51
|
Jiang Y, Chen J, Zheng X, Tan B, Ye X, Wang W, Zhang L, Li J, Li Z, Cheng J, Feng J. Multiple indeterminate domain (IDD)-DELLA1 complexes participate in gibberellin feedback regulation in peach. PLANT MOLECULAR BIOLOGY 2022; 109:147-157. [PMID: 35362935 DOI: 10.1007/s11103-022-01263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Peach encodes 14 INDETERMINATE DOMAIN (IDD) transcription factors. PpIDD4, -12 and -13 mediated PpDELLA1 binding to the PpGA20ox1 promoter. Each of these three PpIDD-DELLA1 complexes activated transcription of PpGA20ox1. PpTPR1 and -4 interrupted the interaction of PpIDDs with PpDELLA1. The plant growth regulator gibberellin (GA) plays an important role in the rapid growth of annual shoots in peach. Our previous study showed that the peach cultivar 'FenHuaShouXingTao' (FHSXT), a gibberellic acid receptor (gid1) mutant, accumulates active GAs in annual shoot tips. This mutant enhances GA feedback regulation in peach. The results of this study suggested that the PpIDD-DELLA1 complex is the underlying mechanism of GA feedback regulation in peach. Fourteen IDD genes were identified in peach, and three PpIDDs (PpIDD4, -12 and -13, all from group IV) interacted with PpDELLA1, an important component in GA signaling pathway. Truncation, segmentation and site mutation of the promoter of PpGA20ox1 (a GA biosynthesis gene) showed that all three PpIDD proteins recognized the core motif TTGTC. PpIDD4 and -13 mainly bind to site 3, while PpIDD12 binds to site 5 of the PpGA20ox1 promoter. All three PpIDD-DELLA1 complexes activated the PpGA20ox1 promoter-LUC fusion. These data suggested that PpIDDs bridge PpDELLA1 and the promoter of PpGA20ox1, which then activated the transcription of PpGA20ox1. In addition, PpTPR1 and -4 disrupted the interaction of PpIDDs with PpDELLA1. Our research will be helpful for understanding and possibly modifying the regulation of annual shoot growth and GA biosynthesis.
Collapse
Affiliation(s)
- Yajun Jiang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Jiajia Chen
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Jidong Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
52
|
Saini R, Nandi AK. TOPLESS in the regulation of plant immunity. PLANT MOLECULAR BIOLOGY 2022; 109:1-12. [PMID: 35347548 DOI: 10.1007/s11103-022-01258-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
This review presents the multiple ways how topless and topless-related proteins regulate defense activation in plants and help in optimizing the defense-growth tradeoff. Eukaryotic gene expression is tightly regulated at various levels by hormones, transcription regulators, post-translational modifications, and transcriptional coregulators. TOPLESS (TPL)/TOPLESS-related (TPR) corepressors regulate gene expression by interacting with other transcription factors. TPRs regulate auxin, gibberellins, jasmonic acid, strigolactone, and brassinosteroid signaling in plants. In general, except for GA, TPLs suppress these signaling pathways to prevent unwanted activation of hormone signaling. The association of TPL/TPRs in these hormonal signaling reflects a wide role of this class of corepressors in plants' normal and stress physiology. The involvement of TPL in immune responses was first demonstrated a decade ago as a repressor of DND1 and DND2 that are negative regulators of plant immune response. Over the last decade, several research groups have established a larger role of TPL/TPRs in plant immunity during both pattern- and effector-triggered immunity. Very recent research unraveled the significant involvement of TPRs in balancing the growth and defense trade-off. TPRs, along with proteasomal degradation complex, miRNA, and phasiRNA, suppress the activation of autoimmunity in plants under normal conditions and promote defense under pathogen attack.
Collapse
Affiliation(s)
- Reena Saini
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
53
|
Sukiran NA, Pollastri S, Steel PG, Knight MR. Plant growth promotion by the interaction of a novel synthetic small molecule with GA-DELLA function. PLANT DIRECT 2022; 6:e398. [PMID: 35492684 PMCID: PMC9039627 DOI: 10.1002/pld3.398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/23/2022] [Accepted: 03/16/2022] [Indexed: 05/14/2023]
Abstract
Synthesized small molecules are useful as tools to investigate hormonal signaling involved in plant growth and development. They are also important as agrochemicals to promote beneficial properties of crops in the field. We describe here the synthesis and mode of action of a novel growth-promoting chemical, A1. A1 stimulates enhanced growth in both shoot and root tissues of plants, acting by increasing both dry and fresh weight. This suggests that A1 not only promotes uptake of water but also increases production of cellular material. A1 treatment of Arabidopsisleads to the degradation of DELLA growth-inhibitory proteins suggesting that A1-mediated growth promotion is dependent upon this mechanism. We performed genetic analysis to confirm this and further dissect the mechanism of A1 action upon growth in Arabidopsis. A quintuple dellamutant was insensitive to A1, confirming that the mode of action was indeed via a DELLA-dependent mechanism. The ga1-5gibberellin synthesis mutant was similarly insensitive, suggesting that to promote growth in ArabidopsisA1 requires the presence of endogenous gibberellins. This was further suggested by the observation that double mutants of GID1 gibberellin receptor genes were insensitive to A1. Taken together, our data suggest that A1 acts to enhance sensitivity to endogenous gibberellins thus leading to observed enhanced growth via DELLA degradation. A1 and related compounds will be useful to identify novel signaling components involved in plant growth and development, and as agrochemicals suitable for a wide range of crop species.
Collapse
Affiliation(s)
- Nur Afiqah Sukiran
- Department of BiosciencesDurham UniversityDurhamUK
- Department of ChemistryDurham UniversityDurhamUK
| | - Susanna Pollastri
- Institute for Sustainable Plant ProtectionNational Research Council of ItalyFlorenceItaly
| | | | | |
Collapse
|
54
|
Wang X, Song Q, Liu Y, Brestic M, Yang X. The network centered on ICEs play roles in plant cold tolerance, growth and development. PLANTA 2022; 255:81. [PMID: 35249133 DOI: 10.1007/s00425-022-03858-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ICEs are key transcription factors in response to cold in plant, they also balance plant growth and stress tolerance. Thus, we systematize the information about ICEs published to date. Low temperature is an important factor affecting plant growth and development. Exposing to cold condition results in a suit of effects on plants including reduction of plant growth and reproduction, and decrease in crop yield and quality. Plants have evolved a series of strategies to deal with cold stress such as reprogramming of the expression of genes and transcription factors. ICEs (Inducer of CBF Expression), as transcription factors regulating CBFs (C-repeat binding factor), play key roles in balancing plant growth and stress tolerance. Studies on ICEs focused on the function of ICEs on cold tolerance, growth and development; post-translational modifications of ICEs and crosstalk between the ICEs and phytohormones. In this review, we focus on systematizing the information published to date. We summarized the main advances of the functions of ICEs on the cold tolerance, growth and development. And we also elaborated the regulation of ICEs protein stability including phosphorylation, ubiquitination and SUMOylation of ICE. Finally, we described the function of ICEs in the crosstalk among different phytohormone signaling pathway and cold stress. This review provides perspectives for ongoing research about cold tolerance, growth and development in plant.
Collapse
Affiliation(s)
- Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
55
|
Wang S, Luo C, Sun L, Ning K, Chen Z, Yang J, Wang Y, Wang Q. LsRGL1 controls the bolting and flowering times of lettuce by modulating the gibberellin pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111175. [PMID: 35151458 DOI: 10.1016/j.plantsci.2021.111175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Bolting, which is a serious problem during lettuce (Lactuca sativa L.) production, is responsible for substantial annual yield and quality losses. Gibberellin plays a critical role in the regulation of lettuce bolting. Additionally, DELLA proteins negatively regulate the gibberellin signaling pathway. However, it is unclear if DELLA proteins are involved in the regulation of lettuce bolting. Therefore, in this study, we identified four DELLA-encoding genes in lettuce, including LsRGL1, which was highly expressed in the stem and negatively correlated with bolting. Knocking down this gene in lettuce promoted bolting, whereas its overexpression inhibited bolting and the biosynthesis of gibberellin and auxin. A transcriptome analysis revealed that genes involved in gibberellin and auxin biosynthesis and flowering were affected in the LsRGL1-overexpressing lines. The yeast two-hybrid and yeast one-hybrid assay results indicated that LsRGL1 can interact with LsGA3ox and the LsYUC4 promoter region. Considered together, the results of this study suggest LsRGL1 negatively regulates lettuce bolting. Furthermore, its function may depend on modifications to gibberellin and auxin levels mediated at the transcript and protein levels.
Collapse
Affiliation(s)
- Shenglin Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chen Luo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Kang Ning
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zijing Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jingjing Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yixin Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qian Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
56
|
Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13010003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plants are the source of various photochemicals; metabolites are used in medicinal and environmental sectors as well as being widely used in commercial and pharmaceutical products. Although they produce a number of medicinal products, either already on the market or under trial, the amounts obtained from plant sources are very minute or difficult to synthesize at an industrial level due to the complex chemical composition and chirality exhibited by these compounds. However, plant cell cultures offer a good alternative for the consistent production of desired secondary metabolites under the influence of precursors and elicitors. In this review, we discuss the various aspects of secondary metabolites, production synthesis, and sources of medical products from plant sources.
