51
|
Ratnitsyna D, Yudina L, Sukhova E, Sukhov V. Development of Modified Farquhar-von Caemmerer-Berry Model Describing Photodamage of Photosynthetic Electron Transport in C 3 Plants under Different Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 12:3211. [PMID: 37765375 PMCID: PMC10536443 DOI: 10.3390/plants12183211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Photodamage of photosynthetic electron transport is a key mechanism of disruption of photosynthesis in plants under action of stressors. This means that investigation of photodamage is an important task for basic and applied investigations. However, its complex mechanisms restrict using experimental methods of investigation for this process; the development of mathematical models of photodamage and model-based analysis can be used for overcoming these restrictions. In the current work, we developed the modified Farquhar-von Caemmerer-Berry model which describes photodamage of photosynthetic electron transport in C3 plants. This model was parameterized on the basis of experimental results (using an example of pea plants). Analysis of the model showed that combined inactivation of linear electron flow and Rubisco could induce both increasing and decreasing photodamage at different magnitudes of inactivation of these processes. Simulation of photodamage under different temperatures and light intensities showed that simulated temperature dependences could be multi-phase; particularly, paradoxical increases in the thermal tolerance of photosynthetic electron transport could be observed under high temperatures (37-42 °C). Finally, it was shown that changes in temperature optimums of linear electron flow and Rubisco could modify temperature dependences of the final activity of photosynthetic electron transport under photodamage induction; however, these changes mainly stimulated its photodamage. Thus, our work provides a new theoretical tool for investigation of photodamage of photosynthetic processes in C3 plants and shows that this photodamage can be intricately dependent on parameters of changes in activities of linear electron flow and Rubisco including changes induced by temperature.
Collapse
Affiliation(s)
| | | | | | - Vladimir Sukhov
- Department of Biophysics, N. I. Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod, Russia; (D.R.); (L.Y.); (E.S.)
| |
Collapse
|
52
|
Torzillo G, Álvarez-Gómez F, Celis-Plá PSM, Rearte A, Gómez-Serrano C, Silva Benavides AM, Štěrbová K, Caporgno M, Touloupakis E, Masojídek J, Figueroa FL. Photosynthesis and biochemical characterization of the green alga Chlamydopodium fusiforme (Chlorophyta) grown in a thin-layer cascade. Photochem Photobiol Sci 2023; 22:2231-2245. [PMID: 37329434 DOI: 10.1007/s43630-023-00444-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Photosynthesis, growth and biochemical composition of the biomass of the freshwater microalga Chlamydopodium fusiforme cultures outdoors in a thin-layer cascade were investigated. Gross oxygen production measured off-line in samples taken from the outdoor cultures was correlated with the electron transport rate estimated from chlorophyll a fluorescence measurements. According to photosynthesis measurements, a mean of 38.9 ± 10.3 mol of photons were required to release one mole of O2, which is 4.86 times higher than the theoretical value (8 photons per 1 O2). In contrast, according to the fluorescence measurements, a mean of 11.7 ± 0.74 mol of photons were required to release 1 mol of O2. These findings indicate that fluorescence-based photosynthesis rates may not be fully replace oxygen measurements to evaluate the performance of an outdoor culture. Daily gross biomass productivity was 0.3 g DW L-1 day-1 consistently for 4 days. Biomass productivity was strongly affected by the suboptimal concentration at which the culture was operated and by the respiration rate, as the substantial volume of culture was kept in the dark (about 45% of the total volume). As the cells were exposed to excessive light, the photosynthetic activity was mainly directed to the synthesis of carbohydrates in the biomass. In the morning, carbohydrate content decreased because of the dark respiration. Per contra, protein content in the biomass was lower at the end of the day and higher in the morning due to carbohydrate consumption by respiration. The data gathered in these trials are important for the future exploitation of Chlamydopodium fusiforme as a potential novel species in the field of microalgae for the production of bio-based compounds.
Collapse
Affiliation(s)
- Giuseppe Torzillo
- CNR - Institute of Bioeconomy, Sesto Fiorentino, Florence, Italy.
- CIMAR - Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, Costa Rica.
| | - Félix Álvarez-Gómez
- Department of Ecology, Faculty of Sciences, Malaga University, Malaga, Spain
| | - Paula S M Celis-Plá
- Laboratory of Coastal Environmental Research, Center of Advanced Studies, University of Playa Ancha, Viña del Mar, Chile
- Vicerrectoría de Investigación Postgrado E Innovación, HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, 2340000, Valparaíso, Chile
| | - Agustín Rearte
- Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires, CABA, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | | | - Ana Margarita Silva Benavides
- CIMAR - Centro de Investigación en Ciencias del Mar y Limnología, Universidad de Costa Rica, San Pedro, Costa Rica
- Escuela de Biologia, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Karolína Štěrbová
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Agriculture, University of South Bohemia, České Budějovice, Czech Republic
| | - Martín Caporgno
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Jiří Masojídek
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Felix L Figueroa
- Institute for Blue Biotechnology and Development. Department of Ecology, Malaga University, Malaga, Spain Malaga, Spain
| |
Collapse
|
53
|
Niu L, Jiang F, Yin J, Wang Y, Li Y, Yu X, Song X, Ottosen CO, Rosenqvist E, Mittler R, Wu Z, Zhou R. ROS-mediated waterlogging memory, induced by priming, mitigates photosynthesis inhibition in tomato under waterlogging stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1238108. [PMID: 37701806 PMCID: PMC10493394 DOI: 10.3389/fpls.2023.1238108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023]
Abstract
With global climate change, the frequency and intensity of waterlogging events are increasing due to frequent and heavy precipitation. Little is known however about the response of plants to repeated waterlogging stress events. The aim is to clarify physiological regulation mechanisms of tomato plants under repeated waterlogging stress, and whether Trichoderma harzianum can alleviate waterlogging injury. We identified two genotypes of tomato, 'MIX-002' and 'LA4440', as waterlogging tolerant and sensitive genotypes, respectively, based on plant biomass accumulation. The two tomato genotypes were subjected to a waterlogging priming treatment for 2 days (excess water for 1 cm above substrate surface) followed by a recovery stage for 2 days, and then a second waterlogging stress for 5 days (excess water for 1 cm above substrate surface) followed by a second recovery stage for 3 days. Leaf physiological, plant growth parameters, and the expression of five key genes were investigated. We found that the two genotypes responded differently to waterlogging priming and stress in terms of photosynthesis, reactive oxygen species (ROS), and osmotic regulatory mechanisms. Waterlogging stress significantly increased H2O2 content of 'MIX-002', while that of 'LA4440' had no significant change. Under waterlogging stress, photosynthesis of the two genotypes treated with waterlogging priming returned to the control level. However, Trichoderma harzianum treatment during the second recovery stage did not show positive mitigative effects. The plants of 'LA4440' with priming showed lower peroxidase (POD) activity and proline content but higher H2O2 content than that without priming under waterlogging stress. Under waterlogging stress with priming as compared to without priming, SODCC2 was downregulated in two tomatoes, and AGR2 and X92888 were upregulated in 'MIX-002' but downregulated in 'LA4440'. Overall, the two tomato genotypes exhibited distinct photosynthetic, ROS and osmotic regulatory mechanisms responding to the waterlogging stress. Waterlogging priming can induce stress memory by adjusting stomatal conductance, sustaining ROS homeostasis, regulating osmotic regulatory substances and key gene expressions mediated by H2O2, and thus alleviate the damage on tomato photosynthesis when waterlogging reoccurred.
Collapse
Affiliation(s)
- Lifei Niu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Fangling Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jian Yin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yinlei Wang
- Vegetable Institute, Jiangsu Academy of Agriculture Science, Nanjing, Jiangsu, China
| | - Yankai Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | | | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Ron Mittler
- Division of Plant Science and Technology, College of Agriculture, Food and Natural Resources, University of Missouri, Bond Life Sciences Center, Columbia, MO, United States
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Rong Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Department of Food Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
54
|
Mady E, Abd El-Wahed AHM, Awad AH, Asar TO, Al-Farga A, Abd El-Raouf HS, Randhir R, Alnuzaili ES, El-Taher AM, Randhir TO, Hamada FA. Evaluation of Salicylic Acid Effects on Growth, Biochemical, Yield, and Anatomical Characteristics of Eggplant (Solanum melongena L.) Plants under Salt Stress Conditions. AGRONOMY 2023; 13:2213. [DOI: 10.3390/agronomy13092213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Salt stress is a major issue in agriculture and crop production that influences global food security. Mitigation options to address salt stress through agronomic practices can help manage this issue. Experiments were performed in two summer seasons in an experimental farm to test the impact of three salinity levels (S): 300 (control), 1000, 2000, and 3000 ppm, and two salicylic acid (SA) levels, including 1.0 and 1.50 mM, and their interaction on growth and yield of eggplant (Solanum melongena L.) hybrid Suma. The results showed that increasing S levels up to 3000 ppm reduced plant and fruit physical characteristics, as well as leaf and fruit chemical characteristics, especially leaf total chlorophyll, carotenoids, relative water, fruit nitrogen, phosphorus, and potassium contents, which led to a reduction in total yield per plant. However, an insignificant effect was observed in the control level and 1000 ppm saline water in leaf area, fruit length, leaf total chlorophyll content, fruit phosphorus content, and total yield per plant. In contrast, leaf sugars, proline contents, electrolyte leakage, fruit TSS (total soluble solids), and ascorbic acid contents were improved with S levels up to the concentration of 3000 ppm compared to the control. However, tested parameters were significantly higher due to the SA foliar spray of 1.0 mM besides photosynthetic pigments of leaves enhanced by using 1.0 and 1.50 mM. Using 1.0 mM SA concentration alleviated the adverse impact of S on eggplant plants until 1000 ppm saline water, reflecting an increase in eggplant yield. The anatomical structure of eggplant leaves revealed positive variations in mature leaf blades in both the stressed and SA-treated plants. Based on these results, the use of SA at a concentration of 1.0 mM may lessen the negative impacts of salt on the growth of eggplant, which increases the overall yield.
