51
|
Ebert B, Rautengarten C, Guo X, Xiong G, Stonebloom S, Smith-Moritz AM, Herter T, Chan LJG, Adams PD, Petzold CJ, Pauly M, Willats WGT, Heazlewood JL, Scheller HV. Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. THE PLANT CELL 2015; 27:1218-27. [PMID: 25804536 PMCID: PMC4558686 DOI: 10.1105/tpc.114.133827] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 03/05/2015] [Indexed: 05/02/2023]
Abstract
Most glycosylation reactions require activated glycosyl donors in the form of nucleotide sugars to drive processes such as posttranslational modifications and polysaccharide biosynthesis. Most plant cell wall polysaccharides are biosynthesized in the Golgi apparatus from cytosolic-derived nucleotide sugars, which are actively transferred into the Golgi lumen by nucleotide sugar transporters (NSTs). An exception is UDP-xylose, which is biosynthesized in both the cytosol and the Golgi lumen by a family of UDP-xylose synthases. The NST-based transport of UDP-xylose into the Golgi lumen would appear to be redundant. However, employing a recently developed approach, we identified three UDP-xylose transporters in the Arabidopsis thaliana NST family and designated them UDP-XYLOSE TRANSPORTER1 (UXT1) to UXT3. All three transporters localize to the Golgi apparatus, and UXT1 also localizes to the endoplasmic reticulum. Mutants in UXT1 exhibit ∼30% reduction in xylose in stem cell walls. These findings support the importance of the cytosolic UDP-xylose pool and UDP-xylose transporters in cell wall biosynthesis.
Collapse
Affiliation(s)
- Berit Ebert
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Carsten Rautengarten
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Guangyan Xiong
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Solomon Stonebloom
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Andreia M Smith-Moritz
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Thomas Herter
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Leanne Jade G Chan
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Paul D Adams
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Bioengineering, University of California, Berkeley, California 94720
| | - Christopher J Petzold
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Markus Pauly
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - William G T Willats
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, C 1871 Copenhagen, Denmark
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
52
|
Külahoglu C, Denton AK, Sommer M, Maß J, Schliesky S, Wrobel TJ, Berckmans B, Gongora-Castillo E, Buell CR, Simon R, De Veylder L, Bräutigam A, Weber APM. Comparative transcriptome atlases reveal altered gene expression modules between two Cleomaceae C3 and C4 plant species. THE PLANT CELL 2014; 26:3243-60. [PMID: 25122153 PMCID: PMC4371828 DOI: 10.1105/tpc.114.123752] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 06/20/2014] [Accepted: 07/06/2014] [Indexed: 05/04/2023]
Abstract
C(4) photosynthesis outperforms the ancestral C(3) state in a wide range of natural and agro-ecosystems by affording higher water-use and nitrogen-use efficiencies. It therefore represents a prime target for engineering novel, high-yielding crops by introducing the trait into C(3) backgrounds. However, the genetic architecture of C(4) photosynthesis remains largely unknown. To define the divergence in gene expression modules between C(3) and C(4) photosynthesis during leaf ontogeny, we generated comprehensive transcriptome atlases of two Cleomaceae species, Gynandropsis gynandra (C(4)) and Tarenaya hassleriana (C(3)), by RNA sequencing. Overall, the gene expression profiles appear remarkably similar between the C(3) and C(4) species. We found that known C(4) genes were recruited to photosynthesis from different expression domains in C(3), including typical housekeeping gene expression patterns in various tissues as well as individual heterotrophic tissues. Furthermore, we identified a structure-related module recruited from the C(3) root. Comparison of gene expression patterns with anatomy during leaf ontogeny provided insight into genetic features of Kranz anatomy. Altered expression of developmental factors and cell cycle genes is associated with a higher degree of endoreduplication in enlarged C(4) bundle sheath cells. A delay in mesophyll differentiation apparent both in the leaf anatomy and the transcriptome allows for extended vein formation in the C(4) leaf.
Collapse
Affiliation(s)
- Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Alisandra K Denton
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Manuel Sommer
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Janina Maß
- Institute of Informatics, Cluster of Excellence on Plant Sciences, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Simon Schliesky
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Thomas J Wrobel
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Barbara Berckmans
- Institute of Developmental Genetics, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Elsa Gongora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Rüdiger Simon
- Institute of Developmental Genetics, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
53
|
Wright LP, Rohwer JM, Ghirardo A, Hammerbacher A, Ortiz-Alcaide M, Raguschke B, Schnitzler JP, Gershenzon J, Phillips MA. Deoxyxylulose 5-Phosphate Synthase Controls Flux through the Methylerythritol 4-Phosphate Pathway in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:1488-1504. [PMID: 24987018 PMCID: PMC4119033 DOI: 10.1104/pp.114.245191] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
The 2-C-methylerythritol 4-phosphate (MEP) pathway supplies precursors for plastidial isoprenoid biosynthesis including carotenoids, redox cofactor side chains, and biogenic volatile organic compounds. We examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), using metabolic control analysis. Multiple Arabidopsis (Arabidopsis thaliana) lines presenting a range of DXS activities were dynamically labeled with 13CO2 in an illuminated, climate-controlled, gas exchange cuvette. Carbon was rapidly assimilated into MEP pathway intermediates, but not into the mevalonate pathway. A flux control coefficient of 0.82 was calculated for DXS by correlating absolute flux to enzyme activity under photosynthetic steady-state conditions, indicating that DXS is the major controlling enzyme of the MEP pathway. DXS manipulation also revealed a second pool of a downstream metabolite, 2-C-methylerythritol-2,4-cyclodiphosphate (MEcDP), metabolically isolated from the MEP pathway. DXS overexpression led to a 3- to 4-fold increase in MEcDP pool size but to a 2-fold drop in maximal labeling. The existence of this pool was supported by residual MEcDP levels detected in dark-adapted transgenic plants. Both pools of MEcDP are closely modulated by DXS activity, as shown by the fact that the concentration control coefficient of DXS was twice as high for MEcDP (0.74) as for 1-deoxyxylulose 5-phosphate (0.35) or dimethylallyl diphosphate (0.34). Despite the high flux control coefficient for DXS, its overexpression led to only modest increases in isoprenoid end products and in the photosynthetic rate. Diversion of flux via MEcDP may partly explain these findings and suggests new opportunities to engineer the MEP pathway.
Collapse
Affiliation(s)
- Louwrance P Wright
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Johann M Rohwer
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Andrea Ghirardo
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Almuth Hammerbacher
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Miriam Ortiz-Alcaide
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Bettina Raguschke
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Jörg-Peter Schnitzler
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| | - Michael A Phillips
- Department of Biochemistry, Max Plank Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., A.H., B.R., J.G.);Department of Biochemistry, Stellenbosch University, 7602 Stellenbosch, South Africa (J.M.R.);Research Unit Environmental Simulation (EUS), Institute of Biochemical Plant Pathology, Helmholtz Zentrum, 85764 Neuherberg, Germany (A.G., J.-P.S.); andPlant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (Consorci CSIC-IRTA-UAB-UB), 08193 Bellaterra, Barcelona, Spain (M.O., M.A.P.)
| |
Collapse
|
54
|
Sharkey TD, Monson RK. The future of isoprene emission from leaves, canopies and landscapes. PLANT, CELL & ENVIRONMENT 2014; 37:1727-40. [PMID: 24471530 DOI: 10.1111/pce.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/09/2023]
Abstract
Isoprene emission from plants plays a dominant role in atmospheric chemistry. Predicting how isoprene emission may change in the future will help predict changes in atmospheric oxidant, greenhouse gas and secondary organic aerosol concentrations in the future atmosphere. At the leaf-scale, an increase in isoprene emission with increasing temperature is offset by a reduction in isoprene emission rate caused by increased CO₂. At the canopy scale, increased leaf area index in elevated CO₂ can offset the reduction in leaf-scale isoprene emission caused by elevated CO₂. At the landscape scale, a reduction in forest coverage may decrease, while forest fertilization and community composition dynamics are likely to cause an increase in the global isoprene emission rate. Here we review the potential for changes in the isoprene emission rate at all of these scales. When considered together, it is likely that these interacting effects will result in an increase in the emission of the most abundant plant volatile, isoprene, from the biosphere to the atmosphere in the future.
Collapse
Affiliation(s)
- Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
55
|
The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:11563-8. [PMID: 25053812 DOI: 10.1073/pnas.1406073111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Plant cells are surrounded by a cell wall that plays a key role in plant growth, structural integrity, and defense. The cell wall is a complex and diverse structure that is mainly composed of polysaccharides. The majority of noncellulosic cell wall polysaccharides are produced in the Golgi apparatus from nucleotide sugars that are predominantly synthesized in the cytosol. The transport of these nucleotide sugars from the cytosol into the Golgi lumen is a critical process for cell wall biosynthesis and is mediated by a family of nucleotide sugar transporters (NSTs). Numerous studies have sought to characterize substrate-specific transport by NSTs; however, the availability of certain substrates and a lack of robust methods have proven problematic. Consequently, we have developed a novel approach that combines reconstitution of NSTs into liposomes and the subsequent assessment of nucleotide sugar uptake by mass spectrometry. To address the limitation of substrate availability, we also developed a two-step reaction for the enzymatic synthesis of UDP-l-rhamnose (Rha) by expressing the two active domains of the Arabidopsis UDP-l-Rha synthase. The liposome approach and the newly synthesized substrates were used to analyze a clade of Arabidopsis NSTs, resulting in the identification and characterization of six bifunctional UDP-l-Rha/UDP-d-galactose (Gal) transporters (URGTs). Further analysis of loss-of-function and overexpression plants for two of these URGTs supported their roles in the transport of UDP-l-Rha and UDP-d-Gal for matrix polysaccharide biosynthesis.
