51
|
Voiniciuc C, Pauly M, Usadel B. Monitoring Polysaccharide Dynamics in the Plant Cell Wall. PLANT PHYSIOLOGY 2018; 176:2590-2600. [PMID: 29487120 PMCID: PMC5884611 DOI: 10.1104/pp.17.01776] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 05/18/2023]
Abstract
New technologies reveal the deposition and remodeling of plant cell wall polysaccharides and their impact on plant development.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology and Cluster of Excellence on Plant Sciences, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Björn Usadel
- Institute for Biology I, BioSC, RWTH Aachen University, 52074 Aachen, Germany
- Forschungszentum Jülich, IBG-2 Plant Sciences, 52428 Juelich, Germany
| |
Collapse
|
52
|
Majda M, Robert S. The Role of Auxin in Cell Wall Expansion. Int J Mol Sci 2018; 19:ijms19040951. [PMID: 29565829 PMCID: PMC5979272 DOI: 10.3390/ijms19040951] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.
Collapse
Affiliation(s)
- Mateusz Majda
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| | - Stéphanie Robert
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden.
| |
Collapse
|
53
|
Harding SA, Hu H, Nyamdari B, Xue LJ, Naran R, Tsai CJ. Tubulins, rhythms and cell walls in poplar leaves: it's all in the timing. TREE PHYSIOLOGY 2018; 38:397-408. [PMID: 28927239 DOI: 10.1093/treephys/tpx104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
Plant cell walls exhibit architectural and compositional changes throughout their development and in response to external cues. While tubulins are involved in cell wall biogenesis, much remains unknown about the scope of their involvement during the orchestration of this resource-demanding process. A transgenic approach coupled with cell wall compositional analysis, RNA-seq and mining of publicly available diurnal gene expression data was used to assess the involvement of tubulins in poplar leaf cell wall biogenesis. Leaf cell walls of transgenic poplar lines with constitutive overexpression of α-tubulin (TUA) exhibited an increased abundance of homogalacturonan, along with a reduction in xylose. These changes were traced to altered expression of UDP-glucuronic acid decarboxylase (GADC) in the transgenic leaves. A model is postulated by which altered diurnal control of TUA through its constitutive overexpression led to a metabolic tradeoff affecting cellular utilization of GADC substrate UDP-glucuronic acid. While there were no effects on cellulose, hemicellulose or lignin abundance, subtle effects on hemicellulose composition and associated gene expression were noted. In addition, expression and enzymatic activity of pectin methylesterase (PME) decreased in the transgenic leaves. The change is discussed in a context of increased levels of PME substrate homogalacturonan, slow stomatal kinetics and the fate of PME product methanol. Since stomatal opening and closing depend on fundamentally contrasting microtubule dynamics, the slowing of both processes in the transgenic lines as previously reported appears to be directly related to underlying cell wall compositional changes that were caused by tubulin manipulation.
