects dorsoventral patterning in the inner ear but affects anteroposterior patterning in teleost ears. It remains unknown how altered function of Shh relates to morphogenetic changes that coincide with the evolution of limbs and novel auditory organs in the ear. In this study, we used the tetrapod, Xenopus laevis, to test how increasing concentrations of the Shh signal pathway antagonist, Vismodegib, affects ear development. Vismodegib treatment dose dependently alters the development of the ear, hypaxial muscle, and indirectly the Mauthner cell through its interaction with the inner ear afferents. Together, these phenotypes have an effect on escape response. The altered Mauthner cell likely contributes to the increased time to respond to a stimulus. In addition, the increased hypaxial muscle in the trunk likely contributes to the subtle change in animal C-start flexion angle. In the ear, Vismodegib treatment results in decreasing segregation between the gravistatic sensory epithelia as the concentration of Vismodegib increases. Furthermore, at higher doses, there is a loss of the horizontal canal but no enantiomorphic transformation, as in bony fish lacking Shh. Like in amniotes, Shh signaling in frogs affects dorsoventral patterning in the ear, suggesting that auditory sensory evolution in sarcopterygians/tetrapods evolved with a shift of Shh function in axis specification. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1385-1400, 2017.
Collapse
Affiliation(s)
- Sanam Zarei
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kasra Zarei
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
66
|
Ohta S, Schoenwolf GC. Hearing crosstalk: the molecular conversation orchestrating inner ear dorsoventral patterning. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29024472 DOI: 10.1002/wdev.302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/08/2017] [Accepted: 08/28/2017] [Indexed: 11/10/2022]
Abstract
The inner ear is a structurally and functionally complex organ that functions in balance and hearing. It originates during neurulation as a localized thickened region of rostral ectoderm termed the otic placode, which lies adjacent to the developing caudal hindbrain. Shortly after the otic placode forms, it invaginates to delineate the otic cup, which quickly pinches off of the surface ectoderm to form a hollow spherical vesicle called the otocyst; the latter gives rise dorsally to inner ear vestibular components and ventrally to its auditory component. Morphogenesis of the otocyst is regulated by secreted proteins, such as WNTs, BMPs, and SHH, which determine its dorsoventral polarity to define vestibular and cochlear structures and sensory and nonsensory cell fates. In this review, we focus on the crosstalk that occurs among three families of secreted molecules to progressively polarize and pattern the developing otocyst. WIREs Dev Biol 2018, 7:e302. doi: 10.1002/wdev.302 This article is categorized under: Establishment of Spatial and Temporal Patterns > Gradients Signaling Pathways > Cell Fate Signaling Vertebrate Organogenesis > From a Tubular Primordium: Non-Branched.
Collapse
Affiliation(s)
- Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
67
|
Abstract
Mammalian inner ear comprises of six sensory organs; cochlea, utricle, saccule, and three semicircular canals. The cochlea contains sensory epithelium known as the organ of Corti which senses sound through mechanosensory hair cells. Mammalian inner ear undergoes series of morphogenesis during development beginning thickening of ectoderm nearby hindbrain. These events require tight regulation of multiple signaling cascades including FGF, Wnt, Notch and Bmp signaling. In this review, we will discuss the role of newly emerging signaling, FGF signaling, for its roles required for cochlear development. [BMB Reports 2017; 50(10): 487-495].
Collapse
Affiliation(s)
- Michael Ebeid
- Department of Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska,
USA
| | - Sung-Ho Huh
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, Nebraska,
USA
- Department of Developmental Neuroscience, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska,
USA
| |
Collapse
|
68
|
Haraguchi R, Kitazawa R, Murashima A, Yamada G, Kitazawa S. Developmental Contribution of Wnt-signal-responsive Cells to Mouse Reproductive Tract Formation. Acta Histochem Cytochem 2017; 50:127-133. [PMID: 28928542 PMCID: PMC5593815 DOI: 10.1267/ahc.17017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022] Open
Abstract
In mammals, the müllerian duct (MD) is an embryonic tubular structure that gives rise to the female reproductive tract (FRT). The MD originates from the coelomic epithelium (CoE) and takes on a rostral to caudal shape to establish the primary structure of the FRT under the regulation of morphogenetic signals. During these developmental processes, the MD and its derivatives require proper regulation of the Wnt-signaling-pathway. Here, to investigate the developmental contribution of FRT primordia under the influence of the Wnt-signaling, genetic lineage tracing was carried out using TopCreER/Rosa-LacZ mice to follow the fate of Wnt-signal-responsive cells during reproductive tract formation. TopCreER-marked-LacZ+ cells, arising from the Wnt-signal-responsive progenitors in CoE, give rise to spatially restricted MD and the uterine luminal epithelium. Similarly, the progeny from LacZ+ mesenchymal cells surrounding the MD contribute to both the uterine smooth muscle and stroma. Furthermore, in males, the Wnt-signal-responsive MD mesenchyme develops into the epididymis. These results show, for the first time, evidence of the sequential involvement of reproductive tract progenitors under the influence of Wnt-signal throughout the developmental term. This study provides a precise outline for assessing the lineage relation between the reproductive tract and the cell fate of its primordia in a temporally regulated manner.
Collapse
Affiliation(s)
- Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
- Department of Diagnostic Pathology, Ehime University Hospital
| | - Aki Murashima
- Department of Developmental Genetics, Wakayama Medical University
- Department of Anatomy, Iwate Medical University
| | - Gen Yamada
- Department of Developmental Genetics, Wakayama Medical University
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine
| |
Collapse
|
69
|
Abstract
More than 80% of all cases of deafness are related to the death or degeneration of cochlear hair cells and the associated spiral ganglion neurons, and a lack of regeneration of these cells leads to permanent hearing loss. Therefore, the regeneration of lost hair cells is an important goal for the treatment of deafness. Atoh1 is a basic helix-loop-helix (bHLH) transcription factor that is critical in both the development and regeneration of cochlear hair cells. Atoh1 is transcriptionally regulated by several signaling pathways, including Notch and Wnt signalings. At the post-translational level, it is regulated through the ubiquitin-proteasome pathway. In vitro and in vivo studies have revealed that manipulation of these signaling pathways not only controls development, but also leads to the regeneration of cochlear hair cells after damage. Recent progress toward understanding the signaling networks involved in hair cell development and regeneration has led to the development of new strategies to replace lost hair cells. This review focuses on our current understanding of the signaling pathways that regulate Atoh1 in the cochlea.