Collapse
|
57
|
Dong S, Tarkowska D, Sedaghatmehr M, Welsch M, Gupta S, Mueller-Roeber B, Balazadeh S. The HB40-JUB1 transcriptional regulatory network controls gibberellin homeostasis in Arabidopsis. MOLECULAR PLANT 2022; 15:322-339. [PMID: 34728415 DOI: 10.1016/j.molp.2021.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The gibberellins (GAs) are phytohormones that play fundamental roles in almost every aspect of plant growth and development. Although GA biosynthetic and signaling pathways are well understood, the mechanisms that control GA homeostasis remain largely unclear in plants. Here, we demonstrate that the homeobox transcription factor (TF) HB40 of the HD-Zip family regulates GA content at two additive control levels in Arabidopsis thaliana. We show that HB40 expression is induced by GA and in turn reduces the levels of endogenous bioactive GAs by simultaneously reducing GA biosynthesis and increasing GA deactivation. Consistently, HB40 overexpression leads to typical GA-deficiency traits, such as small rosettes, reduced plant height, delayed flowering, and male sterility. By contrast, a loss-of-function hb40 mutation enhances GA-controlled growth. Genome-wide RNA sequencing combined with molecular-genetic analyses revealed that HB40 directly activates the transcription of JUNGBRUNNEN1 (JUB1), a key TF that represses growth by suppressing GA biosynthesis and signaling. HB40 also activates genes encoding GA 2-oxidases (GA2oxs), which are major GA-catabolic enzymes. The effect of HB40 on plant growth is ultimately mediated through the induction of nuclear growth-repressing DELLA proteins. Collectively, our results reveal the important role of the HB40-JUB1 regulatory network in controlling GA homeostasis during plant growth.
Collapse
Affiliation(s)
- Shuchao Dong
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Danuse Tarkowska
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mastoureh Sedaghatmehr
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Maryna Welsch
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Saurabh Gupta
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
| | - Salma Balazadeh
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands.
| |
Collapse
|
58
|
Zeng Z, Zhu S, Wang Y, Bai X, Liu C, Chen J, Zhang T, Wei Y, Li F, Bao Z, Yan L, Wang H, Liu T. Resequencing of 301 ramie accessions identifies genetic loci and breeding selection for fibre yield traits. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:323-334. [PMID: 34558775 PMCID: PMC8753365 DOI: 10.1111/pbi.13714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/13/2021] [Indexed: 05/27/2023]
Abstract
Ramie is an important fibre-producing crop in China; however, the genetic basis of its agronomic traits remains poorly understood. We produced a comprehensive map of genomic variation in ramie based on resequencing of 301 landraces and cultivars. Genetic analysis produced 129 signals significantly associated with six fibre yield-related traits, and several genes were identified as candidate genes for respective traits. Furthermore, we found that natural variations in the promoter region of Bnt14G019616 were associated with extremely low fibre abundance, providing the first evidence for the role of pectin methylesterase in fibre growth of plants. Additionally, nucleotide diversity analysis revealed that breeding selection has been markedly focussed on chromosome 9 in which ~ 39.6% sequence underwent selection, where one gibberellin-signalling-repressed DELLA gene showed distinct selection signatures in the cultivars. This study provides insights into the genetic architecture and breeding history of fibre yield traits in ramie. Moreover, the identification of fibre yield-related genetic loci and large-scale genomic variation represent valuable resources for genomics-assisted breeding of this crop.
Collapse
Affiliation(s)
- Zheng Zeng
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Siyuan Zhu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Yanzhou Wang
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Xuehua Bai
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Chan Liu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Jianrong Chen
- College of Biological and Environmental EngineeringChangsha UniversityChangshaChina
| | - Ting Zhang
- Shanghai OE Biotech. Co., LtdShanghaiChina
| | - Yiping Wei
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Fu Li
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | - Zhigui Bao
- Shanghai OE Biotech. Co., LtdShanghaiChina
| | - Li Yan
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| | | | - Touming Liu
- Institute of Bast Fiber CropsChinese Academy of Agricultural SciencesChangshaChina
| |
Collapse
|
59
|
He H, Yamamuro C. Interplays between auxin and GA signaling coordinate early fruit development. HORTICULTURE RESEARCH 2022; 9:uhab078. [PMID: 35043212 PMCID: PMC8955447 DOI: 10.1093/hr/uhab078] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 05/25/2023]
Abstract
Phytohormones and their interactions are critical for fruit development and, are key topics in horticulture research. Auxin, together with gibberellic acid (GA), promotes cell division and expansion, thus subsequently regulates fruit development and enlargement after fertilization. Auxin and GA related mutants show parthenocarpy (fruit formation without fertilization of ovule) in many plant species, indicating that these hormones and possibly their interactions play a key role in the regulation of fruit initiation and development. Recent studies have shown clear molecular and genetic evidence that ARF/IAA and DELLA protein interact each other and regulate both auxin and GA signaling pathways in response to auxin and GA during fruit growth in horticultural plants, tomato (the most studied freshy fruit) and strawberry (the model of Rosaceae). These recent findings provide new insights into the mechanisms by which plant hormones auxin and GA regulate fruit development.
Collapse
Affiliation(s)
- Hai He
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Chizuko Yamamuro
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
60
|
Identification of DELLA Genes and Key Stage for GA Sensitivity in Bolting and Flowering of Flowering Chinese Cabbage. Int J Mol Sci 2021; 22:ijms222212092. [PMID: 34829974 PMCID: PMC8624557 DOI: 10.3390/ijms222212092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, and its stalk development is mainly regulated by gibberellin (GA). DELLA proteins negatively regulate GA signal transduction and may play an important role in determining bolting and flowering. Nevertheless, no systematic study of the DELLA gene family has been undertaken in flowering Chinese cabbage. In the present study, we found that the two-true-leaf spraying of gibberellin A3 (GA3) did not promote bolting but did promote flowering, whereas the three-true-leaf spraying of GA3 promoted both bolting and flowering. In addition, we identified five DELLA genes in flowering Chinese cabbage. All five proteins contained DELLA, VHYNP, VHIID, and SAW conserved domains. Protein-protein interaction results showed that in the presence of GA3, all five DELLA proteins interacted with BcGID1b (GA-INSENSITIVE DWARF 1b) but not with BcGID1a (GA-INSENSITIVE DWARF 1a) or BcGID1c (GA-INSENSITIVE DWARF 1c). Their expression analysis showed that the DELLA genes exhibited tissue-specific expression, and their reversible expression profiles responded to exogenous GA3 depending on the treatment stage. We also found that the DELLA genes showed distinct expression patterns in the two varieties of flowering Chinese cabbage. BcRGL1 may play a major role in the early bud differentiation process of different varieties, affecting bolting and flowering. Taken together, these results provide a theoretical basis for further dissecting the DELLA regulatory mechanism in the bolting and flowering of flowering Chinese cabbage.
Collapse
|
61
|
Zhao X, Zhong Y, Shi J, Zhou W. 24-epibrassinolide confers tolerance against deep-seeding stress in Zea mays L. coleoptile development by phytohormones signaling transduction and their interaction network. PLANT SIGNALING & BEHAVIOR 2021; 16:1963583. [PMID: 34425064 PMCID: PMC8526002 DOI: 10.1080/15592324.2021.1963583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Coleoptile/mesocotyl elongation influence seedling emergence and establishment, is major causes of maize deep-seeding tolerance (DST). Detailed analyses on molecular basis underlying their elongation mediated by brassinosteroid under deep-seeding stress (DSS) could provide meaningful information for key factors controlling their elongation. Here we monitored transcriptome and phytohormones changes specifically in elongating coleoptile/mesocotyl in response to DSS and 24-epibrassinolide (EBR)-signaling. Phenotypically, contrasting maize evolved variant organs to positively respond to DST, longer coleoptile/mesocoty of K12/W64A was a desirable organ for seedling under DSS. Applied-EBR improved maize DST, and their coleoptiles/mesocotyls were further elongated. 15,607/20,491 differentially expressed genes (DEGs) were identified in W64A/K12 coleoptile, KEGG analysis showed plant hormone signal transduction, starch and sucrose metabolism, valine, leucine, and isoleucine degradation were critical processes of coleoptile elongation under DSS and EBR signaling, further highly interconnected network maps including 79/142 DEGs for phytohormones were generated. Consistent with these DEGs expression, interactions, and transport, IAA, GA3, ABA, and Cis-ZT were significantly reduced while EBR, Trans-ZT, JA, and SA were clearly increased in coleoptile under DSS and EBR-signaling. These results enrich our knowledge about the genes and phytohormones regulating coleoptile elongation in maize, and help improve future studies on corresponding genes and develop varieties with DST.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, P.R. China
- CONTACT Xiaoqiang Zhao Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, P.R. China
| | - Yuan Zhong
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, P.R. China
| | - Jing Shi
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, P.R. China
| | - Wenqi Zhou
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, P.R. China
- Wenqi Zhou Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou730070, P.R. China
| |
Collapse
|
62
|
Li F, Wang Y, Gao H, Zhang X, Zhuang N. Comparative transcriptome analysis reveals differential gene expression in sterile and fertile rubber tree varieties during flower bud differentiation. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153506. [PMID: 34492526 DOI: 10.1016/j.jplph.2021.153506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Plant male sterility (MS) is an important agronomic trait that provides an efficient tool for hybridization and heterosis utilization of crops. Based on phenotypic and cytological observations, our study performed a multi-comparison transcriptome analysis strategy on multiple sterile and fertile rubber tree varieties using RNA-seq. Compared with the male-fertile varieties, a total of 1590 differentially expressed genes (DEGs) were detected in male-sterile varieties, including 970 up-regulated and 620 down-regulated transcripts in sterile varieties. Key DEGs were further assessed focusing on anther development, microsporogenesis and plant hormone metabolism. Twenty DEGs were selected randomly to validate transcriptome data using quantitative real-time PCR (qRT-PCR). Eleven key genes were subjected to expression pattern analysis using qRT-PCR and fluorescence in situ hybridization. Among them, nine genes, i.e., A6, GAI1, ACA7, TKPR1, CYP704B1, XTH26, MS1, MS35 and MYB33, that regulate callose metabolism, pollen wall formation, tapetum and microspores development were identified as candidate male-sterile genes. These findings provide insights into the molecular mechanism of male sterility in rubber tree.
