51
|
Biteen JS, Blainey PC, Cardon ZG, Chun M, Church GM, Dorrestein PC, Fraser SE, Gilbert JA, Jansson JK, Knight R, Miller JF, Ozcan A, Prather KA, Quake SR, Ruby EG, Silver PA, Taha S, van den Engh G, Weiss PS, Wong GCL, Wright AT, Young TD. Tools for the Microbiome: Nano and Beyond. ACS NANO 2016; 10:6-37. [PMID: 26695070 DOI: 10.1021/acsnano.5b07826] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The microbiome presents great opportunities for understanding and improving the world around us and elucidating the interactions that compose it. The microbiome also poses tremendous challenges for mapping and manipulating the entangled networks of interactions among myriad diverse organisms. Here, we describe the opportunities, technical needs, and potential approaches to address these challenges, based on recent and upcoming advances in measurement and control at the nanoscale and beyond. These technical needs will provide the basis for advancing the largely descriptive studies of the microbiome to the theoretical and mechanistic understandings that will underpin the discipline of microbiome engineering. We anticipate that the new tools and methods developed will also be more broadly useful in environmental monitoring, medicine, forensics, and other areas.
Collapse
Affiliation(s)
- Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Paul C Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology , and Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02138, United States
| | - Zoe G Cardon
- The Ecosystems Center, Marine Biological Laboratory , Woods Hole, Massachusetts 02543-1015, United States
| | - Miyoung Chun
- The Kavli Foundation , Oxnard, California 93030, United States
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | | | - Scott E Fraser
- Translational Imaging Center, University of Southern California , Molecular and Computational Biology, Los Angeles, California 90089, United States
| | - Jack A Gilbert
- Institute for Genomic and Systems Biology, Argonne National Laboratory , Argonne, Illinois 60439, United States
- Department of Ecology and Evolution and Department of Surgery, University of Chicago , Chicago, Illinois 60637, United States
| | - Janet K Jansson
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | | | | | | | | | | - Edward G Ruby
- Kewalo Marine Laboratory, University of Hawaii-Manoa , Honolulu, Hawaii 96813, United States
| | - Pamela A Silver
- Wyss Institute for Biologically Inspired Engineering and Biophysics Program, Harvard University , Boston, Massachusetts 02115, United States
| | - Sharif Taha
- The Kavli Foundation , Oxnard, California 93030, United States
| | - Ger van den Engh
- Center for Marine Cytometry , Concrete, Washington 98237, United States
- Instituto Milenio de Oceanografía, Universidad de Concepción , Concepción, Chile
| | | | | | - Aaron T Wright
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | | |
Collapse
|
52
|
Affiliation(s)
- Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Shashi K. Murthy
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Abigail N. Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
53
|
|
54
|
Abstract
Environmental studies are primarily done by culturing isolated microorganisms or by amplifying and sequencing conserved genes. Difficulties understanding the complexity of large numbers of various microorganisms in an environment led to the development of techniques to enrich specific microorganisms for upstream analysis, ultimately leading to single-cell isolation and analyses. We discuss the significance of single-cell technologies in omics studies with focus on metagenomics and metatranscriptomics. We propose that by reducing sample heterogeneity using single-cell genomics, metaomic studies can be simplified.
Collapse
Affiliation(s)
- Rimantas Kodzius
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Saudi Arabia.
| | - Takashi Gojobori
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Biological and Environmental Sciences and Engineering Division (BESE), Saudi Arabia.
| |
Collapse
|
55
|
Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell 2015; 163:367-80. [PMID: 26411289 DOI: 10.1016/j.cell.2015.08.058] [Citation(s) in RCA: 805] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023]
Abstract
Intestinal Th17 cells are induced and accumulate in response to colonization with a subgroup of intestinal microbes such as segmented filamentous bacteria (SFB) and certain extracellular pathogens. Here, we show that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction. Upon monocolonization of germ-free mice or rats with SFB indigenous to mice (M-SFB) or rats (R-SFB), M-SFB and R-SFB showed host-specific adhesion to small intestinal ECs, accompanied by host-specific induction of Th17 cells. Citrobacter rodentium and Escherichia coli O157 triggered similar Th17 responses, whereas adhesion-defective mutants of these microbes failed to do so. Moreover, a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, also exhibited EC-adhesive characteristics.
Collapse
|
56
|
de Wouters T, Jans C, Niederberger T, Fischer P, Rühs PA. Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods. PLoS One 2015; 10:e0136437. [PMID: 26295945 PMCID: PMC4546672 DOI: 10.1371/journal.pone.0136437] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial tension) as novel approaches to quantify these interactions and evaluated their biological significance via an adhesion assay using intestinal epithelial surface molecules (IESM) for a set of model organisms present in the human gastrointestinal tract. Strain pairs of Lactobacillus plantarum WCFS1 with its sortase knockout mutant Lb. plantarum NZ7114 and Lb. rhamnosus GG with Lb. rhamnosus DSM 20021T were used with Enterococcus faecalis JH2-2 as control organism. Intra-species comparison revealed significantly higher abilities for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T to dynamically increase interfacial elasticity (10-2 vs. 10-3 Pa*m) and reduce interfacial tension (32 vs. 38 mN/m). This further correlated for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T with the decrease of relative hydrophobicity (80-85% vs. 57-63%), Zeta potential (-2.9 to -4.5 mV vs. -8.0 to -13.8 mV) and higher relative adhesion capacity to IESM (3.0-5.0 vs 1.5-2.2). Highest adhesion to the IESM collagen I and fibronectin was found for Lb. plantarum WCFS1 (5.0) and E. faecalis JH2-2 (4.2) whereas Lb. rhamnosus GG showed highest adhesion to type II mucus (3.8). Significantly reduced adhesion (2 fold) to the tested IESM was observed for Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T corresponding with lower relative hydrophobicity, Zeta potential and abilities to modify interfacial elasticity and tension. Conclusively, the use of Zeta potential, interfacial elasticity and interfacial tension are proposed as suitable novel descriptive and predictive parameters to study the interactions of intestinal microbes with their hosts.