Collapse
Affiliation(s)
- Yen-Fu Cheng
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA.,Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.,Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan, China.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan, China.,School of Medicine, Yang-Ming University, Taipei 112, Taiwan, China.,Department of Speech Language Pathology and Audiology, Taipei University of Nursing and Health Science, Taipei 112, Taiwan, China
| |
Collapse
|
70
|
Hackelberg S, Tuck SJ, He L, Rastogi A, White C, Liu L, Prieskorn DM, Miller RJ, Chan C, Loomis BR, Corey JM, Miller JM, Duncan RK. Nanofibrous scaffolds for the guidance of stem cell-derived neurons for auditory nerve regeneration. PLoS One 2017; 12:e0180427. [PMID: 28672008 PMCID: PMC5495534 DOI: 10.1371/journal.pone.0180427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 06/15/2017] [Indexed: 01/13/2023] Open
Abstract
Impairment of spiral ganglion neurons (SGNs) of the auditory nerve is a major cause for hearing loss occurring independently or in addition to sensory hair cell damage. Unfortunately, mammalian SGNs lack the potential for autonomous regeneration. Stem cell based therapy is a promising approach for auditory nerve regeneration, but proper integration of exogenous cells into the auditory circuit remains a fundamental challenge. Here, we present novel nanofibrous scaffolds designed to guide the integration of human stem cell-derived neurons in the internal auditory meatus (IAM), the foramen allowing passage of the spiral ganglion to the auditory brainstem. Human embryonic stem cells (hESC) were differentiated into neural precursor cells (NPCs) and seeded onto aligned nanofiber mats. The NPCs terminally differentiated into glutamatergic neurons with high efficiency, and neurite projections aligned with nanofibers in vitro. Scaffolds were assembled by seeding GFP-labeled NPCs on nanofibers integrated in a polymer sheath. Biocompatibility and functionality of the NPC-seeded scaffolds were evaluated in vivo in deafened guinea pigs (Cavia porcellus). To this end, we established an ouabain-based deafening procedure that depleted an average 72% of SGNs from apex to base of the cochleae and caused profound hearing loss. Further, we developed a surgical procedure to implant seeded scaffolds directly into the guinea pig IAM. No evidence of an inflammatory response was observed, but post-surgery tissue repair appeared to be facilitated by infiltrating Schwann cells. While NPC survival was found to be poor, both subjects implanted with NPC-seeded and cell-free control scaffolds showed partial recovery of electrically-evoked auditory brainstem thresholds. Thus, while future studies must address cell survival, nanofibrous scaffolds pose a promising strategy for auditory nerve regeneration.
Collapse
Affiliation(s)
- Sandra Hackelberg
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Samuel J. Tuck
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Long He
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Departments of Otorhinolaryngology, Guangzhou First Peoples' Hospital and First Affiliated Hospital, School of Medicine, Jinan University, Guangdong, China
| | - Arjun Rastogi
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
| | - Christina White
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Liqian Liu
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Diane M. Prieskorn
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Ryan J. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Che Chan
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Benjamin R. Loomis
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - Joseph M. Corey
- Geriatrics Research, Education, and Clinical Center (GRECC), VA Ann Arbor Healthcare Center (VAAAHC), Ann Arbor, MI, United States of America
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Josef M. Miller
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| | - R. Keith Duncan
- Kresge Hearing Research Institute, Department of Otolaryngology-Head & Neck Surgery, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
71
|
Magariños M, Pulido S, Aburto MR, de Iriarte Rodríguez R, Varela-Nieto I. Autophagy in the Vertebrate Inner Ear. Front Cell Dev Biol 2017; 5:56. [PMID: 28603711 PMCID: PMC5445191 DOI: 10.3389/fcell.2017.00056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/09/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a conserved catabolic process that results in the lysosomal degradation of cell components. During development, autophagy is associated with tissue and organ remodeling, and under physiological conditions it is tightly regulated as it plays a housekeeping role in removing misfolded proteins and damaged organelles. The vertebrate inner ear is a complex sensory organ responsible for the perception of sound and for balance. Cell survival, death and proliferation, as well as cell fate specification and differentiation, are processes that are strictly coordinated during the development of the inner ear in order to generate the more than a dozen specialized cell types that constitute this structure. Here, we review the existing evidence that implicates autophagy in the generation of the vertebrate inner ear. At early stages of chicken otic development, inhibiting autophagy impairs neurogenesis and causes aberrant otocyst morphogenesis. Autophagy provides energy for the clearing of dying cells and it favors neuronal differentiation. Moreover, autophagy is required for proper vestibular development in the mouse inner ear. The autophagy-related genes Becn1, Atg4g, Atg5, and Atg9, are expressed in the inner ear from late developmental stages to adulthood, and Atg4b mutants show impaired vestibular behavior associated to defects in otoconial biogenesis that are also common to Atg5 mutants. Autophagic flux appears to be age-regulated, augmenting from perinatal stages to young adulthood in mice. This up-regulation is concomitant with the functional maturation of the hearing receptor. Hence, autophagy can be considered an intracellular pathway fundamental for in vertebrate inner ear development and maturation.