Collapse
|
56
|
Dyson BC, Webster RE, Johnson GN. GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development. ANNALS OF BOTANY 2014; 113:643-52. [PMID: 24489010 PMCID: PMC3936590 DOI: 10.1093/aob/mct298] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS GPT2, a glucose 6-phosphate/phosphate translocator, plays an important role in environmental sensing in mature leaves of Arabidopsis thaliana. Its expression has also been detected in arabidopsis seeds and seedlings. In order to examine the role of this protein early in development, germination and seedling growth were studied. METHODS Germination, greening and establishment of seedlings were monitored in both wild-type Arabidopsis thaliana and in a gpt2 T-DNA insertion knockout line. Seeds were sown on agar plates in the presence or absence of glucose and abscisic acid. Relative expression of GPT2 in seedlings was measured using quantitative PCR. KEY RESULTS Plants lacking GPT2 expression were delayed (25-40 %) in seedling establishment, specifically in the process of cotyledon greening (rather than germination). This phenotype could not be rescued by glucose in the growth medium, with greening being hypersensitive to glucose. Germination itself was, however, hyposensitive to glucose in the gpt2 mutant. CONCLUSIONS The expression of GPT2 modulates seedling development and plays a crucial role in determining the response of seedlings to exogenous sugars during their establishment. This allows us to conclude that endogenous sugar signals function in controlling germination and the transition from heterotrophic to autotrophic growth, and that the partitioning of glucose 6-phosphate, or related metabolites, between the cytosol and the plastid modulates these developmental responses.
Collapse
Affiliation(s)
- Beth C. Dyson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Rachel E. Webster
- The Manchester Museum, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Giles N. Johnson
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
- For correspondence. E-mail
| |
Collapse
|
57
|
Nargund S, Sriram G. Mathematical modeling of isotope labeling experiments for metabolic flux analysis. Methods Mol Biol 2014; 1083:109-131. [PMID: 24218213 DOI: 10.1007/978-1-62703-661-0_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Isotope labeling experiments (ILEs) offer a powerful methodology to perform metabolic flux analysis. However, the task of interpreting data from these experiments to evaluate flux values requires significant mathematical modeling skills. Toward this, this chapter provides background information and examples to enable the reader to (1) model metabolic networks, (2) simulate ILEs, and (3) understand the optimization and statistical methods commonly used for flux evaluation. A compartmentalized model of plant glycolysis and pentose phosphate pathway illustrates the reconstruction of a typical metabolic network, whereas a simpler example network illustrates the underlying metabolite and isotopomer balancing techniques. We also discuss the salient features of commonly used flux estimation software 13CFLUX2, Metran, NMR2Flux+, FiatFlux, and OpenFLUX. Furthermore, we briefly discuss methods to improve flux estimates. A graphical checklist at the end of the chapter provides a reader a quick reference to the mathematical modeling concepts and resources.
Collapse
|
58
|
Staehr P, Löttgert T, Christmann A, Krueger S, Rosar C, Rolčík J, Novák O, Strnad M, Bell K, Weber APM, Flügge UI, Häusler RE. Reticulate leaves and stunted roots are independent phenotypes pointing at opposite roles of the phosphoenolpyruvate/phosphate translocator defective in cue1 in the plastids of both organs. FRONTIERS IN PLANT SCIENCE 2014; 5:126. [PMID: 24782872 PMCID: PMC3986533 DOI: 10.3389/fpls.2014.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/17/2014] [Indexed: 05/17/2023]
Abstract
Phosphoenolpyruvate (PEP) serves not only as a high energy carbon compound in glycolysis, but it acts also as precursor for plastidial anabolic sequences like the shikimate pathway, which produces aromatic amino acids (AAA) and subsequently secondary plant products. After conversion to pyruvate, PEP can also enter de novo fatty acid biosynthesis, the synthesis of branched-chain amino acids, and the non-mevalonate way of isoprenoid production. As PEP cannot be generated by glycolysis in chloroplasts and a variety of non-green plastids, it has to be imported from the cytosol by a phosphate translocator (PT) specific for PEP (PPT). A loss of function of PPT1 in Arabidopsis thaliana results in the chlorophyll a/b binding protein underexpressed1 (cue1) mutant, which is characterized by reticulate leaves and stunted roots. Here we dissect the shoot- and root phenotypes, and also address the question whether or not long distance signaling by metabolites is involved in the perturbed mesophyll development of cue1. Reverse grafting experiments showed that the shoot- and root phenotypes develop independently from each other, ruling out long distance metabolite signaling. The leaf phenotype could be transiently modified even in mature leaves, e.g. by an inducible PPT1RNAi approach or by feeding AAA, the cytokinin trans-zeatin (tZ), or the putative signaling molecule dehydrodiconiferyl alcohol glucoside (DCG). Hormones, such as auxins, abscisic acid, gibberellic acid, ethylene, methyl jasmonate, and salicylic acid did not rescue the cue1 leaf phenotype. The low cell density1 (lcd1) mutant shares the reticulate leaf-, but not the stunted root phenotype with cue1. It could neither be rescued by AAA nor by tZ. In contrast, tZ and AAA further inhibited root growth both in cue1 and wild-type plants. Based on our results, we propose a model that PPT1 acts as a net importer of PEP into chloroplast, but as an overflow valve and hence exporter in root plastids.
Collapse
Affiliation(s)
- Pia Staehr
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Lophius BiosciencesRegensburg, Germany
| | - Tanja Löttgert
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Quintiles GmbHNeu-Isenburg, Germany
| | - Alexander Christmann
- Lehrstuhl für Botanik, Wissenschaftszentrum Weihenstephan, Technische Universität MünchenMunich, Germany
| | - Stephan Krueger
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Christian Rosar
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Palacký UniversityOlumouc, Czech Republic
| | - Kirsten Bell
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Andreas P. M. Weber
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
- Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Cluster of Excellence on Plant SciencesDüsseldorf, Germany
| | - Rainer E. Häusler
- Department of Botany II, Cologne Biocenter, University of CologneCologne, Germany
- *Correspondence: Rainer E. Häusler, Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany e-mail:
| |
Collapse
|
59
|
Guo C, Zhao X, Liu X, Zhang L, Gu J, Li X, Lu W, Xiao K. Function of wheat phosphate transporter gene TaPHT2;1 in Pi translocation and plant growth regulation under replete and limited Pi supply conditions. PLANTA 2013; 237:1163-78. [PMID: 23314830 DOI: 10.1007/s00425-012-1836-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 12/28/2012] [Indexed: 05/02/2023]
Abstract
Several phosphate transporters (PTs) that belong to the Pht2 family have been released in bioinformatics databases, but only a few members of this family have been functionally characterized. In this study, we found that wheat TaPHT2;1 shared high identity with a subset of Pht2 in diverse plants. Expression analysis revealed that TaPHT2;1 was strongly expressed in the leaves, was up-regulated by low Pi stress, and exhibited a circadian rhythmic expression pattern. TaPHT2;1-green fluorescent protein fusions in the leaves of tobacco and wheat were specifically detected in the chloroplast envelop. TaPHT2;1 complemented the Pi transporter activities in a yeast mutant with a defect in Pi uptake. Knockdown expression of TaPHT2;1 significantly reduced Pi concentration in the chloroplast under sufficient (2 mM Pi) and deficient Pi (100 μM Pi) conditions, suggesting that TaPHT2;1 is crucial in the mediation of Pi translocation from the cytosol to the chloroplast. The down-regulated expression of TaPHT2;1 resulted in reduced photosynthetic capacities, total P contents, and accumulated P amounts in plants under sufficient and deficient Pi conditions, eventually leading to worse plant growth phenotypes. The TaPHT2;1 knockdown plants exhibited pronounced decrease in accumulated phosphorus in sufficient and deficient Pi conditions, suggesting that TaPHT2;1 is an important factor to associate with a distinct P signaling that up-regulates other PT members to control Pi acquisition and translocation within plants. Therefore, TaPHT2;1 is a key member of the Pht2 family involved in Pi translocation, and that it can function in the improvement of phosphorus usage efficiency in wheat.
Collapse
Affiliation(s)
- Chengjin Guo
- College of Agronomy, Agricultural University of Hebei, Baoding, 071001, China
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Fuchs J, Neuberger T, Rolletschek H, Schiebold S, Nguyen TH, Borisjuk N, Börner A, Melkus G, Jakob P, Borisjuk L. A noninvasive platform for imaging and quantifying oil storage in submillimeter tobacco seed. PLANT PHYSIOLOGY 2013; 161:583-93. [PMID: 23232144 PMCID: PMC3561005 DOI: 10.1104/pp.112.210062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/04/2012] [Indexed: 05/04/2023]
Abstract
While often thought of as a smoking drug, tobacco (Nicotiana spp.) is now considered as a plant of choice for molecular farming and biofuel production. Here, we describe a noninvasive means of deriving both the distribution of lipid and the microtopology of the submillimeter tobacco seed, founded on nuclear magnetic resonance (NMR) technology. Our platform enables counting of seeds inside the intact tobacco capsule to measure seed sizes, to model the seed interior in three dimensions, to quantify the lipid content, and to visualize lipid gradients. Hundreds of seeds can be simultaneously imaged at an isotropic resolution of 25 µm, sufficient to assess each individual seed. The relative contributions of the embryo and the endosperm to both seed size and total lipid content could be assessed. The extension of the platform to a range of wild and cultivated Nicotiana species demonstrated certain evolutionary trends in both seed topology and pattern of lipid storage. The NMR analysis of transgenic tobacco plants with seed-specific ectopic expression of the plastidial phosphoenolpyruvate/phosphate translocator, displayed a trade off between seed size and oil concentration. The NMR-based assay of seed lipid content and topology has a number of potential applications, in particular providing a means to test and optimize transgenic strategies aimed at the manipulation of seed size, seed number, and lipid content in tobacco and other species with submillimeter seeds.