Collapse
Affiliation(s)
- Emad Mady
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Asaad H. Awad
- Department of Horticulture, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Turky O. Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Ammar Al-Farga
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Hany S. Abd El-Raouf
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Reena Randhir
- Department of Biological Sciences, Springfield Technical Community College, Springfield, MA 01105, USA
| | - Ehab S. Alnuzaili
- English Department, College of Science and Arts, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed M. El-Taher
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
| | - Timothy O. Randhir
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA 01003, USA
| | - Fatma A. Hamada
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
| |
Collapse
|
55
|
Moustaka J, Moustakas M. Early-Stage Detection of Biotic and Abiotic Stress on Plants by Chlorophyll Fluorescence Imaging Analysis. BIOSENSORS 2023; 13:796. [PMID: 37622882 PMCID: PMC10452221 DOI: 10.3390/bios13080796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/30/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Most agricultural land, as a result of climate change, experiences severe stress that significantly reduces agricultural yields. Crop sensing by imaging techniques allows early-stage detection of biotic or abiotic stress to avoid damage and significant yield losses. Among the top certified imaging techniques for plant stress detection is chlorophyll a fluorescence imaging, which can evaluate spatiotemporal leaf changes, permitting the pre-symptomatic monitoring of plant physiological status long before any visible symptoms develop, allowing for high-throughput assessment. Here, we review different examples of how chlorophyll a fluorescence imaging analysis can be used to evaluate biotic and abiotic stress. Chlorophyll a is able to detect biotic stress as early as 15 min after Spodoptera exigua feeding, or 30 min after Botrytis cinerea application on tomato plants, or on the onset of water-deficit stress, and thus has potential for early stress detection. Chlorophyll fluorescence (ChlF) analysis is a rapid, non-invasive, easy to perform, low-cost, and highly sensitive method that can estimate photosynthetic performance and detect the influence of diverse stresses on plants. In terms of ChlF parameters, the fraction of open photosystem II (PSII) reaction centers (qp) can be used for early stress detection, since it has been found in many recent studies to be the most accurate and appropriate indicator for ChlF-based screening of the impact of environmental stress on plants.
Collapse
Affiliation(s)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
56
|
Wang Y, Qin T, Pu Z, Dekomah SD, Yao P, Sun C, Liu Y, Bi Z, Bai J. Foliar Application of Chelated Sugar Alcohol Calcium Improves Photosynthesis and Tuber Quality under Drought Stress in Potatoes ( Solanum tuberosum L.). Int J Mol Sci 2023; 24:12216. [PMID: 37569590 PMCID: PMC10418820 DOI: 10.3390/ijms241512216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Drought stress is a major threat to sustainable crop production worldwide. Despite the positive role of calcium (Ca2+) in improving plant drought tolerance in different crops, little attention has been paid to its role in mitigating drought stress in potatoes. In the present study, we studied the effect of foliar chelated sugar alcohol calcium treatments on two potato cultivars with different drought responses applied 15 and 30 days after limiting soil moisture. The results showed that the foliar application of calcium treatments alleviated the SPAD chlorophyll loss of the drought-sensitive cultivar 'Atlantic' (Atl) and reduced the inhibition of photosynthetic parameters, leaf anatomy deformation, and MDA and H2O2 content of both cultivars under drought stress. The Ca2+ treatments changed the expression of several Calcium-Dependent Protein Kinase (StCDPK) genes involved in calcium sensing and signaling and significantly increased antioxidant enzyme activities, average tuber weight per plant, and tuber quality of both cultivars. We conclude that calcium spray treatments improved the drought tolerance of both potato cultivars and were especially effective for the drought-sensitive cultivar. The present work suggests that the foliar application of calcium is a promising strategy to improve commercial potato yields and the economic efficiency of potato production under drought stress conditions.
Collapse
Affiliation(s)
- Yihao Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Tianyuan Qin
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhuanfang Pu
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Simon Dontoro Dekomah
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
57
|
Wang T, Li L, Qin Y, Lu B, Xu D, Zhuang W, Shu X, Zhang F, Wang N, Wang Z. Effects of Seasonal Changes on Chlorophyll Fluorescence and Physiological Characteristics in the Two Taxus Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:2636. [PMID: 37514250 PMCID: PMC10384244 DOI: 10.3390/plants12142636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Taxus is a rare and endangered woody plant worldwide with important economic and ecological values. However, the weak environmental adaptability of Taxus species, in particular the unstable photosynthetic activity in different seasons, always affects its normal growth and development and limits its conservation and exploitation. To improve the survival of Taxus trees in cultivated areas, the seasonal dynamics of chlorophyll fluorescence (CF) and key physiological parameters were comprehensively investigated in T. media and T. mairei. The results demonstrated that the photosynthetic activity of both Taxus species was sensitive to local summer and winter environmental conditions, with the heterogeneity of fluorescence signatures intuitively presented on the needle surface by CF-Imaging detection, while images of maximum quantum efficiency of PSII photochemistry (Fv/Fm) demonstrated values below 0.7 in the blue-green sectors in winter. The distribution of light energy was regulated by the photosynthetic apparatus in both Taxus species to maintain a stable actual quantum yield of PSII photochemistry (φPSII), which was around 0.4-0.5. Based on a redundancy discriminant analysis, the interpretation rate of light intensity and air temperature ranked as the top two in both Taxus species, which were considered the main environmental factors affecting the photosynthetic performance of Taxus by disturbing the electron transport chain. In the winter, T. mairei exhibited weaker electron transport activity than T. media, thus caused lower photochemistry and more severe photosynthetic damages. Interestingly, both Taxus species demonstrated consistent response patterns, including diverse energy dissipation strategies and enhancement of osmoregulatory substances and antioxidative activities, thus maintaining stable photosynthetic functions in response to environmental changes.
Collapse
Affiliation(s)
- Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Lingyu Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Yalong Qin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Bo Lu
- Nanjing Athortiland Agricultural Science and Technology Development Co., Ltd., Nanjing 210043, China
| | - Donghuan Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Fengjiao Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Ning Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
58
|
Hong E, Xia X, Ji W, Li T, Xu X, Chen J, Chen X, Zhu X. Effects of High Temperature Stress on the Physiological and Biochemical Characteristics of Paeonia ostii. Int J Mol Sci 2023; 24:11180. [PMID: 37446356 DOI: 10.3390/ijms241311180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
In order to explore the effects of high temperature stress on the physiological characteristics of Paeonia ostii, the Paeonia ostii were subjected to 25 °C, 35 °C, 38 °C, and 40 °C for 7 days. Meanwhile, the physiological indicators of oxidative stress (hydrogen peroxide, H2O2; malondialdehyde, MDA; relative electrical conductivity, REC), antioxidant enzyme activity (superoxide dismutase, SOD; ascorbate peroxidase, APX; catalase, CAT; peroxidase, POD), photosynthetic pigment content (chlorophyll a, Chla; chlorophyll b, Chlb), photosynthetic characteristics (net photosynthetic rate, Pn; intercellular CO2 concentration, Ci; stomatal conductance, Gs; transpiration rate, Tr), and osmoregulatory substances content (soluble protein, SP; soluble sugar, SS) were determined. The results showed that, with the increase in temperature and stress time, the H2O2 content, MDA content, REC value, CAT activity, and APX activity increased, while Chla content, Chlb content, SS content, and SP content decreased. With the extension of stress time, the SOD activity, POD activity, and Tr value of each high temperature stress group first increased and then decreased; Ci first decreased, then increased, and then decreased; meanwhile, Pn and Gs showed an overall downward trend. PLS-DA (partial least squares discriminant analysis) was used to analyze the changes in physiological and biochemical indexes of peony leaves under 40 °C stress for different days. SOD was found to be the biggest factor affecting the changes in physiological and biochemical indexes of peony leaves treated with different days of stress.
Collapse
Affiliation(s)
- Erman Hong
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xuanze Xia
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Wen Ji
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Tianyao Li
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xianyi Xu
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Jingran Chen
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xia Chen
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang AF University, Zhuji 311800, China
| |
Collapse
|
59
|
Zhu N, Wei X, Yu J, Zhang S, Hu D, Li P, Xia Y, Song K. Interference Effects of Commercial Persistent Luminescence Materials on Rice Germination and Seedling Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2554. [PMID: 37447115 DOI: 10.3390/plants12132554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Persistent luminescence materials (PLMs) are widely used across a multitude of fields due to their distinct optical properties. However, like other micron-sized materials such as microplastics, the production and recycling processes of PLMs can lead to their accumulation in soil and water, potentially posing detrimental effects on plant growth and development. In this study, we investigated the impact of commercially available blue PLM (bPLM), green PLM (gPLM), and red PLM (rPLM) on germination, seedling growth, and oxidative stress responses in rice. Our findings demonstrate that the morphology and size of PLMs do not significantly differ in their effects on rice growth. All three types of PLMs significantly inhibited root length and stem length, disrupted root cell structures, and decreased seedling biomass. Interestingly, gPLM and bPLM were found to stimulate the synthesis of osmolytes and chlorophyll in rice, while rPLM had the opposite effect. Changes in the antioxidant enzyme system in rice clearly indicated that the three types of PLMs induced reactive oxygen species (ROS) damage in rice. This study enhances our understanding of the potential environmental impacts of PLMs, offering valuable insights for the safe and responsible use of these materials in various applications.
Collapse
Affiliation(s)
- Nina Zhu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Xinpei Wei
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Jingbo Yu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Shuo Zhang
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Die Hu
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Ping Li
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Yunfei Xia
- School of Life Science, Changchun Normal University, Changchun 130032, China
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
60
|
Che Y, Fan D, Teng Z, Yao T, Wang Z, Zhang H, Sun G, Zhang H, Chow WS. Potassium alleviates over-reduction of the photosynthetic electron transport chain and helps to maintain photosynthetic function under salt-stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13981. [PMID: 37616008 DOI: 10.1111/ppl.13981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/11/2023] [Accepted: 07/15/2023] [Indexed: 08/25/2023]
Abstract
Potassium ions enhance photosynthetic tolerance to salt stress. We hypothesized that potassium ions, by minimizing the trans-thylakoid proton diffusion potential difference, can alleviate over-reduction of the photosynthetic electron transport chain and maintain the functionality of the photosynthetic apparatus. This study investigated the effects of exogenous potassium on the transcription level and activity of proteins related to the photosynthetic electron-transport chain of tobacco seedlings under salt stress. Salt stress retarded the growth of seedlings and caused an outflow of potassium ions from the chloroplast. It also lowered qP (indicator of the oxidation state of QA , the primary quinone electron acceptor in Photosystem II (PSII) and YPSII (average photochemical yield of PSII in the light-adapted state) while increasing YNO+NF (nonregulatory energy dissipation in functional and nonfunctional PSII), accompanied by decreased expression of most light-harvesting, energy-transduction, and electron-transport genes. However, exogenous potassium prevented these effects due to NaCl. Interestingly, lincomycin (an inhibitor of the synthesis of chloroplast-encoded proteins in PSII) significantly diminished the alleviation effect of exogenous potassium on salt stress. We attribute the comprehensive NaCl-induced downregulation of transcription and photosynthetic activities to retrograde signaling induced by reactive oxygen species. There probably exist at least two types of retrograde signaling induced by reactive oxygen species, distinguished by their sensitivity to lincomycin. Exogenous potassium appears to exert its primary effect by ameliorating the trans-thylakoid proton diffusion potential difference via a potassium channel, thereby accelerating ATP synthesis and carbon assimilation, alleviating over-reduction of the photosynthetic electron transport chain, and maintaining the functionality of photosynthetic proteins.