Collapse
Affiliation(s)
- Marta Magariños
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain.,Departamento de Biología, Universidad Autónoma de MadridMadrid, Spain
| | - Sara Pulido
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain
| | - María R Aburto
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain
| | - Rocío de Iriarte Rodríguez
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain
| | - Isabel Varela-Nieto
- Department of Endocrine and Nervous Systems Pathophysiology, Instituto de Investigaciones Biomédicas "Alberto Sols," CSIC-UAMMadrid, Spain.,CIBERER, Unit 761, Instituto de Salud Carlos IIIMadrid, Spain.,Instituto de Investigación Hospital Universitario La Paz (IdiPAZ)Madrid, Spain
| |
Collapse
|
72
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
73
|
Franco B, Malgrange B. Concise Review: Regeneration in Mammalian Cochlea Hair Cells: Help from Supporting Cells Transdifferentiation. Stem Cells 2017; 35:551-556. [PMID: 28102558 DOI: 10.1002/stem.2554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/27/2016] [Indexed: 12/28/2022]
Abstract
It is commonly assumed that mammalian cochlear cells do not regenerate. Therefore, if hair cells are lost following an injury, no recovery could occur. However, during the first postnatal week, mice harbor some progenitor cells that retain the ability to give rise to new hair cells. These progenitor cells are in fact supporting cells. Upon hair cells loss, those cells are able to generate new hair cells both by direct transdifferentiation or following cell cycle re-entry and differentiation. However, this property of supporting cells is progressively lost after birth. Here, we review the molecular mechanisms that are involved in mammalian hair cell development and regeneration. Manipulating pathways used during development constitute good candidates for inducing hair cell regeneration after injury. Despite these promising studies, there is still no evidence for a recovery following hair cells loss in adult mammals. Stem Cells 2017;35:551-556.
Collapse
Affiliation(s)
- Bénédicte Franco
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit - GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), B-4000, Liège, Belgium
| |
Collapse
|
74
|
Dyballa S, Savy T, Germann P, Mikula K, Remesikova M, Špir R, Zecca A, Peyriéras N, Pujades C. Distribution of neurosensory progenitor pools during inner ear morphogenesis unveiled by cell lineage reconstruction. eLife 2017; 6:22268. [PMID: 28051766 PMCID: PMC5243114 DOI: 10.7554/elife.22268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/23/2016] [Indexed: 01/01/2023] Open
Abstract
Reconstructing the lineage of cells is central to understanding how the wide diversity of cell types develops. Here, we provide the neurosensory lineage reconstruction of a complex sensory organ, the inner ear, by imaging zebrafish embryos in vivo over an extended timespan, combining cell tracing and cell fate marker expression over time. We deliver the first dynamic map of early neuronal and sensory progenitor pools in the whole otic vesicle. It highlights the remodeling of the neuronal progenitor domain upon neuroblast delamination, and reveals that the order and place of neuroblasts' delamination from the otic epithelium prefigure their position within the SAG. Sensory and non-sensory domains harbor different proliferative activity contributing distinctly to the overall growth of the structure. Therefore, the otic vesicle case exemplifies a generic morphogenetic process where spatial and temporal cues regulate cell fate and functional organization of the rudiment of the definitive organ.
Collapse
Affiliation(s)
- Sylvia Dyballa
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thierry Savy
- Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
| | - Philipp Germann
- Systems Biology Unit, Center for Genomic Regulation, Barcelona, Spain
| | - Karol Mikula
- Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
| | - Mariana Remesikova
- Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
| | - Róbert Špir
- Department of Mathematics, Slovak University of Technology, Bratislava, Slovakia
| | - Andrea Zecca
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nadine Peyriéras
- Multilevel Dynamics in Morphogenesis Unit, USR3695 CNRS, Gif sur Yvette, France
| | - Cristina Pujades
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
75
|
Kelley MW, Stone JS. Development and Regeneration of Sensory Hair Cells. AUDITORY DEVELOPMENT AND PLASTICITY 2017. [DOI: 10.1007/978-3-319-21530-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
76
|
Cardeña-Núñez S, Sánchez-Guardado LÓ, Corral-San-Miguel R, Rodríguez-Gallardo L, Marín F, Puelles L, Aroca P, Hidalgo-Sánchez M. Expression patterns of Irx genes in the developing chick inner ear. Brain Struct Funct 2016; 222:2071-2092. [PMID: 27783221 DOI: 10.1007/s00429-016-1326-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
The vertebrate inner ear is a complex three-dimensional sensorial structure with auditory and vestibular functions. The molecular patterning of the developing otic epithelium creates various positional identities, consequently leading to the stereotyped specification of each neurosensory and non-sensory element of the membranous labyrinth. The Iroquois (Iro/Irx) genes, clustered in two groups (A: Irx1, Irx2, and Irx4; and B: Irx3, Irx5, and Irx6), encode for transcriptional factors involved directly in numerous patterning processes of embryonic tissues in many phyla. This work presents a detailed study of the expression patterns of these six Irx genes during chick inner ear development, paying particular attention to the axial specification of the otic anlagen. The Irx genes seem to play different roles at different embryonic periods. At the otic vesicle stage (HH18), all the genes of each cluster are expressed identically. Both clusters A and B seem involved in the specification of the lateral and posterior portions of the otic anlagen. Cluster B seems to regulate a larger area than cluster A, including the presumptive territory of the endolymphatic apparatus. Both clusters seem also to be involved in neurogenic events. At stages HH24/25-HH27, combinations of IrxA and IrxB genes participate in the specification of most sensory patches and some non-sensory components of the otic epithelium. At stage HH34, the six Irx genes show divergent patterns of expression, leading to the final specification of the membranous labyrinth, as well as to cell differentiation.