Collapse
Affiliation(s)
- Johannes Fuchs
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Thomas Neuberger
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Hardy Rolletschek
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Silke Schiebold
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Thuy Ha Nguyen
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Nikolai Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Andreas Börner
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Gerd Melkus
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Peter Jakob
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| | - Ljudmilla Borisjuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (J.F., H.R., S.S., A.B., L.B.); University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (J.F., P.J.); The Huck Institutes of the Life Sciences and Department of Bioengineering, Pennsylvania State University, University Park, Pennsylvania 16802 (T.N.); Microbiologist (Atlanta Research and Education Foundation) Molecular Epidemiology Team, Influenza Division/National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333 (T.H.N.); Rutgers University, New Brunswick, New Jersey 08901 (N.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94107 (G.M.); and Research Center Magnetic Resonance Bavaria, 97074 Wuerzburg, Germany (P.J.)
| |
Collapse
|
61
|
Molecular cloning, phylogenetic analysis, and expression profiling of a grape CMP-sialic acid transporter-like gene induced by phytohormone and abiotic stress. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0074-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
62
|
Jonik C, Sonnewald U, Hajirezaei MR, Flügge UI, Ludewig F. Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:1088-98. [PMID: 22931170 DOI: 10.1111/j.1467-7652.2012.00736.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/06/2012] [Accepted: 07/10/2012] [Indexed: 05/22/2023]
Abstract
An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll-specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP-glucose pyrophosphorylase in leaves. Both approaches make use of re-routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6-phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a 'pull' approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of 'pull' and 'push' approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.
Collapse
Affiliation(s)
- Claudia Jonik
- Cologne Biocenter, Botanical Institute II, University of Cologne, Cologne, Germany
| | | | | | | | | |
Collapse
|
63
|
Qin L, Guo Y, Chen L, Liang R, Gu M, Xu G, Zhao J, Walk T, Liao H. Functional characterization of 14 Pht1 family genes in yeast and their expressions in response to nutrient starvation in soybean. PLoS One 2012; 7:e47726. [PMID: 23133521 PMCID: PMC3485015 DOI: 10.1371/journal.pone.0047726] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 09/20/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Phosphorus (P) is essential for plant growth and development. Phosphate (Pi) transporter genes in the Pht1 family play important roles in Pi uptake and translocation in plants. Although Pht1 family genes have been well studied in model plants, little is known about their functions in soybean, an important legume crop worldwide. PRINCIPAL FINDINGS We identified and isolated a complete set of 14 Pi transporter genes (GmPT1-14) in the soybean genome and categorized them into two subfamilies based on phylogenetic analysis. Then, an experiment to elucidate Pi transport activity of the GmPTs was carried out using a yeast mutant defective in high-affinity Pi transport. Results showed that 12 of the 14 GmPTs were able to complement Pi uptake of the yeast mutant with Km values ranging from 25.7 to 116.3 µM, demonstrating that most of the GmPTs are high-affinity Pi transporters. Further results from qRT-PCR showed that the expressions of the 14 GmPTs differed not only in response to P availability in different tissues, but also to other nutrient stresses, including N, K and Fe deficiency, suggesting that besides functioning in Pi uptake and translocation, GmPTs might be involved in synergistic regulation of mineral nutrient homeostasis in soybean. CONCLUSIONS The comprehensive analysis of Pi transporter function in yeast and expression responses to nutrition starvation of Pht1 family genes in soybean revealed their involvement in other nutrient homeostasis besides P, which could help to better understand the regulation network among ion homeostasis in plants.
Collapse
Affiliation(s)
- Lu Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Yongxiang Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Liyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Ruikang Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| | - Thomas Walk
- USDA-ARS, U.S. Pacific Basin Agricultural Research Center, Hilo, Hawaii, United States of America
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Root Biology Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
64
|
Gigolashvili T, Geier M, Ashykhmina N, Frerigmann H, Wulfert S, Krueger S, Mugford SG, Kopriva S, Haferkamp I, Flügge UI. The Arabidopsis thylakoid ADP/ATP carrier TAAC has an additional role in supplying plastidic phosphoadenosine 5'-phosphosulfate to the cytosol. THE PLANT CELL 2012; 24:4187-204. [PMID: 23085732 PMCID: PMC3517245 DOI: 10.1105/tpc.112.101964] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/03/2012] [Accepted: 09/28/2012] [Indexed: 05/18/2023]
Abstract
3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3'-phosphoadenosine 5'-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.
Collapse
Affiliation(s)
- Tamara Gigolashvili
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Melanie Geier
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Natallia Ashykhmina
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Henning Frerigmann
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sabine Wulfert
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Stephan Krueger
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| | - Sarah G. Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Stanislav Kopriva
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Ilka Haferkamp
- Cellular Physiology/Membrane Transport, Technical University of Kaiserslautern, D-67663 Kaiserslautern, Germany
| | - Ulf-Ingo Flügge
- Botanical Institute, Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
65
|
Nikolovski N, Rubtsov D, Segura MP, Miles GP, Stevens TJ, Dunkley TP, Munro S, Lilley KS, Dupree P. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. PLANT PHYSIOLOGY 2012; 160:1037-51. [PMID: 22923678 PMCID: PMC3461528 DOI: 10.1104/pp.112.204263] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 08/22/2012] [Indexed: 05/18/2023]
Abstract
The Golgi apparatus is the central organelle in the secretory pathway and plays key roles in glycosylation, protein sorting, and secretion in plants. Enzymes involved in the biosynthesis of complex polysaccharides, glycoproteins, and glycolipids are located in this organelle, but the majority of them remain uncharacterized. Here, we studied the Arabidopsis (Arabidopsis thaliana) membrane proteome with a focus on the Golgi apparatus using localization of organelle proteins by isotope tagging. By applying multivariate data analysis to a combined data set of two new and two previously published localization of organelle proteins by isotope tagging experiments, we identified the subcellular localization of 1,110 proteins with high confidence. These include 197 Golgi apparatus proteins, 79 of which have not been localized previously by a high-confidence method, as well as the localization of 304 endoplasmic reticulum and 208 plasma membrane proteins. Comparison of the hydrophobic domains of the localized proteins showed that the single-span transmembrane domains have unique properties in each organelle. Many of the novel Golgi-localized proteins belong to uncharacterized protein families. Structure-based homology analysis identified 12 putative Golgi glycosyltransferase (GT) families that have no functionally characterized members and, therefore, are not yet assigned to a Carbohydrate-Active Enzymes database GT family. The substantial numbers of these putative GTs lead us to estimate that the true number of plant Golgi GTs might be one-third above those currently annotated. Other newly identified proteins are likely to be involved in the transport and interconversion of nucleotide sugar substrates as well as polysaccharide and protein modification.
Collapse
|
66
|
Osuji GO, Brown TK, South SM, Johnson D, Hyllam S. Molecular modeling of metabolism for allergen-free low linoleic acid peanuts. Appl Biochem Biotechnol 2012; 168:805-23. [PMID: 22918723 PMCID: PMC3470683 DOI: 10.1007/s12010-012-9821-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/01/2012] [Indexed: 11/28/2022]
Abstract
It is necessary to eliminate linoleic acid and allergenic arachins from peanuts for good health reasons. Virginia-type peanuts, harvested from plots treated with mineral salts combinations that mimic the subunit compositions of glutamate dehydrogenase (GDH) were analyzed for fatty acid and arachin compositions by HPLC and polyacrylamide gel electrophoresis, respectively. Fatty acid desaturase and arachin encoding mRNAs were analyzed by Northern hybridization using the homologous RNAs synthesized by peanut GDH as probes. There were 70–80 % sequence similarities between the GDH-synthesized RNAs and the mRNAs encoding arachins, fatty acid desaturases, glutamate synthase, and nitrate reductase, which similarities induced permutation of the metabolic pathways at the mRNA level. Modeling of mRNAs showed there were 210, 3,150, 1,260, 2,520, and 4,200 metabolic permutations in the control, NPKS-, NS-, Pi-, NH4Cl-, and PK-treated peanuts, respectively. The mRNA cross-talks decreased the arachin to almost zero percent in the NPKS- and PK-treated peanuts, and linoleate to ∼18 % in the PK-treated peanut. The mRNA cross-talks may account for the vastly reported environmentally induced variability in the linoleate contents of peanut genotypes. These results have quantitatively unified molecular biology and metabolic pathways into one simple biotechnology for optimizing peanut quality and may encourage small-scale industry to produce arachin-free low linoleate peanuts.
Collapse
Affiliation(s)
- Godson O Osuji
- CARC, Prairie View A&M University, P.O. Box 519-2008, Prairie View, TX 77446, USA.
| | | | | | | | | |
Collapse
|
67
|
Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P. The Pht1;9 and Pht1;8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. THE NEW PHYTOLOGIST 2012; 195:356-371. [PMID: 22578268 DOI: 10.1111/j.1469-8137.2012.04167.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• The activation of high-affinity root transport systems is the best-conserved strategy employed by plants to cope with low inorganic phosphate (Pi) availability, a role traditionally assigned to Pi transporters of the Pht1 family, whose respective contributions to Pi acquisition remain unclear. • To characterize the Arabidopsis thaliana Pht1;9 transporter, we combined heterologous functional expression in yeast with expression/subcellular localization studies and reverse genetics approaches in planta. Double Pht1;9/Pht1;8 silencing lines were also generated to gain insight into the role of the closest Pht1;9 homolog. • Pht1;9 encodes a functional plasma membrane-localized transporter that mediates high-affinity Pi/H⁺ symport activity in yeast and is highly induced in Pi-starved Arabidopsis roots. Null pht1;9 alleles exhibit exacerbated responses to prolonged Pi limitation and enhanced tolerance to arsenate exposure, whereas Pht1;9 overexpression induces the opposite phenotypes. Strikingly, Pht1;9/Pht1;8 silencing lines display more pronounced defects than the pht1;9 mutants. • Pi and arsenic plant content analyses confirmed a role of Pht1;9 in Pi acquisition during Pi starvation and arsenate uptake at the root-soil interface. Although not affecting plant internal Pi repartition, Pht1;9 activity influences the overall Arabidopsis Pi status. Finally, our results indicate that both the Pht1;9 and Pht1;8 transporters function in sustaining plant Pi supply on environmental Pi depletion.