Collapse
Affiliation(s)
- Fei Li
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Ying Wang
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Heqiong Gao
- College of Tropical Crops, Hainan University, Hainan, 570228, China
| | - Xiaofei Zhang
- Rubber Research Institute, Chinese Academy of Topical Agricultural Sciences, State Center for Rubber Breeding, Danzhou, Hainan, 571737, China
| | - Nansheng Zhuang
- College of Tropical Crops, Hainan University, Hainan, 570228, China.
| |
Collapse
|
63
|
Cao H, Gong R, Yuan S, Su Y, Lv W, Zhou Y, Zhang Q, Deng X, Tong P, Liang S, Wang X, Hong Y. Phospholipase Dα6 and phosphatidic acid regulate gibberellin signaling in rice. EMBO Rep 2021; 22:e51871. [PMID: 34396669 DOI: 10.15252/embr.202051871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 11/09/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes membrane lipids to produce phosphatidic acid (PA), a lipid mediator involved in various cellular and physiological processes. Here, we show that PLDα6 and PA regulate the distribution of GIBBERELLIN (GA)-INSENSITIVE DWARF1 (GID1), a soluble gibberellin receptor in rice. PLDα6-knockout (KO) plants display less sensitivity to GA than WT, and PA restores the mutant to a normal GA response. PA binds to GID1, as documented by liposome binding, fat immunoblotting, and surface plasmon resonance. Arginines 79 and 82 of GID1 are two key amino acid residues required for PA binding and also for GID1's nuclear localization. The loss of PLDα6 impedes GA-induced nuclear localization of GID1. In addition, PLDα6-KO plants attenuated GA-induced degradation of the DELLA protein SLENDER RICE1 (SLR1). These data suggest that PLDα6 and PA positively mediate GA signaling in rice via PA binding to GID1 and promotion of its nuclear translocation.
Collapse
Affiliation(s)
- Huasheng Cao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.,The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rong Gong
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shu Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yuan Su
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Weixin Lv
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yimeng Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qingqing Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xianjun Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Pan Tong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shihu Liang
- The Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, USA.,Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Yueyun Hong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
64
|
Gibberellin Signaling Promotes the Secondary Growth of Storage Roots in Panax ginseng. Int J Mol Sci 2021; 22:ijms22168694. [PMID: 34445398 PMCID: PMC8395461 DOI: 10.3390/ijms22168694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.
Collapse
|
65
|
Zhu X, Wang B, Wei X. Genome wide identification and expression pattern analysis of the GRAS family in quinoa. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:948-962. [PMID: 34092279 DOI: 10.1071/fp21017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
GRAS, a key transcription factor in plant growth and development, has not yet been reported in quinoa. Therefore, this study used the latest quinoa genomic data to identify and analyse GRAS genes in quinoa: 52 GRAS genes were identified in quinoa, these being unevenly distributed on 19 chromosomes. Fragment duplication and tandem duplication events were the main reasons for the expansion of the GRAS gene family in quinoa. Protein sequence analysis showed that there were some differences in amino acid numbers and isoelectric points amongst different subfamilies, and the main secondary structures were α-helix and random coil. The CqGRAS gene was divided into 14 subfamilies based on results from phylogenetic analysis. The genes located in the same subfamily had similar gene structures, conserved motifs, and three-level models. Promoter region analysis showed that the GRAS family genes contained multiple homeostasis elements that responded to hormones and adversity. GO enrichment indicated that CqGRAS genes were involved in biological processes, cell components, and molecular functions. By analysing the expression of CqGRAS genes in different tissues and different treatments, it was found that GRAS genes had obvious differential expression in different tissues and stress, which indicates that GRAS genes had tissue or organ expression specificity and thus might play an important role in response to stress. These results laid a foundation for further functional research on the GRAS gene family in quinoa.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; and Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; and College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; and Corresponding author.
| |
Collapse
|
66
|
Dai Z, Huang H, Zhang Q, Bei J, Chen Z, Liu Q, Gao J, Zhang S, Liu J. Comparative Multi-Omics of Tender Shoots from a Novel Evergrowing Tea Cultivar Provide Insight into the Winter Adaptation Mechanism. PLANT & CELL PHYSIOLOGY 2021; 62:366-377. [PMID: 33399871 DOI: 10.1093/pcp/pcaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/14/2020] [Indexed: 05/15/2023]
Abstract
Tea (Camellia sinensis [L.] O. Kuntze) tree is a perennial plant in which winter dormancy is an important biological adaptation to environmental changes. We discovered and reported a novel tea tree cultivar that can generate tender shoots in winter several years ago, but the molecular mechanism for this unique phenotype remains unknown . Here, we conducted comparative transcriptomics, proteomics and metabolomics along with phytohormone quantitation between the winter and spring tender shoots to investigate the physiological basis and putative regulatory mechanisms of its evergrowing character during winter. Our multi-omics study has led to the following findings. Gibberellin (GA) levels and key enzymes for GA biosynthesis and the signal transduction pathway were increased in the winter shoots, causing the ABA/GA content ratio to decrease, which might play a key regulatory role in maintaining normal growth during winter. The abundance of proteins, genes and metabolites involved in energy metabolism was all increased in winter shoots, indicating that energy is critical for continuous growth under the relatively weak-light and low-temperature environment. Abiotic resistance-related proteins and free amino acids were also increased in abundance in the winter shoots, which possibly represents an adaptation response to winter conditions. These results allowed us to hypothesize a novel molecular mechanism of adaptation for this unique tender shoot evergrowing in winter.
Collapse
Affiliation(s)
- Zhangyan Dai
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Hualin Huang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qunjie Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Jinlong Bei
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Zhongjian Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Qinjian Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | - Jiadong Gao
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
| | | | - Jun Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou, China
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
67
|
Zhou J, Sittmann J, Guo L, Xiao Y, Huang X, Pulapaka A, Liu Z. Gibberellin and auxin signaling genes RGA1 and ARF8 repress accessory fruit initiation in diploid strawberry. PLANT PHYSIOLOGY 2021; 185:1059-1075. [PMID: 33793929 PMCID: PMC8133647 DOI: 10.1093/plphys/kiaa087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/24/2020] [Indexed: 05/07/2023]
Abstract
Unlike ovary-derived botanical fruits, strawberry (Fragaria x ananassa) is an accessory fruit derived from the receptacle, the stem tip subtending floral organs. Although both botanical and accessory fruits initiate development in response to auxin and gibberellic acid (GA) released from seeds, the downstream auxin and GA signaling mechanisms underlying accessory fruit development are presently unknown. We characterized GA and auxin signaling mutants in wild strawberry (Fragaria vesca) during early stage fruit development. While mutations in FveRGA1 and FveARF8 both led to the development of larger fruit, only mutations in FveRGA1 caused parthenocarpic fruit formation, suggesting FveRGA1 is a key regulator of fruit set. FveRGA1 mediated fertilization-induced GA signaling during accessory fruit initiation by repressing the expression of cell division and expansion genes and showed direct protein-protein interaction with FveARF8. Further, fvearf8 mutant fruits exhibited an enhanced response to auxin or GA application, and the increased response to GA was due to increased expression of FveGID1c coding for a putative GA receptor. The work reveals a crosstalk mechanism between FveARF8 in auxin signaling and FveGID1c in GA signaling. Together, our work provides functional insights into hormone signaling in an accessory fruit, broadens our understanding of fruit initiation in different fruit types, and lays the groundwork for future improvement of strawberry fruit productivity and quality.
Collapse
Affiliation(s)
- Junhui Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - John Sittmann
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Yuwei Xiao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Xiaolong Huang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Anuhya Pulapaka
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
68
|
Sukhikh IS, Vavilova VJ, Blinov AG, Goncharov NP. Diversity and Phenotypical Effect of Allelic Variants of Rht Dwarfing Genes in Wheat. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421020101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
69
|
Galeano E, Thomas BR. Effect of elevated gibberellic acid application on growth and gene expression patterns in white spruce families from a tree improvement program in Alberta, Canada. TREE PHYSIOLOGY 2021; 41:472-490. [PMID: 33080619 DOI: 10.1093/treephys/tpaa133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Nine open-pollinated families of Picea glauca (Moench) Voss from the Region D1 Controlled Parentage Program (Alberta, Canada) were systematically chosen from fast, medium and slow-growth rankings based on breeding values for height from field progeny tests at age 30 years. Seeds from these families were sown and grown to age 3 years to analyze the performance and correlations of growth, physiological traits and expression of gibberellin-related genes, with and without elevated gibberellic acid 3 (GA3) application, under greenhouse conditions. We observed a significant interaction effect between families and growth groups subjected to 50 μg μl-1 of GA3 treatment, causing a decrease in apical internode length, diameter, volume and absolute transcript level for fast-growing families but an increase for families in the slow-growth group for the same traits. We also observed that in the apical internode, the gene PgGA20ox1 had significantly more relative expression under the elevated GA3 treatment than the control trees. In the stem, PgGA3ox1 showed a significantly higher relative expression under elevated GA3 treatment compared with control trees. Also, the slow-growth group showed more relative expression of PgGA20ox1 (in the apical internode) and PgGA3ox1 (in the stem) than the fast-growth group. The apical internode length and diameter significantly increased by 24% and 16%, respectively, with the hormone treatment in the slow growing group. In general, the PgGID1 and PgDELLA1 genes were upregulated and downregulated respectively, in spruce shoots under the GA3 treatment, meaning a positive feedback regulation by those genes were influencing PgGA20ox1 and PgGA3ox1 expression in that tissue type. Moreover, there was a significant correlation between absolute transcript levels of PgGA20ox1 in the apical internode and apical internode length, and absolute transcript levels of PgGA3ox1 in the stem and the diameter, in the fast-growth group families. This study shows that expression of GA genes is a limiting factor for growth in certain white spruce families with a complex feedback mechanism. Finally, absolute transcript levels of endogenous GA relative to growth parameters in juvenile seedlings could potentially be used to accelerate the early selection of families with inherently rapid apical and radial growth expansion.