Collapse
Affiliation(s)
- Scott A Harding
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, Ecology & Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Radnaa Naran
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
54
|
Importin-β Directly Regulates the Motor Activity and Turnover of a Kinesin-4. Dev Cell 2018; 44:642-651.e5. [DOI: 10.1016/j.devcel.2018.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 11/10/2017] [Accepted: 01/29/2018] [Indexed: 12/26/2022]
|
55
|
Lampugnani ER, Khan GA, Somssich M, Persson S. Building a plant cell wall at a glance. J Cell Sci 2018; 131:131/2/jcs207373. [PMID: 29378834 DOI: 10.1242/jcs.207373] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Edwin R Lampugnani
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Ghazanfar Abbas Khan
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Marc Somssich
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville 3010 VIC, Melbourne, Australia
| |
Collapse
|
56
|
Verbančič J, Lunn JE, Stitt M, Persson S. Carbon Supply and the Regulation of Cell Wall Synthesis. MOLECULAR PLANT 2018; 11:75-94. [PMID: 29054565 DOI: 10.1016/j.molp.2017.10.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 05/23/2023]
Abstract
All plant cells are surrounded by a cell wall that determines the directionality of cell growth and protects the cell against its environment. Plant cell walls are comprised primarily of polysaccharides and represent the largest sink for photosynthetically fixed carbon, both for individual plants and in the terrestrial biosphere as a whole. Cell wall synthesis is a highly sophisticated process, involving multiple enzymes and metabolic intermediates, intracellular trafficking of proteins and cell wall precursors, assembly of cell wall polymers into the extracellular matrix, remodeling of polymers and their interactions, and recycling of cell wall sugars. In this review we discuss how newly fixed carbon, in the form of UDP-glucose and other nucleotide sugars, contributes to the synthesis of cell wall polysaccharides, and how cell wall synthesis is influenced by the carbon status of the plant, with a focus on the model species Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Jana Verbančič
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
57
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
58
|
Cosgrove DJ. Diffuse Growth of Plant Cell Walls. PLANT PHYSIOLOGY 2018; 176:16-27. [PMID: 29138349 PMCID: PMC5761826 DOI: 10.1104/pp.17.01541] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/13/2017] [Indexed: 05/04/2023]
Abstract
Structural and functional roles of cellulose, xyloglucan, and pectins in cell wall enlargement are reappraised with insights from mechanics, atomic force microscopy, and other methods.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802
| |
Collapse
|
59
|
Oda Y. Emerging roles of cortical microtubule-membrane interactions. JOURNAL OF PLANT RESEARCH 2018; 131:5-14. [PMID: 29170834 DOI: 10.1007/s10265-017-0995-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/25/2017] [Indexed: 05/04/2023]
Abstract
Plant cortical microtubules have crucial roles in cell wall development. Cortical microtubules are tightly anchored to the plasma membrane in a highly ordered array, which directs the deposition of cellulose microfibrils by guiding the movement of the cellulose synthase complex. Cortical microtubules also interact with several endomembrane systems to regulate cell wall development and other cellular events. Recent studies have identified new factors that mediate interactions between cortical microtubules and endomembrane systems including the plasma membrane, endosome, exocytic vesicles, and endoplasmic reticulum. These studies revealed that cortical microtubule-membrane interactions are highly dynamic, with specialized roles in developmental and environmental signaling pathways. A recent reconstructive study identified a novel function of the cortical microtubule-plasma membrane interaction, which acts as a lateral fence that defines plasma membrane domains. This review summarizes recent advances in our understanding of the mechanisms and functions of cortical microtubule-membrane interactions.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| |
Collapse
|
60
|
Gavazzi F, Pigna G, Braglia L, Gianì S, Breviario D, Morello L. Evolutionary characterization and transcript profiling of β-tubulin genes in flax (Linum usitatissimum L.) during plant development. BMC PLANT BIOLOGY 2017; 17:237. [PMID: 29221437 PMCID: PMC5721616 DOI: 10.1186/s12870-017-1186-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 11/29/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microtubules, polymerized from alpha and beta-tubulin monomers, play a fundamental role in plant morphogenesis, determining the cell division plane, the direction of cell expansion and the deposition of cell wall material. During polarized pollen tube elongation, microtubules serve as tracks for vesicular transport and deposition of proteins/lipids at the tip membrane. Such functions are controlled by cortical microtubule arrays. Aim of this study was to first characterize the flax β-tubulin family by sequence and phylogenetic analysis and to investigate differential expression of β-tubulin genes possibly related to fibre elongation and to flower development. RESULTS We report the cloning and characterization of the complete flax β-tubulin gene family: exon-intron organization, duplicated gene comparison, phylogenetic analysis and expression pattern during stem and hypocotyl elongation and during flower development. Sequence analysis of the fourteen expressed β-tubulin genes revealed that the recent whole genome duplication of the flax genome was followed by massive retention of duplicated tubulin genes. Expression analysis showed that β-tubulin mRNA profiles gradually changed along with phloem fibre development in both the stem and hypocotyl. In flowers, changes in relative tubulin transcript levels took place at anthesis in anthers, but not in carpels. CONCLUSIONS Phylogenetic analysis supports the origin of extant plant β-tubulin genes from four ancestral genes pre-dating angiosperm separation. Expression analysis suggests that particular tubulin subpopulations are more suitable to sustain different microtubule functions such as cell elongation, cell wall thickening or pollen tube growth. Tubulin genes possibly related to different microtubule functions were identified as candidate for more detailed studies.