Collapse
Affiliation(s)
- Tomas de Wouters
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Christoph Jans
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Tobias Niederberger
- Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Peter Fischer
- Laboratory of Food Process Engineering, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| | - Patrick Alberto Rühs
- Laboratory of Food Process Engineering, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092, Zurich, Switzerland
| |
Collapse
|
57
|
Whole-genome amplification: a useful approach to characterize new genes in unculturable protozoan parasites such as Bonamia exitiosa. Parasitology 2015; 142:1523-34. [PMID: 26282916 DOI: 10.1017/s0031182015000967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bonamia exitiosa is an intracellular parasite (Haplosporidia) that has been associated with mass mortalities in oyster populations in the Southern hemisphere. This parasite was recently detected in the Northern hemisphere including Europe. Some representatives of the Bonamia genus have not been well categorized yet due to the lack of genomic information. In the present work, we have applied Whole-Genome Amplification (WGA) technique in order to characterize the actin gene in the unculturable protozoan B. exitiosa. This is the first protein coding gene described in this species. Molecular analysis revealed that B. exitiosa actin is more similar to Bonamia ostreae actin gene-1. Actin phylogeny placed the Bonamia sp. infected oysters in the same clade where the herein described B. exitiosa actin resolved, offering novel information about the classification of the genus. Our results showed that WGA methodology is a promising and valuable technique to be applied to unculturable protozoans whose genomic material is limited.
Collapse
|
58
|
Isolation of segmented filamentous bacteria from complex gut microbiota. Biotechniques 2015; 59:94-8. [PMID: 26260088 DOI: 10.2144/000114319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/19/2015] [Indexed: 11/23/2022] Open
Abstract
Segmented filamentous bacteria (SFB) modulate the ontogeny of the immune system, and their presence can significantly affect mouse models of disease. Until recently, the inability to successfully culture SFB has made controlled studies on the mechanisms by which these bacteria exert their influence problematic. Here, we report a new method for selecting SFB from complex microbial mixtures, providing researchers a simple and cost-effective means to prepare pure infective inocula for prospective studies and also to compare individual SFB isolates.
Collapse
|
59
|
The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol 2015; 36:460-70. [PMID: 26169256 DOI: 10.1016/j.it.2015.06.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/01/2015] [Accepted: 06/19/2015] [Indexed: 12/30/2022]
Abstract
The immune system has developed strategies to maintain a homeostatic relationship with the resident microbiota. IgA is central in holding this relationship, as the most dominant immunoglobulin isotype at the mucosal surface of the intestine. Recent studies report a role for IgA in shaping the composition of the intestinal microbiota and exploit strategies to characterise IgA-binding bacteria for their inflammatory potential. We review these findings here, and place them in context of the current understanding of the range of microorganisms that contribute to the IgA repertoire and the pathways that determine the quality of the IgA response. We examine why only certain intestinal microbes are coated with IgA, and discuss how understanding the determinants of this specific responsiveness may provide insight into diseases associated with dysbiosis.
Collapse
|
60
|
Development of Spatial Distribution Patterns by Biofilm Cells. Appl Environ Microbiol 2015; 81:6120-8. [PMID: 26116674 DOI: 10.1128/aem.01614-15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/19/2015] [Indexed: 01/14/2023] Open
Abstract
Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity.
Collapse
|
61
|
Gasc C, Ribière C, Parisot N, Beugnot R, Defois C, Petit-Biderre C, Boucher D, Peyretaillade E, Peyret P. Capturing prokaryotic dark matter genomes. Res Microbiol 2015; 166:814-30. [PMID: 26100932 DOI: 10.1016/j.resmic.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022]
Abstract
Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Céline Ribière
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Nicolas Parisot
- Biologie Fonctionnelle Insectes et Interactions, UMR203 BF2I, INRA, INSA-Lyon, Université de Lyon, Villeurbanne, France.
| | - Réjane Beugnot
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Clémence Defois
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Corinne Petit-Biderre
- Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171 Aubière, France.
| | - Delphine Boucher
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
62
|
Abstract
Single-cell sequencing (SCS) has emerged as a powerful new set of technologies for studying rare cells and delineating complex populations. Over the past 5 years, SCS methods for DNA and RNA have had a broad impact on many diverse fields of biology, including microbiology, neurobiology, development, tissue mosaicism, immunology, and cancer research. In this review, we will discuss SCS technologies and applications, as well as translational applications in the clinic.