Collapse
Affiliation(s)
- Esteban Galeano
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Barb R Thomas
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, AB T6G 2E3, Canada
| |
Collapse
|
70
|
Liu M, He W, Zhang A, Zhang L, Sun D, Gao Y, Ni P, Ma X, Cui Z, Ruan Y. Genetic analysis of maize shank length by QTL mapping in three recombinant inbred line populations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110767. [PMID: 33487352 DOI: 10.1016/j.plantsci.2020.110767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
In maize, the shank is a unique tissue linking the stem to the ear. Shank length (SL) mainly affects the transport of photosynthetic products to the ear and the dehydration of kernels via regulated husk morphology. The limited studies on SL revealed it is a highly heritable quantitative trait controlled by significant additive and additive-dominance effects. However, the genetic basis of SL remains unclear. In this study, we analyzed three maize recombinant inbred line (RIL) populations to elucidate the molecular mechanism underlying the SL. The data indicated the SL varied among the three RIL populations and was highly heritable. Additionally, the SL was positively correlated with the husk length (HL), husk number (HN), ear length (EL), and ear weight (EW) in the BY815/K22 (BYK) and CI7/K22 (CIK) RIL populations, but was negatively correlated with the husk width (HW) in the BYK RIL population. Moreover, 10 quantitative trait loci (QTL) for SL were identified in the three RIL populations, five of which were large-effect QTL. The percentage of the total phenotypic variation explained by the QTL for SL was 13.67 %, 20.45 %, and 30.81 % in the BY815/DE3 (BYD), BYK, and CIK RIL populations, respectively. Further analyses uncovered some genetic overlap between SL and EL, SL and ear row number (ERN), SL and cob weight (CW), and SL and HN. Unlike the large-effect QTL qSL BYK-2-2, which spanned the centromere, the other four large-effect QTL were delimited to a single peak bin via bin map. Furthermore, 2, 5, 6, and 12 genes associated with SL were identified for qSL BYK-2-1, qSL CIK-2-1, qSL CIK-9-1, and qSL CIK-9-2, respectively. Five of the candidate genes for SL may contribute to the hormone metabolism and sphingolipid biosynthesis regulating cell elongation, division, differentiation, and expansion. These results may be relevant for future studies on the genetic basis of SL and for the molecular breeding of maize based on marker-assisted selection to develop new varieties with an ideal SL.
Collapse
Affiliation(s)
- Meiling Liu
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenshu He
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China; Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, Lleida, 25198, Spain
| | - Ao Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lijun Zhang
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China
| | - Daqiu Sun
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuan Gao
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China
| | - Pengzun Ni
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinglin Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Zhenhai Cui
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Yanye Ruan
- College of Biological Science and Technology, Liaoning Province Research Center of Plant Genetic Engineering Technology, Shenyang Key Laboratory of Maize Genomic Selection Breeding, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
71
|
Li SM, Zheng HX, Zhang XS, Sui N. Cytokinins as central regulators during plant growth and stress response. PLANT CELL REPORTS 2021; 40:271-282. [PMID: 33025178 DOI: 10.1007/s00299-020-02612-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/23/2020] [Indexed: 05/21/2023]
Abstract
Cytokinins are a class of phytohormone that participate in the regulation of the plant growth, development, and stress response. In this review, the potential regulating mechanism during plant growth and stress response are discussed. Cytokinins are a class of phytohormone that participate in the regulation of plant growth, physiological activities, and yield. Cytokinins also play a key role in response to abiotic stresses, such as drought, salt and high or low temperature. Through the signal transduction pathway, cytokinins interact with various transcription factors via a series of phosphorylation cascades to regulate cytokinin-target gene expression. In this review, we systematically summarize the biosynthesis and metabolism of cytokinins, cytokinin signaling, and associated gene regulation, and highlight the function of cytokinins during plant development and resistance to abiotic stress. We also focus on the importance of crosstalk between cytokinins and other classes of phytohormones, including auxin, ethylene, strigolactone, and gibberellin. Our aim is to provide a comprehensive overview of recent findings on the mechanisms by which cytokinins act as central regulators of plant development and stress reactions, and highlight topics for future research.
Collapse
Affiliation(s)
- Si-Min Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Hong-Xiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Xian-Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
72
|
Guo L, Plunkert M, Luo X, Liu Z. Developmental regulation of stolon and rhizome. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101970. [PMID: 33296747 DOI: 10.1016/j.pbi.2020.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/30/2020] [Accepted: 10/02/2020] [Indexed: 05/20/2023]
Abstract
Stolons and rhizomes are modified stems for vegetative reproduction. While stolons grow above the ground, rhizomes grow beneath the ground. Stolons and rhizomes maintain the genotypes of hybrids and hence are invaluable for agricultural propagation. Diploid strawberry is a model for studying stolon development. At the axillary meristems, gibberellins and MADS box gene SOC1 promote stolon formation, while the DELLA repressor inhibits stolon development. Photoperiod regulates stolon formation through regulating GA biosynthesis or balancing asexual with sexual mode of reproduction in the axillary meristems. In rhizomatous wild rice, the BLADE-ON-PETIOLE gene promotes sheath-to-blade ratio to confer rhizome tip stiffness and support underground growth. Together, this review aims to encourage further investigations into stolon and rhizome to benefit agriculture and environment.
Collapse
Affiliation(s)
- Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Xi Luo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
73
|
Li S, Wang Q, Wen B, Zhang R, Jing X, Xiao W, Chen X, Tan Q, Li L. Endodormancy Release Can Be Modulated by the GA 4-GID1c-DELLA2 Module in Peach Leaf Buds. FRONTIERS IN PLANT SCIENCE 2021; 12:713514. [PMID: 34646285 PMCID: PMC8504481 DOI: 10.3389/fpls.2021.713514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/20/2021] [Indexed: 05/12/2023]
Abstract
Gibberellin (GA) plays a key role in the release of bud dormancy and the GA receptor GID1 (GIBBERELLIN INSENSITIVE DWARF1) and DELLA protein are the GA signaling parts, but the molecular mechanism of GA-GID1-DELLA module regulating leaf bud dormancy in peach (Prunus persica) is still not very clear. In this study, we isolated and characterized the GID1 gene PpGID1c from the peach cultivar "Zhong you No.4." Overexpressing PpGID1c in Arabidopsis promoted seed germination, which indicated that PpGID1c has an important function in dormancy. The expression level of PpGID1c in peach leaf buds during endodormancy release was higher than that during ecodormancy and was positively correlated with GA4 levels. Our study also found that GA4 had the most obvious effect on promoting the bud break, indicating that GA4 may be the key gibberellin to promoting peach leaf bud endodormancy release. Moreover, a quantitative real-time PCR (qRT-PCR) found that GA4 could increase the expression of the gibberellin signaling gene PpDELLA2. A yeast two-hybrid (Y2H) assay suggested that the PpGID1c interaction with the PpDELLA1 protein was not dependent on gibberellin, while the PpGID1c interaction with PpDELLA2 required GA4 or another gibberellin. These findings suggested that the GA4-GID1c-DELLA2 module regulates peach leaf bud endodormancy release, with this finding significantly enhancing our comprehensive understanding of bud endodormancy release and revealing a new mechanism for regulating leaf bud endodormancy release in peach.
Collapse
Affiliation(s)
- Sen Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
| | - Qingjie Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
| | - Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
| | - Xiuli Jing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, China
- Qiuping Tan
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production With High Quality and Efficiency, Tai'an, China
- *Correspondence: Ling Li
| |
Collapse
|
74
|
Han R, Truco MJ, Lavelle DO, Michelmore RW. A Composite Analysis of Flowering Time Regulation in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:632708. [PMID: 33763095 PMCID: PMC7982828 DOI: 10.3389/fpls.2021.632708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 05/08/2023]
Abstract
Plants undergo profound physiological changes when transitioning from vegetative to reproductive growth. These changes affect crop production, as in the case of leafy vegetables. Lettuce is one of the most valuable leafy vegetable crops in the world. Past genetic studies have identified multiple quantitative trait loci (QTLs) that affect the timing of the floral transition in lettuce. Extensive functional molecular studies in the model organism Arabidopsis provide the opportunity to transfer knowledge to lettuce to explore the mechanisms through which genetic variations translate into changes in flowering time. In this review, we integrated results from past genetic and molecular studies for flowering time in lettuce with orthology and functional inference from Arabidopsis. This summarizes the basis for all known genetic variation underlying the phenotypic diversity of flowering time in lettuce and how the genetics of flowering time in lettuce projects onto the established pathways controlling flowering time in plants. This comprehensive overview reveals patterns across experiments as well as areas in need of further study. Our review also represents a resource for developing cultivars with delayed flowering time.