Collapse
Affiliation(s)
- E Remy
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - T R Cabrito
- Institute for Biotechnology and BioEngineering (IBB), Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - R A Batista
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - M C Teixeira
- Institute for Biotechnology and BioEngineering (IBB), Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - I Sá-Correia
- Institute for Biotechnology and BioEngineering (IBB), Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - P Duque
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
68
|
DeRocher AE, Karnataki A, Vaney P, Parsons M. Apicoplast targeting of a Toxoplasma gondii transmembrane protein requires a cytosolic tyrosine-based motif. Traffic 2012; 13:694-704. [PMID: 22288938 DOI: 10.1111/j.1600-0854.2012.01335.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 12/16/2022]
Abstract
Toxoplasma gondii, like most apicomplexan parasites, possesses an essential relict chloroplast, the apicoplast. Several apicoplast membrane proteins lack the bipartite targeting sequences of luminal proteins. Vesicles bearing these membrane proteins are detected during apicoplast enlargement, but the means of cargo selection remains obscure. We used a combination of deletion mutagenesis, point mutations and protein chimeras to identify a short motif prior to the first transmembrane domain of the T. gondii apicoplast phosphate transporter 1 (APT1) that is necessary for apicoplast trafficking. Tyrosine 16 was essential for proper localization; any substitution resulted in misdirection of APT1 to the Golgi body. Glycine 17 was also important, with significant Golgi body accumulation in the alanine mutant. Separation of at least eight amino acids from the transmembrane domain was required for full motif function. Similarly placed YG motifs are present in apicomplexan APT1 orthologs and the corresponding N-terminal domain from Plasmodium vivax was able to route T. gondii APT1 to the apicoplast. Differential permeabilization showed that both the N- and C-termini of APT1 are exposed to the cytosol. We propose that this YG motif facilitates APT1 trafficking via interactions that occur on the cytosolic face of nascent vesicles destined for the apicoplast.
Collapse
Affiliation(s)
- Amy E DeRocher
- Seattle Biomedical Research Institute, 307 Westlake Ave N, Seattle, WA 98109-5219, USA
| | | | | | | |
Collapse
|
69
|
Spetea C, Schoefs B. Solute transporters in plant thylakoid membranes: Key players during photosynthesis and light stress. Commun Integr Biol 2011; 3:122-9. [PMID: 20585503 DOI: 10.4161/cib.3.2.10909] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/09/2009] [Indexed: 11/19/2022] Open
Abstract
Plants utilize sunlight to drive photosynthetic energy conversion in the chloroplast thylakoid membrane. Here are located four major photosynthetic complexes, about which we have great knowledge in terms of structure and function. However, much less we know about auxiliary proteins, such as transporters, ensuring an optimum function and turnover of these complexes. The most prominent thylakoid transporter is the proton-translocating ATP-synthase. Recently, four additional transporters have been identified in the thylakoid membrane of Arabidopsis thaliana, namely one copper-transporting P-ATPase, one chloride channel, one phosphate transporter, and one ATP/ADP carrier. Here, we review the current knowledge on the function and physiological role of these transporters during photosynthesis and light stress in plants. Subsequently, we make a survey on the outlook of thylakoid activities awaiting identification of responsible proteins. Such knowledge is necessary to understand the thylakoid network of transporters, and to design strategies for bioengineering crop plants in the future.
Collapse
|
70
|
Fischer K. The import and export business in plastids: transport processes across the inner envelope membrane. PLANT PHYSIOLOGY 2011; 155:1511-9. [PMID: 21263040 PMCID: PMC3091126 DOI: 10.1104/pp.110.170241] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 01/20/2011] [Indexed: 05/17/2023]
Affiliation(s)
- Karsten Fischer
- Institute for Arctic and Marine Biology, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|
71
|
Conte SS, Lloyd AM. Exploring multiple drug and herbicide resistance in plants--spotlight on transporter proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:196-203. [PMID: 21421361 DOI: 10.1016/j.plantsci.2010.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/18/2010] [Accepted: 10/28/2010] [Indexed: 05/23/2023]
Abstract
Multiple drug resistance (MDR) has been extensively studied in bacteria, yeast, and mammalian cells due to the great clinical significance of this problem. MDR is not well studied in plant systems, although plant genomes contain large numbers of genes encoding putative MDR transporters (MDRTs). Biochemical pathways in the chloroplast are the targets of many herbicides and antibiotics, yet very little data is available regarding mechanisms of drug transport across the chloroplast membrane. MDRTs typically have broad substrate specificities, and may transport essential compounds and metabolites in addition to toxins. Indeed, plant transporters belonging to MDR families have also been implicated in the transport of a wide variety of compounds including auxins, flavonoids, glutathione conjugates, metal chelators, herbicides and antibiotics, although definitive evidence that a single transporter is capable of moving both toxins and metabolites has not yet been provided. Current understanding of plant MDR can be expanded via the characterization of candidate genes, especially MDRTs predicted to localize to the chloroplast, and also via traditional forward genetic approaches. Novel plant MDRTs have the potential to become endogenous selectable markers, aid in phytoremediation strategies, and help us to understand how plants have evolved to cope with toxins in their environment.
Collapse
Affiliation(s)
- Sarah S Conte
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | |
Collapse
|
72
|
Sánchez-Calderón L, Chacón-López A, Alatorre-Cobos F, Leyva-González MA, Herrera-Estrella L. Sensing and Signaling of PO 4 3−. SIGNALING AND COMMUNICATION IN PLANTS 2011. [DOI: 10.1007/978-3-642-14369-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
73
|
Facchinelli F, Weber APM. The metabolite transporters of the plastid envelope: an update. FRONTIERS IN PLANT SCIENCE 2011; 2:50. [PMID: 22645538 PMCID: PMC3355759 DOI: 10.3389/fpls.2011.00050] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 08/23/2011] [Indexed: 05/19/2023]
Abstract
The engulfment of a photoautotrophic cyanobacterium by a primitive mitochondria-bearing eukaryote traces back to more than 1.2 billion years ago. This single endosymbiotic event not only provided the early petroalgae with the metabolic capacity to perform oxygenic photosynthesis, but also introduced a plethora of other metabolic routes ranging from fatty acids and amino acids biosynthesis, nitrogen and sulfur assimilation to secondary compounds synthesis. This implicated the integration and coordination of the newly acquired metabolic entity with the host metabolism. The interface between the host cytosol and the plastidic stroma became of crucial importance in sorting precursors and products between the plastid and other cellular compartments. The plastid envelope membranes fulfill different tasks: they perform important metabolic functions, as they are involved in the synthesis of carotenoids, chlorophylls, and galactolipids. In addition, since most genes of cyanobacterial origin have been transferred to the nucleus, plastidial proteins encoded by nuclear genes are post-translationally transported across the envelopes through the TIC-TOC import machinery. Most importantly, chloroplasts supply the photoautotrophic cell with photosynthates in form of reduced carbon. The innermost bilayer of the plastidic envelope represents the permeability barrier for the metabolites involved in the carbon cycle and is literally stuffed with transporter proteins facilitating their transfer. The intracellular metabolite transporters consist of polytopic proteins containing membrane spans usually in the number of four or more α-helices. Phylogenetic analyses revealed that connecting the plastid with the host metabolism was mainly a process driven by the host cell. In Arabidopsis, 58% of the metabolite transporters are of host origin, whereas only 12% are attributable to the cyanobacterial endosymbiont. This review focuses on the metabolite transporters of the inner envelope membrane of plastids, in particular the electrochemical potential-driven class of transporters. Recent advances in elucidating the plastidial complement of metabolite transporters are provided, with an update on phylogenetic relationship of selected proteins.
Collapse
Affiliation(s)
- Fabio Facchinelli
- Institut für Biochemie der Pflanzen, Heinrich-Heine Universität Düsseldorf Düsseldorf, Germany
| | | |
Collapse
|
74
|
Andriotis VME, Pike MJ, Bunnewell S, Hills MJ, Smith AM. The plastidial glucose-6-phosphate/phosphate antiporter GPT1 is essential for morphogenesis in Arabidopsis embryos. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:128-39. [PMID: 20659277 DOI: 10.1111/j.1365-313x.2010.04313.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The glucose-6-phosphate/phosphate antiporter GPT1 is a major route of entry of carbon into non-photosynthetic plastids. To discover its importance in oilseeds, we used a seed-specific promoter to generate lines of Arabidopsis thaliana with reduced levels of GPT1 in developing embryos. Strong reductions resulted in seed abortion at the end of the globular stage of embryo development, when proplastids in normal embryos differentiate and acquire chlorophyll. Seed abortion was partly dependent on the light level during silique development. Embryos in seeds destined for abortion failed to undergo normal morphogenesis and were 'raspberry-like' in appearance. They had ultrastructural and biochemical defects including proliferation of peroxisomes and starch granules, and altered expression of genes involved in starch turnover and the oxidative pentose phosphate pathway. We propose that GPT1 is necessary for early embryo development because it catalyses import into plastids of glucose-6-phosphate as the substrate for NADPH generation via the oxidative pentose phosphate pathway. We suggest that low NADPH levels during plastid differentiation and chlorophyll synthesis may result in generation of reactive oxygen species and triggering of embryo cell death.