Collapse
Affiliation(s)
- Yong Wang
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas E Navin
- Department of Genetics, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
63
|
Standardised animal models of host microbial mutualism. Mucosal Immunol 2015; 8:476-86. [PMID: 25492472 PMCID: PMC4424382 DOI: 10.1038/mi.2014.113] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/09/2014] [Indexed: 02/04/2023]
Abstract
An appreciation of the importance of interactions between microbes and multicellular organisms is currently driving research in biology and biomedicine. Many human diseases involve interactions between the host and the microbiota, so investigating the mechanisms involved is important for human health. Although microbial ecology measurements capture considerable diversity of the communities between individuals, this diversity is highly problematic for reproducible experimental animal models that seek to establish the mechanistic basis for interactions within the overall host-microbial superorganism. Conflicting experimental results may be explained away through unknown differences in the microbiota composition between vivaria or between the microenvironment of different isolated cages. In this position paper, we propose standardised criteria for stabilised and defined experimental animal microbiotas to generate reproducible models of human disease that are suitable for systematic experimentation and are reproducible across different institutions.
Collapse
|
64
|
Slack E, Balmer ML, Macpherson AJ. B cells as a critical node in the microbiota-host immune system network. Immunol Rev 2015; 260:50-66. [PMID: 24942681 DOI: 10.1111/imr.12179] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mutualism with our intestinal microbiota is a prerequisite for healthy existence. This requires physical separation of the majority of the microbiota from the host (by secreted antimicrobials, mucus, and the intestinal epithelium) and active immune control of the low numbers of microbes that overcome these physical and chemical barriers, even in healthy individuals. In this review, we address how B-cell responses to members of the intestinal microbiota form a robust network with mucus, epithelial integrity, follicular helper T cells, innate immunity, and gut-associated lymphoid tissues to maintain host-microbiota mutualism.
Collapse
Affiliation(s)
- Emma Slack
- Institute for Microbiology, ETH Zürich, Zurich, Switzerland
| | | | | |
Collapse
|
65
|
Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 2015; 520:99-103. [PMID: 25600271 DOI: 10.1038/nature14027] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/03/2014] [Indexed: 12/11/2022]
Abstract
The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.
Collapse
|
66
|
Bone marrow dendritic cells from mice with an altered microbiota provide interleukin 17A-dependent protection against Entamoeba histolytica colitis. mBio 2014; 5:e01817. [PMID: 25370489 PMCID: PMC4222101 DOI: 10.1128/mbio.01817-14] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is an emerging paradigm that the human microbiome is central to many aspects of health and may have a role in preventing enteric infection. Entamoeba histolytica is a major cause of amebic diarrhea in developing countries. It colonizes the colon lumen in close proximity to the gut microbiota. Interestingly, not all individuals are equally susceptible to E. histolytica infection. Therefore, as the microbiota is highly variable within individuals, we sought to determine if a component of the microbiota could regulate susceptibility to infection. In studies utilizing a murine model, we demonstrated that colonization of the gut with the commensal Clostridia-related bacteria known as segmented filamentous bacteria (SFB) is protective during E. histolytica infection. SFB colonization in this model was associated with elevated cecal levels of interleukin 17A (IL-17A), dendritic cells, and neutrophils. Bone marrow-derived dendritic cells (BMDCs) from SFB-colonized mice had higher levels of IL-23 production in response to stimulation with trophozoites. Adoptive transfer of BMDCs from an SFB+ to an SFB− mouse was sufficient to provide protection against E. histolytica. IL-17A induction during BMDC transfer was necessary for this protection. This work demonstrates that intestinal colonization with a specific commensal bacterium can provide protection during amebiasis in a murine model. Most importantly, this work demonstrates that the microbiome can mediate protection against an enteric infection via extraintestinal effects on bone marrow-derived dendritic cells. Entamoeba histolytica is the causative agent of amebiasis, an infectious disease that contributes significantly to morbidity and mortality due to diarrhea in the developing world. We showed in a murine model that colonization with the commensal members of the Clostridia known as SFB provides protection against E. histolytica and that dendritic cells from SFB-colonized mice alone can recapitulate protection. Understanding interactions between enteropathogens, commensal intestinal bacteria, and the mucosal immune response, including dendritic cells, will help in the development of effective treatments for this disease and other infectious and inflammatory diseases. The demonstration of immune-mediated protection due to communication from the microbiome to the bone marrow represents an emerging field of study that will yield unique approaches to the development of these treatments.
Collapse
|
67
|
Campbell AG, Schwientek P, Vishnivetskaya T, Woyke T, Levy S, Beall CJ, Griffen A, Leys E, Podar M. Diversity and genomic insights into the uncultured Chloroflexi from the human microbiota. Environ Microbiol 2014; 16:2635-43. [PMID: 24738594 PMCID: PMC4149597 DOI: 10.1111/1462-2920.12461] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many microbial phyla that are widely distributed in open environments have few or no representatives within animal-associated microbiota. Among them, the Chloroflexi comprises taxonomically and physiologically diverse lineages adapted to a wide range of aquatic and terrestrial habitats. A distinct group of uncultured chloroflexi related to free-living anaerobic Anaerolineae inhabits the mammalian gastrointestinal tract and includes low-abundance human oral bacteria that appear to proliferate in periodontitis. Using a single-cell genomics approach, we obtained the first draft genomic reconstruction for these organisms and compared their inferred metabolic potential with free-living chloroflexi. Genomic data suggest that oral chloroflexi are anaerobic heterotrophs, encoding abundant carbohydrate transport and metabolism functionalities, similar to those seen in environmental Anaerolineae isolates. The presence of genes for a unique phosphotransferase system and N-acetylglucosamine metabolism suggests an important ecological niche for oral chloroflexi in scavenging material from lysed bacterial cells and the human tissue. The inferred ability to produce sialic acid for cell membrane decoration may enable them to evade the host defence system and colonize the subgingival space. As with other low abundance but persistent members of the microbiota, discerning community and host factors that influence the proliferation of oral chloroflexi may help understand the emergence of oral pathogens and the microbiota dynamics in health and disease states.