Collapse
Affiliation(s)
- Rongkui Han
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Maria José Truco
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Dean O. Lavelle
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Richard W. Michelmore
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Richard W. Michelmore,
| |
Collapse
|
75
|
Son S, Kim H, Lee KS, Kim S, Park SR. Rice glutaredoxin GRXS15 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae and Fusarium fujikuroi. Biochem Biophys Res Commun 2020; 533:1385-1392. [DOI: 10.1016/j.bbrc.2020.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/04/2023]
|
76
|
Banerjee A, Singh A, Roychoudhury A. De novo RNA-Seq analysis in sensitive rice cultivar and comparative transcript profiling in contrasting genotypes reveal genetic biomarkers for fluoride-stress response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115378. [PMID: 33254681 DOI: 10.1016/j.envpol.2020.115378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 06/12/2023]
Abstract
The fluoride-sensitive indica rice cultivar, IR-64 was subjected to NaF-treatment for 25 days, following which RNA-Seq analysis identified significant up and down regulation of 1,303 and 93 transcripts respectively. Gene ontology (GO) enrichment analysis classified transcripts into groups related to 'cellular part', 'membrane', 'catalytic activity', 'transporter activity', 'binding', 'metabolic processes' and 'cellular processes'. Analysis of differentially expressed genes (DEGs) revealed fluoride-mediated suppression of abscisic acid (ABA) biosynthesis and signaling. Instead, the gibberellin-dependent pathway and signaling via ABA-independent transcription factors (TFs) was activated. Comparative profiling of selected DEGs in IR-64 and fluoride-tolerant variety, Khitish revealed significant cytoskeletal and nucleosomal remodelling, accompanied with escalated levels of autophagy in stressed IR-64 (unlike that in stressed Khitish). Genes associated with ion, solute and xenobiotic transport were strongly up regulated in stressed IR-64, indicating potential fluoride entry through these channels. On the contrary, genes associated with xenobiotic mobility were suppressed in the tolerant cultivar, which restricted bioaccumulation and translocation of fluoride. Pairwise expression profile analysis between stressed IR-64 and Khitish, supported by extensive statistical modelling predicted that fluoride susceptibility was associated with high expression of genes like amino acid transporter, ABC transporter2, CLCd, MFS monosaccharide transporter, SulfT2.1 and PotT2 while fluoride tolerance with high expression of Sweet11.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Ankur Singh
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
77
|
López-Ruiz BA, Zluhan-Martínez E, Sánchez MDLP, Álvarez-Buylla ER, Garay-Arroyo A. Interplay between Hormones and Several Abiotic Stress Conditions on Arabidopsis thaliana Primary Root Development. Cells 2020; 9:E2576. [PMID: 33271980 PMCID: PMC7759812 DOI: 10.3390/cells9122576] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
As sessile organisms, plants must adjust their growth to withstand several environmental conditions. The root is a crucial organ for plant survival as it is responsible for water and nutrient acquisition from the soil and has high phenotypic plasticity in response to a lack or excess of them. How plants sense and transduce their external conditions to achieve development, is still a matter of investigation and hormones play fundamental roles. Hormones are small molecules essential for plant growth and their function is modulated in response to stress environmental conditions and internal cues to adjust plant development. This review was motivated by the need to explore how Arabidopsis thaliana primary root differentially sense and transduce external conditions to modify its development and how hormone-mediated pathways contribute to achieve it. To accomplish this, we discuss available data of primary root growth phenotype under several hormone loss or gain of function mutants or exogenous application of compounds that affect hormone concentration in several abiotic stress conditions. This review shows how different hormones could promote or inhibit primary root development in A. thaliana depending on their growth in several environmental conditions. Interestingly, the only hormone that always acts as a promoter of primary root development is gibberellins.
Collapse
Affiliation(s)
- Brenda Anabel López-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Estephania Zluhan-Martínez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - María de la Paz Sánchez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico; (B.A.L.-R.); (E.Z.-M.); (M.d.l.P.S.); (E.R.Á.-B.)
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
| |
Collapse
|
78
|
Khlestkina EK, Shvachko NA, Zavarzin AA, Börner A. Vavilov’s Series of the “Green Revolution” Genes. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
A potential endogenous gibberellin-mediated signaling cascade regulated floral transition in Magnolia × soulangeana 'Changchun'. Mol Genet Genomics 2020; 296:207-222. [PMID: 33146745 DOI: 10.1007/s00438-020-01740-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
The floral transition is a critical developmental switch in plants, and has profound effects on the flower production and yield. Magnolia × soulangeana 'Changchun' is known as a woody ornamental plant, which can bloom in spring and summer, respectively. In this study, anatomical observation, physiological measurement, transcriptome, and small RNA sequencing were performed to investigate potential endogenous regulatory mechanisms underlying floral transition in 'Changchun'. Transition of the shoot apical meristem from vegetative to reproductive growth occurred between late April and early May. During this specific developmental process, a total of 161,645 unigenes were identified, of which 73,257 were significantly differentially expressed, while a number of these two categories of miRNAs were 299 and 148, respectively. Further analysis of differentially expressed genes (DEGs) revealed that gibberellin signaling could regulate floral transition in 'Changchun' in a DELLA-dependent manner. In addition, prediction and analysis of miRNA targeted genes suggested that another potential molecular regulatory module was mediated by the miR172 family and other several novel miRNAs (Ms-novel_miR139, Ms-novel_miR229, and Ms-novel_miR232), with the participation of up- or down-regulating genes, including MsSVP, MsAP2, MsTOE3, MsAP1, MsGATA6, MsE2FA, and MsMDS6. Through the integrated analysis of mRNA and miRNA, our research results will facilitate the understanding of the potential molecular mechanism underlying floral transition in 'Changchun', and also provide basic experimental data for the plant germplasm resources innovation in Magnolia.
Collapse
|
80
|
Lan J, Lin Q, Zhou C, Ren Y, Liu X, Miao R, Jing R, Mou C, Nguyen T, Zhu X, Wang Q, Zhang X, Guo X, Liu S, Jiang L, Wan J. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice. PLANT MOLECULAR BIOLOGY 2020; 104:429-450. [PMID: 32808190 DOI: 10.1007/s11103-020-01049-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 08/06/2020] [Indexed: 05/29/2023]
Abstract
OsWRKY36 represses plant height and grain size by inhibiting gibberellin signaling. Plant height and grain size are important agronomic traits affecting yield in cereals, including rice. Gibberellins (GAs) are plant hormones that promote plant growth and developmental processions such as stem elongation and grain size. WRKYs are transcription factors that regulate stress tolerance and plant development including height and grain size. However, the relationship between GA signaling and WRKY genes is still poorly understood. Here, we characterized a small grain and semi-dwarf 3 (sgsd3) mutant in rice cv. Hwayoung (WT). A T-DNA insertion in the 5'-UTR of OsWRKY36 induced overexpression of OsWRKY36 in the sgsd3 mutant, likely leading to the mutant phenotype. This was confirmed by the finding that overexpression of OsWRKY36 caused a similar small grain and semi-dwarf phenotype to the sgsd3 mutant whereas knock down and knock out caused larger grain phenotypes. The sgsd3 mutant was also hyposensitive to GA and accumulated higher mRNA and protein levels of SLR1 (a GA signaling DELLA-like inhibitor) compared with the WT. Further assays showed that OsWRKY36 enhanced SLR1 transcription by directly binding to its promoter. In addition, we found that OsWRKY36 can protect SLR1 from GA-mediated degradation. We thus identified a new GA signaling repressor OsWRKY36 that represses GA signaling through stabilizing the expression of SLR1.
Collapse
Affiliation(s)
- Jie Lan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunlei Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yakun Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rong Miao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
| | - Xingjie Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qian Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
81
|
Morii M, Sugihara A, Takehara S, Kanno Y, Kawai K, Hobo T, Hattori M, Yoshimura H, Seo M, Ueguchi-Tanaka M. The Dual Function of OsSWEET3a as a Gibberellin and Glucose Transporter Is Important for Young Shoot Development in Rice. ACTA ACUST UNITED AC 2020; 61:1935-1945. [DOI: 10.1093/pcp/pcaa130] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
Abstract
Translocation and long-distance transport of phytohormones are considered important processes for phytohormone responses, as well as their synthesis and signaling. Here, we report on the dual function of OsSWEET3a, a bidirectional sugar transporter from clade I of the rice SWEET family of proteins, as both a gibberellin (GA) and a glucose transporter. OsSWEET3a efficiently transports GAs in the C13-hydroxylation pathway of GA biosynthesis. Both knockout and overexpression lines of OsSWEET3a showed defects in germination and early shoot development, which were partially restored by GA, especially GA20. Quantitative reverse transcription PCR, GUS staining and in situ hybridization revealed that OsSWEET3a was expressed in vascular bundles in basal parts of the seedlings. OsSWEET3a expression was co-localized with OsGA20ox1 expression in the vascular bundles but not with OsGA3ox2, whose expression was restricted to leaf primordia and young leaves. These results suggest that OsSWEET3a is expressed in the vascular tissue of basal parts of seedlings and is involved in the transport of both GA20 and glucose to young leaves, where GA20 is possibly converted to the bioactive GA1 form by OsGA3ox2, during early plant development. We also indicated that such GA transport activities of SWEET proteins have sporadically appeared in the evolution of plants: GA transporters in Arabidopsis have evolved from sucrose transporters, while those in rice and sorghum have evolved from glucose transporters.