Collapse
Affiliation(s)
- Yanhui Che
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Dayong Fan
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Zhiyuan Teng
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Tongtong Yao
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Zihan Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Hongbo Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Guangyu Sun
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Huihui Zhang
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
61
|
Mishra N, Jiang C, Chen L, Paul A, Chatterjee A, Shen G. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1110622. [PMID: 37332720 PMCID: PMC10272748 DOI: 10.3389/fpls.2023.1110622] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
Climate change has increased the overall impact of abiotic stress conditions such as drought, salinity, and extreme temperatures on plants. Abiotic stress adversely affects the growth, development, crop yield, and productivity of plants. When plants are subjected to various environmental stress conditions, the balance between the production of reactive oxygen species and its detoxification through antioxidant mechanisms is disturbed. The extent of disturbance depends on the severity, intensity, and duration of abiotic stress. The equilibrium between the production and elimination of reactive oxygen species is maintained due to both enzymatic and non-enzymatic antioxidative defense mechanisms. Non-enzymatic antioxidants include both lipid-soluble (α-tocopherol and β-carotene) and water-soluble (glutathione, ascorbate, etc.) antioxidants. Ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) are major enzymatic antioxidants that are essential for ROS homeostasis. In this review, we intend to discuss various antioxidative defense approaches used to improve abiotic stress tolerance in plants and the mechanism of action of the genes or enzymes involved.
Collapse
Affiliation(s)
- Neelam Mishra
- Department of Botany, St. Joseph’s University, Bangalore, KA, India
| | - Chenkai Jiang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lin Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | | | | | - Guoxin Shen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
62
|
Campos F, Silva PV, Soares AMVM, Martins R, Loureiro S. Harmonizing nanomaterial exposure methodologies in ecotoxicology: the effects of two innovative nanoclays in the freshwater microalgae Raphidocelis subcapitata. Nanotoxicology 2023; 17:401-419. [PMID: 37452626 DOI: 10.1080/17435390.2023.2231071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/14/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Layered double hydroxides (LDHs) are innovative nanomaterials (NMs) with a typical nanoclay structure (height <40 nm) consisting of layers of metallic cations and hydroxides stabilized by anions and water molecules. Upon specific triggers, anions can exchange by others in the surrounding environment. Due to this stimuli-responsive behavior, LDHs are used as carriers of active ingredients in the industrial or pharmaceutical sectors. Available technical guidelines to evaluate the ecotoxicity of conventional substances do not account for the specificities of NMs, leading to inaccuracies and uncertainty. The present study aimed to assess two different exposure methodologies (serial dilutions of the stock dispersion vs. direct addition of NM powder to each concentration) on the ecotoxicological profile of different powder grain sizes of Zn-Al LDH-NO3 and Cu-Al LDH-NO3 (bulk, <25, 25-63, 63-125, 125-250, and >250 µm) in the growth of the freshwater microalgae Raphidocelis subcapitata. Results revealed that the serial dilutions methodology was preferable for Zn-Al LDH-NO3, whereas for Cu-Al LDH-NO3 both methodologies were suitable. Thus, the serial dilutions methodology was selected to assess the ecotoxicity of different grain sizes for both LDHs. All Zn-Al LDH-NO3 grain sizes yielded similar toxicity, while Cu-Al LDH-NO3 powders with smaller grain sizes caused a higher effect on microalgae growth; thus, grain size separation might be advantageous for future applications of Cu-Al LDH-NO3s. Considering the differences between exposure methodologies for the Zn-Al LDH-NO3, further research involving other NMs and species must be carried out to achieve harmonization and validation for inter-laboratory comparison.
Collapse
Affiliation(s)
- Fábio Campos
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Patrícia V Silva
- CICECO - Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Roberto Martins
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
63
|
Sun Q, Ma L, Zhu X. Metabolomics-based exploration the response mechanisms of Saussurea involucrata leaves under different levels of low temperature stress. BMC Genomics 2023; 24:297. [PMID: 37264318 DOI: 10.1186/s12864-023-09376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/13/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Saussurea involucrata (Sik.) is alpine plant that have developed special adaptive mechanisms to resist adverse environmental conditions such as low temperature chilling during long-term adaptation and evolution. Exploring the changes of its metabolites under different temperature stresses is helpful to gain insight into its cold stress tolerance. METHODS Ultra-performance liquid chromatography and tandem mass spectrometry were used to analyze the metabolites in the leaves of Sik. under low different temperature stress conditions. RESULTS A total of 753 metabolites were identified, and 360 different metabolites were identified according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) involved in the biosynthesis of secondary metabolites and amino acids and sugars. Sucrose and trehalose synthesis, glycolysis, tricarboxylic acid cycle, pentose phosphate pathway, glutamic acid-mediated proline biosynthesis, purine metabolism, amino acid metabolism, phenylpropane synthesis pathway metabolites all respond to low temperature stress. Under cold stress conditions, carbohydrates in Sik. leaves accumulate first than under freezing conditions, and the lower the temperature under freezing conditions, the less amino acids accumulate, while the phenolic substances increase. The expression of various substances in LPE and LPC increased more than 10-fold after low temperature stress compared with the control, but the content of LPE and LPC substances decreased after cold adaptation. In addition, purines and phenolics decreased and amino acids accumulated significantly under freezing conditions. CONCLUSION The metabolic network of Sik. leaves under different low temperature stress conditions was proposed, which provided a reference for further exploration of the metabolic mechanism related to low temperature stress tolerance of Sik.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Lihua Ma
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xinxia Zhu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
64
|
Sperdouli I, Ouzounidou G, Moustakas M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int J Mol Sci 2023; 24:ijms24119573. [PMID: 37298524 DOI: 10.3390/ijms24119573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Since drought stress is one of the key risks for the future of agriculture, exploring the molecular mechanisms of photosynthetic responses to water deficit stress is, therefore, fundamental. By using chlorophyll fluorescence imaging analysis, we evaluated the responses of photosystem II (PSII) photochemistry in young and mature leaves of Arabidopsis thaliana Col-0 (cv Columbia-0) at the onset of water deficit stress (OnWDS) and under mild water deficit stress (MiWDS) and moderate water deficit stress (MoWDS). Moreover, we tried to illuminate the underlying mechanisms in the differential response of PSII in young and mature leaves to water deficit stress in the model plant A. thaliana. Water deficit stress induced a hormetic dose response of PSII function in both leaf types. A U-shaped biphasic response curve of the effective quantum yield of PSII photochemistry (ΦPSII) in A. thaliana young and mature leaves was observed, with an inhibition at MiWDS that was followed by an increase in ΦPSII at MoWDS. Young leaves exhibited lower oxidative stress, evaluated by malondialdehyde (MDA), and higher levels of anthocyanin content compared to mature leaves under both MiWDS (+16%) and MoWDS (+20%). The higher ΦPSII of young leaves resulted in a decreased quantum yield of non-regulated energy loss in PSII (ΦNO), under both MiWDS (-13%) and MoWDS (-19%), compared to mature leaves. Since ΦNO represents singlet-excited oxygen (1O2) generation, this decrease resulted in lower excess excitation energy at PSII, in young leaves under both MiWDS (-10%) and MoWDS (-23%), compared to mature leaves. The hormetic response of PSII function in both young and mature leaves is suggested to be triggered, under MiWDS, by the intensified reactive oxygen species (ROS) generation, which is considered to be beneficial for activating stress defense responses. This stress defense response that was induced at MiWDS triggered an acclimation response in A. thaliana young leaves and provided tolerance to PSII when water deficit stress became more severe (MoWDS). We concluded that the hormesis responses of PSII in A. thaliana under water deficit stress are regulated by the leaf developmental stage that modulates anthocyanin accumulation in a stress-dependent dose.
Collapse
Affiliation(s)
- Ilektra Sperdouli
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, GR-57001 Thessaloniki, Greece
| | - Georgia Ouzounidou
- Institute of Food Technology, Hellenic Agricultural Organization-Dimitra, GR-14123 Lycovrissi, Greece
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
65
|
Moustakas M, Sperdouli I, Adamakis IDS. Editorial: Reactive oxygen species in chloroplasts and chloroplast antioxidants under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1208247. [PMID: 37304709 PMCID: PMC10254792 DOI: 10.3389/fpls.2023.1208247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023]
Affiliation(s)
- Michael Moustakas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation–Demeter (ELGO-Demeter), Thessaloniki, Greece
| | | |
Collapse
|
66
|
Gharib FAEL, Ahmed EZ. Spirulina platensis improves growth, oil content, and antioxidant activitiy of rosemary plant under cadmium and lead stress. Sci Rep 2023; 13:8008. [PMID: 37198296 DOI: 10.1038/s41598-023-35063-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
In the present study, a pot experiment was conducted to investigate the response of rosemary (Rosmarinus officinalis L.) plants to foliar application of Spirulina platensis at 0.0, 0.1, 0.2, and 0.4%; soil irrigation with heavy metals (Cd nitrate, Pb acetate, and Cd + Pb, each at 100 ppm), and Spirulina platensis at 0.1% + heavy metals. Spirulina platensis significantly improved growth parameters, oil yield/fed, photosynthetic pigments, and activity of superoxide dismutase (SOD), glutathione reductase (GR), catalase (CAT), and polyphenol oxidase (PPO) with a maximum promoting effect at 0.2% algal extract. On the other hand, heavy metal stress reduced growth criteria, photosynthetic pigments, and oil yield, while, significantly increased levels of antioxidant enzymes (SOD, CAT, GR) and corresponding non-enzymatic antioxidants (ascorbic acid, total antioxidant capacity, phenolics and flavonoids). Bioaccumulation factor (BF) and translocation factor (TF) indicated that Cd and Pb accumulated largely in the roots, with little transfer to the shoots. Nevertheless, compared with heavy metal treatments, S. platensis at 0.1% significantly increasing growth parameters, oil content, photosynthetic pigments, and the activity of non-enzymatic and enzymatic antioxidants, while, slightly reduced TF of Cd and Pb, alleviated membrane lipid peroxidation, and significantly lowered the content of malondialdehyde, hydrogen peroxide, and indole acetic acid oxidase (IAAO) activity in heavy metal (Cd, Pb, and Cd + Pb)-treated rosemary plants.
Collapse
Affiliation(s)
| | - Eman Zakaria Ahmed
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|
67
|
Pang X, Chen J, Xu Y, Liu J, Zhong Y, Wang L, Zheng J, Wan H. Genome-wide characterization of ascorbate peroxidase gene family in pepper ( Capsicum annuum L.) in response to multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1189020. [PMID: 37251751 PMCID: PMC10210635 DOI: 10.3389/fpls.2023.1189020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
Pepper is widely grown all over the world, so it faces many abiotic stresses, such as drought, high temperature, low temperature, salt damage, and so on. Stresses causing the accumulation of reactive oxidative species (ROS) in plants are removed by antioxidant defense systems, and ascorbate peroxidase (APX) is an important antioxidant enzyme. Therefore, the present study performed genome-wide identification of the APX gene family in pepper. We identified nine members of the APX gene family in the pepper genome according to the APX proteins' conserved domain in Arabidopsis thaliana. The physicochemical property analysis showed that CaAPX3 had the longest protein sequence and the largest molecular weight of all genes, while CaAPX9 had the shortest protein sequence and the smallest MW. The gene structure analysis showed that CaAPXs were composed of seven to 10 introns. The CaAPX genes were divided into four groups. The APX genes of groups I and IV were localized in the peroxisomes and chloroplasts, respectively; the group II genes were localized in the chloroplasts and mitochondria; and the group III genes were located in the cytoplasm and extracell. The conservative motif analysis showed that all APX genes in the pepper had motif 2, motif 3, and motif 5. The APX gene family members were distributed on five chromosomes (Chr. 2, 4, 6, 8, and 9). The cis-acting element analysis showed that most CaAPX genes contain a variety of cis-elements related to plant hormones and abiotic stress. RNA-seq expression analysis showed that the expression patterns of nine APXs were different in vegetative and reproductive organs at different growth and development stages. In addition, the qRT-PCR analysis of the CaAPX genes revealed significant differential expression in response to high temperature, low temperature, and salinity stresses in leaf tissue. In conclusion, our study identified the APX gene family members in the pepper and predicted the functions of this gene family, which would provide resources for further functional characterization of CaAPX genes.