Collapse
Affiliation(s)
- Alisha G. Campbell
- Biosciences Division, Oak Ridge National Laboratories, Oak Ridge, TN, USA
| | | | | | - Tanja Woyke
- Joint Genome Institute, Walnut Creek, California, USA
| | - Shawn Levy
- Hudson Alpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Ann Griffen
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Eugene Leys
- College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Mircea Podar
- Biosciences Division, Oak Ridge National Laboratories, Oak Ridge, TN, USA
| |
Collapse
|
68
|
Abstract
MOTIVATION Single-cell DNA sequencing is necessary for examining genetic variation at the cellular level, which remains hidden in bulk sequencing experiments. But because they begin with such small amounts of starting material, the amount of information that is obtained from single-cell sequencing experiment is highly sensitive to the choice of protocol employed and variability in library preparation. In particular, the fraction of the genome represented in single-cell sequencing libraries exhibits extreme variability due to quantitative biases in amplification and loss of genetic material. RESULTS We propose a method to predict the genome coverage of a deep sequencing experiment using information from an initial shallow sequencing experiment mapped to a reference genome. The observed coverage statistics are used in a non-parametric empirical Bayes Poisson model to estimate the gain in coverage from deeper sequencing. This approach allows researchers to know statistical features of deep sequencing experiments without actually sequencing deeply, providing a basis for optimizing and comparing single-cell sequencing protocols or screening libraries. AVAILABILITY AND IMPLEMENTATION The method is available as part of the preseq software package. Source code is available at http://smithlabresearch.org/preseq. CONTACT andrewds@usc.edu SUPPLEMENTARY INFORMATION Supplementary material is available at Bioinformatics online.
Collapse
Affiliation(s)
- Timothy Daley
- Department of Mathematics and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Department of Mathematics and Department of Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
69
|
Kashtan N, Roggensack SE, Rodrigue S, Thompson JW, Biller SJ, Coe A, Ding H, Marttinen P, Malmstrom RR, Stocker R, Follows MJ, Stepanauskas R, Chisholm SW. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 2014; 344:416-20. [PMID: 24763590 DOI: 10.1126/science.1248575] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Extensive genomic diversity within coexisting members of a microbial species has been revealed through selected cultured isolates and metagenomic assemblies. Yet, the cell-by-cell genomic composition of wild uncultured populations of co-occurring cells is largely unknown. In this work, we applied large-scale single-cell genomics to study populations of the globally abundant marine cyanobacterium Prochlorococcus. We show that they are composed of hundreds of subpopulations with distinct "genomic backbones," each backbone consisting of a different set of core gene alleles linked to a small distinctive set of flexible genes. These subpopulations are estimated to have diverged at least a few million years ago, suggesting ancient, stable niche partitioning. Such a large set of coexisting subpopulations may be a general feature of free-living bacterial species with huge populations in highly mixed habitats.
Collapse
Affiliation(s)
- Nadav Kashtan
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
Single-cell whole-transcriptome analysis is a powerful tool for quantifying gene expression heterogeneity in populations of cells. Many techniques have, thus, been recently developed to perform transcriptome sequencing (RNA-Seq) on individual cells. To probe subtle biological variation between samples with limiting amounts of RNA, more precise and sensitive methods are still required. We adapted a previously developed strategy for single-cell RNA-Seq that has shown promise for superior sensitivity and implemented the chemistry in a microfluidic platform for single-cell whole-transcriptome analysis. In this approach, single cells are captured and lysed in a microfluidic device, where mRNAs with poly(A) tails are reverse-transcribed into cDNA. Double-stranded cDNA is then collected and sequenced using a next generation sequencing platform. We prepared 94 libraries consisting of single mouse embryonic cells and technical replicates of extracted RNA and thoroughly characterized the performance of this technology. Microfluidic implementation increased mRNA detection sensitivity as well as improved measurement precision compared with tube-based protocols. With 0.2 M reads per cell, we were able to reconstruct a majority of the bulk transcriptome with 10 single cells. We also quantified variation between and within different types of mouse embryonic cells and found that enhanced measurement precision, detection sensitivity, and experimental throughput aided the distinction between biological variability and technical noise. With this work, we validated the advantages of an early approach to single-cell RNA-Seq and showed that the benefits of combining microfluidic technology with high-throughput sequencing will be valuable for large-scale efforts in single-cell transcriptome analysis.
Collapse
|
71
|
Shi X, Gao W, Wang J, Chao SH, Zhang W, Meldrum DR. Measuring gene expression in single bacterial cells: recent advances in methods and micro-devices. Crit Rev Biotechnol 2014; 35:448-60. [DOI: 10.3109/07388551.2014.899556] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
72
|
Ericsson AC, Hagan CE, Davis DJ, Franklin CL. Segmented filamentous bacteria: commensal microbes with potential effects on research. Comp Med 2014; 64:90-98. [PMID: 24674582 PMCID: PMC3997285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/23/2013] [Accepted: 09/15/2013] [Indexed: 06/03/2023]
Abstract
Segmented filamentous bacteria (SFB) are commensal bacteria that were first identified in the ilea of mice and rats. Morphologically similar bacteria occur in a broad range of host species, but all strains have been refractory to in vitro culture thus far. Although SFB were once considered innocuous members of the intestinal microbiota of laboratory rodents, they are now known to affect the development of the immune system in rodents and, subsequently, the phenotype of models of both enteric and extraintestinal disease. Therefore, SFB represent long-recognized commensal bacteria serving as an intercurrent variable in studies using rodent models of disease. Here we describe the basic biology of SFB and discuss the immunologic and physiologic effects of colonization with SFB, with particular attention to their effects on rodent models of disease. In addition, we propose that SFB represent only the 'tip of the iceberg' in our understanding of the influence of the microbiota on model phenotypes. As next-generation sequencing techniques are increasingly used to investigate organisms that are refractory to culture, we are likely to identify other commensal microbes that alter the models we use. This review underscores the need to characterize such host-microbe interactions, given that animal research represents a critical tool that is particularly vulnerable to scrutiny in an era of decreasing financial resources and increasing accountability for the use of animal models.