Collapse
Affiliation(s)
- Minami Morii
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Akihiko Sugihara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Sayaka Takehara
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Kyosuke Kawai
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Tokunori Hobo
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Masako Hattori
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Hisako Yoshimura
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | - Miyako Ueguchi-Tanaka
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| |
Collapse
|
82
|
Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. FRONTIERS IN PLANT SCIENCE 2020; 11:585212. [PMID: 33193535 PMCID: PMC7641896 DOI: 10.3389/fpls.2020.585212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- William Harvey Heart Centre, Queen Mary University of London, London, United Kingdom
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
83
|
Wang Z, Hu H, Jiang X, Tao Y, Lin Y, Wu F, Hou S, Liu S, Li C, Chen G, Liu Y. Identification and Validation of a Novel Major Quantitative Trait Locus for Plant Height in Common Wheat ( Triticum aestivum L.). Front Genet 2020; 11:602495. [PMID: 33193748 PMCID: PMC7642865 DOI: 10.3389/fgene.2020.602495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 12/21/2022] Open
Abstract
Plant height (PH) plays a pivotal role in plant morphological architecture and is associated with yield potential in wheat. For the quantitative trait locus (QTL) analysis, a recombinant inbred line population was developed between varieties differing significantly in PH. Two major QTL were identified on chromosomes 4B (QPh.sicau-4B) and 6D (QPh.sicau-6D) in multiple environments, which were then validated in two different backgrounds by using closely linked markers. QPh.sicau-4B explained 10.1-21.3% of the phenotypic variance, and the location corresponded to the dwarfing gene Rht-B1. QPh.sicau-6D might be a novel QTL for PH, explaining 6.6-13.6% of the phenotypic variance and affecting spike length, thousand-kernel weight, and spikelet compactness. Three candidate genes associated with plant growth and development were identified in the physical interval of QPh.sicau-6D. Collectively, we identified a novel stable and major PH QTL, QPh.sicau-6D, which could aid in the development of closely linked markers for marker-assisted breeding and cloning genes underlying this QTL.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haiyan Hu
- School of Life Sciences and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaojun Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Tao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fangkun Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuai Hou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, China
| |
Collapse
|
84
|
Systematic Analysis of Gibberellin Pathway Components in Medicago truncatula Reveals the Potential Application of Gibberellin in Biomass Improvement. Int J Mol Sci 2020; 21:ijms21197180. [PMID: 33003317 PMCID: PMC7582545 DOI: 10.3390/ijms21197180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022] Open
Abstract
Gibberellins (GAs), a class of phytohormones, act as an essential natural regulator of plant growth and development. Many studies have shown that GA is related to rhizobial infection and nodule organogenesis in legume species. However, thus far, GA metabolism and signaling components are largely unknown in the model legume Medicago truncatula. In this study, a genome-wide analysis of GA metabolism and signaling genes was carried out. In total 29 components, including 8 MtGA20ox genes, 2 MtGA3ox genes, 13 MtGA2ox genes, 3 MtGID1 genes, and 3 MtDELLA genes were identified in M. truncatula genome. Expression profiles revealed that most members of MtGAox, MtGID1, and MtDELLA showed tissue-specific expression patterns. In addition, the GA biosynthesis and deactivation genes displayed a feedback regulation on GA treatment, respectively. Yeast two-hybrid assays showed that all the three MtGID1s interacted with MtDELLA1 and MtDELLA2, suggesting that the MtGID1s are functional GA receptors. More importantly, M. truncatula exhibited increased plant height and biomass by ectopic expression of the MtGA20ox1, suggesting that enhanced GA response has the potential for forage improvement.
Collapse
|
85
|
Yin X, Yi K, Zhao Y, Hu Y, Li X, He T, Liu J, Cui G. Revealing the full-length transcriptome of caucasian clover rhizome development. BMC PLANT BIOLOGY 2020; 20:429. [PMID: 32938399 PMCID: PMC7493993 DOI: 10.1186/s12870-020-02637-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/03/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Caucasian clover (Trifolium ambiguum M. Bieb.) is a strongly rhizomatous, low-crowned perennial leguminous and ground-covering grass. The species may be used as an ornamental plant and is resistant to cold, arid temperatures and grazing due to a well-developed underground rhizome system and a strong clonal reproduction capacity. However, the posttranscriptional mechanism of the development of the rhizome system in caucasian clover has not been comprehensively studied. Additionally, a reference genome for this species has not yet been published, which limits further exploration of many important biological processes in this plant. RESULT We adopted PacBio sequencing and Illumina sequencing to identify differentially expressed genes (DEGs) in five tissues, including taproot (T1), horizontal rhizome (T2), swelling of taproot (T3), rhizome bud (T4) and rhizome bud tip (T5) tissues, in the caucasian clover rhizome. In total, we obtained 19.82 GB clean data and 80,654 nonredundant transcripts were analysed. Additionally, we identified 78,209 open reading frames (ORFs), 65,227 coding sequences (CDSs), 58,276 simple sequence repeats (SSRs), 6821 alternative splicing (AS) events, 2429 long noncoding RNAs (lncRNAs) and 4501 putative transcription factors (TFs) from 64 different families. Compared with other tissues, T5 exhibited more DEGs, and co-upregulated genes in T5 are mainly annotated as involved in phenylpropanoid biosynthesis. We also identified betaine aldehyde dehydrogenase (BADH) as a highly expressed gene-specific to T5. A weighted gene co-expression network analysis (WGCNA) of transcription factors and physiological indicators were combined to reveal 11 hub genes (MEgreen-GA3), three of which belong to the HB-KNOX family, that are up-regulated in T3. We analysed 276 DEGs involved in hormone signalling and transduction, and the largest number of genes are associated with the auxin (IAA) signalling pathway, with significant up-regulation in T2 and T5. CONCLUSIONS This study contributes to our understanding of gene expression across five different tissues and provides preliminary insight into rhizome growth and development in caucasian clover.
Collapse
Affiliation(s)
- Xiujie Yin
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Kun Yi
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yihang Zhao
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yao Hu
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Xu Li
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Taotao He
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Jiaxue Liu
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, No.600 Changjiang Street, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
86
|
Sun Y, Zhang H, Fan M, He Y, Guo P. A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.). Sci Rep 2020; 10:14915. [PMID: 32913219 PMCID: PMC7483442 DOI: 10.1038/s41598-020-71861-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Dwarf architecture is an important trait associated with plant yield, lodging resistance and labor cost. Here, we aimed to identify a gene causing dwarfism in watermelon. The ‘w106’ (dwarf) and ‘Charleston Gray’ (vine) were used as parents to construct F1 and F2 progeny. Dwarf architecture of ‘w106’ was mainly caused by longitudinal cell length reduction and was controlled by a single recessive gene. Whole-genome sequencing of two parents and two bulk DNAs of F2 population localized this gene to a 2.63-Mb region on chromosome 9; this was further narrowed to a 541-kb region. Within this region, Cla015407, encoding a gibberellin 3β-hydroxylase (GA3ox), was the candidate gene. Cla015407 had a SNP mutation (G → A) in the splice acceptor site of the intron, leading to altered splicing event and generating two splicing isoforms in dwarf plants. One splicing isoform retained the intron sequences, while the other had a 13-bp deletion in the second exon of GA3ox transcript, both resulting in truncated proteins and loss of the functional Fe2OG dioxygenase domain in dwarf plants. RNA-Seq analysis indicated that expression of Cla015407 and other GA biosynthetic and metabolic genes were mostly up-regulated in the shoots of dwarf plants compared with vine plants in F2 population. Measurement of endogenous GA levels indicated that bioactive GA4 was significantly decreased in the shoots of dwarf plants. Moreover, the dwarf phenotype can be rescued by exogenous applications of GA3 or GA4+7, with the latter having a more distinct effect than the former. Subcellular localization analyses of GA3ox proteins from two parents revealed their subcellular targeting in nucleus and cytosol. Here, a GA3ox gene controlling dwarf architecture was identified, and loss function of GA3ox leads to GA4 reduction and dwarfism phenotype in watermelon.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Huiqing Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Min Fan
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Yanjun He
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Pingan Guo
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
87
|
Abstract
Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.
Collapse
|
88
|
Lange T, Krämer C, Pimenta Lange MJ. The Class III Gibberellin 2-Oxidases AtGA2ox9 and AtGA2ox10 Contribute to Cold Stress Tolerance and Fertility. PLANT PHYSIOLOGY 2020; 184:478-486. [PMID: 32661062 PMCID: PMC7479881 DOI: 10.1104/pp.20.00594] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/05/2020] [Indexed: 05/05/2023]
Abstract
Many developmental processes in plants are regulated by GA hormones. GA homeostasis is achieved via complex biosynthetic and catabolic pathways. GA catabolic enzymes include GA 2-oxidases that are classified into three classes. Members of class III GA 2-oxidases typically act on GA precursors containing a C20-skeleton. Here, we identified two further members of this class of GA 2-oxidases, namely AtGA2ox9 and AtGA2ox10, in the Arabidopsis (Arabidopsis thaliana) genome. Both genes encode enzymes that have functional similarities to AtGA2ox7 and AtGA2ox8, which are class III GA 2-oxidases that 2β-hydroxylate C20-GAs. Previously unknown for GA 2-oxidases, AtGA2ox9 performs 2α-hydroxylation of C19-GAs and harbors putative desaturating activity of C20-GAs. Additionally, AtGA2ox9 and AtGA2ox10 exhibit GA 20-oxidase activity. AtGA2ox9 oxidizes carbon-20 to form tricarboxylic acid C20-GAs, whereas AtGA2ox10 produces C19-GA9 AtGA2ox9 transcript levels increase after cold treatment and AtGA2ox10 is expressed mainly in the siliques of Arabidopsis plants. Atga2ox9 loss-of-function mutants are more sensitive to freezing temperatures, whereas Atga2ox10 loss-of-function mutants produce considerably more seeds per silique than wild-type plants. We conclude that in Arabidopsis, AtGA2ox9 contributes to freezing tolerance and AtGA2ox10 regulates seed production.