Collapse
Affiliation(s)
- Xin Pang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Jun Chen
- Suzhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Yang Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia Liu
- Wulanchabu Academy of Agricultural and Husbandry Sciences, Wulanchabu, China
| | - Yangmin Zhong
- Institute of Crops, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Linlin Wang
- Institute of Crops, Lishui Academy of Agricultural and Forestry Sciences, Lishui, China
| | - Jiaqiu Zheng
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng, China
| | - Hongjian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
68
|
Yanhui C, Tongtong Y, Hongrui W, Xiaoqian L, Zhe Z, Zihan W, Hongbo Z, Ye Y, Guoqiang H, Guangyu S, Huihui Z. Abscisic acid plays a key role in the mechanism of photosynthetic and physiological response effect of Tetrabromobisphenol A on tobacco. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130792. [PMID: 36669407 DOI: 10.1016/j.jhazmat.2023.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The toxicity of bromide to animals and microorganisms has been widely studied, but the mechanism by which bromide toxicity affects plants is rarely studied. This study used the bromophenol compound Tetrabromobisphenol A (TBBPA) as a representative of bromide to explore the physiological and molecular response mechanism of tobacco leaves to TBBPA. In addition, physiological determination, transcriptomics, weighted gene co-expression network analysis (WGCNA) analysis, and random forest prediction model were conducted. The findings from this study indicated that TBBPA limited the photoreaction process by destroying the light-catching antenna protein of tobacco leaves, the activity of the photosystem reaction centers (PSII and PSI), and the linear electron transport efficiency. TBBPA also reduced the rate of the Calvin-Benson cycle by inhibiting the activities of gene such as Rubisco, PGK, and TPI, and finally destroyed the photosynthesis process. Although cyclic electron transport was enhanced under stress conditions, it could not reverse the damage caused by TBBPA on photosynthesis. TBBPA exposure resulted in the accumulation of reactive oxygen species (ROS) in tobacco leaves, and the activities of Superoxide dismutase (SOD), Ascorbate peroxidase (APX), and Glutathione peroxidase (GPX) and their coding genes were significantly down-regulated. Although POD activity and proline (Pro) content were increased, they were insufficient to remove excess O2·- free radicals to relieve ROS stress. WCGNA and random forest models predicted that the damage of TBBPA to the above processes in tobacco was closely related to the increase in abscisic acid (ABA) content. TBBPA affects the Calvin cycle by inducing ABA signal transduction and stomatal closure, which leads to a series of chain reactions, such as electron transport chain obstruction, excess of ROS, decrease in chlorophyll synthesis, and photosystem reaction center damage.
Collapse
Affiliation(s)
- Che Yanhui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yao Tongtong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wang Hongrui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Liu Xiaoqian
- College of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhang Zhe
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Wang Zihan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhang Hongbo
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuan Ye
- Mudanjiang Tobacco Science Research Institute, Mudanjiang157000,China
| | - He Guoqiang
- Mudanjiang Tobacco Science Research Institute, Mudanjiang157000,China
| | - Sun Guangyu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhang Huihui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
69
|
Sadak MS, Hanafy RS, Elkady FMAM, Mogazy AM, Abdelhamid MT. Exogenous Calcium Reinforces Photosynthetic Pigment Content and Osmolyte, Enzymatic, and Non-Enzymatic Antioxidants Abundance and Alleviates Salt Stress in Bread Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:1532. [PMID: 37050158 PMCID: PMC10097001 DOI: 10.3390/plants12071532] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
One of the main environmental stresses that hinder crop development as well as yield is salt stress, while the use of signal molecules such as calcium (Ca) has a substantial impact on reducing the detrimental effects of salt on different crop types. Therefore, a factorial pot experiment in a completely randomized design was conducted to examine the beneficial role of Ca (0, 2.5, and 5 mM) in promoting the physiological, biochemical, and growth traits of the wheat plant under three salt conditions viz. 0, 30, and 60 mM NaCl. Foliar application of Ca increased the growth of salt-stressed wheat plants through increasing photosynthetic pigments, IAA, proline, and total soluble sugars contents and improving antioxidant enzymes in addition to non-enzymatic antioxidants glutathione, phenol and flavonoids, β-carotene, and lycopene contents, thus causing decreases in the over-accumulation of free radicals (ROS). The application of Ca increased the activity of antioxidant enzymes in wheat plants such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), which scavenge reactive oxygen species (ROS) and relieved salt stress. An additional salt tolerance mechanism by Ca increases the non-antioxidant activity of plants by accumulating osmolytes such as free amino acids, proline, and total soluble sugar, which maintain the osmotic adjustment of plants under salinity stress. Exogenous Ca application is a successful method for increasing wheat plants' ability to withstand salt stress, and it has a considerable impact on the growth of wheat under salt stress.
Collapse
Affiliation(s)
- Mervat Sh Sadak
- Botany Department, National Research Centre, 33 El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Rania S. Hanafy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 11575, Egypt
| | - Fatma M. A. M. Elkady
- Botany Department, National Research Centre, 33 El Buhouth Street, Dokki, Cairo 12622, Egypt
| | - Asmaa M. Mogazy
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo 11575, Egypt
| | - Magdi T. Abdelhamid
- Botany Department, National Research Centre, 33 El Buhouth Street, Dokki, Cairo 12622, Egypt
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843, USA
| |
Collapse
|
70
|
Zhang X, Han Y, Han X, Zhang S, Xiong L, Chen T. Peptide chain release factor DIG8 regulates plant growth by affecting ROS-mediated sugar transportation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1172275. [PMID: 37063204 PMCID: PMC10102589 DOI: 10.3389/fpls.2023.1172275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts have important roles in photosynthesis, stress sensing and retrograde signaling. However, the relationship between chloroplast peptide chain release factor and ROS-mediated plant growth is still unclear. In the present study, we obtained a loss-of-function mutant dig8 by EMS mutation. The dig8 mutant has few lateral roots and a pale green leaf phenotype. By map-based cloning, the DIG8 gene was located on AT3G62910, with a point mutation leading to amino acid substitution in functional release factor domain. Using yeast-two-hybrid and BiFC, we confirmed DIG8 protein was characterized locating in chloroplast by co-localization with plastid marker and interacting with ribosome-related proteins. Through observing by transmission electron microscopy, quantifying ROS content and measuring the transport efficiency of plasmodesmata in dig8 mutant, we found that abnormal thylakoid stack formation and chloroplast dysfunction in the dig8 mutant caused increased ROS activity leading to callose deposition and lower PD permeability. A local sugar supplement partially alleviated the growth retardation phenotype of the mutant. These findings shed light on chloroplast peptide chain release factor-affected plant growth by ROS stress.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Xiao Han
- College of Life Sciences, Fuzhou University, Fuzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, Hong Kong SAR, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
71
|
Coelho DG, da Silva VM, Gomes Filho AAP, Oliveira LA, de Araújo HH, Farnese FDS, Araújo WL, de Oliveira JA. Bioaccumulation and physiological traits qualify Pistia stratiotes as a suitable species for phytoremediation and bioindication of iron-contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130701. [PMID: 36603425 DOI: 10.1016/j.jhazmat.2022.130701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Serious concerns have recently been raised regarding the association of Fe excess with neurodegenerative diseases in mammals and nutritional and oxidative disorders in plants. Therefore, the current study aimed to understand the physiological changes induced by Fe excess in Pistia stratiotes, a species often employed in phytoremediation studies. P. stratiotes were subjected to five concentrations of Fe: 0.038 (control), 1.0, 3.0, 5.0 and 7.0 mM. Visual symptoms of Fe-toxicity such as bronzing of leaf edges in 5.0 and 7.0 mM-grown plants were observed after 5 days. Nevertheless, no major changes were observed in photosynthesis-related parameters at this time-point. In contrast, plants growing for 10 days in high Fe concentrations showed decreased chlorophyll concentrations and lower net CO2 assimilation rate. Notwithstanding, P. stratiotes accumulated high amounts of Fe, especially in roots (maximum of 10,000 µg g-1 DW) and displayed a robust induction of the enzymatic antioxidant system. In conclusion, we demonstrated that P. stratiotes can be applied to clean up Fe-contaminated water, as the species displays high Fe bioaccumulation, mostly in root apoplasts, and can maintain physiological processes under Fe excess. Our results further revealed that by monitoring visual symptoms, P. stratiotes could be applied for bioindication purposes.
Collapse
Affiliation(s)
- Daniel Gomes Coelho
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Vinicius Melo da Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | | | - Hugo Humberto de Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | | | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Juraci Alves de Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
72
|
Contrasting Metabolisms in Green and White Leaf Sectors of Variegated Pelargonium zonale—An Integrative Transcriptomic and Metabolomic Study. Int J Mol Sci 2023; 24:ijms24065288. [PMID: 36982362 PMCID: PMC10048803 DOI: 10.3390/ijms24065288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The photosynthetically active green leaf (GL) and non-active white leaf (WL) tissues of variegated Pelargonium zonale provide an excellent model system for studying processes associated with photosynthesis and sink-source interactions, enabling the same microenvironmental conditions. By combining differential transcriptomics and metabolomics, we identified the main differences between these two metabolically contrasting tissues. Genes related to photosynthesis and associated pigments, the Calvin–Benson cycle, fermentation, and glycolysis were strongly repressed in WL. On the other hand, genes related to nitrogen and protein metabolism, defence, cytoskeletal components (motor proteins), cell division, DNA replication, repair and recombination, chromatin remodelling, and histone modifications were upregulated in WL. A content of soluble sugars, TCA intermediates, ascorbate, and hydroxybenzoic acids was lower, while the concentration of free amino acids (AAs), hydroxycinnamic acids, and several quercetin and kaempferol glycosides was higher in WL than in GL. Therefore, WL presents a carbon sink and depends on photosynthetic and energy-generating processes in GL. Furthermore, the upregulated nitrogen metabolism in WL compensates for the insufficient energy from carbon metabolism by providing alternative respiratory substrates. At the same time, WL serves as nitrogen storage. Overall, our study provides a new genetic data resource for the use of this excellent model system and for ornamental pelargonium breeding and contributes to uncovering molecular mechanisms underlying variegation and its adaptive ecological value.