Collapse
Affiliation(s)
- Aaron C Ericsson
- Mutant Mouse Regional Resource Center (MMRRC), Rat Resource and Research Center (RRRC), Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA.
| | - Catherine E Hagan
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Craig L Franklin
- Mutant Mouse Regional Resource Center (MMRRC), Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
73
|
Douglas AE. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb Perspect Biol 2014; 6:6/2/a016113. [PMID: 24492707 DOI: 10.1101/cshperspect.a016113] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotes have evolved and diversified in the context of persistent colonization by non-pathogenic microorganisms. Various resident microorganisms provide a metabolic capability absent from the host, resulting in increased ecological amplitude and often evolutionary diversification of the host. Some microorganisms confer primary metabolic pathways, such as photosynthesis and cellulose degradation, and others expand the repertoire of secondary metabolism, including the synthesis of toxins that confer protection against natural enemies. A further route by which microorganisms affect host fitness arises from their modulation of the eukaryotic-signaling networks that regulate growth, development, behavior, and other functions. These effects are not necessarily based on interactions beneficial to the host, but can be a consequence of either eukaryotic utilization of microbial products as cues or host-microbial conflict. By these routes, eukaryote-microbial interactions play an integral role in the function and evolutionary diversification of eukaryotes.
Collapse
Affiliation(s)
- Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
74
|
UMESAKI Y. Use of gnotobiotic mice to identify and characterize key microbes responsible for the development of the intestinal immune system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:313-32. [PMID: 25391317 PMCID: PMC4324924 DOI: 10.2183/pjab.90.313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Symbiosis between intestinal microbiota and the host animal plays an important role in the homeostasis of host physiology. Since the first production of germ-free rodents in 1945, it has become increasingly clear that the intestinal immune system and the biochemical characteristics of epithelial cells differ greatly between conventional and germ-free rodents. However, questions remain about the types of microbes involved and the precise mechanism by which these microbes affect the host physiology. Here, we review experiments designed to answer these questions with the use of gnotobiotic mice. We have determined suitable biochemical and immunological markers for monitoring microbial effects in these mice. Using these markers, we have found clear differences in epithelial cell glycolipid biosynthesis and intraepithelial lymphocyte dynamics between germ-free and conventional mice. Furthermore, we have identified a key microbe that activates the mucosal immune system in the small intestine. This indigenous bacteria, called segmented filamentous bacteria, is a key symbiont in the host-microbiota interplay, including Th17 cell-inducing activity.
Collapse
Affiliation(s)
- Yoshinori UMESAKI
- Yakult Central Institute, Kunitachi-shi, Tokyo 186-8650, Japan
- Correspondence should be addressed: Y. Umesaki, Yakult Central Institute, Izumi 5-11, Kunitachi-shi, Tokyo 186-8650, Japan (e-mail: )
| |
Collapse
|
75
|
Weaver WM, Tseng P, Kunze A, Masaeli M, Chung AJ, Dudani JS, Kittur H, Kulkarni RP, Di Carlo D. Advances in high-throughput single-cell microtechnologies. Curr Opin Biotechnol 2013; 25:114-23. [PMID: 24484889 DOI: 10.1016/j.copbio.2013.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/31/2022]
Abstract
Micro-scale biological tools that have allowed probing of individual cells--from the genetic, to proteomic, to phenotypic level--have revealed important contributions of single cells to direct normal and diseased body processes. In analyzing single cells, sample heterogeneity between and within specific cell types drives the need for high-throughput and quantitative measurement of cellular parameters. In recent years, high-throughput single-cell analysis platforms have revealed rare genetic subpopulations in growing tumors, begun to uncover the mechanisms of antibiotic resistance in bacteria, and described the cell-to-cell variations in stem cell differentiation and immune cell response to activation by pathogens. This review surveys these recent technologies, presenting their strengths and contributions to the field, and identifies needs still unmet toward the development of high-throughput single-cell analysis tools to benefit life science research and clinical diagnostics.