Collapse
Affiliation(s)
- Theo Lange
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Carolin Krämer
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Maria João Pimenta Lange
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| |
Collapse
|
89
|
Jung YJ, Kim JH, Lee HJ, Kim DH, Yu J, Bae S, Cho YG, Kang KK. Generation and Transcriptome Profiling of Slr1-d7 and Slr1-d8 Mutant Lines with a New Semi-Dominant Dwarf Allele of SLR1 Using the CRISPR/Cas9 System in Rice. Int J Mol Sci 2020; 21:ijms21155492. [PMID: 32752068 PMCID: PMC7432230 DOI: 10.3390/ijms21155492] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023] Open
Abstract
The rice SLR1 gene encodes the DELLA protein (protein with DELLA amino acid motif), and a loss-of-function mutation is dwarfed by inhibiting plant growth. We generate slr1-d mutants with a semi-dominant dwarf phenotype to target mutations of the DELLA/TVHYNP domain using CRISPR/Cas9 genome editing in rice. Sixteen genetic edited lines out of 31 transgenic plants were generated. Deep sequencing results showed that the mutants had six different mutation types at the target site of the TVHYNP domain of the SLR1 gene. The homo-edited plants selected individuals without DNA (T-DNA) transcribed by segregation in the T1 generation. The slr1-d7 and slr1-d8 plants caused a gibberellin (GA)-insensitive dwarf phenotype with shrunken leaves and shortened internodes. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two GA-related genes, GA20OX2 (Gibberellin oxidase) and GA3OX2, were increased in the edited mutant plants, suggesting that GA20OX2 acts as a convert of GA12 signaling. These mutant plants are required by altering GA responses, at least partially by a defect in the phytohormone signaling system process and prevented cell elongation. The new mutants, namely, the slr1-d7 and slr1-d8 lines, are valuable semi-dominant dwarf alleles with potential application value for molecule breeding using the CRISPR/Cas9 system in rice.
Collapse
Affiliation(s)
- Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
| | - Jong Hee Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
| | - Hyo Ju Lee
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
| | - Dong Hyun Kim
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
| | - Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul 04763, Korea; (J.Y.); (S.B.)
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul 04763, Korea; (J.Y.); (S.B.)
| | - Yong-Gu Cho
- Department of Crop Science, Chungbuk National University, Cheongju 28644, Korea;
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Korea; (Y.J.J.); (J.H.K.); (H.J.L.); (D.H.K.)
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Korea
- Correspondence: ; Tel.: +82-31-670-5104
| |
Collapse
|
90
|
Sukiran NA, Steel PG, Knight MR. Basal stomatal aperture is regulated by GA-DELLAs in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2020; 250:153182. [PMID: 32428693 DOI: 10.1016/j.jplph.2020.153182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Stomatal aperture is tightly regulated in order to achieve the best compromise between gas exchange and water conservation. Steady-state (basal) stomatal aperture is therefore understandably a key component in plant fitness. It has been shown previously in tomato that DELLA proteins act as positive regulators of closure of stomata, and their action is enhanced by the hormone ABA, which is itself important in mediating drought stress tolerance. DELLAs are regulated by a variety of signals which promote plant growth, most notably the hormones gibberellins, which have been shown to promote stomatal opening. We have found that DELLA proteins are also used in Arabidopsis for regulating basal stomatal aperture. We also discovered that the perception of endogenous gibberellins via the GID1 receptors is necessary for optimal basal stomatal aperture.
Collapse
Affiliation(s)
- Nur Afiqah Sukiran
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Patrick G Steel
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK
| | - Marc R Knight
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
91
|
Yang T, Sun Y, Wang Y, Zhou L, Chen M, Bian Z, Lian Y, Xuan L, Yuan G, Wang X, Wang C. AtHSPR is involved in GA- and light intensity-mediated control of flowering time and seed set in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3543-3559. [PMID: 32157303 PMCID: PMC7475253 DOI: 10.1093/jxb/eraa128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 03/05/2020] [Indexed: 05/15/2023]
Abstract
Flowering is a dynamic and synchronized process, the timing of which is finely tuned by various environmental signals. A T-DNA insertion mutant in Arabidopsis HEAT SHOCK PROTEIN-RELATED (AtHSPR) exhibited late-flowering phenotypes under both long-day (LD) and short-day (SD) conditions compared to the wild-type, while over-expression of AtHSPR promoted flowering. Exogenous application of gibberellin (GA) partially rescued the late-flowering mutant phenotype under both LD and SD conditions, suggesting that AtHSPR is involved in GA biosynthesis and/or the GA signaling that promotes flowering. Under SD or low-light conditions, the Athspr mutant exhibited late flowering together with reduced pollen viability and seed set, defective phenotypes that were partially rescued by GA treatment. qRT-PCR assays confirmed that GA biosynthetic genes were down-regulated, that GA catabolic genes were up-regulated, and that the levels of bioactive GA and its intermediates were decreased in Athspr under both SD and low-light/LD, further suggesting that AtHSPR could be involved in the GA pathway under SD and low-light conditions. Furthermore, AtHSPR interacted in vitro with OFP1 and KNAT5, which are transcriptional repressors of GA20ox1 in GA biosynthesis. Taken together, our findings demonstrate that AtHSPR plays a positive role in GA- and light intensity-mediated regulation of flowering and seed set.
Collapse
Affiliation(s)
- Tao Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yan Sun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yongli Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lina Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mengya Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyuan Bian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuke Lian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lijuan Xuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guoqiang Yuan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinyu Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | | |
Collapse
|
92
|
Transcriptome Analysis in Male Strobilus Induction by Gibberellin Treatment in Cryptomeria japonica D. Don. FORESTS 2020. [DOI: 10.3390/f11060633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The plant hormone gibberellin (GA) is known to regulate elongating growth, seed germination, and the initiation of flower bud formation, and it has been postulated that GAs originally had functions in reproductive processes. Studies on the mechanism of induction of flowering by GA have been performed in Arabidopsis and other model plants. In coniferous trees, reproductive organ induction by GAs is known to occur, but there are few reports on the molecular mechanism in this system. To clarify the gene expression dynamics of the GA induction of the male strobilus in Cryptomeria japonica, we performed comprehensive gene expression analysis using a microarray. A GA-treated group and a nontreated group were allowed to set, and individual trees were sampled over a 6-week time course. A total of 881 genes exhibiting changed expression was identified. In the GA-treated group, genes related to ‘stress response’ and to ‘cell wall’ were initially enriched, and genes related to ‘transcription’ and ‘transcription factor activity’ were enriched at later stages. This analysis also clarified the dynamics of the expression of genes related to GA signaling transduction following GA treatment, permitting us to compare and contrast with the expression dynamics of genes implicated in signal transduction responses to other plant hormones. These results suggested that various plant hormones have complex influences on the male strobilus induction. Additionally, principal component analysis (PCA) using expression patterns of the genes that exhibited sequence similarity with flower bud or floral organ formation-related genes of Arabidopsis was performed. PCA suggested that gene expression leading to male strobilus formation in C. japonica became conspicuous within one week of GA treatment. Together, these findings help to clarify the evolution of the mechanism of induction of reproductive organs by GA.
Collapse
|
93
|
Barro-Trastoy D, Carrera E, Baños J, Palau-Rodríguez J, Ruiz-Rivero O, Tornero P, Alonso JM, López-Díaz I, Gómez MD, Pérez-Amador MA. Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1026-1041. [PMID: 31930587 DOI: 10.1111/tpj.14684] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co-regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.
Collapse
Affiliation(s)
- Daniela Barro-Trastoy
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Jorge Baños
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Julia Palau-Rodríguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Omar Ruiz-Rivero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - José M Alonso
- Department of Plant and Microbial Biology, Program in Genetics, North Carolina State, Raleigh, NC, USA
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - María Dolores Gómez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | - Miguel A Pérez-Amador
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), CPI 8E, Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| |
Collapse
|
94
|
Phenology and related traits for wheat adaptation. Heredity (Edinb) 2020; 125:417-430. [PMID: 32457509 PMCID: PMC7784700 DOI: 10.1038/s41437-020-0320-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/09/2022] Open
Abstract
Wheat is a major food crop, with around 765 million tonnes produced globally. The largest wheat producers include the European Union, China, India, Russia, United States, Canada, Pakistan, Australia, Ukraine and Argentina. Cultivation of wheat across such diverse global environments with variation in climate, biotic and abiotic stresses, requires cultivars adapted to a range of growing conditions. One intrinsic way that wheat achieves adaptation is through variation in phenology (seasonal timing of the lifecycle) and related traits (e.g., those affecting plant architecture). It is important to understand the genes that underlie this variation, and how they interact with each other, other traits and the growing environment. This review summarises the current understanding of phenology and developmental traits that adapt wheat to different environments. Examples are provided to illustrate how different combinations of alleles can facilitate breeding of wheat varieties with optimal crop performance for different growing regions or farming systems.