Collapse
Affiliation(s)
- Floriana Gavazzi
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Gaia Pigna
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Luca Braglia
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Silvia Gianì
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Diego Breviario
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| | - Laura Morello
- Istituto Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via A. Corti, 12, Milan, 20133 Italy
| |
Collapse
|
61
|
Amanda D, Doblin MS, MacMillan CP, Galletti R, Golz JF, Bacic A, Ingram GC, Johnson KL. Arabidopsis DEFECTIVE KERNEL1 regulates cell wall composition and axial growth in the inflorescence stem. PLANT DIRECT 2017; 1:e00027. [PMID: 31245676 PMCID: PMC6508578 DOI: 10.1002/pld3.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 05/10/2023]
Abstract
Axial growth in plant stems requires a fine balance between elongation and stem mechanical reinforcement to ensure mechanical stability. Strength is provided by the plant cell wall, the deposition of which must be coordinated with cell expansion and elongation to ensure that integrity is maintained during growth. Coordination of these processes is critical and yet poorly understood. The plant-specific calpain, DEFECTIVE KERNEL1 (DEK1), plays a key role in growth coordination in leaves, yet its role in regulating stem growth has not been addressed. Using plants overexpressing the active CALPAIN domain of DEK1 (CALPAIN OE) and a DEK1 knockdown line (amiRNA-DEK1), we undertook morphological, biochemical, biophysical, and microscopic analyses of mature inflorescence stems. We identify a novel role for DEK1 in the maintenance of cell wall integrity and coordination of growth during inflorescence stem development. CALPAIN OE plants are significantly reduced in stature and have short, thickened stems, while amiRNA-DEK1 lines have weakened stems that are unable to stand upright. Microscopic analyses of the stems identify changes in cell size, shape and number, and differences in both primary and secondary cell wall thickness and composition. Taken together, our results suggest that DEK1 influences primary wall growth by indirectly regulating cellulose and pectin deposition. In addition, we observe changes in secondary cell walls that may compensate for altered primary cell wall composition. We propose that DEK1 activity is required for the coordination of stem strengthening with elongation during axial growth.
Collapse
Affiliation(s)
- Dhika Amanda
- Max Planck Institute for Plant Breeding ResearchKölnGermany
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell WallsSchool of BioSciencesThe University of MelbourneParkvilleVICAustralia
| | | | - Roberta Galletti
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon CNRS INRA UCB Lyon 1LyonFrance
| | - John F. Golz
- School of BioSciencesThe University of MelbourneParkvilleVICAustralia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell WallsSchool of BioSciencesThe University of MelbourneParkvilleVICAustralia
| | - Gwyneth C. Ingram
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon CNRS INRA UCB Lyon 1LyonFrance
| | - Kim L. Johnson
- ARC Centre of Excellence in Plant Cell WallsSchool of BioSciencesThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
62
|
Imaging cellulose synthase motility during primary cell wall synthesis in the grass Brachypodium distachyon. Sci Rep 2017; 7:15111. [PMID: 29118446 PMCID: PMC5678151 DOI: 10.1038/s41598-017-14988-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/19/2017] [Indexed: 12/02/2022] Open
Abstract
The mechanism of cellulose synthesis has been studied by characterizing the motility of cellulose synthase complexes tagged with a fluorescent protein; however, this approach has been used exclusively on the hypocotyl of Arabidopsis thaliana. Here we characterize cellulose synthase motility in the model grass, Brachypodium distachyon. We generated lines in which mEGFP is fused N-terminal to BdCESA3 or BdCESA6 and which grew indistinguishably from the wild type (Bd21-3) and had dense fluorescent puncta at or near the plasma membrane. Measured with a particle tracking algorithm, the average speed of GFP-BdCESA3 particles in the mesocotyl was 164 ± 78 nm min−1 (error gives standard deviation [SD], n = 1451 particles). Mean speed in the root appeared similar. For comparison, average speed in the A. thaliana hypocotyl expressing GFP-AtCESA6 was 184 ± 86 nm min−1 (n = 2755). For B. distachyon, we quantified root diameter and elongation rate in response to inhibitors of cellulose (dichlorobenylnitrile; DCB), microtubules (oryzalin), or actin (latrunculin B). Neither oryzalin nor latrunculin affected the speed of CESA complexes; whereas, DCB reduced average speed by about 50% in B. distachyon and by about 35% in A. thaliana. Evidently, between these species, CESA motility is well conserved.