Collapse
|
73
|
Lu S, Huo Z, Niu T, Zhu W, Wang J, Wu D, He C, Wang Y, Zou L, Sheng L. Molecular mechanisms of toxicity and detoxification in rice (Oryza sativa L.) exposed to polystyrene nanoplastics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107605. [PMID: 37119549 DOI: 10.1016/j.plaphy.2023.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 05/01/2023]
Abstract
Nanoplastics (NPs) are an emerging threat to higher plants in terrestrial ecosystems. However, the molecular of NP-related phytotoxicity remains unclear. In the present study, rice seedlings were exposed to polystyrene (PS, 50 nm) NPs at 0, 50, 100, and 200 mg/L under hydroponic conditions to investigate the induced physiological indices and transcriptional mechanisms. We found that 50, 100, and 200 mg/L PS significantly reduced root (53.05%, 49.61%, and 57.58%, respectively) and shoot (54.63%, 61.56%, and 62.64%, respectively) biomass as compared with the control seedlings. The activities of antioxidant enzymes, including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), were significantly activated in all PS treatment groups, indicating that PS inhibited plant growth and induced oxidative stress. Transcriptome analyses showed that PS modulated the expression of the genes involved in cell detoxification, active oxygen metabolism, mitogen-activated protein kinase (MAPK), and plant hormone transduction pathways. Our study provides new insights into phytotoxicity by demonstrating the potential underlying toxicity of PS NPs in higher plants.
Collapse
Affiliation(s)
- Siyuan Lu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Zhongqi Huo
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Tingting Niu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Weize Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Junyuan Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Donghui Wu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Yong Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lifang Zou
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| |
Collapse
|
74
|
Mukarram M, Khan MMA, Kurjak D, Lux A, Corpas FJ. Silicon nanoparticles (SiNPs) restore photosynthesis and essential oil content by upgrading enzymatic antioxidant metabolism in lemongrass ( Cymbopogon flexuosus) under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1116769. [PMID: 36875580 PMCID: PMC9981966 DOI: 10.3389/fpls.2023.1116769] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Masroor A. Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Francisco J. Corpas
- Department of Stress, Development and Signaling in Plants, Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
75
|
Yao Q, Ma J, Chen X, Zhao G, Zang J. A natural strategy for astaxanthin stabilization and color regulation: Interaction with proteins. Food Chem 2023; 402:134343. [PMID: 36174351 DOI: 10.1016/j.foodchem.2022.134343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022]
Abstract
The pigment astaxanthin, one of the carotenoids, is regarded as a functional factor with various biological activities, widely applied in feed, nutraceutical, and cosmetic industries. However, its low stability and poor water solubility limit its application. Examples in nature suggest that binding to proteins is a simple and effective method to improve the stability and bioavailability of astaxanthin. Proteins from algae, fish, and crustaceans have all been demonstrated to have astaxanthin-binding capacity. Inspired by nature, artificial astaxanthin-protein systems have been established in foods. Binding to proteins could bring aquatic species various colors, and changes in the conformation of astaxanthin after binding to proteins leads to color changes. The review innovatively summarizes multiple examples of proteins as means of protecting astaxanthin, giving a reference for exploring and analyzing pigment-protein interactions and providing a strategy for carotenoids stabilization and color regulation, which is beneficial to the broader and deeper applications of carotenoids.
Collapse
Affiliation(s)
- Qimeng Yao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiaqi Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xuemin Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
76
|
Al-Huqail AA, Eissa MA, Ghoneim AM, Alsalmi RA, Al Thagafi ZM, Abeed AHA, Tammam SA. Phytoremediation of dinitrophenol from wastewater by atriplex lentiformis: effect of salicylic acid. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1558-1566. [PMID: 36740728 DOI: 10.1080/15226514.2023.2175779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quail bush [Atriplex lentiformis (Torr.) S. Wats] plants were used in removing 2, 4-dinitrophenol (DNP) from wastewater in a hydroponic experiment. The hydroponic system contained three doses of DNP, i.e., 0, 10, and 20 mg L-1. Quail bush plants were sprayed with 0.1 mM salicylic acid (SA) to study its role in resisting DNP toxicity. DNP significantly (p < 0.05) reduced plant growth. Exposure of A. lentiformis plants to 20 mg L-1 of DNP reduced the total chlorophyl and relative water content by 39 and 24%, respectively. SA improved the antioxidant defense in terms of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) activities. SA alleviated DNP toxicity by enhancing the production of osmoprotectants, e.g.,proline, phenols, and carbohydrates. SA enhanced the removal efficiency of DNP and the highest removal efficiency (96%) was recorded in the plants sprayed with SA and grown on 10 mg L-1 of DNP. A. lentiformis is a halophytic plant that has good physiological characteristics to resist 2, 4-dinitrophenol toxicity in wastewaters and is qualified to purify water from these harmful compounds. Exogenous application of 0.1 mM SA increased the defense system in A. lentiformis against 2, 4-dinitrophenol toxicity and enhanced the removal efficiency.
Collapse
Affiliation(s)
- Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mamdouh A Eissa
- Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Adel M Ghoneim
- Agricultural Research Center, Field Crops Research Institute, Giza, Egypt
| | - Reem A Alsalmi
- Biology Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | | | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Suzan A Tammam
- Biology Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
77
|
Singh S, Kandhol N, Pandey S, Singh VP, Tripathi DK, Chauhan DK. Nitric oxide overcomes copper and copper oxide nanoparticle-induced toxicity in Sorghum vulgare seedlings through regulation of ROS and proline metabolism. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:183-194. [PMID: 36216024 DOI: 10.1071/fp22021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
This study aimed to investigate the phytotoxic effect of copper (Cu) and copper nanoparticles (CuONPs) and ameliorative potential of nitric oxide (NO) against these toxic materials in Sorghum vulgare Pers. seedlings. Data suggested that exposure of Cu and CuONPs significantly reduced growth, chlorophyll, carotenoids and protein in root and shoot, which coincided with increased Cu accumulation. However, addition of sodium nitroprusside (SNP, a donor of NO) lowered Cu and CuONPs mediated toxicity through restricting Cu accumulation and improving photosynthetic pigments and total soluble protein contents. Data further suggested that exposure of Cu and CuONPs significantly increased hydrogen peroxide (H2 O2 ), superoxide radicals (O2 •- ), and malondialdehyde (MDA) contents. Enhanced level of oxidative stress severely inhibited the enzymatic activities of glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) but enhanced superoxide dismutase (SOD) and catalase (CAT) activity. However, addition of SNP positively regulated antioxidants enzymes activity, particularly the enzymes involved in the ascorbate-glutathione cycle to overcome Cu- and CuONPs-induced stress in Sorghum seedlings. Further, Cu and CuONPs enhanced accumulation of free proline through inducing Δ1 -pyrroline-5-carboxylate synthetase (P5CS) activity while lowering the proline dehydrogenase (PDH) activity. However, addition of SNP reversed these responses. Therefore, overall results revealed that SNP has enough potential of reducing the toxicity of Cu and CuONPs in Sorghum seedlings through regulation of proline metabolism and activity of enzymes of the ascorbate-glutathione cycle. These findings can be employed in developing new resistant varieties of Sorghum having enhanced tolerance against Cu or CuONP stress and improved productivity.
Collapse
Affiliation(s)
- Swati Singh
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj 211002, India
| | - Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture (AIOA) Amity University Uttar Pradesh, Noida, Sector 125, Noida, Uttar Pradesh 201313, India
| | - Sangeeta Pandey
- Plant and Microbe Interaction Lab, Amity Institute of Organic Agriculture (AIOA) Amity University Uttar Pradesh, Noida, Sector 125, Noida, Uttar Pradesh 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree Collage, A Constituent Post Graduate College of University of Allahabad, Prayagraj 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture (AIOA) Amity University Uttar Pradesh, Noida, Sector 125, Noida, Uttar Pradesh 201313, India
| | - Devendra Kumar Chauhan
- D D Pant Interdisciplinary Research Lab, Department of Botany, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
78
|
Mashini AG, Oakley CA, Beepat SS, Peng L, Grossman AR, Weis VM, Davy SK. The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum. Microorganisms 2023; 11:292. [PMID: 36838257 PMCID: PMC9967746 DOI: 10.3390/microorganisms11020292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
Collapse
Affiliation(s)
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sandeep S. Beepat
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lifeng Peng
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
79
|
GmWAK1, Novel Wall-Associated Protein Kinase, Positively Regulates Response of Soybean to Phytophthora sojae Infection. Int J Mol Sci 2023; 24:ijms24010798. [PMID: 36614246 PMCID: PMC9821614 DOI: 10.3390/ijms24010798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Phytophthora root rot is a destructive soybean disease worldwide, which is caused by the oomycete pathogen Phytophthora sojae (P. sojae). Wall-associated protein kinase (WAK) genes, a family of the receptor-like protein kinase (RLK) genes, play important roles in the plant signaling pathways that regulate stress responses and pathogen resistance. In our study, we found a putative Glycine max wall-associated protein kinase, GmWAK1, which we identified by soybean GmLHP1 RNA-sequencing. The expression of GmWAK1 was significantly increased by P. sojae and salicylic acid (SA). Overexpression of GmWAK1 in soybean significantly improved resistance to P. sojae, and the levels of phenylalanine ammonia-lyase (PAL), SA, and SA-biosynthesis-related genes were markedly higher than in the wild-type (WT) soybean. The activities of enzymatic superoxide dismutase (SOD) and peroxidase (POD) antioxidants in GmWAK1-overexpressing (OE) plants were significantly higher than those in in WT plants treated with P. sojae; reactive oxygen species (ROS) and hydrogen peroxide (H2O2) accumulation was considerably lower in GmWAK1-OE after P. sojae infection. GmWAK1 interacted with annexin-like protein RJ, GmANNRJ4, which improved resistance to P. sojae and increased intracellular free-calcium accumulation. In GmANNRJ4-OE transgenic soybean, the calmodulin-dependent kinase gene GmMPK6 and several pathogenesis-related (PR) genes were constitutively activated. Collectively, these results indicated that GmWAK1 interacts with GmANNRJ4, and GmWAK1 plays a positive role in soybean resistance to P. sojae via a process that might be dependent on SA and involved in alleviating damage caused by oxidative stress.
Collapse
|
80
|
Figueira E, Matos D, Cardoso P, Pires A, Fernandes C, Tauler R, Bedia C. A biochemical and lipidomic approach to perceive Halimione portulacoides (L.) response to mercury: An environmental perspective. MARINE POLLUTION BULLETIN 2023; 186:114393. [PMID: 36463719 DOI: 10.1016/j.marpolbul.2022.114393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The impact of hazardous materials, such as Hg, on life is far from being understood and due to the high number of polluted sites it has generated great concern. A biochemical and lipidomic approach was used to assess the effects of Hg on the saltmarsh halophyte Halimione portulacoides. Plants were collected at two sites of a Hg contaminated saltmarsh. Hg accumulation and distribution in the plant, biochemical parameters (antioxidant and metabolic) and lipid profiles were determined and compared between plant organs and sites (s1 and s2). Hg did not induce antioxidant enzyme activity. Lipid profiles changed under Hg exposure, especially in leaves, decreasing the unsaturation level, the membrane fluidity and stability, and evidencing that membrane lipid remodeling influences plant tolerance to Hg. This knowledge can help select the most appropriate methodologies for the restoration of Hg polluted hotspots, curtailing a serious environmental problem threatening saltmarshes.