Collapse
Affiliation(s)
- Vasilios M E Andriotis
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | | | | | | | | |
Collapse
|
75
|
Colleoni C, Linka M, Deschamps P, Handford MG, Dupree P, Weber APM, Ball SG. Phylogenetic and biochemical evidence supports the recruitment of an ADP-glucose translocator for the export of photosynthate during plastid endosymbiosis. Mol Biol Evol 2010; 27:2691-701. [PMID: 20576760 DOI: 10.1093/molbev/msq158] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The acquisition of photosynthesis by eukaryotic cells through enslavement of a cyanobacterium represents one of the most remarkable turning points in the history of life on Earth. In addition to endosymbiotic gene transfer, the acquisition of a protein import apparatus and the coordination of gene expression between host and endosymbiont genomes, the establishment of a metabolic connection was crucial for a functional endosymbiosis. It was previously hypothesized that the first metabolic connection between both partners of endosymbiosis was achieved through insertion of a host-derived metabolite transporter into the cyanobacterial plasma membrane. Reconstruction of starch metabolism in the common ancestor of photosynthetic eukaryotes suggested that adenosine diphosphoglucose (ADP-Glc), a bacterial-specific metabolite, was likely to be the photosynthate, which was exported from the early cyanobiont. However, extant plastid transporters that have evolved from host-derived endomembrane transporters do not transport ADP-Glc but simple phosphorylated sugars in exchange for orthophosphate. We now show that those eukaryotic nucleotide sugar transporters, which define the closest relatives to the common ancestor of extant plastid envelope carbon translocators, possess an innate ability for transporting ADP-Glc. Such an unexpected ability would have been required to establish plastid endosymbiosis.
Collapse
Affiliation(s)
- Christophe Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | | | |
Collapse
|
76
|
Seino J, Ishii K, Nakano T, Ishida N, Tsujimoto M, Hashimoto Y, Takashima S. Characterization of rice nucleotide sugar transporters capable of transporting UDP-galactose and UDP-glucose. J Biochem 2010; 148:35-46. [PMID: 20305274 DOI: 10.1093/jb/mvq031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Using the basic local alignment search tool (BLAST) algorithm to search the Oryza sativa (Japanese rice) nucleotide sequence databases with the Arabidopsis thaliana UDP-galactose transporter sequences as queries, we found a number of sequences encoding putative O. sativa UDP-galactose transporters. From these, we cloned four putative UDP-galactose transporters, designated OsUGT1, 2, 3 and 4, which exhibited high sequence similarity with Arabidopsis thaliana UDP-galactose transporters. OsUGT1, 2, 3 and 4 consisted of 350, 337, 345 and 358 amino acids, respectively, and all of these proteins were predicted to have multiple transmembrane domains. To examine the UDP-galactose transporter activity of the OsUGTs, we introduced the OsUGTs' expression vectors into UDP-galactose transporter activity-deficient Lec8 cells. Our results showed that transfection with OsUGT1, 2 and 3 resulted in recovery of the deficit phenotype of Lec8 cells, but transfection with OsUGT4 did not. The results of an in vitro nucleotide sugar transport assay of OsUGTs, carried out with a yeast expression system, suggested that OsUGT4 is a UDP-glucose transporter rather than a UDP-galactose transporter. Although plants have multiple UDP-galactose transporter genes, phylogenic analysis indicates that plant UDP-galactose transporter genes are not necessarily evolutionary related to each other.
Collapse
Affiliation(s)
- Junichi Seino
- Glyco-chain Functions Laboratory, RIKEN-FRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
77
|
Andriotis VME, Kruger NJ, Pike MJ, Smith AM. Plastidial glycolysis in developing Arabidopsis embryos. THE NEW PHYTOLOGIST 2010; 185:649-62. [PMID: 20002588 DOI: 10.1111/j.1469-8137.2009.03113.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
During oilseed embryo development, carbon from sucrose is utilized for fatty acid synthesis in the plastid. The role of plastidial glycolysis in Arabidopsis embryo oil accumulation was investigated. Genes encoding enolases (ENO) and phosphoglyceromutases (PGlyM) were identified, and activities and subcellular locations were established by expression of recombinant and green fluorescent protein (GFP)-fusion proteins. Mutant Arabidopsis plants lacking putative plastidial isoforms were characterized with respect to isoform composition and embryo oil content. In the developing embryo, ENO1 and ENO2 account for most or all of the plastidial and cytosolic ENO activity, respectively, and PGLYM1 accounts for most or all of the plastidial PGlyM activity. The eno1 and pglym1 mutants, in which plastidic ENO and PGlyM activities were undetectable, had wild-type amounts of seed oil at maturity. It is concluded that although plastids of developing Arabidopsis embryos have the capacity to carry out the lower part of the glycolytic pathway, the cytosolic glycolytic pathway alone is sufficient to support the flux from 3-phosphoglycerate to phosphoenolpyruvate required for oil production. The results highlight the importance for oil production of translocators that facilitate interchange of glycolytic intermediates between the cytosol and the plastid stroma.
Collapse
Affiliation(s)
- Vasilios M E Andriotis
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
78
|
Abstract
Most Apicomplexans possess a relic plastid named apicoplast, originating from secondary endosymbiosis of a red algae. This non-photosynthetic organelle fulfils important metabolic functions and confers sensitivity to antibiotics. The tasks of this organelle is compared across the phylum of Apicomplexa, highlighting its role in metabolic adaptation to different intracellular niches.
Collapse
|
79
|
Athanasiou K, Dyson BC, Webster RE, Johnson GN. Dynamic acclimation of photosynthesis increases plant fitness in changing environments. PLANT PHYSIOLOGY 2010; 152:366-73. [PMID: 19939944 PMCID: PMC2799370 DOI: 10.1104/pp.109.149351] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
Abstract
Plants growing in different environments develop with different photosynthetic capacities--developmental acclimation of photosynthesis. It is also possible for fully developed leaves to change their photosynthetic capacity--dynamic acclimation. The importance of acclimation has not previously been demonstrated. Here, we show that developmental and dynamic acclimation are distinct processes. Furthermore, we demonstrate that dynamic acclimation plays an important role in increasing the fitness of plants in natural environments. Plants of Arabidopsis (Arabidopsis thaliana) were grown at low light and then transferred to high light for up to 9 d. This resulted in an increase in photosynthetic capacity of approximately 40%. A microarray analysis showed that transfer to high light resulted in a substantial but transient increase in expression of a gene, At1g61800, encoding a glucose-6-phosphate/phosphate translocator GPT2. Plants where this gene was disrupted were unable to undergo dynamic acclimation. They were, however, still able to acclimate developmentally. When grown under controlled conditions, fitness, measured as seed output and germination, was identical, regardless of GPT2 expression. Under naturally variable conditions, however, fitness was substantially reduced in plants lacking the ability to acclimate. Seed production was halved in gpt2- plants, relative to wild type, and germination of the seed produced substantially less. Dynamic acclimation of photosynthesis is thus shown to play a crucial and previously unrecognized role in determining the fitness of plants growing in changing environments.
Collapse
|
80
|
Abstract
Due to the presence of plastids, eukaryotic photosynthetic cells represent the most highly compartmentalized eukaryotic cells. This high degree of compartmentation requires the transport of solutes across intracellular membrane systems by specific membrane transporters. In this review, we summarize the recent progress on functionally characterized intracellular plant membrane transporters and we link transporter functions to Arabidopsis gene identifiers and to the transporter classification system. In addition, we outline challenges in further elucidating the plant membrane permeome and we provide an outline of novel approaches for the functional characterization of membrane transporters.
Collapse
Affiliation(s)
- Nicole Linka
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, Geb. 26.03.01, Universitätsstrasse 1, Düsseldorf, Germany
| | | |
Collapse
|
81
|
Brooks CF, Johnsen H, van Dooren GG, Muthalagi M, Lin SS, Bohne W, Fischer K, Striepen B. The toxoplasma apicoplast phosphate translocator links cytosolic and apicoplast metabolism and is essential for parasite survival. Cell Host Microbe 2009; 7:62-73. [PMID: 20036630 DOI: 10.1016/j.chom.2009.12.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 10/15/2009] [Accepted: 11/09/2009] [Indexed: 01/22/2023]
Abstract
Apicomplexa are unicellular eukaryotic pathogens that carry a vestigial algal endosymbiont, the apicoplast. The physiological function of the apicoplast and its integration into parasite metabolism remain poorly understood and at times controversial. We establish that the Toxoplasma apicoplast membrane-localized phosphate translocator (TgAPT) is an essential metabolic link between the endosymbiont and the parasite cytoplasm. TgAPT is required for fatty acid synthesis in the apicoplast, but this may not be its most critical function. Further analyses demonstrate that TgAPT also functions to supply the apicoplast with carbon skeletons for additional pathways and, indirectly, with energy and reduction power. Genetic ablation of the transporter results in rapid death of parasites. The dramatic consequences of loss of its activity suggest that targeting TgAPT could be a viable strategy to identify antiparasitic compounds.