Collapse
|
63
|
Zheng Y, Cosgrove DJ, Ning G. High-Resolution Field Emission Scanning Electron Microscopy (FESEM) Imaging of Cellulose Microfibril Organization in Plant Primary Cell Walls. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2017; 23:1048-1054. [PMID: 28835298 DOI: 10.1017/s143192761701251x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have used field emission scanning electron microscopy (FESEM) to study the high-resolution organization of cellulose microfibrils in onion epidermal cell walls. We frequently found that conventional "rule of thumb" conditions for imaging of biological samples did not yield high-resolution images of cellulose organization and often resulted in artifacts or distortions of cell wall structure. Here we detail our method of one-step fixation and dehydration with 100% ethanol, followed by critical point drying, ultrathin iridium (Ir) sputter coating (3 s), and FESEM imaging at a moderate accelerating voltage (10 kV) with an In-lens detector. We compare results obtained with our improved protocol with images obtained with samples processed by conventional aldehyde fixation, graded dehydration, sputter coating with Au, Au/Pd, or carbon, and low-voltage FESEM imaging. The results demonstrated that our protocol is simpler, causes little artifact, and is more suitable for high-resolution imaging of cell wall cellulose microfibrils whereas such imaging is very challenging by conventional methods.
Collapse
Affiliation(s)
- Yunzhen Zheng
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Gang Ning
- Department of Biology, Penn State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, USA
| |
Collapse
|
64
|
Tolmie F, Poulet A, McKenna J, Sassmann S, Graumann K, Deeks M, Runions J. The cell wall of Arabidopsis thaliana influences actin network dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4517-4527. [PMID: 28981774 DOI: 10.1093/jxb/erx269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In plant cells, molecular connections link the cell wall-plasma membrane-actin cytoskeleton to form a continuum. It is hypothesized that the cell wall provides stable anchor points around which the actin cytoskeleton remodels. Here we use live cell imaging of fluorescently labelled marker proteins to quantify the organization and dynamics of the actin cytoskeleton and to determine the impact of disrupting connections within the continuum. Labelling of the actin cytoskeleton with green fluorescent protein (GFP)-fimbrin actin-binding domain 2 (FABD2) resulted in a network composed of fine filaments and thicker bundles that appeared as a highly dynamic remodelling meshwork. This differed substantially from the GFP-Lifeact-labelled network that appeared much more sparse with thick bundles that underwent 'simple movement', in which the bundles slightly change position, but in such a manner that the structure of the network was not substantially altered during the time of observation. Label-dependent differences in actin network morphology and remodelling necessitated development of two new image analysis techniques. The first of these, 'pairwise image subtraction', was applied to measurement of the more rapidly remodelling actin network labelled with GFP-FABD2, while the second, 'cumulative fluorescence intensity', was used to measure bulk remodelling of the actin cytoskeleton when labelled with GFP-Lifeact. In each case, these analysis techniques show that the actin cytoskeleton has a decreased rate of bulk remodelling when the cell wall-plasma membrane-actin continuum is disrupted either by plasmolysis or with isoxaben, a drug that specifically inhibits cellulose deposition. Changes in the rate of actin remodelling also affect its functionality, as observed by alteration in Golgi body motility.