Collapse
Affiliation(s)
- Sheila Cardeña-Núñez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Rubén Corral-San-Miguel
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Lucía Rodríguez-Gallardo
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain
| | - Faustino Marín
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Pilar Aroca
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de La Arrixaca (IMIB-Arrixaca), E30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda de Elvas s/n, E06071, Badajoz, Spain.
| |
Collapse
|
77
|
SHH ventralizes the otocyst by maintaining basal PKA activity and regulating GLI3 signaling. Dev Biol 2016; 420:100-109. [PMID: 27720745 DOI: 10.1016/j.ydbio.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/04/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023]
Abstract
During development of the inner ear, secreted morphogens act coordinately to establish otocyst dorsoventral polarity. Among these, Sonic hedgehog (SHH) plays a critical role in determining ventral polarity. However, how this extracellular signal is transduced intracellularly to establish ventral polarity is unknown. In this study, we show that cAMP dependent protein kinase A (PKA) is a key intracellular factor mediating SHH signaling through regulation of GLI3 processing. Gain-of-function experiments using targeted gene transfection by sonoporation or electroporation revealed that SHH signaling inactivates PKA, maintaining a basal level of PKA activity in the ventral otocyst. This, in turn, suppresses partial proteolytic processing of GLI3FL, resulting in a low GLI3R/GLI3FL ratio in the ventral otocyst and the expression of ventral-specific genes required for ventral otocyst morphogenesis. Thus, we identify a molecular mechanism that links extracellular and intracellular signaling, determines early ventral polarity of the inner ear, and has implications for understanding the integration of polarity signals in multiple organ rudiments regulated by gradients of signaling molecules.
Collapse
|
78
|
DeJonge RE, Liu XP, Deig CR, Heller S, Koehler KR, Hashino E. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture. PLoS One 2016; 11:e0162508. [PMID: 27607106 PMCID: PMC5015985 DOI: 10.1371/journal.pone.0162508] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023] Open
Abstract
Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles—a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo.
Collapse
Affiliation(s)
- Rachel E. DeJonge
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Xiao-Ping Liu
- Department of Otolaryngology, F.M. Kirby Neurobiology Center Boston Children’s Hospital, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Christopher R. Deig
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Palo Alto, CA, 94305, United States of America
| | - Karl R. Koehler
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail: (EH); (KRK)
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail: (EH); (KRK)
| |
Collapse
|
79
|
Ohta S, Wang B, Mansour SL, Schoenwolf GC. BMP regulates regional gene expression in the dorsal otocyst through canonical and non-canonical intracellular pathways. Development 2016; 143:2228-37. [PMID: 27151948 DOI: 10.1242/dev.137133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022]
Abstract
The inner ear consists of two otocyst-derived, structurally and functionally distinct components: the dorsal vestibular and ventral auditory compartments. BMP signaling is required to form the vestibular compartment, but how it complements other required signaling molecules and acts intracellularly is unknown. Using spatially and temporally controlled delivery of signaling pathway regulators to developing chick otocysts, we show that BMP signaling regulates the expression of Dlx5 and Hmx3, both of which encode transcription factors essential for vestibular formation. However, although BMP regulates Dlx5 through the canonical SMAD pathway, surprisingly, it regulates Hmx3 through a non-canonical pathway involving both an increase in cAMP-dependent protein kinase A activity and the GLI3R to GLI3A ratio. Thus, both canonical and non-canonical BMP signaling establish the precise spatiotemporal expression of Dlx5 and Hmx3 during dorsal vestibular development. The identification of the non-canonical pathway suggests an intersection point between BMP and SHH signaling, which is required for ventral auditory development.
Collapse
Affiliation(s)
- Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| | - Baolin Wang
- Department of Cell and Developmental Biology and Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Suzanne L Mansour
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA
| |
Collapse
|
80
|
Lineage tracing of Sox2-expressing progenitor cells in the mouse inner ear reveals a broad contribution to non-sensory tissues and insights into the origin of the organ of Corti. Dev Biol 2016; 414:72-84. [PMID: 27090805 DOI: 10.1016/j.ydbio.2016.03.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/09/2016] [Accepted: 03/26/2016] [Indexed: 11/22/2022]
Abstract
The transcription factor Sox2 is both necessary and sufficient for the generation of sensory regions of the inner ear. It regulates expression of the Notch ligand Jag1 in prosensory progenitors, which signal to neighboring cells to up-regulate Sox2 and sustain prosensory identity. However, the expression pattern of Sox2 in the early inner ear is very broad, suggesting that Sox2-expressing progenitors form a wide variety of cell types in addition to generating the sensory regions of the ear. We used Sox2-CreER mice to follow the fates of Sox2-expressing cells at different stages in ear development. We find that Sox2-expressing cells in the early otocyst give rise to large numbers of non-sensory structures throughout the inner ear, and that Sox2 only becomes a truly prosensory marker at embryonic day (E)11.5. Our fate map reveals the organ of Corti derives from a central domain on the medial side of the otocyst and shows that a significant amount of the organ of Corti derives from a Sox2-negative population in this region.
Collapse
|
81
|
Olaya-Sánchez D, Sánchez-Guardado LÓ, Ohta S, Chapman SC, Schoenwolf GC, Puelles L, Hidalgo-Sánchez M. Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear. Brain Struct Funct 2016; 222:131-149. [PMID: 26995070 DOI: 10.1007/s00429-016-1205-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/19/2016] [Indexed: 11/26/2022]
Abstract
The inner ear is a morphologically complex sensory structure with auditory and vestibular functions. The developing otic epithelium gives rise to neurosensory and non-sensory elements of the adult membranous labyrinth. Extrinsic and intrinsic signals manage the patterning and cell specification of the developing otic epithelium by establishing lineage-restricted compartments defined in turn by differential expression of regulatory genes. FGF3 and FGF16 are excellent candidates to govern these developmental events. Using the chick inner ear, we show that Fgf3 expression is present in the borders of all developing cristae. Strong Fgf16 expression was detected in a portion of the developing vertical and horizontal pouches, whereas the cristae show weaker or undetected Fgf16 expression at different developmental stages. Concerning the rest of the vestibular sensory elements, both the utricular and saccular maculae were Fgf3 positive. Interestingly, strong Fgf16 expression delimited these Fgf16-negative sensory patches. The Fgf3-negative macula neglecta and the Fgf3-positive macula lagena were included within weakly Fgf16-expressing areas. Therefore, different FGF-mediated mechanisms might regulate the specification of the anterior (utricular and saccular) and posterior (neglecta and lagena) maculae. In the developing cochlear duct, dynamic Fgf3 and Fgf16 expression suggests their cooperation in the early specification and later cell differentiation in the hearing system. The requirement of Fgf3 and Fgf16 genes in endolymphatic apparatus development and neurogenesis are discussed. Based on these observations, FGF3 and FGF16 seem to be key signaling pathways that control the inner ear plan by defining epithelial identities within the developing otic epithelium.