Collapse
Affiliation(s)
- Carrie F Brooks
- Center for Tropical and Emerging Global Diseases, University of Georgia, Paul D. Coverdell Center, 500 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Takashima S, Seino J, Nakano T, Fujiyama K, Tsujimoto M, Ishida N, Hashimoto Y. Analysis of CMP-sialic acid transporter-like proteins in plants. PHYTOCHEMISTRY 2009; 70:1973-1981. [PMID: 19822337 DOI: 10.1016/j.phytochem.2009.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 08/31/2009] [Accepted: 09/15/2009] [Indexed: 05/28/2023]
Abstract
It is commonly accepted that sialic acids do not exist in plants. However, putative gene homologs of animal sialyltransferases and CMP-sialic acid transporters have been detected in the genomes of some plants. To elucidate the physiological functions of these genes, we cloned 2 cDNAs from Oryza sativa (Japanese rice), each of which encodes a CMP-sialic acid transporter-like protein designated as OsCSTLP1 and OsCSTLP2. To examine the CMP-sialic acid transporter activity of OsCSTLP1 and OsCSTLP2, we introduced their expression vectors into CMP-sialic acid transporter activity-deficient Lec2 cells. Transfection with OsCSTLP1 resulted in recovery of the deficit phenotype of Lec2 cells, but transfection with OsCSTLP2 did not. We also performed an in vitro nucleotide sugar transport assay using a yeast expression system. Among the nucleotide sugars examined, the OsCSTLP1-containing yeast microsomal membrane vesicles specifically incorporated CMP-sialic acid, indicating that OsCSTLP1 has CMP-sialic acid transporter activity. On the other hand, OsCSTLP2 did not exhibit any nucleotide sugar transporter activity. T-DNA insertion lines of Arabidopsis thaliana targeting the homologs of the OsCSTLP1 and OsCSTLP2 genes exhibited a lethal phenotype, suggesting that these proteins play important roles in plant development and may transport important nucleotide sugars such as CMP-Kdo in physiological conditions.
Collapse
Affiliation(s)
- Shou Takashima
- Glyco-chain Functions Laboratory, RIKEN-FRS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
83
|
Engel J, Schmalhorst PS, Dörk-Bousset T, Ferrières V, Routier FH. A single UDP-galactofuranose transporter is required for galactofuranosylation in Aspergillus fumigatus. J Biol Chem 2009; 284:33859-68. [PMID: 19840949 DOI: 10.1074/jbc.m109.070219] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Galactofuranose (Galf) containing molecules have been described at the cell surface of several eukaryotes and shown to contribute to the virulence of the parasite Leishmania major and the fungus Aspergillus fumigatus. It is anticipated that a number of the surface glycoconjugates such as N-glycans or glycolipids are galactofuranosylated in the Golgi apparatus. This raises the question of how the substrate for galactofuranosylation reactions, UDP-Galf, which is synthesized in the cytosol, translocates into the organelles of the secretory pathway. Here we report the first identification of a Golgi-localized nucleotide sugar transporter, named GlfB, with specificity for a UDP-Galf. In vitro transport assays established binding of UDP-Galf to GlfB and excluded transport of several other nucleotide sugars. Furthermore, the implication of glfB in the galactofuranosylation of A. fumigatus glycoconjugates and galactomannan was demonstrated by a targeted gene deletion approach. Our data reveal a direct connection between galactomannan and the organelles of the secretory pathway that strongly suggests that the cell wall-bound polysaccharide originates from its glycosylphosphatidylinositol-anchored form.
Collapse
Affiliation(s)
- Jakob Engel
- Institute for Cellular Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
84
|
Muñoz-Bertomeu J, Cascales-Miñana B, Mulet JM, Baroja-Fernández E, Pozueta-Romero J, Kuhn JM, Segura J, Ros R. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:541-58. [PMID: 19675149 PMCID: PMC2754643 DOI: 10.1104/pp.109.143701] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 08/04/2009] [Indexed: 05/17/2023]
Abstract
Glycolysis is a central metabolic pathway that, in plants, occurs in both the cytosol and the plastids. The glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of glyceraldehyde-3-phosphate to 1,3-bisphosphoglycerate with concomitant reduction of NAD(+) to NADH. Both cytosolic (GAPCs) and plastidial (GAPCps) GAPDH activities have been described. However, the in vivo functions of the plastidial isoforms remain unresolved. In this work, we have identified two Arabidopsis (Arabidopsis thaliana) chloroplast/plastid-localized GAPDH isoforms (GAPCp1 and GAPCp2). gapcp double mutants display a drastic phenotype of arrested root development, dwarfism, and sterility. In spite of their low gene expression level as compared with other GAPDHs, GAPCp down-regulation leads to altered gene expression and to drastic changes in the sugar and amino acid balance of the plant. We demonstrate that GAPCps are important for the synthesis of serine in roots. Serine supplementation to the growth medium rescues root developmental arrest and restores normal levels of carbohydrates and sugar biosynthetic activities in gapcp double mutants. We provide evidence that the phosphorylated pathway of Ser biosynthesis plays an important role in supplying serine to roots. Overall, these studies provide insights into the in vivo functions of the GAPCps in plants. Our results emphasize the importance of the plastidial glycolytic pathway, and specifically of GAPCps, in plant primary metabolism.
Collapse
Affiliation(s)
- Jesús Muñoz-Bertomeu
- Departament de Biologia Vegetal, Facultat de Farmàcia, Universitat de València, 46100 Burjassot, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Cubero B, Nakagawa Y, Jiang XY, Miura KJ, Li F, Raghothama KG, Bressan RA, Hasegawa PM, Pardo JM. The phosphate transporter PHT4;6 is a determinant of salt tolerance that is localized to the Golgi apparatus of Arabidopsis. MOLECULAR PLANT 2009; 2:535-52. [PMID: 19825636 DOI: 10.1093/mp/ssp013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCl hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and swelling of root tips. Mutant phenotypes were exacerbated by sucrose, but not by equiosmolar concentrations of mannitol, and attenuated by low inorganic phosphate in the medium. Protein PHT4;6 belongs to the Major Facilitator Superfamily of permeases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters, and is a member of the PHT4 family of putative intracellular phosphate transporters of plants. PHT4;6 localizes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions. Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis, which are essential for salt tolerance. Together, our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.
Collapse
Affiliation(s)
- Beatriz Cubero
- Instituto de Recursos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda Reina Mercedes 10, Sevilla-41012, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H, Saito K. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. THE PLANT CELL 2009; 21:892-909. [PMID: 19286968 PMCID: PMC2671695 DOI: 10.1105/tpc.108.063925] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plants synthesize a sulfur-containing lipid, sulfoquinovosyldiacylglycerol, which is one of three nonphosphorus glycerolipids that provide the bulk of the structural lipids in photosynthetic membranes. Here, the identification of a novel gene, UDP-glucose pyrophosphorylase3 (UGP3), required for sulfolipid biosynthesis is described. Transcriptome coexpression analysis demonstrated highly correlated expression of UGP3 with known genes for sulfolipid biosynthesis in Arabidopsis thaliana. Liquid chromatography-mass spectrometry analysis of leaf lipids in two Arabidopsis ugp3 mutants revealed that no sulfolipid was accumulated in these mutants, indicating the participation of UGP3 in sulfolipid biosynthesis. From the deduced amino acid sequence, UGP3 was presumed to be a UDP-glucose pyrophosphorylase (UGPase) involved in the generation of UDP-glucose, serving as the precursor of the polar head of sulfolipid. Recombinant UGP3 was able to catalyze the formation of UDP-glucose from glucose-1-phosphate and UTP. A transient assay using fluorescence fusion proteins and UGPase activity in isolated chloroplasts indicated chloroplastic localization of UGP3. The transcription level of UGP3 was increased by phosphate starvation. A comparative genomics study on UGP3 homologs across different plant species suggested the structural and functional conservation of the proteins and, thus, a committing role for UGP3 in sulfolipid synthesis.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Plant Science Center, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Foyer CH, Bloom AJ, Queval G, Noctor G. Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:455-84. [PMID: 19575589 DOI: 10.1146/annurev.arplant.043008.091948] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photorespiration is a high-flux pathway that operates alongside carbon assimilation in C(3) plants. Because most higher plant species photosynthesize using only the C(3) pathway, photorespiration has a major impact on cellular metabolism, particularly under high light, high temperatures, and CO(2) or water deficits. Although the functions of photorespiration remain controversial, it is widely accepted that this pathway influences a wide range of processes from bioenergetics, photosystem II function, and carbon metabolism to nitrogen assimilation and respiration. Crucially, the photorespiratory pathway is a major source of H(2)O(2) in photosynthetic cells. Through H(2)O(2) production and pyridine nucleotide interactions, photorespiration makes a key contribution to cellular redox homeostasis. In so doing, it influences multiple signaling pathways, particularly those that govern plant hormonal responses controlling growth, environmental and defense responses, and programmed cell death. The potential influence of photorespiration on cell physiology and fate is thus complex and wide ranging. The genes, pathways, and signaling functions of photorespiration are considered here in the context of whole plant biology, with reference to future challenges and human interventions to diminish photorespiratory flux.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food, and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | | | | | | |
Collapse
|
88
|
Linka M, Jamai A, Weber APM. Functional characterization of the plastidic phosphate translocator gene family from the thermo-acidophilic red alga Galdieria sulphuraria reveals specific adaptations of primary carbon partitioning in green plants and red algae. PLANT PHYSIOLOGY 2008; 148:1487-96. [PMID: 18799657 PMCID: PMC2577237 DOI: 10.1104/pp.108.129478] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/15/2008] [Indexed: 05/19/2023]
Abstract
In chloroplasts of green plants and algae, CO(2) is assimilated into triose-phosphates (TPs); a large part of these TPs is exported to the cytosol by a TP/phosphate translocator (TPT), whereas some is stored in the plastid as starch. Plastidial phosphate translocators have evolved from transport proteins of the host endomembrane system shortly after the origin of chloroplasts by endosymbiosis. The red microalga Galdieria sulphuraria shares three conserved putative orthologous transport proteins with the distantly related seed plants and green algae. However, red algae, in contrast to green plants, store starch in their cytosol, not inside plastids. Hence, due to the lack of a plastidic starch pool, a larger share of recently assimilated CO(2) needs to be exported to the cytosol. We thus hypothesized that red algal transporters have distinct substrate specificity in comparison to their green orthologs. This hypothesis was tested by expression of the red algal genes in yeast (Saccharomyces cerevisiae) and assessment of their substrate specificities and kinetic constants. Indeed, two of the three red algal phosphate translocator candidate orthologs have clearly distinct substrate specificities when compared to their green homologs. GsTPT (for G. sulphuraria TPT) displays very narrow substrate specificity and high affinity; in contrast to green plant TPTs, 3-phosphoglyceric acid is poorly transported and thus not able to serve as a TP/3-phosphoglyceric acid redox shuttle in vivo. Apparently, the specific features of red algal primary carbon metabolism promoted the evolution of a highly efficient export system with high affinities for its substrates. The low-affinity TPT of plants maintains TP levels sufficient for starch biosynthesis inside of chloroplasts, whereas the red algal TPT is optimized for efficient export of TP from the chloroplast.