Collapse
Affiliation(s)
- Frances Tolmie
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Axel Poulet
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Joseph McKenna
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Stefan Sassmann
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Michael Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - John Runions
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| |
Collapse
|
65
|
Yamada M, Tanaka-Takiguchi Y, Hayashi M, Nishina M, Goshima G. Multiple kinesin-14 family members drive microtubule minus end-directed transport in plant cells. J Cell Biol 2017; 216:1705-1714. [PMID: 28442535 PMCID: PMC5461021 DOI: 10.1083/jcb.201610065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/05/2017] [Accepted: 03/17/2017] [Indexed: 12/25/2022] Open
Abstract
Minus end-directed cargo transport along microtubules (MTs) is exclusively driven by the molecular motor dynein in a wide variety of cell types. Interestingly, during evolution, plants have lost the genes encoding dynein; the MT motors that compensate for dynein function are unknown. Here, we show that two members of the kinesin-14 family drive minus end-directed transport in plants. Gene knockout analyses of the moss Physcomitrella patens revealed that the plant-specific class VI kinesin-14, KCBP, is required for minus end-directed transport of the nucleus and chloroplasts. Purified KCBP directly bound to acidic phospholipids and unidirectionally transported phospholipid liposomes along MTs in vitro. Thus, minus end-directed transport of membranous cargoes might be driven by their direct interaction with this motor protein. Newly nucleated cytoplasmic MTs represent another known cargo exhibiting minus end-directed motility, and we identified the conserved class I kinesin-14 (ATK) as the motor involved. These results suggest that kinesin-14 motors were duplicated and developed as alternative MT-based minus end-directed transporters in land plants.
Collapse
Affiliation(s)
- Moé Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yohko Tanaka-Takiguchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Masahito Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Momoko Nishina
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
66
|
Bürstenbinder K, Möller B, Plötner R, Stamm G, Hause G, Mitra D, Abel S. The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus. PLANT PHYSIOLOGY 2017; 173:1692-1708. [PMID: 28115582 PMCID: PMC5338658 DOI: 10.1104/pp.16.01743] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth.
Collapse
Affiliation(s)
- Katharina Bürstenbinder
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.);
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Birgit Möller
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Romina Plötner
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Gina Stamm
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Gerd Hause
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Dipannita Mitra
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| | - Steffen Abel
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany (K.B., R.P., G.S., D.M., S.A.)
- Institute of Computer Science (B.M.), Biocenter (G.H.), and Institute of Biochemistry and Biotechnology (S.A.), Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; and
- Department of Plant Sciences, University of California, Davis, California 95616 (S.A.)
| |
Collapse
|
67
|
Ganguly A, DeMott L, Dixit R. Function of the Arabidopsis kinesin-4, FRA1, requires abundant processive motility. J Cell Sci 2017; 130:1232-1238. [DOI: 10.1242/jcs.196857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/14/2017] [Indexed: 01/26/2023] Open
Abstract
Processivity is important for kinesins that mediate intracellular transport. Structure-function analyses of N-terminal kinesins have identified several non-motor regions that affect processivity in vitro. However, whether these structural elements affect kinesin processivity and function in vivo is not known. Here, we used an Arabidopsis kinesin-4, called Fragile Fiber1 (FRA1), which is thought to mediate vesicle transport to test whether mutations that alter processivity in vitro behave similarly in vivo and whether processivity is important for FRA1’s function. We generated several FRA1 mutants that differed in their run lengths in vitro and then transformed them into the fra1-5 mutant for complementation and in vivo motility analyses. Our data show that the behavior of processivity mutants in vivo can differ dramatically from in vitro properties, underscoring the need to extend structure-function analyses of kinesins in vivo. In addition, we found that high density of processive motility is necessary for FRA1’s physiological function.