Collapse
Affiliation(s)
- Daniel Olaya-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Luis Óscar Sánchez-Guardado
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Sho Ohta
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Susan C Chapman
- Department of Biological Sciences, Clemson University, 340 Long Hall, Clemson, SC, 29634, USA
| | - Gary C Schoenwolf
- Department of Neurobiology and Anatomy, University of Utah, 2R066 School of Medicine, 30 N. 1900 E., Salt Lake City, UT, 84132-3401, USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30100, Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, School of Science, University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain.
| |
Collapse
|
82
|
Geng R, Noda T, Mulvaney JF, Lin VYW, Edge ASB, Dabdoub A. Comprehensive Expression of Wnt Signaling Pathway Genes during Development and Maturation of the Mouse Cochlea. PLoS One 2016; 11:e0148339. [PMID: 26859490 PMCID: PMC4747503 DOI: 10.1371/journal.pone.0148339] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In the inner ear Wnt signaling is necessary for proliferation, cell fate determination, growth of the cochlear duct, polarized orientation of stereociliary bundles, differentiation of the periotic mesenchyme, and homeostasis of the stria vascularis. In neonatal tissue Wnt signaling can drive proliferation of cells in the sensory region, suggesting that Wnt signaling could be used to regenerate the sensory epithelium in the damaged adult inner ear. Manipulation of Wnt signaling for regeneration will require an understanding of the dynamics of Wnt pathway gene expression in the ear. We present a comprehensive screen for 84 Wnt signaling related genes across four developmental and postnatal time points. RESULTS We identified 72 Wnt related genes expressed in the inner ear on embryonic day (E) 12.5, postnatal day (P) 0, P6 and P30. These genes included secreted Wnts, Wnt antagonists, intracellular components of canonical signaling and components of non-canonical signaling/planar cell polarity. CONCLUSION A large number of Wnt signaling molecules were dynamically expressed during cochlear development and in the early postnatal period, suggesting complex regulation of Wnt transduction. The data revealed several potential key regulators for further study.
Collapse
Affiliation(s)
- Ruishuang Geng
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Joanna F. Mulvaney
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Vincent Y. W. Lin
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Albert S. B. Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Otolaryngology—Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
83
|
Basch ML, Brown RM, Jen H, Groves AK. Where hearing starts: the development of the mammalian cochlea. J Anat 2016; 228:233-54. [PMID: 26052920 PMCID: PMC4718162 DOI: 10.1111/joa.12314] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian cochlea is a remarkable sensory organ, capable of perceiving sound over a range of 10(12) in pressure, and discriminating both infrasonic and ultrasonic frequencies in different species. The sensory hair cells of the mammalian cochlea are exquisitely sensitive, responding to atomic-level deflections at speeds on the order of tens of microseconds. The number and placement of hair cells are precisely determined during inner ear development, and a large number of developmental processes sculpt the shape, size and morphology of these cells along the length of the cochlear duct to make them optimally responsive to different sound frequencies. In this review, we briefly discuss the evolutionary origins of the mammalian cochlea, and then describe the successive developmental processes that lead to its induction, cell cycle exit, cellular patterning and the establishment of topologically distinct frequency responses along its length.
Collapse
Affiliation(s)
- Martin L. Basch
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
| | - Rogers M. Brown
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Hsin‐I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
| | - Andrew K. Groves
- Department of NeuroscienceBaylor College of MedicineHoustonTXUSA
- Program in Developmental BiologyBaylor College of MedicineHoustonTXUSA
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
84
|
Goodrich LV. Early Development of the Spiral Ganglion. THE PRIMARY AUDITORY NEURONS OF THE MAMMALIAN COCHLEA 2016. [DOI: 10.1007/978-1-4939-3031-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
85
|
Cochlear afferent innervation development. Hear Res 2015; 330:157-69. [DOI: 10.1016/j.heares.2015.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/02/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023]
|
86
|
Wright KD, Mahoney Rogers AA, Zhang J, Shim K. Cooperative and independent functions of FGF and Wnt signaling during early inner ear development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:33. [PMID: 26443994 PMCID: PMC4594887 DOI: 10.1186/s12861-015-0083-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/18/2015] [Indexed: 12/28/2022]
Abstract
Background In multiple vertebrate organisms, including chick, Xenopus, and zebrafish, Fibroblast Growth Factor (FGF) and Wnt signaling cooperate during formation of the otic placode. However, in the mouse, although FGF signaling induces Wnt8a expression during induction of the otic placode, it is unclear whether these two signaling pathways functionally cooperate. Sprouty (Spry) genes encode intracellular antagonists of receptor tyrosine kinase signaling, including FGF signaling. We previously demonstrated that the Sprouty1 (Spry1) and Sprouty2 (Spry2) genes antagonize FGF signaling during induction of the otic placode. Here, we investigate cross talk between FGF/SPRY and Wnt signaling during otic placode induction and assess whether these two signaling pathways functionally cooperate during early inner ear development in the mouse. Methods Embryos were generated carrying combinations of a Spry1 null allele, Spry2 null allele, β-catenin null allele, or a Wnt reporter transgene. Otic phenotypes were assessed by in situ hybridization, semi-quantitative reverse transcriptase PCR, immunohistochemistry, and morphometric analysis of sectioned tissue. Results Comparison of Spry1, Spry2, and Wnt reporter expression in pre-otic and otic placode cells indicates that FGF signaling precedes and is active in more cells than Wnt signaling. We provide in vivo evidence that FGF signaling activates the Wnt signaling pathway upstream of TCF/Lef transcriptional activation. FGF regulation of Wnt signaling is functional, since early inner ear defects in Spry1 and Spry2 compound mutant embryos can be genetically rescued by reducing the activity of the Wnt signaling pathway. Interestingly, we find that although the entire otic placode increases in size in Spry1 and Spry2 compound mutant embryos, the size of the Wnt-reporter-positive domain does not increase to the same extent as the Wnt-reporter-negative domain. Conclusions This study provides genetic evidence that FGF and Wnt signaling cooperate during early inner ear development in the mouse. Furthermore, our data suggest that although specification of the otic placode may be globally regulated by FGF signaling, otic specification of cells in which both FGF and Wnt signaling are active may be more tightly regulated. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0083-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin D Wright
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Amanda A Mahoney Rogers
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Jian Zhang
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Katherine Shim
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
87
|
Zhang Y, Chen Y, Ni W, Guo L, Lu X, Liu L, Li W, Sun S, Wang L, Li H. Dynamic expression of Lgr6 in the developing and mature mouse cochlea. Front Cell Neurosci 2015; 9:165. [PMID: 26029045 PMCID: PMC4428082 DOI: 10.3389/fncel.2015.00165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in mammalian inner ear development. Lgr5, one of the downstream target genes of the Wnt/β-catenin signaling pathway, has been reported to be a marker for inner ear hair cell progenitors. Lgr6 shares approximately 50% sequence homology with Lgr5 and has been identified as a stem cell marker in several organs. However, the detailed expression profiles of Lgr6 have not yet been investigated in the mouse inner ear. Here, we first used Lgr6-EGFP-Ires-CreERT2 mice to examine the spatiotemporal expression of Lgr6 protein in the cochlear duct during embryonic and postnatal development. Lgr6-EGFP was first observed in one row of prosensory cells in the middle and basal turn at embryonic day 15.5 (E15.5). From E18.5 to postnatal day 3 (P3), the expression of Lgr6-EGFP was restricted to the inner pillar cells (IPCs). From P7 to P15, the Lgr6-EGFP expression level gradually decreased in the IPCs and gradually increased in the inner border cells (IBCs). At P20, Lgr6-EGFP was only expressed in the IBCs, and by P30 Lgr6-EGFP expression had completely disappeared. Next, we demonstrated that Wnt/β-catenin signaling is required to maintain the Lgr6-EGFP expression in vitro. Finally, we demonstrated that the Lgr6-EGFP-positive cells isolated by flow cytometry could differentiate into myosin 7a-positive hair cells after 10 days in-culture, and this suggests that the Lgr6-positive cells might serve as the hair cell progenitor cells in the cochlea.
Collapse
Affiliation(s)
- Yanping Zhang
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Yan Chen
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wenli Ni
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Luo Guo
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Xiaoling Lu
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Liman Liu
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Wen Li
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Shan Sun
- Research Center, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China
| | - Lei Wang
- Institutes of Biomedical Sciences, Fudan University Shanghai, China
| | - Huawei Li
- Key Laboratory of Hearing Medicine, Ministry of Health, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital of Fudan University Shanghai, China ; The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University Shanghai, China
| |
Collapse
|
88
|
Jansson L, Kim GS, Cheng AG. Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 2015; 9:66. [PMID: 25814927 PMCID: PMC4356074 DOI: 10.3389/fncel.2015.00066] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/12/2015] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.
Collapse
Affiliation(s)
- Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Grace S Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| |
Collapse
|
89
|
Brown AS, Rakowiecki SM, Li JYH, Epstein DJ. The cochlear sensory epithelium derives from Wnt responsive cells in the dorsomedial otic cup. Dev Biol 2015; 399:177-187. [PMID: 25592224 DOI: 10.1016/j.ydbio.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/11/2014] [Accepted: 01/02/2015] [Indexed: 02/07/2023]
Abstract
Wnt1 and Wnt3a secreted from the dorsal neural tube were previously shown to regulate a gene expression program in the dorsal otic vesicle that is necessary for vestibular morphogenesis (Riccomagno et al., 2005. Genes Dev. 19, 1612-1623). Unexpectedly, Wnt1(-/-); Wnt3a(-/-) embryos also displayed a pronounced defect in the outgrowth of the ventrally derived cochlear duct. To determine how Wnt signaling in the dorsal otocyst contributes to cochlear development we performed a series of genetic fate mapping experiments using two independent Wnt responsive driver strains (TopCreER and Gbx2(CreER)) that when crossed to inducible responder lines (Rosa(lacZ) or Rosa(zsGreen)) permanently labeled dorsomedial otic progenitors and their derivatives. Tamoxifen time course experiments revealed that most vestibular structures showed some degree of labeling when recombination was induced between E7.75 and E12.5, consistent with continuous Wnt signaling activity in this tissue. Remarkably, a population of Wnt responsive cells in the dorsal otocyst was also found to contribute to the sensory epithelium of the cochlear duct, including auditory hair and support cells. Similar results were observed with both TopCreER and Gbx2(CreER) strains. The ventral displacement of Wnt responsive cells followed a spatiotemporal sequence that initiated in the anterior otic cup at, or immediately prior to, the 17-somite stage (E9) and then spread progressively to the posterior pole of the otic vesicle by the 25-somite stage (E9.5). These lineage-tracing experiments identify the earliest known origin of auditory sensory progenitors within a population of Wnt responsive cells in the dorsomedial otic cup.