Collapse
Affiliation(s)
- Etelvina Figueira
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Diana Matos
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Adília Pires
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Célia Fernandes
- Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain
| | - Carmen Bedia
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain
| |
Collapse
|
81
|
Bakr Z, Abdel-Wahab M, Thabet AA, Hamed M, El-Aal MA, Saad E, Faheem M, Sayed AEDH. Toxicity of silver, copper oxide, and polyethylene nanoparticles on the earthworm Allolobophora caliginosa using multiple biomarkers. APPLIED SOIL ECOLOGY 2023; 181:104681. [DOI: 10.1016/j.apsoil.2022.104681] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
82
|
Li S, Wang S, Song Z, Wang P, Lv F, Yang R, Li Y. The oxidative damage of the Lagerstroemia indica chlorosis mutant gl1 involves in ferroptosis. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153886. [PMID: 36493670 DOI: 10.1016/j.jplph.2022.153886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Photooxidation is the major physiological performance of the Lagerstroemia indica chlorosis mutant gl1 under field conditions. The mechanisms of the progressive symptoms of oxidative damage from the lower older leaves to the upper mature leaves are complicated and still unclear. The aim of this work was to investigate the physiological mechanisms of oxidative stress from the perspective of the photosynthetic metabolites. The phytosynthetic metabolites of gl1 mutant changed significantly compared to wild type (WT) L. indica, such as by increasing phenolics, decreasing soluble sugar, protein and ascorbate, and redistributing antioxidant enzyme activities. The co-accumulation of phenolics and guaiacol-POD in gl1 mutant promote the removal of H2O2, as well the increase of phenoxyl radicals levels. Furthermore, the ion balance was significantly disturbed and Fe accumulated the most among these fluctuating nutrients in the leaves of gl1 mutant. The accumulated Fe was found neither in the chloroplasts nor in the cell wall of the leaves and became unshielded Fe, which favors the Fenton/Haber-Weiss reaction and stabilizes the phenoxyl radicals in metal complexation. The results suggested that the increase of phenolics and Fe accumulation were obviously involved in oxidative damage of gl1 mutant.
Collapse
Affiliation(s)
- Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Shuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Zhenxing Song
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Peng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Fenni Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing, 210014, Jiangsu Province, PR China.
| |
Collapse
|
83
|
Li X, Shi S, Zhang X, Li C, Wang H, Kang W, Yin G. Potential Effect of DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one) on Alleviating the Autotoxic Coumarin Stress in Alfalfa ( Medicago sativa) Seedlings. Life (Basel) 2022; 12:2140. [PMID: 36556505 PMCID: PMC9783211 DOI: 10.3390/life12122140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The allelopathic theory has garnered considerable attention in the field of agricultural production for its efficient plant protection, rapid crop yield increase, and scientific establishment of the crop rotation system. To study the effects of the main maize allelochemical DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one) on the growth and development of alfalfa under autotoxic coumarin stress, we treated alfalfa seedlings with DIMBOA under coumarin stress and non-stress conditions in this study. Results show that 0.0342 mM coumarin significantly inhibited alfalfa seed germination percentage(Gp), germination potential(GP), radicle length, germ length, seeding height, and simple viability index (SVI), with decreases of 37.29%, 59.91%, 7.60%, 30.90%, 13.27%, and 45.70%, respectively. An amount of 0.6 mM DIMBOA could promote alfalfa seed Gp, GP, radicle length, germ length, seeding height, dry fresh ratio, and SVI, with increases of 12.38%, 23.91%, 48.69%, 48.65%, 48.68%, 295.12%, and 67.17%, respectively. However, the addition of DIMBOA under conditions of coumarin stress could effectively alleviate coumarin effects on alfalfa seedlings. Coumarin + DIMBOA treatment for 24 h mainly decreased reactive oxygen species (ROSs) and malondialdehyde (MDA) as well as soluble protein and soluble sugar, increasing some antioxidant enzyme activities and antioxidant content to alleviate the oxidative damage of alfalfa caused by coumarin stress. Administration of treatment for 72 h significantly promoted the morphological development of alfalfa seeding roots. Administration of treatment for 96 h significantly enhanced the photosynthetic capacity of alfalfa seedlings. The results of principal component analysis demonstrated that chlorophyll b(Chl b)and net photosynthetic rate(Pn) were the key indicators for coumarin + DIMBOA treatment to promote photosynthesis in alfalfa seedlings. Additionally, root length, mean root diameter, and root volume were the key indicators of root growth and development. Coumarin + DIMBOA treatment primarily increased catalase(CAT), peroxidase (POD), and ascorbate peroxidase (APX) activity and antioxidants(ASA) while reducing MDA and superoxide anion radical(O2•-). This study strongly suggested that DIMBOA can effectively improve the tolerance of alfalfa seedlings to coumarin stress through a combination of effects on root morphology, photosynthesis, and physiological indicators.
Collapse
Affiliation(s)
- Xiaolong Li
- Key Laboratory of Grassland Ecosytem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosytem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, China
- Pratacultural Engineering Laboratories of Gansu Province, Sino-U.S., Lanzhou 730070, China
| | - Xiaoyan Zhang
- Key Laboratory of Grassland Ecosytem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, China
| | - Changning Li
- Key Laboratory of Grassland Ecosytem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, China
| | - Huning Wang
- Key Laboratory of Grassland Ecosytem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenjuan Kang
- Key Laboratory of Grassland Ecosytem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoli Yin
- Key Laboratory of Grassland Ecosytem (Ministry of Education), College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
- Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
84
|
Identification and Expression Analysis of MPK and MKK Gene Families in Pecan ( Carya illinoinensis). Int J Mol Sci 2022; 23:ijms232315190. [PMID: 36499523 PMCID: PMC9737717 DOI: 10.3390/ijms232315190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases consist of three kinase modules composed of MPKs, MKKs, and MPKKKs. As members of the protein kinase (PK) superfamily, they are involved in various processes, such as developmental programs, cell division, hormonal progression, and signaling responses to biotic and abiotic stresses. In this study, a total of 18 MPKs and 10 MKKs were annotated on the pecan genome, all of which could be classified into four subgroups, respectively. The gene structures and conserved sequences of family members in the same branch were relatively similar. All MPK proteins had a conserved motif TxY, and D(L/I/V)K and VGTxxYMSPER existed in all MKK proteins. Duplication events contributed largely to the expansion of the pecan MPK and MKK gene families. Phylogenetic analysis of protein sequences from six plants indicated that species evolution occurred in pecan. Organ-specific expression profiles of MPK and MKK showed functional diversity. Ka/Ks values indicated that all genes with duplicated events underwent strong negative selection. Seven CiPawMPK and four CiPawMKK genes with high expression levels were screened by transcriptomic data from different organs, and these candidates were validated by qRT-PCR analysis of hormone-treated and stressed samples.
Collapse
|
85
|
Zhang X, Shen Y, Mu K, Cai W, Zhao Y, Shen H, Wang X, Ma H. Phenylalanine Ammonia Lyase GmPAL1.1 Promotes Seed Vigor under High-Temperature and -Humidity Stress and Enhances Seed Germination under Salt and Drought Stress in Transgenic Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233239. [PMID: 36501278 PMCID: PMC9736545 DOI: 10.3390/plants11233239] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 05/13/2023]
Abstract
Seed vigor is an important agronomic attribute, essentially associated with crop yield. High-temperature and humidity (HTH) stress directly affects seed development of plants, resulting in the decrease of seed vigor. Therefore, it is particularly important to discover HTH-tolerant genes related to seed vigor. Phenylalanine ammonia lyase (PAL, EC 4.3.1.24) is the first rate-limiting enzyme in the phenylpropanoid biosynthesis pathway and a key enzyme involved in plant growth and development and environmental adaptation. However, the biological function of PAL in seed vigor remains unknown. Here, GmPAL1.1 was cloned from soybean, and its protein was located in the cytoplasm and cell membrane. GmPAL1.1 was significantly induced by HTH stress in developing seeds. The overexpression of GmPAL1.1 in Arabidopsis (OE) accumulated lower level of ROS in the developing seeds and in the leaves than the WT at the physiological maturity stage under HTH stress, and the activities of SOD, POD, and CAT and flavonoid contents were significantly increased, while MDA production was markedly reduced in the leaves of the OE lines than in those of the WT. The germination rate and viability of mature seeds of the OE lines harvested after HTH stress were higher than those of the WT. Compared to the control, the overexpression of GmPAL1.1 in Arabidopsis enhanced the tolerance to salt and drought stresses during germination. Our results suggested the overexpression of GmPAL1.1 in Arabidopsis promoted seed vigor at the physiological maturation period under HTH stress and increased the seeds' tolerance to salt and drought during germination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hao Ma
- Correspondence: ; Tel./Fax: +86-25-8439-5324
| |
Collapse
|
86
|
Li C, Sun Y, Li J, Zhang T, Zhou F, Song Q, Liu Y, Brestic M, Chen TH, Yang X. ScCBF1 plays a stronger role in cold, salt and drought tolerance than StCBF1 in potato (Solanum tuberosum). JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153806. [PMID: 36115270 DOI: 10.1016/j.jplph.2022.153806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Solanum tuberosum (St) and Solanum commersonii (Sc) are two potato varieties with different freezing tolerance. Among them, St is a freezing-sensitive variety and. Sc is a cold-resistant wild potato. CBF/DREB family members mainly function in response to freezing stress. In order to explore the different roles of St C-Repeat Binding Factor1 (StCBF1) and Sc C-Repeat Binding Factor1 (ScCBF1) in potato plants (Solanum tuberosum) under stress conditions, two kinds of potato lines were obtained with ScCBF1 and StCBF1 overexpressing respectively. Phenotypes analysis showed that both overexpressing ScCBF1 and StCBF1 caused smaller leaves, and reduced tuber yield. While the limited phenotypes of StCBF1 lines were more severe than that of ScCBF lines. After freezing treatment, StCBF1 over expression plants grown better than WT plants and worse than ScCBF1 over expression plants. Specifically, compared with wild-type lines, overexpressing ScCBF1 could up-regulate fatty acid desaturase genes, key enzyme of Calvin cycle genes, and antioxidant enzyme genes. Both ScCBF1 and StCBF1 lines showed higher PSII activity, thus maintaining a higher photosynthetic rate under cold stress. In addition, we also found that overexpression ScCBF1 and StCBF1 could also enhance the drought and salt tolerance in potato. In summary, ScCBF1 plays a stronger role in cold, salt, and drought tolerance than StCBF1 in potato (Solanum tuberosum).