Collapse
Affiliation(s)
- Marc Linka
- Institut für Biochemie der Pflanzen, Heinrich-Heine-Universität, 40225 Duesseldorf, Germany
| | | | | |
Collapse
|
89
|
Guo B, Irigoyen S, Fowler TB, Versaw WK. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues. PLANT SIGNALING & BEHAVIOR 2008; 3:784-90. [PMID: 19513231 PMCID: PMC2634373 DOI: 10.4161/psb.3.10.6666] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 07/23/2008] [Indexed: 05/20/2023]
Abstract
Plastids rely on multiple phosphate (Pi) transport activities to support and control a wide range of metabolic processes, including photosynthesis and carbon partitioning. Five of the six members of the PHT4 family of Pi transporters in Arabidopsis thaliana (PHT4;1-PHT4;5) are confirmed or predicted plastid proteins. As a step towards identifying the roles of individual PHT4 Pi transporters in chloroplast and non-photosynthetic plastid Pi dynamics, we used promoter-reporter gene fusions and quantitative RT-PCR studies, respectively, to determine spatial and diurnal gene expression patterns. PHT4;1 and PHT4;4 were both expressed predominantly in photosynthetic tissues, although expression of PHT4;1 was circadian and PHT4;4 was induced by light. PHT4;3 and PHT4;5 were expressed mainly in leaf phloem. PHT4;2 was expressed throughout the root, and exhibited a diurnal pattern with peak transcript levels in the dark. The remaining member of this gene family, PHT4;6, encodes a Golgi-localized protein and was expressed ubiquitously. The overlapping but distinct expression patterns for these genes suggest specialized roles for the encoded transporters in multiple types of differentiated plastids. Phylogenetic analysis revealed conservation of each of the orthologous members of the PHT4 family in Arabidopsis and rice, which is consistent with specialization, and suggests that the individual members of this transporter family diverged prior to the divergence of monocots and dicots.
Collapse
Affiliation(s)
- Biwei Guo
- Department of Biology; Texas A&M University; College Station, Texas USA
| | | | | | | |
Collapse
|
90
|
Liu J, Versaw WK, Pumplin N, Gomez SK, Blaylock LA, Harrison MJ. Closely related members of the Medicago truncatula PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. J Biol Chem 2008; 283:24673-81. [PMID: 18596039 PMCID: PMC3259825 DOI: 10.1074/jbc.m802695200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/30/2008] [Indexed: 01/06/2023] Open
Abstract
Phosphorus is one of the essential mineral nutrients required by all living cells. Plants assimilate phosphate (Pi) from the soil, and their root systems encounter tremendous variation in Pi concentration, both temporally and spatially. Genome sequence data indicate that plant genomes contain large numbers of genes predicted to encode Pi transporters, the functions of which are largely unexplored. Here we present a comparative analysis of four very closely related Pi transporters of the PHT1 family of Medicago truncatula. Based on their sequence similarity and locations in the genome, these four genes probably arose via recent gene duplication events, and they form a small subfamily within the PHT1 family. The four genes are expressed in roots with partially overlapping but distinct spatial expression patterns, responses to Pi and expression during arbuscular mycorrhizal symbiosis. The proteins are located in the plasma membrane. Three members of the subfamily, MtPT1, MtPT2, and MtPT3, show low affinities for Pi. MtPT5 shares 84% amino acid identity with MtPT1, MtPT2, and MtPT3 but shows a high affinity for Pi with an apparent Km in yeast of 13 microm. Sequence comparisons and protein modeling suggest that amino acid residues that differ substantially between MtPT5 and the other three transporters are clustered in two regions of the protein. The data provide the first clues as to amino acid residues that impact transport activity of plant Pi transporter proteins.
Collapse
Affiliation(s)
- Jinyuan Liu
- Boyce Thompson Institute for Plant
Research, Cornell University, Ithaca, New York 14853 and the
Department of Biology, Texas A&M University,
3258 TAMU, College Station, Texas 77843
| | - Wayne K. Versaw
- Boyce Thompson Institute for Plant
Research, Cornell University, Ithaca, New York 14853 and the
Department of Biology, Texas A&M University,
3258 TAMU, College Station, Texas 77843
| | - Nathan Pumplin
- Boyce Thompson Institute for Plant
Research, Cornell University, Ithaca, New York 14853 and the
Department of Biology, Texas A&M University,
3258 TAMU, College Station, Texas 77843
| | - S. Karen Gomez
- Boyce Thompson Institute for Plant
Research, Cornell University, Ithaca, New York 14853 and the
Department of Biology, Texas A&M University,
3258 TAMU, College Station, Texas 77843
| | - Laura A. Blaylock
- Boyce Thompson Institute for Plant
Research, Cornell University, Ithaca, New York 14853 and the
Department of Biology, Texas A&M University,
3258 TAMU, College Station, Texas 77843
| | - Maria J. Harrison
- Boyce Thompson Institute for Plant
Research, Cornell University, Ithaca, New York 14853 and the
Department of Biology, Texas A&M University,
3258 TAMU, College Station, Texas 77843
| |
Collapse
|
91
|
Bräutigam A, Hoffmann-Benning S, Hofmann-Benning S, Weber APM. Comparative proteomics of chloroplast envelopes from C3 and C4 plants reveals specific adaptations of the plastid envelope to C4 photosynthesis and candidate proteins required for maintaining C4 metabolite fluxes. PLANT PHYSIOLOGY 2008; 148:568-79. [PMID: 18599648 PMCID: PMC2528119 DOI: 10.1104/pp.108.121012] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 06/23/2008] [Indexed: 05/19/2023]
Abstract
C(4) plants have up to 10-fold higher apparent CO(2) assimilation rates than the most productive C(3) plants. This requires higher fluxes of metabolic intermediates across the chloroplast envelope membranes of C(4) plants in comparison with those of C(3) plants. In particular, the fluxes of metabolites involved in the biochemical inorganic carbon pump of C(4) plants, such as malate, pyruvate, oxaloacetate, and phosphoenolpyruvate, must be considerably higher in C(4) plants because they exceed the apparent rate of photosynthetic CO(2) assimilation, whereas they represent relatively minor fluxes in C(3) plants. While the enzymatic steps involved in the C(4) biochemical inorganic carbon pump have been studied in much detail, little is known about the metabolite transporters in the envelope membranes of C(4) chloroplasts. In this study, we used comparative proteomics of chloroplast envelope membranes from the C(3) plant pea (Pisum sativum) and mesophyll cell chloroplast envelopes from the C(4) plant maize (Zea mays) to analyze the adaptation of the mesophyll cell chloroplast envelope proteome to the requirements of C(4) photosynthesis. We show that C(3)- and C(4)-type chloroplasts have qualitatively similar but quantitatively very different chloroplast envelope membrane proteomes. In particular, translocators involved in the transport of triosephosphate and phosphoenolpyruvate as well as two outer envelope porins are much more abundant in C(4) plants. Several putative transport proteins have been identified that are highly abundant in C(4) plants but relatively minor in C(3) envelopes. These represent prime candidates for the transport of C(4) photosynthetic intermediates, such as pyruvate, oxaloacetate, and malate.
Collapse
Affiliation(s)
- Andrea Bräutigam
- Institute for Plant Biochemistry, Heinrich-Heine-University, D-40225 Duesseldorf, Germany
| | | | | | | |
Collapse
|
92
|
Zhang L, Häusler RE, Greiten C, Hajirezaei MR, Haferkamp I, Neuhaus HE, Flügge UI, Ludewig F. Overriding the co-limiting import of carbon and energy into tuber amyloplasts increases the starch content and yield of transgenic potato plants. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:453-64. [PMID: 18363632 DOI: 10.1111/j.1467-7652.2008.00332.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Transgenic potato (Solanum tuberosum) plants simultaneously over-expressing a pea (Pisum sativum) glucose-6-phosphate/phosphate translocator (GPT) and an Arabidopsis thaliana adenylate translocator (NTT1) in tubers were generated. Double transformants exhibited an enhanced tuber yield of up to 19%, concomitant with an additional increased starch content of up to 28%, compared with control plants. The total starch content produced in tubers per plant was calculated to be increased by up to 44% in double transformants relative to the wild-type. Single over-expression of either gene had no effect on tuber starch content or tuber yield, suggesting that starch formation within amyloplasts is co-limited by the import of energy and the supply of carbon skeletons. As total adenosine diphosphate-glucose pyrophosphorylase and starch synthase activities remained unchanged in double transformants relative to the wild-type, they cannot account for the increased starch content found in tubers of double transformants. Rather, an optimized supply of amyloplasts with adenosine triphosphate and glucose-6-phosphate seems to favour increased starch synthesis, resulting in plants with increased starch content and yield of tubers.