Collapse
Affiliation(s)
- Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA
| | - James Y H Li
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
90
|
Longworth-Mills E, Koehler KR, Hashino E. Generating Inner Ear Organoids from Mouse Embryonic Stem Cells. Methods Mol Biol 2015; 1341:391-406. [PMID: 25822723 DOI: 10.1007/7651_2015_215] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This protocol describes a three-dimensional culture method for generating inner ear sensory epithelia, which comprises sensory hair cells and a concurrently arising neuronal population. Mouse embryonic stem cells are initially plated in 96-well plates with differentiation media; following aggregation, Matrigel is added in order to promote epithelialization. A series of small molecule applications is then used over the first 14 days of culture to guide differentiation towards an otic lineage. After 16-20 days, vesicles containing inner ear sensory hair cells and supporting cells arise from the cultured aggregates. Aggregates may be analyzed using immunohistochemistry and electrophysiology techniques. This system serves as a simple and relatively inexpensive in vitro model of inner ear development.
Collapse
Affiliation(s)
- Emma Longworth-Mills
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 980 West Walnut Street, WH-C400, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Anatomy and Cell Biology Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Karl R Koehler
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 980 West Walnut Street, WH-C400, Indianapolis, IN, 46202, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, 980 West Walnut Street, WH-C400, Indianapolis, IN, 46202, USA. .,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Anatomy and Cell Biology Graduate Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
91
|
Freeman SD, Keino-Masu K, Masu M, Ladher RK. Expression of the heparan sulfate 6-O-endosulfatases, Sulf1 and Sulf2, in the avian and mammalian inner ear suggests a role for sulfation during inner ear development. Dev Dyn 2014; 244:168-80. [PMID: 25370455 DOI: 10.1002/dvdy.24223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Inner ear morphogenesis is tightly regulated by the temporally and spatially coordinated action of signaling ligands and their receptors. Ligand-receptor interactions are influenced by heparan sulfate proteoglycans (HSPGs), cell surface molecules that consist of glycosaminoglycan chains bound to a protein core. Diversity in the sulfation pattern within glycosaminoglycan chains creates binding sites for numerous cell signaling factors, whose activities and distribution are modified by their association with HSPGs. RESULTS Here we describe the expression patterns of two extracellular 6-O-endosulfatases, Sulf1 and Sulf2, whose activity modifies the 6-O-sulfation pattern of HSPGs. We use in situ hybridization to determine the temporal and spatial distribution of transcripts during the development of the chick and mouse inner ear. We also use immunocytochemistry to determine the cellular localization of Sulf1 and Sulf2 within the sensory epithelia. Furthermore, we analyze the organ of Corti in Sulf1/Sulf2 double knockout mice and describe an increase in the number of mechanosensory hair cells. CONCLUSIONS Our results suggest that the tuning of intracellular signaling, mediated by Sulf activity, plays an important role in the development of the inner ear.
Collapse
Affiliation(s)
- Stephen D Freeman
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Chuo-ku, Kobe-shi, Japan
| | | | | | | |
Collapse
|
92
|
Chervenak AP, Bank LM, Thomsen N, Glanville-Jones HC, Jonathan S, Millen KJ, Arkell RM, Barald KF. The role of Zic genes in inner ear development in the mouse: Exploring mutant mouse phenotypes. Dev Dyn 2014; 243:1487-98. [PMID: 25178196 DOI: 10.1002/dvdy.24186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/23/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected. RESULTS Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2(kd/kd) and Zic2(Ku/Ku) mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2(Ku/Ku) mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. CONCLUSIONS The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss.
Collapse
Affiliation(s)
- Andrew P Chervenak
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan; Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
The development of hair cells in the auditory system can be separated into steps; first, the establishment of progenitors for the sensory epithelium, and second, the differentiation of hair cells. Although the differentiation of hair cells is known to require the expression of basic helix-loop-helix transcription factor, Atoh1, the control of cell proliferation in the region of the developing cochlea that will ultimately become the sensory epithelium and the cues that initiate Atoh1 expression remain obscure. We assessed the role of Wnt/β-catenin in both steps in gain- and loss-of-function models in mice. The canonical Wnt pathway mediator, β-catenin, controls the expression of Atoh1. Knock-out of β-catenin inhibited hair-cell, as well as pillar-cell, differentiation from sensory progenitors but was not required to maintain a hair-cell fate once specified. Constitutive activation of β-catenin expanded sensory progenitors by inducing additional cell division and resulted in the differentiation of extra hair cells. Our data demonstrate that β-catenin plays a role in cell division and differentiation in the cochlear sensory epithelium.
Collapse
|
94
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
95
|
Willaredt MA, Ebbers L, Nothwang HG. Central auditory function of deafness genes. Hear Res 2014; 312:9-20. [DOI: 10.1016/j.heares.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
|
96
|
Sánchez-Guardado LÓ, Puelles L, Hidalgo-Sánchez M. Fate map of the chicken otic placode. Development 2014; 141:2302-12. [PMID: 24821982 DOI: 10.1242/dev.101667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The inner ear is an intricate three-dimensional sensory organ that arises from a flat, thickened portion of the ectoderm termed the otic placode. There is evidence that the ontogenetic steps involved in the progressive specification of the highly specialized inner ear of vertebrates involve the concerted actions of diverse patterning signals that originate from nearby tissues, providing positional identity and instructive context. The topology of the prospective inner ear portions at placode stages when such patterning begins has remained largely unknown. The chick-quail model was used to perform a comprehensive fate mapping study of the chick otic placode, shedding light on the precise topological position of each presumptive inner ear component relative to the dorsoventral and anteroposterior axes of the otic placode and, implicitly, to the possible sources of inducing signals. The findings reveal the existence of three dorsoventrally arranged anteroposterior domains from which the endolymphatic system, the maculae and basilar papilla, and the cristae develop. This study provides new bases for the interpretation of earlier and future descriptive and experimental studies that aim to understand the molecular genetic mechanisms involved in otic placode patterning.