Collapse
Affiliation(s)
- Westbrook M Weaver
- Department of Bioengineering, University of California, Los Angeles, United States
| | - Peter Tseng
- Department of Bioengineering, University of California, Los Angeles, United States
| | - Anja Kunze
- Department of Bioengineering, University of California, Los Angeles, United States
| | - Mahdokht Masaeli
- Department of Bioengineering, University of California, Los Angeles, United States
| | - Aram J Chung
- Department of Bioengineering, University of California, Los Angeles, United States
| | - Jaideep S Dudani
- Department of Bioengineering, University of California, Los Angeles, United States
| | - Harsha Kittur
- Department of Bioengineering, University of California, Los Angeles, United States
| | | | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, United States; California NanoSystems Institute, University of California, Los Angeles, United States.
| |
Collapse
|
76
|
Ellegaard KM, Klasson L, Andersson SGE. Testing the reproducibility of multiple displacement amplification on genomes of clonal endosymbiont populations. PLoS One 2013; 8:e82319. [PMID: 24312412 PMCID: PMC3842359 DOI: 10.1371/journal.pone.0082319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
The multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis. The amplified DNA was sequenced with the Illumina sequencing technology, and the results were compared to sequence data obtained from unamplified DNA in this study as well as from a previously published genome project. We show that artifacts such as the extent of the amplification bias, the percentage of chimeric reads and the relative fraction of contaminating DNA increase dramatically for the smallest amounts of template DNA. The pattern of read coverage was reproducibly obtained for samples with higher amounts of template DNA, suggesting that the bias is non-random and genome-specific. A re-analysis of previously published sequence data obtained after amplification from clonal endosymbiont populations confirmed these predictions. We conclude that many of the artifacts associated with the use of the multiple displacement amplification method can be alleviated or much reduced by using multiple cells as the template for the amplification. These findings should be particularly useful for researchers studying the genomes of endosymbionts and other uncultured bacteria, for which a small clonal population of cells can be isolated.
Collapse
Affiliation(s)
- Kirsten Maren Ellegaard
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Siv G. E. Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
77
|
Schnupf P, Gaboriau-Routhiau V, Cerf-Bensussan N. Host interactions with Segmented Filamentous Bacteria: an unusual trade-off that drives the post-natal maturation of the gut immune system. Semin Immunol 2013; 25:342-51. [PMID: 24184014 DOI: 10.1016/j.smim.2013.09.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Segmented Filamentous Bacteria (SFB) are present in the gut microbiota of a large number of vertebrate species where they are found intimately attached to the intestinal epithelium. SFB has recently attracted considerable attention due to its outstanding capacity to stimulate innate and adaptive host immune responses without causing pathology. Recent genomic analysis placed SFB between obligate and facultative symbionts, unraveled its highly auxotrophic needs, and provided a rationale for the complex SFB life-style in close contact with the epithelium. Herein, we examine how the SFB life-style may underlie its potent immunostimulatory properties and discuss how the trade-off set up between SFB and its hosts can simultaneously help to establish and maintain the ecological niche of SFB in the intestine and drive the post-natal maturation of the host gut immune barrier.
Collapse
Affiliation(s)
- Pamela Schnupf
- INSERM, U989, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, and Institut IMAGINE, 75015 Paris, France; Institut Pasteur, Unité de Pathogénie Microbienne Moleculaire, 25-28 rue du Dr. Roux, 75015 Paris, France
| | | | | |
Collapse
|
78
|
Microbial brokers of insect-plant interactions revisited. J Chem Ecol 2013; 39:952-61. [PMID: 23793897 DOI: 10.1007/s10886-013-0308-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/01/2013] [Accepted: 06/06/2013] [Indexed: 12/22/2022]
Abstract
Recent advances in sequencing methods have transformed the field of microbial ecology, making it possible to determine the composition and functional capabilities of uncultured microorganisms. These technologies have been instrumental in the recognition that resident microorganisms can have profound effects on the phenotype and fitness of their animal hosts by modulating the animal signaling networks that regulate growth, development, behavior, etc. Against this backdrop, this review assesses the impact of microorganisms on insect-plant interactions, in the context of the hypothesis that microorganisms are biochemical brokers of plant utilization by insects. There is now overwhelming evidence for a microbial role in insect utilization of certain plant diets with an extremely low or unbalanced nutrient content. Specifically, microorganisms enable insect utilization of plant sap by synthesizing essential amino acids. They also can broker insect utilization of plant products of extremely high lignocellulose content, by enzymatic breakdown of complex plant polysaccharides, nitrogen fixation, and sterol synthesis. However, the experimental evidence for microbial-mediated detoxification of plant allelochemicals is limited. The significance of microorganisms as brokers of plant utilization by insects is predicted to vary, possibly widely, as a result of potentially complex interactions between the composition of the microbiota and the diet and insect developmental age or genotype. For every insect species feeding on plant material, the role of resident microbiota as biochemical brokers of plant utilization is a testable hypothesis.
Collapse
|
79
|
Isolation of optically targeted single bacteria by application of fluidic force microscopy to aerobic anoxygenic phototrophs from the phyllosphere. Appl Environ Microbiol 2013; 79:4895-905. [PMID: 23770907 DOI: 10.1128/aem.01087-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In their natural environment, bacteria often behave differently than they do under laboratory conditions. To gain insight into the physiology of bacteria in situ, dedicated approaches are required to monitor their adaptations and specific behaviors under environmental conditions. Optical microscopy is crucial for the observation of fundamental characteristics of bacteria, such as cell shape, size, and marker gene expression. Here, fluidic force microscopy (FluidFM) was exploited to isolate optically selected bacteria for subsequent identification and characterization. In this study, bacteriochlorophyll-producing bacteria, which can be visualized due to their characteristic fluorescence in the infrared range, were isolated from leaf washes. Bacterial communities from the phyllosphere were investigated because they harbor genes indicative of aerobic anoxygenic photosynthesis. Our data show that different species of Methylobacterium express their photosystem in planta, and they show a distinct pattern of bacteriochlorophyll production under laboratory conditions that is dependent on supplied carbon sources.