Collapse
Affiliation(s)
- Lizhi Zhang
- Botanical Institute, University of Cologne, Gyrhofstr. 15, D-50931 Cologne, Germany
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Dupont FM. Metabolic pathways of the wheat (Triticum aestivum) endosperm amyloplast revealed by proteomics. BMC PLANT BIOLOGY 2008; 8:39. [PMID: 18419817 PMCID: PMC2383896 DOI: 10.1186/1471-2229-8-39] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 04/17/2008] [Indexed: 05/20/2023]
Abstract
BACKGROUND By definition, amyloplasts are plastids specialized for starch production. However, a proteomic study of amyloplasts isolated from wheat (Triticum aestivum Butte 86) endosperm at 10 days after anthesis (DPA) detected enzymes from many other metabolic and biosynthetic pathways. To better understand the role of amyloplasts in food production, the data from that study were evaluated in detail and an amyloplast metabolic map was outlined. RESULTS Analysis of 288 proteins detected in an amyloplast preparation predicted that 178 were amyloplast proteins. Criteria included homology with known plastid proteins, prediction of a plastid transit peptide for the wheat gene product or a close homolog, known plastid location of the pathway, and predicted plastid location for other members of the same pathway. Of these, 135 enzymes were arranged into 18 pathways for carbohydrate, lipid, amino acid, nucleic acid and other biosynthetic processes that are critical for grain-fill. Functions of the other proteins are also discussed. CONCLUSION The pathways outlined in this paper suggest that amyloplasts play a central role in endosperm metabolism. The interacting effects of genetics and environment on starch and protein production may be mediated in part by regulatory mechanisms within this organelle.
Collapse
Affiliation(s)
- Frances M Dupont
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, 800 Buchanan Street, Albany, CA 94710K, USA.
| |
Collapse
|
94
|
Bakker H, Routier F, Ashikov A, Neumann D, Bosch D, Gerardy-Schahn R. A CMP-sialic acid transporter cloned from Arabidopsis thaliana. Carbohydr Res 2008; 343:2148-52. [PMID: 18258224 DOI: 10.1016/j.carres.2008.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/21/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
Sialylation of glycans is ubiquitous in vertebrates, but was believed to be absent in plants, arthropods, and fungi. However, recently evidence has been provided for the presence of sialic acid in these evolutionary clades. In addition, homologs of mammalian genes involved in sialylation can be found in the genomes of these taxa and for some Drosophila enzymes, involvement in sialic acid metabolism has been documented. In plant genomes, homologs of sialyltransferase genes have been identified, but there activity could not be confirmed. Several mammalian cell lines exist with defects in the sialylation pathway. One of these is the Chinese hamster ovary cell line Lec2, deficient in CMP-sialic acid transport to the Golgi lumen. These mutants provide the possibility to clone genes by functional complementation. Using expression cloning, we have identified an Arabidopsis thaliana nucleotide sugar transporter that is able to complement the CMP-sialic acid transport deficiency of Lec2 cells. The isolated gene (At5g41760) is a member of the triose-phosphate/nucleotide sugar transporter gene family. Recombinant expression of the gene in yeast and testing in vitro confirmed its ability to transport CMP-sialic acid.
Collapse
Affiliation(s)
- Hans Bakker
- Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
95
|
Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. THE NEW PHYTOLOGIST 2008; 177:889-898. [PMID: 18086223 DOI: 10.1111/j.1469-8137.2007.02331.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transport of phosphate (Pi) between subcellular compartments is central to metabolic regulation. Although some of the transporters involved in controlling the intracellular distribution of Pi have been identified in plants, others are predicted from genetic, biochemical and bioinformatics studies. Heterologous expression in yeast, and gene expression and localization in plants were used to characterize all six members of an Arabidopsis thaliana membrane transporter family designated here as PHT4. PHT4 proteins share similarity with SLC17/type I Pi transporters, a diverse group of animal proteins involved in the transport of Pi, organic anions and chloride. All of the PHT4 proteins mediate Pi transport in yeast with high specificity. Bioinformatic analysis and localization of PHT4-GFP fusion proteins indicate that five of the proteins are targeted to the plastid envelope, and the sixth resides in the Golgi apparatus. PHT4 genes are expressed in both roots and leaves, although two of the genes are expressed predominantly in leaves and one mostly in roots. These expression patterns, together with Pi transport activities and subcellular locations, suggest roles for PHT4 proteins in the transport of Pi between the cytosol and chloroplasts, heterotrophic plastids and the Golgi apparatus.
Collapse
Affiliation(s)
| | | | | | - E B Blancaflor
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - C M Motes
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - W K Versaw
- Department of Biology
- Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
96
|
Mazumdar J, Striepen B. Make it or take it: fatty acid metabolism of apicomplexan parasites. EUKARYOTIC CELL 2007; 6:1727-35. [PMID: 17715365 PMCID: PMC2043401 DOI: 10.1128/ec.00255-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jolly Mazumdar
- Department of Cellular Biology, University of Georgia, Paul D Coverdell Center, Athens, GA 30602, USA
| | | |
Collapse
|
97
|
Karnataki A, Derocher A, Coppens I, Nash C, Feagin JE, Parsons M. Cell cycle-regulated vesicular trafficking of Toxoplasma APT1, a protein localized to multiple apicoplast membranes. Mol Microbiol 2007; 63:1653-68. [PMID: 17367386 DOI: 10.1111/j.1365-2958.2007.05619.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The apicoplast is a relict plastid essential for viability of the apicomplexan parasites Toxoplasma and Plasmodium. It is surrounded by multiple membranes that proteins, substrates and metabolites must traverse. Little is known about apicoplast membrane proteins, much less their sorting mechanisms. We have identified two sets of apicomplexan proteins that are homologous to plastid membrane proteins that transport phosphosugars or their derivatives. Members of the first set bear N-terminal extensions similar to those that target proteins to the apicoplast lumen. While Toxoplasma gondii lacks this type of translocator, the N-terminal extension from the Plasmodium falciparum sequence was shown to be functional in T. gondii. The second set of translocators lacks an N-terminal targeting sequence. This translocator, TgAPT1, when tagged with HA, localized to multiple apicoplast membranes in T. gondii. Contrasting with the constitutive targeting of luminal proteins, the localization of the translocator varied during the cell cycle. Early-stage parasites showed circumplastid distribution, but as the plastid elongated in preparation for division, vesicles bearing TgAPT1 appeared adjacent to the plastid. After plastid division, the protein resumes a circumplastid colocalization. These studies demonstrate for the first time that vesicular trafficking likely plays a role in the apicoplast biogenesis.
Collapse
Affiliation(s)
- Anuradha Karnataki
- Seattle Biomedical Research Institute, 307 Westlake Ave. N., Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
98
|
Martin T, Ludewig F. Transporters in starch synthesis. FUNCTIONAL PLANT BIOLOGY : FPB 2007; 34:474-479. [PMID: 32689376 DOI: 10.1071/fp06280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/12/2007] [Indexed: 06/11/2023]
Abstract
Starch is synthesised and stored in plastids. In autotrophic tissues, the carbon skeletons and energy required for starch synthesis are directly available from photosynthesis. However, plastids of heterotrophic tissues require the metabolites for starch synthesis to be imported. Depending on plant species and tissue type, import is facilitated by several different plastid inner envelope metabolite transporters. Commonly, glucose-6-phosphate/phosphate translocators and adenylate translocators are used, but in the cereal endosperm, the role is carried out by ADP glucose transporters (Brittle1, BT1). This review predominantly focuses on transporters of the plastid inner envelope membrane. Their roles are discussed within an overview of starch synthesis. We also examine additional functions of these transporters according to our current knowledge.
Collapse
Affiliation(s)
- Thomas Martin
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Frank Ludewig
- Botanical Institute, University of Cologne, Gyrhofstr. 15, 50931 Cologne, Germany
| |
Collapse
|
99
|
Parsons M, Karnataki A, Feagin JE, DeRocher A. Protein trafficking to the apicoplast: deciphering the apicomplexan solution to secondary endosymbiosis. EUKARYOTIC CELL 2007; 6:1081-8. [PMID: 17513565 PMCID: PMC1951102 DOI: 10.1128/ec.00102-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marilyn Parsons
- Seattle Biomedical Research Institute, 307 Westlake Ave. North, Seattle, WA 98109, USA.
| | | | | | | |
Collapse
|
100
|
Fleige T, Fischer K, Ferguson DJP, Gross U, Bohne W. Carbohydrate metabolism in the Toxoplasma gondii apicoplast: localization of three glycolytic isoenzymes, the single pyruvate dehydrogenase complex, and a plastid phosphate translocator. EUKARYOTIC CELL 2007; 6:984-96. [PMID: 17449654 PMCID: PMC1951530 DOI: 10.1128/ec.00061-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many apicomplexan parasites, such as Toxoplasma gondii and Plasmodium species, possess a nonphotosynthetic plastid, referred to as the apicoplast, which is essential for the parasites' viability and displays characteristics similar to those of nongreen plastids in plants. In this study, we localized several key enzymes of the carbohydrate metabolism of T. gondii to either the apicoplast or the cytosol by engineering parasites which express epitope-tagged fusion proteins. The cytosol contains a complete set of enzymes for glycolysis, which should enable the parasite to metabolize imported glucose into pyruvate. All the glycolytic enzymes, from phosphofructokinase up to pyruvate kinase, are present in the T. gondii genome, as duplicates and isoforms of triose phosphate isomerase, phosphoglycerate kinase, and pyruvate kinase were found to localize to the apicoplast. The mRNA expression levels of all genes with glycolytic products were compared between tachyzoites and bradyzoites; however, a strict bradyzoite-specific expression pattern was observed only for enolase I. The T. gondii genome encodes a single pyruvate dehydrogenase complex, which was located in the apicoplast and absent in the mitochondrion, as shown by targeting of epitope-tagged fusion proteins and by immunolocalization of the native pyruvate dehydrogenase complex. The exchange of metabolites between the cytosol and the apicoplast is likely to be mediated by a phosphate translocator which was localized to the apicoplast. Based on these localization studies, a model is proposed that explains the supply of the apicoplast with ATP and the reduction power, as well as the exchange of metabolites between the cytosol and the apicoplast.
Collapse
Affiliation(s)
- Tobias Fleige
- Institute of Medical Microbiology, University of Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|