Collapse
Affiliation(s)
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, 30003 Murcia, Spain
| | - Matías Hidalgo-Sánchez
- Department of Cell Biology, Faculty of Science, University of Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
97
|
Durruthy-Durruthy R, Gottlieb A, Hartman BH, Waldhaus J, Laske RD, Altman R, Heller S. Reconstruction of the mouse otocyst and early neuroblast lineage at single-cell resolution. Cell 2014; 157:964-78. [PMID: 24768691 PMCID: PMC4051200 DOI: 10.1016/j.cell.2014.03.036] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/03/2014] [Accepted: 03/12/2014] [Indexed: 01/24/2023]
Abstract
The otocyst harbors progenitors for most cell types of the mature inner ear. Developmental lineage analyses and gene expression studies suggest that distinct progenitor populations are compartmentalized to discrete axial domains in the early otocyst. Here, we conducted highly parallel quantitative RT-PCR measurements on 382 individual cells from the developing otocyst and neuroblast lineages to assay 96 genes representing established otic markers, signaling-pathway-associated transcripts, and novel otic-specific genes. By applying multivariate cluster, principal component, and network analyses to the data matrix, we were able to readily distinguish the delaminating neuroblasts and to describe progressive states of gene expression in this population at single-cell resolution. It further established a three-dimensional model of the otocyst in which each individual cell can be precisely mapped into spatial expression domains. Our bioinformatic modeling revealed spatial dynamics of different signaling pathways active during early neuroblast development and prosensory domain specification.
Collapse
Affiliation(s)
- Robert Durruthy-Durruthy
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Assaf Gottlieb
- Departments of Bioengineering and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Byron H Hartman
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg Waldhaus
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Roman D Laske
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Russ Altman
- Departments of Bioengineering and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stefan Heller
- Department of Otolaryngology, Head & Neck Surgery and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
98
|
Koehler KR, Hashino E. 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protoc 2014; 9:1229-44. [PMID: 24784820 DOI: 10.1038/nprot.2014.100] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This protocol describes a culture system in which inner-ear sensory tissue is produced from mouse embryonic stem (ES) cells under chemically defined conditions. This model is amenable to basic and translational investigations into inner ear biology and regeneration. In this protocol, mouse ES cells are aggregated in 96-well plates in medium containing extracellular matrix proteins to promote epithelialization. During the first 14 d, a series of precisely timed protein and small-molecule treatments sequentially induce epithelia that represent the mouse embryonic non-neural ectoderm, preplacodal ectoderm and otic vesicle epithelia. Ultimately, these tissues develop into cysts with a pseudostratified epithelium containing inner ear hair cells and supporting cells after 16-20 d. Concurrently, sensory-like neurons generate synapse-like structures with the derived hair cells. We have designated the stem cell-derived epithelia harboring hair cells, supporting cells and sensory-like neurons as inner ear organoids. This method provides a reproducible and scalable means to generate inner ear sensory tissue in vitro.
Collapse
Affiliation(s)
- Karl R Koehler
- 1] Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana, USA. [2] Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA. [3] Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eri Hashino
- 1] Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana, USA. [2] Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA. [3] Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
99
|
Bohnenpoll T, Trowe MO, Wojahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Dev Biol 2014; 391:54-65. [PMID: 24727668 DOI: 10.1016/j.ydbio.2014.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/18/2023]
Abstract
Otic fibrocytes tether the cochlear duct to the surrounding otic capsule but are also critically involved in maintenance of ion homeostasis in the cochlea, thus, perception of sound. The molecular pathways that regulate the development of this heterogenous group of cells from mesenchymal precursors are poorly understood. Here, we identified epithelial Wnt7a and Wnt7b as possible ligands of Fzd-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated periotic mesenchyme (POM). Mice with a conditional deletion of Ctnnb1 in the POM exhibited a complete failure of fibrocyte differentiation, a severe reduction of mesenchymal cells surrounding the cochlear duct, loss of pericochlear spaces, a thickening and partial loss of the bony capsule and a secondary disturbance of cochlear duct coiling shortly before birth. Analysis at earlier stages revealed that radial patterning of the POM in two domains with highly condensed cartilaginous precursors and more loosely arranged inner mesenchymal cells occurred normally but that proliferation in the inner domain was reduced and cytodifferentiation failed. Cells with mis/overexpression of a stabilized form of Ctnnb1 in the entire POM mesenchyme sorted to the inner mesenchymal compartment and exhibited increased proliferation. Our analysis suggests that Wnt signals from the cochlear duct epithelium are crucial to induce differentiation and expansion of fibrocyte precursor cells. Our findings emphasize the importance of epithelial-mesenchymal signaling in inner ear development.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | - Marianne Petry
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
100
|
Abstract
A forward genetic screen of N-ethyl-N-nitrosourea mutagenized Xenopus tropicalis has identified an inner ear mutant named eclipse (ecl). Mutants developed enlarged otic vesicles and various defects of otoconia development; they also showed abnormal circular and inverted swimming patterns. Positional cloning identified specificity protein 8 (sp8), which was previously found to regulate limb and brain development. Two different loss-of-function approaches using transcription activator-like effector nucleases and morpholino oligonucleotides confirmed that the ecl mutant phenotype is caused by down-regulation of sp8. Depletion of sp8 resulted in otic dysmorphogenesis, such as uncompartmentalized and enlarged otic vesicles, epithelial dilation with abnormal sensory end organs. When overexpressed, sp8 was sufficient to induce ectopic otic vesicles possessing sensory hair cells, neurofilament innervation in a thickened sensory epithelium, and otoconia, all of which are found in the endogenous otic vesicle. We propose that sp8 is an important factor for initiation and elaboration of inner ear development.
Collapse
|