Collapse
Affiliation(s)
- Anindya Ganguly
- Biology Department, Washington University in St. Louis, MO 63130, USA
| | - Logan DeMott
- Biology Department, Washington University in St. Louis, MO 63130, USA
| | - Ram Dixit
- Biology Department, Washington University in St. Louis, MO 63130, USA
| |
Collapse
|
68
|
Schneider R, Hanak T, Persson S, Voigt CA. Cellulose and callose synthesis and organization in focus, what's new? CURRENT OPINION IN PLANT BIOLOGY 2016; 34:9-16. [PMID: 27479608 DOI: 10.1016/j.pbi.2016.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 05/02/2023]
Abstract
Plant growth and development are supported by plastic but strong cell walls. These walls consist largely of polysaccharides that vary in content and structure. Most of the polysaccharides are produced in the Golgi apparatus and are then secreted to the apoplast and built into the growing walls. However, the two glucan polymers cellulose and callose are synthesized at the plasma membrane by cellulose or callose synthase complexes, respectively. Cellulose is the most common cell wall polymer in land plants and provides strength to the walls to support directed cell expansion. In contrast, callose is integral to specialized cell walls, such as the cell plate that separates dividing cells and growing pollen tube walls, and maintains important functions during abiotic and biotic stress responses. The last years have seen a dramatic increase in our understanding of how cellulose and callose are manufactured, and new factors that regulate the synthases have been identified. Much of this knowledge has been amassed via various microscopy-based techniques, including various confocal techniques and super-resolution imaging. Here, we summarize and synthesize recent findings in the fields of cellulose and callose synthesis in plant biology.
Collapse
Affiliation(s)
- René Schneider
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia
| | - Tobias Hanak
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany
| | - Staffan Persson
- School of BioSciences, University of Melbourne, 3010 Parkville, Melbourne, Australia.
| | - Christian A Voigt
- Phytopathology and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
69
|
Brulé V, Rafsanjani A, Pasini D, Western TL. Hierarchies of plant stiffness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:79-96. [PMID: 27457986 DOI: 10.1016/j.plantsci.2016.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 05/24/2023]
Abstract
Plants must meet mechanical as well as physiological and reproductive requirements for survival. Management of internal and external stresses is achieved through their unique hierarchical architecture. Stiffness is determined by a combination of morphological (geometrical) and compositional variables that vary across multiple length scales ranging from the whole plant to organ, tissue, cell and cell wall levels. These parameters include, among others, organ diameter, tissue organization, cell size, density and turgor pressure, and the thickness and composition of cell walls. These structural parameters and their consequences on plant stiffness are reviewed in the context of work on stems of the genetic reference plant Arabidopsis thaliana (Arabidopsis), and the suitability of Arabidopsis as a model system for consistent investigation of factors controlling plant stiffness is put forward. Moving beyond Arabidopsis, the presence of morphological parameters causing stiffness gradients across length-scales leads to beneficial emergent properties such as increased load-bearing capacity and reversible actuation. Tailoring of plant stiffness for old and new purposes in agriculture and forestry can be achieved through bioengineering based on the knowledge of the morphological and compositional parameters of plant stiffness in combination with gene identification through the use of genetics.
Collapse
Affiliation(s)
- Veronique Brulé
- Department of Biology, McGill University, 1205 Docteur Penfield Ave., Montreal, QC, H3A 1B1, Canada.
| | - Ahmad Rafsanjani
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC, H3A OC3, Canada.