Collapse
|
80
|
Segata N, Boernigen D, Tickle TL, Morgan XC, Garrett WS, Huttenhower C. Computational meta'omics for microbial community studies. Mol Syst Biol 2013; 9:666. [PMID: 23670539 PMCID: PMC4039370 DOI: 10.1038/msb.2013.22] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/03/2013] [Indexed: 12/16/2022] Open
Abstract
Complex microbial communities are an integral part of the Earth's ecosystem and of our bodies in health and disease. In the last two decades, culture-independent approaches have provided new insights into their structure and function, with the exponentially decreasing cost of high-throughput sequencing resulting in broadly available tools for microbial surveys. However, the field remains far from reaching a technological plateau, as both computational techniques and nucleotide sequencing platforms for microbial genomic and transcriptional content continue to improve. Current microbiome analyses are thus starting to adopt multiple and complementary meta'omic approaches, leading to unprecedented opportunities to comprehensively and accurately characterize microbial communities and their interactions with their environments and hosts. This diversity of available assays, analysis methods, and public data is in turn beginning to enable microbiome-based predictive and modeling tools. We thus review here the technological and computational meta'omics approaches that are already available, those that are under active development, their success in biological discovery, and several outstanding challenges.
Collapse
Affiliation(s)
- Nicola Segata
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
- Present address: Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Daniela Boernigen
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Timothy L Tickle
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xochitl C Morgan
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Curtis Huttenhower
- Biostatistics Department, Harvard School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
81
|
Blainey PC. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 2013; 37:407-27. [PMID: 23298390 PMCID: PMC3878092 DOI: 10.1111/1574-6976.12015] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/28/2012] [Accepted: 12/20/2012] [Indexed: 01/08/2023] Open
Abstract
Interest in the expanding catalog of uncultivated microorganisms, increasing recognition of heterogeneity among seemingly similar cells, and technological advances in whole-genome amplification and single-cell manipulation are driving considerable progress in single-cell genomics. Here, the spectrum of applications for single-cell genomics, key advances in the development of the field, and emerging methodology for single-cell genome sequencing are reviewed by example with attention to the diversity of approaches and their unique characteristics. Experimental strategies transcending specific methodologies are identified and organized as a road map for future studies in single-cell genomics of environmental microorganisms. Over the next decade, increasingly powerful tools for single-cell genome sequencing and analysis will play key roles in accessing the genomes of uncultivated organisms, determining the basis of microbial community functions, and fundamental aspects of microbial population biology.
Collapse
|
82
|
Maurice CF, Turnbaugh PJ. Quantifying the metabolic activities of human-associated microbial communities across multiple ecological scales. FEMS Microbiol Rev 2013; 37:830-48. [PMID: 23550823 DOI: 10.1111/1574-6976.12022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 12/15/2022] Open
Abstract
Humans are home to complex microbial communities, whose aggregate genomes and their encoded metabolic activities are referred to as the human microbiome. Recently, researchers have begun to appreciate that different human body habitats and the activities of their resident microorganisms can be better understood in ecological terms, as a range of spatial scales encompassing single cells, guilds of microorganisms responsive to a similar substrate, microbial communities, body habitats, and host populations. However, the bulk of the work to date has focused on studies of culturable microorganisms in isolation or on DNA sequencing-based surveys of microbial diversity in small-to-moderate-sized cohorts of individuals. Here, we discuss recent work that highlights the potential for assessing the human microbiome at a range of spatial scales, and for developing novel techniques that bridge multiple levels: for example, through the combination of single-cell methods and metagenomic sequencing. These studies promise to not only provide a much-needed epidemiological and ecological context for mechanistic studies of culturable and genetically tractable microorganisms, but may also lead to the discovery of fundamental rules that govern the assembly and function of host-associated microbial communities.
Collapse
Affiliation(s)
- Corinne F Maurice
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, 02138, USA
| | | |
Collapse
|
83
|
Jonsson H. Segmented filamentous bacteria in human ileostomy samples after high-fiber intake. FEMS Microbiol Lett 2013; 342:24-9. [DOI: 10.1111/1574-6968.12103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/13/2013] [Accepted: 02/08/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hans Jonsson
- Department of Microbiology; Uppsala BioCenter; Swedish University of Agricultural Sciences; Uppsala; Sweden
| |
Collapse
|
84
|
Sjöberg V, Sandström O, Hedberg M, Hammarström S, Hernell O, Hammarström ML. Intestinal T-cell responses in celiac disease - impact of celiac disease associated bacteria. PLoS One 2013; 8:e53414. [PMID: 23326425 PMCID: PMC3541273 DOI: 10.1371/journal.pone.0053414] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/28/2012] [Indexed: 02/06/2023] Open
Abstract
A hallmark of active celiac disease (CD), an inflammatory small-bowel enteropathy caused by permanent intolerance to gluten, is cytokine production by intestinal T lymphocytes. Prerequisites for contracting CD are that the individual carries the MHC class II alleles HLA-DQ2 and/or HLA-DQ8 and is exposed to gluten in the diet. Dysbiosis in the resident microbiota has been suggested to be another risk factor for CD. In fact, rod shaped bacteria adhering to the small intestinal mucosa were frequently seen in patients with CD during the “Swedish CD epidemic” and bacterial candidates could later be isolated from patients born during the epidemic suggesting long-lasting changes in the gut microbiota. Interleukin-17A (IL-17A) plays a role in both inflammation and anti-bacterial responses. In active CD IL-17A was produced by both CD8+ T cells (Tc17) and CD4+ T cells (Th17), with intraepithelial Tc17 cells being the dominant producers. Gluten peptides as well as CD associated bacteria induced IL-17A responses in ex vivo challenged biopsies from patients with inactive CD. The IL-17A response was suppressed in patients born during the epidemic when a mixture of CD associated bacteria was added to gluten, while the reverse was the case in patients born after the epidemic. Under these conditions Th17 cells were the dominant producers. Thus Tc17 and Th17 responses to gluten and bacteria seem to pave the way for the chronic disease with interferon-γ-production by intraepithelial Tc1 cells and lamina propria Th1 cells. The CD associated bacteria and the dysbiosis they might cause in the resident microbiota may be a risk factor for CD either by directly influencing the immune responses in the mucosa or by enhancing inflammatory responses to gluten.