Collapse
Affiliation(s)
- Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yalu Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Jian Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Fengli Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Tony Hh Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR, 97331, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
87
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|
88
|
Galicia-Campos E, García-Villaraco Velasco A, Montero-Palmero MB, Gutiérrez-Mañero FJ, Ramos-Solano B. Modulation of Photosynthesis and ROS Scavenging Response by Beneficial Bacteria in Olea europaea Plantlets under Salt Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2748. [PMID: 36297772 PMCID: PMC9611751 DOI: 10.3390/plants11202748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Climate change consequences for agriculture involve an increase of saline soils which results in lower crop yields due to increased oxidative stress in plants. The present study reports the use of Plant Growth Promoting Bacteria (PGPB) as a tool to modulate plant innate mechanisms of adaptation to water stress (salinity and drought) in one year-old olive plantlets var. Arbosana and Arbequina. Integration of external changes in plants involve changes in Reactive Oxygen Species (ROS) that behave as signals to trigger plant adaptative mechanisms; however, they become toxic in high concentrations. For this reason, plants are endowed with antioxidant systems to keep ROS under control. So, the working hypothesis is that specific beneficial strains will induce a systemic response able to modulate oxidative stress and improve plant adaptation to water stress. Ten strains were assayed, evaluating changes in photosynthesis, pigments, ROS scavenging enzymes and antioxidant molecules, osmolytes and malondialdehyde, as oxidative stress marker. Photosynthesis and photosynthetic pigments were the most affected variables. Despite the specific response of each variety, the favorite targets of PGPBs to improve plant fitness were photosynthetic pigments and the antioxidant pools of glutathione and ascorbate. Our results show the potential of PGPBs to improve plant fitness modulating oxidative stress.
Collapse
|
89
|
Wang G, Dong Y, Stevanato P, Lv C, Liu Y, Cheng S, Geng G, Yu L, Wang Y. Growth status and physiological changes of sugar beet seedlings in response to acidic pH environments. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153771. [PMID: 36044811 DOI: 10.1016/j.jplph.2022.153771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Sugar beet (Beta vulgaris L.) is an important sugar crop that is popularly cultivated in a variety of agriculture conditions. Here, we studied sugar beet growth in different pH soils (pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, and 9.0) and analyzed their growth status and physiology. Sugar beet growth was best at pH 9.0 and worst at pH 5.0. As the soil pH decreased from 9.0 to 5.0, the osmoregulatory substances, antioxidant enzyme activity, and elemental contents in leaves and roots showed increasing trends, while photosynthesis and macronutrient contents showed decreasing trends. To explore the physiological mechanisms sugar beet use to respond to different pH environments, we analyzed the correlations between leaf net photosynthesis rate and physiological changes and nutrient contents of sugar beet. One of the factors inhibiting sugar beet growth in low pH soils was a reduction in photosynthetic capacity. The accumulation of osmoregulatory substances and increased peroxidative damage may have led to the decrease in leaf net photosynthesis rate. Furthermore, the decrease in nutrient content and accumulation of metal elements were correlated with the decrease in leaf photosynthetic rate. QRT-PCR analysis showed higher expression levels of antioxidant enzyme genes in the leaves and roots of sugar beet grown in low pH environments compared to those in high pH environments. Correspondingly, antioxidant enzyme activity was significantly higher in beets in low pH environments than in beets in high pH environments. These results provide important insight into the physiological responses by which sugar beet can adapt to different pH soils.
Collapse
Affiliation(s)
- Gang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Yinzhuang Dong
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Padova, Italy
| | - Chunhua Lv
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Yu Liu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Shaochen Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
90
|
Chatterjee P, Schafran P, Li FW, Meeks JC. Nostoc Talks Back: Temporal Patterns of Differential Gene Expression During Establishment of Anthoceros-Nostoc Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:917-932. [PMID: 35802132 DOI: 10.1094/mpmi-05-22-0101-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Endosymbiotic associations between hornworts and nitrogen-fixing cyanobacteria form when the plant is limited for combined nitrogen (N). We generated RNA-seq data to examine temporal gene expression patterns during the culturing of N-starved Anthoceros punctatus in the absence and the presence of symbiotic cyanobacterium Nostoc punctiforme. In symbiont-free A. punctatus gametophytes, N starvation caused downregulation of chlorophyll content and chlorophyll fluorescence characteristics as well as transcription of photosynthesis-related genes. This downregulation was reversed in A. punctatus cocultured with N. punctiforme, corresponding to the provision by the symbiont of N2-derived NH4+, which commenced within 5 days of coculture and reached a maximum by 14 days. We also observed transient increases in transcription of ammonium and nitrate transporters in a N. punctiforme-dependent manner as well as that of a SWEET transporter that was initially independent of N2-derived NH4+. The temporal patterns of differential gene expression indicated that N. punctiforme transmits signals that impact gene expression to A. punctatus both prior to and after its provision of fixed N. This study is the first illustrating the temporal patterns of gene expression during establishment of an endosymbiotic nitrogen-fixing association in this monophyletic evolutionary lineage of land plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| | - Peter Schafran
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY 14853, U.S.A
- Plant Biology Section, Cornell University, Ithaca, NY 14953, U.S.A
| | - John C Meeks
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, U.S.A
| |
Collapse
|
91
|
Sunoj V, Wen Y, Jajoo A, Short A, Zeng W, Elsheery N, Cao K. Moderate photoinhibition of PSII and oxidation of P700 contribute to chilling tolerance of tropical tree species in subtropics of China. PHOTOSYNTHETICA 2022; 61:177-189. [PMID: 39650675 PMCID: PMC11515820 DOI: 10.32615/ps.2022.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2024]
Abstract
In the subtropics, a few tropical tree species are distributed and planted for ornamental and horticultural purposes; however, the photosynthesis of these species can be impaired by chilling. This study aimed to understand how these species respond to chilling. Light-dependent and CO2 assimilation reactions of six tropical tree species from geographically diverse areas, but grown at a lower subtropical site in China, were monitored during a chilling (≤ 10°C). Chilling induced stomatal and nonstomatal effects and moderate photoinhibition of PSII, with severe effect in Ixora chinensis. Woodfordia fruticosa was little affected by chilling, with negligible reduction of photosynthesis and PSII activity, higher cyclic electron flow (CEF), and oxidation state of P700 (P700+). Photoinhibition of PSII thus reduced electron flow to P700, while active CEF reduced oxidative damage of PSI and maintained photosynthesis during chilling. Studied parameters revealed that coupling between light-dependent and CO2 assimilation reactions was enhanced under chilling.
Collapse
Affiliation(s)
- V.S.J. Sunoj
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - Y. Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - A. Jajoo
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - A.W. Short
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - W.H. Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - N.I. Elsheery
- Department of Agricultural Botany, Tanta University, 72513 Tanta, Egypt
| | - K.F. Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| |
Collapse
|
92
|
Yan S, Gong S, Sun K, Li J, Zhang H, Fan J, Gong Z, Zhang Z, Yan C. Integrated proteomics and metabolomics analysis of rice leaves in response to rice straw return. FRONTIERS IN PLANT SCIENCE 2022; 13:997557. [PMID: 36176680 PMCID: PMC9514043 DOI: 10.3389/fpls.2022.997557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Straw return is crucial for the sustainable development of rice planting, but no consistent results were observed for the effect of straw return on rice growth. To investigate the response of rice leaves to rice straw return in Northeast China, two treatments were set, no straw return (S0) and rice straw return (SR). We analyzed the physiological index of rice leaves and measured differentially expressed proteins (DEPs) and differentially expressed metabolites (DEMs) levels in rice leaves by the use of proteomics and metabolomics approaches. The results showed that, compared with the S0 treatment, the SR treatment significantly decreased the dry weight of rice plants and non-structural carbohydrate contents and destroyed the chloroplast ultrastructure. In rice leaves of SR treatment, 329 DEPs were upregulated, 303 DEPs were downregulated, 44 DEMs were upregulated, and 71 DEMs were downregulated. These DEPs were mainly involved in photosynthesis and oxidative phosphorylation, and DEMs were mainly involved in alpha-linolenic acid metabolism, galactose metabolism, glycerophospholipid metabolism, pentose and gluconic acid metabolism, and other metabolic pathways. Rice straw return promoted the accumulation of scavenging substances of active oxygen and osmotic adjustment substances, such as glutathione, organic acids, amino acids, and other substances. The SR treatment reduced the photosynthetic capacity and energy production of carbon metabolism, inhibiting the growth of rice plants, while the increase of metabolites involved in defense against abiotic stress enhanced the adaptability of rice plants to straw return stress.
Collapse
Affiliation(s)
- Shuangshuang Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Shengdan Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Kexin Sun
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jinwang Li
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongming Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jinsheng Fan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhongxue Zhang
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
93
|
Detection of urban trees sensitivity to air pollution using physiological and biochemical leaf traits in Tehran, Iran. Sci Rep 2022; 12:15398. [PMID: 36100647 PMCID: PMC9470701 DOI: 10.1038/s41598-022-19865-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
The increased population in megacities has recently exacerbated the need to combat air pollution. This study examined the concept that the sensitivity and tolerance of urban plant species to air pollution might be used to determine Tehran, Iran's air quality and obtain suitable urban greening. The air pollution tolerance index (APTI) was derived using the total chlorophyll, relative water content, pH, and ascorbic acid content of leaf extract from Morus alba, Ailanthus altissima, and Salix babylonica trees as an indicator of the sensitivity and tolerance of urban plant species. A. altissima and S. babylonica, with APTI values of 11.15 and 11.08, respectively, were sensitive to air pollution and can be employed as bioindicators, whereas M. alba, with an APTI value of 14.08, exhibited moderate resistance to air pollution and is therefore recommended for urban planting. Furthermore, the content of enzymatic and non-enzymatic parameters (carotenoid, phenol, and flavonoids) and proline concentration in the polluted seasons and sites (3 and 4) have been increased in M. alba. Collectively, we expect our findings to contribute to the rapidly growing body of research aiming to find a suitable urban greening for a wide range of polluted megacities.
Collapse
|
94
|
Zhang M, Li W, Li S, Gao J, Gan T, Li Q, Bao L, Jiao F, Su C, Qian Y. Quantitative Proteomics and Functional Characterization Reveal That Glutathione Peroxidases Act as Important Antioxidant Regulators in Mulberry Response to Drought Stress. PLANTS 2022; 11:plants11182350. [PMID: 36145752 PMCID: PMC9500794 DOI: 10.3390/plants11182350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
Mulberry (Morus alba L.) has been an economically important food crop for the domesticated silkworm, Bombyx mori, in China for more than 5000 years. However, little is known about the mechanism underlying mulberry response to environmental stress. In this study, quantitative proteomics was applied to elucidate the molecular mechanism of drought response in mulberry. A total of 604 differentially expressed proteins (DEPs) were identified via LC-MS/MS. The proteomic profiles associated with antioxidant enzymes, especially five glutathione peroxidase (GPX) isoforms, as a scavenger of reactive oxygen species (ROS), were systematically increased in the drought-stressed mulberry. This was further confirmed by gene expression and enzymatic activity. Furthermore, overexpression of the GPX isoforms led to enhancements in both antioxidant system and ROS-scavenging capacity, and greater tolerance to drought stress in transgenic plants. Taken together, these results indicated that GPX-based antioxidant enzymes play an important role in modulating mulberry response to drought stress, and higher levels of GPX can improve drought tolerance through enhancing the capacity of the antioxidant system for ROS scavenging.