Collapse
|
95
|
Jung H, Jo SH, Jung WY, Park HJ, Lee A, Moon JS, Seong SY, Kim JK, Kim YS, Cho HS. Gibberellin Promotes Bolting and Flowering via the Floral Integrators RsFT and RsSOC1-1 under Marginal Vernalization in Radish. PLANTS 2020; 9:plants9050594. [PMID: 32392867 PMCID: PMC7284574 DOI: 10.3390/plants9050594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
Gibberellic acid (GA) is one of the factors that promotes flowering in radish (Raphanus Sativus L.), although the mechanism mediating GA activation of flowering has not been determined. To identify this mechanism in radish, we compared the effects of GA treatment on late-flowering (NH-JS1) and early-flowering (NH-JS2) radish lines. GA treatment promoted flowering in both lines, but not without vernalization. NH-JS2 plants displayed greater bolting and flowering pathway responses to GA treatment than NH-JS1. This variation was not due to differences in GA sensitivity in the two lines. We performed RNA-seq analysis to investigate GA-mediated changes in gene expression profiles in the two radish lines. We identified 313 upregulated, differentially expressed genes (DEGs) and 207 downregulated DEGs in NH-JS2 relative to NH-JS1 in response to GA. Of these, 21 and 8 genes were identified as flowering time and GA-responsive genes, respectively. The results of RNA-seq and quantitative PCR (qPCR) analyses indicated that RsFT and RsSOC1-1 expression levels increased after GA treatment in NH-JS2 plants but not in NH-JS1. These results identified the molecular mechanism underlying differences in the flowering-time genes of NH-JS1 and NH-JS2 after GA treatment under insufficient vernalization conditions.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Won Yong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - So Yoon Seong
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.-K.K.)
| | - Ju-Kon Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.-K.K.)
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo Bio, Anseong 17558, Korea
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-42-31-4323 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-42-31-4323 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| |
Collapse
|
96
|
Liu Z, Ma H, Jung S, Main D, Guo L. Developmental Mechanisms of Fleshy Fruit Diversity in Rosaceae. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:547-573. [PMID: 32442388 DOI: 10.1146/annurev-arplant-111119-021700] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rosaceae (the rose family) is an economically important family that includes species prized for high-value fruits and ornamentals. The family also exhibits diverse fruit types, including drupe (peach), pome (apple), drupetum (raspberry), and achenetum (strawberry). Phylogenetic analysis and ancestral fruit-type reconstruction suggest independent evolutionary paths of multiple fleshy fruit types from dry fruits. A recent whole genome duplication in the Maleae/Pyreae tribe (with apple, pear, hawthorn, and close relatives; referred to as Maleae here) may have contributed to the evolution of pome fruit. MADS-box genes, known to regulate floral organ identity, are emerging as important regulators of fruit development. The differential competence of floral organs to respond to fertilization signals may explain the different abilities of floral organs to form fleshy fruit. Future comparative genomics and functional studies in closely related Rosaceae species with distinct fruit types will test hypotheses and provide insights into mechanisms of fleshy fruit diversity. These efforts will be facilitated by the wealth of genome data and resources in Rosaceae.
Collapse
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA; ,
| | - Hong Ma
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, Washington 99164, USA; ,
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, Washington 99164, USA; ,
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA; ,
| |
Collapse
|
97
|
Liu YT, Shi QH, Cao HJ, Ma QB, Nian H, Zhang XX. Heterologous Expression of a Glycine soja C2H2 Zinc Finger Gene Improves Aluminum Tolerance in Arabidopsis. Int J Mol Sci 2020; 21:E2754. [PMID: 32326652 PMCID: PMC7215988 DOI: 10.3390/ijms21082754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.
Collapse
Affiliation(s)
- Yuan-Tai Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-Han Shi
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - He-Jie Cao
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qi-Bin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiu-Xiang Zhang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, China; (Y.-T.L.); (Q.-H.S.); (H.-J.C.); (Q.-B.M.)
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou 510642, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- The Guangdong Subcenter of National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
98
|
Bhaskarla V, Zinta G, Ford R, Jain M, Varshney RK, Mantri N. Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea ( Cicer arietinum L.). Int J Mol Sci 2020; 21:E1781. [PMID: 32150870 PMCID: PMC7084756 DOI: 10.3390/ijms21051781] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
Drought adversely affects crop production across the globe. The root system immensely contributes to water management and the adaptability of plants to drought stress. In this study, drought-induced phenotypic and transcriptomic responses of two contrasting chickpea (Cicer arietinum L.) genotypes were compared at the vegetative, reproductive transition, and reproductive stages. At the vegetative stage, drought-tolerant genotype maintained higher root biomass, length, and surface area under drought stress as compared to sensitive genotype. However, at the reproductive stage, root length and surface area of tolerant genotype was lower but displayed higher root diameter than sensitive genotype. The shoot biomass of tolerant genotype was overall higher than the sensitive genotype under drought stress. RNA-seq analysis identified genotype- and developmental-stage specific differentially expressed genes (DEGs) in response to drought stress. At the vegetative stage, a total of 2161 and 1873 DEGs, and at reproductive stage 4109 and 3772 DEGs, were identified in the tolerant and sensitive genotypes, respectively. Gene ontology (GO) analysis revealed enrichment of biological categories related to cellular process, metabolic process, response to stimulus, response to abiotic stress, and response to hormones. Interestingly, the expression of stress-responsive transcription factors, kinases, ROS signaling and scavenging, transporters, root nodulation, and oxylipin biosynthesis genes were robustly upregulated in the tolerant genotype, possibly contributing to drought adaptation. Furthermore, activation/repression of hormone signaling and biosynthesis genes was observed. Overall, this study sheds new insights on drought tolerance mechanisms operating in roots with broader implications for chickpea improvement.
Collapse
Affiliation(s)
- Vijay Bhaskarla
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| | - Gaurav Zinta
- Shanghai Center for Plant Stress Biology, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Rebecca Ford
- School of Natural Sciences, Environmental Futures Research Institute, Griffith University, Brisbane, QLD 4111, Australia;
| | - Mukesh Jain
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Nitin Mantri
- The Pangenomics Group, School of Science, RMIT University, Melbourne 3083, Australia;
| |
Collapse
|
99
|
Molecular and functional characterization of two DELLA protein-coding genes in litchi. Gene 2020; 738:144455. [PMID: 32061763 DOI: 10.1016/j.gene.2020.144455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 11/20/2022]
Abstract
DELLA proteins are members of the plant-specific GRAS family, acting as negative regulators of plant growth. In this study, we identified two DELLA protein-coding genes in litchi, denoted as LcGAI and LcRGL1. Motif analysis showed that LcGAI and LcRGL1 proteins both contain a conserved DELLA and TVHYNP motif at the N-terminus as well as LHR1, VHIID, LHR2, PFYRE, and SAW motifs at the C terminus. The fused proteins of LcGAI-GFP and LcRGL1-GFP were both localized in the nucleus. Overexpression of LcGAI and LcRGL1 in Arabidopsis substantially inhibits leaf growth. Expression analysis showed that HLH factors, PRE1 and PRE5, were restrained, whereas gibberellin (GA) receptors GID1a and LcGID1b were enhanced in LcGAI and LcRGL1 overexpression lines. Results of the yeast two-hybrid assay showed that LcGAI and LcRGL1 interact with LcGID1b/LcGID1c in a GA dose-dependent manner, whereas LcGAI and LcRGL1 had a greater binding capacity to LcGID1b than LcGID1c. These observations suggested that LcGAI and LcRGL1 proteins are nuclear growth repressors.
Collapse
|
100
|
Katyayini NU, Rinne PLH, Tarkowská D, Strnad M, van der Schoot C. Dual Role of Gibberellin in Perennial Shoot Branching: Inhibition and Activation. FRONTIERS IN PLANT SCIENCE 2020; 11:736. [PMID: 32582259 PMCID: PMC7289990 DOI: 10.3389/fpls.2020.00736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/07/2020] [Indexed: 05/05/2023]
Abstract
Shoot branching from axillary buds (AXBs) is regulated by a network of inhibitory and promotive forces, which includes hormones. In perennials, the dwarfed stature of the embryonic shoot inside AXBs is indicative of gibberellin (GA) deficiency, suggesting that AXB activation and outgrowth require GA. Nonetheless, the role of GA in branching has remained obscure. We here carried out comprehensive GA transcript and metabolite analyses in hybrid aspen, a perennial branching model. The results indicate that GA has an inhibitory as well as promotive role in branching. The latter is executed in two phases. While the expression level of GA2ox is high in quiescent AXBs, decapitation rapidly downregulated it, implying increased GA signaling. In the second phase, GA3ox2-mediated de novo GA-biosynthesis is initiated between 12 and 24 h, prior to AXB elongation. Metabolite analyzes showed that GA1/4 levels were typically high in proliferating apices and low in the developmentally inactive, quiescent AXBs, whereas the reverse was true for GA3/6. To investigate if AXBs are differently affected by GA3, GA4, and GR24, an analog of the branch-inhibitor hormone strigolactone, they were fed into AXBs of single-node cuttings. GA3 and GA4 had similar effects on GA and SL pathway genes, but crucially GA3 induced AXB abscission whereas GA4 promoted outgrowth. Both GA3 and GA4 strongly upregulated GA2ox genes, which deactivate GA1/4 but not GA3/6. Thus, the observed production of GA3/6 in quiescent AXBs targets GA1/4 for GA2ox-mediated deactivation. AXB quiescence can therefore be maintained by GA3/6, in combination with strigolactone. Our discovery of the distinct tasks of GA3 and GA4 in AXB activation might explain why the role of GA in branching has been difficult to decipher. Together, the results support a novel paradigm in which GA3/6 maintains high levels of GA2ox expression and low levels of GA4 in quiescent AXBs, whereas activation and outgrowth require increased GA1/4 signaling through the rapid reduction of GA deactivation and subsequent GA biosynthesis.
Collapse
Affiliation(s)
| | - Päivi L. H. Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Sciences, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Christiaan van der Schoot
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Christiaan van der Schoot,
| |
Collapse
|