Collapse
Affiliation(s)
- Veronika Sjöberg
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Olof Sandström
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Maria Hedberg
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Sten Hammarström
- Department of Clinical Microbiology, Immunology, Umeå University, Umeå, Sweden
| | - Olle Hernell
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | | |
Collapse
|
85
|
Streets AM, Huang Y. Chip in a lab: Microfluidics for next generation life science research. BIOMICROFLUIDICS 2013; 7:11302. [PMID: 23460772 PMCID: PMC3574129 DOI: 10.1063/1.4789751] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/14/2013] [Indexed: 05/06/2023]
Abstract
Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research.
Collapse
Affiliation(s)
- Aaron M Streets
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China ; College of Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
86
|
Landry ZC, Giovanonni SJ, Quake SR, Blainey PC. Optofluidic cell selection from complex microbial communities for single-genome analysis. Methods Enzymol 2013; 531:61-90. [PMID: 24060116 DOI: 10.1016/b978-0-12-407863-5.00004-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy.
Collapse
Affiliation(s)
- Zachary C Landry
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|
87
|
Yin Y, Wang Y, Zhu L, Liu W, Liao N, Jiang M, Zhu B, Yu HD, Xiang C, Wang X. Comparative analysis of the distribution of segmented filamentous bacteria in humans, mice and chickens. ISME JOURNAL 2012; 7:615-21. [PMID: 23151642 DOI: 10.1038/ismej.2012.128] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Segmented filamentous bacteria (SFB) are indigenous gut commensal bacteria. They are commonly detected in the gastrointestinal tracts of both vertebrates and invertebrates. Despite the significant role they have in the modulation of the development of host immune systems, little information exists regarding the presence of SFB in humans. The aim of this study was to investigate the distribution and diversity of SFB in humans and to determine their phylogenetic relationships with their hosts. Gut contents from 251 humans, 92 mice and 72 chickens were collected for bacterial genomic DNA extraction and subjected to SFB 16S rRNA-specific PCR detection. The results showed SFB colonization to be age-dependent in humans, with the majority of individuals colonized within the first 2 years of life, but this colonization disappeared by the age of 3 years. Results of 16S rRNA sequencing showed that multiple operational taxonomic units of SFB could exist in the same individuals. Cross-species comparison among human, mouse and chicken samples demonstrated that each host possessed an exclusive predominant SFB sequence. In summary, our results showed that SFB display host specificity, and SFB colonization, which occurs early in human life, declines in an age-dependent manner.
Collapse
Affiliation(s)
- Yeshi Yin
- State Key Laboratory of Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Stepanauskas R. Single cell genomics: an individual look at microbes. Curr Opin Microbiol 2012; 15:613-20. [PMID: 23026140 DOI: 10.1016/j.mib.2012.09.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 12/18/2022]
Abstract
Single cell genomics (SCG) uncovers hereditary information at the most basic level of biological organization. It is emerging as a powerful complement to cultivation-based and microbial community-focused research approaches. SCG has been instrumental in identifying metabolic features, evolutionary histories and inter-organismal interactions of the uncultured microbial groups that dominate many environments and biogeochemical cycles. The SCG approach also holds great promise in microbial microevolution studies and industrial bioprospecting. Methods for SCG consist of a series of integrated processes, beginning with the collection and preservation of environmental samples, followed by physical separation, lysis and whole genome amplification of individual cells, and culminating in genomic sequencing and the inference of encoded biological features.
Collapse
|
89
|
|
90
|
Kamke J, Bayer K, Woyke T, Hentschel U. Exploring symbioses by single-cell genomics. THE BIOLOGICAL BULLETIN 2012; 223:30-43. [PMID: 22983031 DOI: 10.1086/bblv223n1p30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Single-cell genomics has advanced the field of microbiology from the analysis of microbial metagenomes where information is "drowning in a sea of sequences," to recognizing each microbial cell as a separate and unique entity. Single-cell genomics employs Phi29 polymerase-mediated whole-genome amplification to yield microgram-range genomic DNA from single microbial cells. This method has now been applied to a handful of symbiotic systems, including bacterial symbionts of marine sponges, insects (grasshoppers, termites), and vertebrates (mouse, human). In each case, novel insights were obtained into the functional genomic repertoire of the bacterial partner, which, in turn, led to an improved understanding of the corresponding host. Single-cell genomics is particularly valuable when dealing with uncultivated microorganisms, as is still the case for many bacterial symbionts. In this review, we explore the power of single-cell genomics for symbiosis research and highlight recent insights into the symbiotic systems that were obtained by this approach.
Collapse
Affiliation(s)
- Janine Kamke
- Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs Platz 3, 97082 Würzburg, Germany
| | | | | | | |
Collapse
|