Collapse
Affiliation(s)
- Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wenqiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shuaijun Li
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Junru Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Tiantian Gan
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qinying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (C.S.); (Y.Q.)
| |
Collapse
|
95
|
Dahro B, Wang Y, Khan M, Zhang Y, Fang T, Ming R, Li C, Liu JH. Two AT-Hook proteins regulate A/NINV7 expression to modulate sucrose catabolism for cold tolerance in Poncirus trifoliata. THE NEW PHYTOLOGIST 2022; 235:2331-2349. [PMID: 35695205 DOI: 10.1111/nph.18304] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Invertase (INV)-mediated sucrose (Suc) hydrolysis, leading to the irreversible production of glucose (Glc) and fructose (Frc), plays an essential role in abiotic stress tolerance of plants. However, the regulatory network associated with the Suc catabolism in response to cold environment remains largely elusive. Herein, the cold-induced alkaline/neutral INV gene PtrA/NINV7 of trifoliate orange (Poncirus trifoliata (L.) Raf.) was shown to function in cold tolerance via mediating the Suc hydrolysis. Meanwhile, a nuclear matrix-associated region containing A/T-rich sequences within its promoter was indispensable for the cold induction of PtrA/NINV7. Two AT-Hook Motif Containing Nuclear Localized (AHL) proteins, PtrAHL14 and PtrAHL17, were identified as upstream transcriptional activators of PtrA/NINV7 by interacting with the A/T-rich motifs. PtrAHL14 and PtrAHL17 function positively in the cold tolerance by modulating PtrA/NINV7-mediated Suc catabolism. Furthermore, both PtrAHL14 and PtrAHL17 could form homo- and heterodimers between each other, and interacted with two histone acetyltransferases (HATs), GCN5 and TAF1, leading to elevated histone3 acetylation level under the cold stress. Taken together, our findings unraveled a new cold-responsive signaling module (AHL14/17-HATs-A/NINV7) for orchestration of Suc catabolism and cold tolerance, which shed light on the molecular mechanisms underlying Suc catabolism catalyzed by A/NINVs under cold stress.
Collapse
Affiliation(s)
- Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Horticulture, Faculty of Agriculture, Tishreen University, Lattakia, Syria
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tian Fang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
96
|
He E, Peijnenburg WJGM, Qiu H. Photosynthetic, antioxidative, and metabolic adjustments of a crop plant to elevated levels of La and Ce exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113922. [PMID: 35905629 DOI: 10.1016/j.ecoenv.2022.113922] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Rare earth elements (REEs) have been widely applied as fertilizers in farmland of China for decades to improve the yield and quality of crops. Unfortunately, adverse effects on plants have been observed due to overdosing with REEs. Until now, the toxicology of REEs was mainly evaluated based on phenotypic responses, but knowledge gaps still exist concerning their metabolic effects. Here, the physiological responses and nontargeted metabolomics studies were combined to systematically explore the potential effects of La and Ce on a crop plant, wheat Triticum aestivum. It was observed that REEs accumulated in the shoots of wheat, with significant reduction of the shoot biomass at higher exposure doses. The disturbance of photosynthesis and induced oxidative stress were identified by analyzing indicators of the photosynthetic (chlorophyll a/b, carotenoid and rubisco) and antioxidant systems (POD, CAT, SOD, GSH and MDA). Furthermore, the global metabolic profiles of REEs treatment groups and the non-exposed control group were screened and compared, and the metabolomic disturbance of REEs was dose-dependent. A high overlap of significantly changed metabolites and matched disturbed biological pathways was found between La and Ce treatments, indicating similarity of their toxicity mechanism in wheat shoots. Generally, the perturbed metabolomic pathways were mainly related to carbohydrate, amino acid and nucleotide/side metabolism, suggesting a disturbance of carbon and nitrogen metabolism, which finally affected the growth of wheat. We thus proved the potential adverse effect of inappropriate application of REEs in crop plants and postulated metabolomics as a feasible tool to identify the underlying toxicological mechanisms.
Collapse
Affiliation(s)
- Erkai He
- School of Geographic Sciences, East China Normal University, 200241 Shanghai, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, 510006 Guangzhou, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720BA Bilthoven, the Netherlands; Institute of Environmental Sciences, Leiden University, 2300RA Leiden, the Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| |
Collapse
|
97
|
Assessing oxidative stress and photosynthetic activity in leaf galls induced by different species of galling insect on Aspidosperma spp. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
98
|
Pokora W, Tułodziecki S, Dettlaff-Pokora A, Aksmann A. Cross Talk between Hydrogen Peroxide and Nitric Oxide in the Unicellular Green Algae Cell Cycle: How Does It Work? Cells 2022; 11:cells11152425. [PMID: 35954269 PMCID: PMC9368121 DOI: 10.3390/cells11152425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
The regulatory role of some reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as hydrogen peroxide or nitric oxide, has been demonstrated in some higher plants and algae. Their involvement in regulation of the organism, tissue and single cell development can also be seen in many animals. In green cells, the redox potential is an important photosynthesis regulatory factor that may lead to an increase or decrease in growth rate. ROS and RNS are important signals involved in the regulation of photoautotrophic growth that, in turn, allow the cell to attain the commitment competence. Both hydrogen peroxide and nitric oxide are directly involved in algal cell development as the signals that regulate expression of proteins required for completing the cell cycle, such as cyclins and cyclin-dependent kinases, or histone proteins and E2F complex proteins. Such regulation seems to relate to the direct interaction of these signaling molecules with the redox-sensitive transcription factors, but also with regulation of signaling pathways including MAPK, G-protein and calmodulin-dependent pathways. In this paper, we aim to elucidate the involvement of hydrogen peroxide and nitric oxide in algal cell cycle regulation, considering the role of these molecules in higher plants. We also evaluate the commercial applicability of this knowledge. The creation of a simple tool, such as a precisely established modification of hydrogen peroxide and/or nitric oxide at the cellular level, leading to changes in the ROS-RNS cross-talk network, can be used for the optimization of the efficiency of algal cell growth and may be especially important in the context of increasing the role of algal biomass in science and industry. It could be a part of an important scientific challenge that biotechnology is currently focused on.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
- Correspondence:
| | - Szymon Tułodziecki
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk Wita, Stwosza 59, 83-308 Gdańsk, Poland
| |
Collapse
|
99
|
Abdelaziz AM, Attia MS, Salem MS, Refaay DA, Alhoqail WA, Senousy HH. Cyanobacteria-Mediated Immune Responses in Pepper Plants against Fusarium Wilt. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11152049. [PMID: 35956527 PMCID: PMC9370725 DOI: 10.3390/plants11152049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 05/22/2023]
Abstract
Research in plant pathology has increasingly focused on developing environmentally friendly, effective strategies for controlling plant diseases. Cyanobacteria, including Desmonostoc muscorum, Anabaena oryzae, and Arthrospiraplatensis, were applied to Capsicum annuum L. to induce immunity against Fusarium wilt. Soil irrigation and foliar shoots (FS) application were used in this investigation. The disease symptoms, disease index, osmotic contents, total phenol, Malondialdehyde (MDA), hydrogen peroxide (H2O2), antioxidant enzymes (activity and isozymes), endogenous hormone content, and response to stimulation of defense resistance in infected plants were assessed. Results demonstrated that using all cyanobacterial aqueous extracts significantly reduced the risk of infection with Fusarium oxysporum. One of the most effective ways to combat the disease was through foliar spraying with Arthrospira platensis, Desmonostoc muscorum, and Anabaena oryzae (which provided 95, 90, and 69% protection percent, respectively). All metabolic resistance indices increased significantly following the application of the cyanobacterial aqueous extracts. Growth, metabolic characteristics, and phenols increased due to the application of cyanobacteria. Polyphenol oxidase (PPO) and peroxidase (POD) expressions improved in response to cyanobacteria application. Furthermore, treatment by cyanobacteria enhanced salicylic acid (SA) and Indole-3-Acetic Acid (IAA) in the infected plants while decreasing Abscisic acid (ABA). The infected pepper plant recovered from Fusarium wilt because cyanobacterial extract contained many biologically active compounds. The application of cyanobacteria through foliar spraying seems to be an effective approach to relieve the toxic influences of F. oxysporum on infected pepper plants as green and alternative therapeutic nutrients of chemical fungicides.
Collapse
Affiliation(s)
- Amer Morsy Abdelaziz
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (A.M.A.); (M.S.A.); (W.A.A.); Tel.: +20-010-0857-8963 (A.M.A.)
| | - Mohamed S. Attia
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (A.M.A.); (M.S.A.); (W.A.A.); Tel.: +20-010-0857-8963 (A.M.A.)
| | - Marwa S. Salem
- Botany & Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11884, Egypt
| | - Dina A. Refaay
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Wardah A. Alhoqail
- Department of Biology, College of Education, Majmaah University, Majmaah 11952, Saudi Arabia
- Correspondence: (A.M.A.); (M.S.A.); (W.A.A.); Tel.: +20-010-0857-8963 (A.M.A.)
| | - Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
100
|
Liang Y, Bai T, Liu B, Yu W, Teng W. Different antioxidant regulation mechanisms in response to aluminum-induced oxidative stress in Eucalyptus species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113748. [PMID: 35696965 DOI: 10.1016/j.ecoenv.2022.113748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Forest ecosystems play an important role in environmental protection and maintaining ecological balance. Understanding the physiological mechanisms of tree species response to aluminum (Al) toxic is crucial to reveal the main causes of plantation decline in acid rain area. As an important afforestation tree species in tropical and subtropical areas, Eucalyptus has high economic value and plays crucial ecological roles. However, continuous fertilization and acid precipitation can exacerbate soil acidification and increase soil active Al, which has a significant negative impact on Eucalyptus growth. Hence, species and genotypes with high Al resistance are required to solve the problem of Al toxicity of acidic soils for sustainable forest production. In this study, E. urophylla was better adapted to Al stress than E. grandis or E. tereticornis; its high Al resistance was attributed to greater antioxidant enzyme activity and non-enzymatic antioxidant content, and a lower degree of membrane lipid peroxidation than E. grandis or E. tereticornis. The differences in adaptability among the three pure species were attributed to their distinct habitats. Eucalyptus urophylla × E. grandis inherited the outstanding adaptability to Al stress from its maternal species (E. urophylla), indicating that Al tolerance is highly heritable and can be selected in Eucalyptus breeding. Our results indicated that the response of Eucalyptus to Al stress may fluctuate according to the time under stress, and might be related to dynamic changes in ROS elimination and accumulation.
Collapse
Affiliation(s)
- Yanhong Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China
| | - Tiandao Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China
| | - Bing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China
| | - Wanwen Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weichao Teng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Forestry College, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|