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montreal, QC, H3A OC3, Canada.
| | - Tamara L Western
- Department of Biology, McGill University, 1205 Docteur Penfield Ave., Montreal, QC, H3A 1B1, Canada.
| |
Collapse
|
70
|
Boyer JS. Enzyme-Less Growth in Chara and Terrestrial Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:866. [PMID: 27446106 PMCID: PMC4914548 DOI: 10.3389/fpls.2016.00866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/02/2016] [Indexed: 05/21/2023]
Abstract
Enzyme-less chemistry appears to control the growth rate of the green alga Chara corallina. The chemistry occurs in the wall where a calcium pectate cycle determines both the rate of wall enlargement and the rate of pectate deposition into the wall. The process is the first to indicate that a wall polymer can control how a plant cell enlarges after exocytosis releases the polymer to the wall. This raises the question of whether other species use a similar mechanism. Chara is one of the closest relatives of the progenitors of terrestrial plants and during the course of evolution, new wall features evolved while pectate remained one of the most conserved components. In addition, charophytes contain auxin which affects Chara in ways resembling its action in terrestrial plants. Therefore, this review considers whether more recently acquired wall features require different mechanisms to explain cell expansion.
Collapse
Affiliation(s)
- John S. Boyer
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, ColumbiaMO, USA
| |
Collapse
|
71
|
Zhang Y, Nikolovski N, Sorieul M, Vellosillo T, McFarlane HE, Dupree R, Kesten C, Schneider R, Driemeier C, Lathe R, Lampugnani E, Yu X, Ivakov A, Doblin MS, Mortimer JC, Brown SP, Persson S, Dupree P. Golgi-localized STELLO proteins regulate the assembly and trafficking of cellulose synthase complexes in Arabidopsis. Nat Commun 2016; 7:11656. [PMID: 27277162 PMCID: PMC4906169 DOI: 10.1038/ncomms11656] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/15/2016] [Indexed: 01/24/2023] Open
Abstract
As the most abundant biopolymer on Earth, cellulose is a key structural component of the plant cell wall. Cellulose is produced at the plasma membrane by cellulose synthase (CesA) complexes (CSCs), which are assembled in the endomembrane system and trafficked to the plasma membrane. While several proteins that affect CesA activity have been identified, components that regulate CSC assembly and trafficking remain unknown. Here we show that STELLO1 and 2 are Golgi-localized proteins that can interact with CesAs and control cellulose quantity. In the absence of STELLO function, the spatial distribution within the Golgi, secretion and activity of the CSCs are impaired indicating a central role of the STELLO proteins in CSC assembly. Point mutations in the predicted catalytic domains of the STELLO proteins indicate that they are glycosyltransferases facing the Golgi lumen. Hence, we have uncovered proteins that regulate CSC assembly in the plant Golgi apparatus.
Collapse
Affiliation(s)
- Yi Zhang
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nino Nikolovski
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Mathias Sorieul
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Tamara Vellosillo
- Energy Biosciences Institute, and Plant and Microbial Biology Department, University of California, Berkeley, California 94720, USA
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Christopher Kesten
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - René Schneider
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Carlos Driemeier
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6192, Campinas, São Paulo CEP 13083-970, Brazil
| | - Rahul Lathe
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Edwin Lampugnani
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia.,ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alexander Ivakov
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Monika S Doblin
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia.,ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny C Mortimer
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Staffan Persson
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany.,School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia.,ARC Centre of Excellence in Plant Cell Walls, School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
72
|
Dumont M, Lehner A, Vauzeilles B, Malassis J, Marchant A, Smyth K, Linclau B, Baron A, Mas Pons J, Anderson CT, Schapman D, Galas L, Mollet JC, Lerouge P. Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-D-manno-oct-2-ulosonic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:437-47. [PMID: 26676799 DOI: 10.1111/tpj.13104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 05/10/2023]
Abstract
In plants, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) is a monosaccharide that is only found in the cell wall pectin, rhamnogalacturonan-II (RG-II). Incubation of 4-day-old light-grown Arabidopsis seedlings or tobacco BY-2 cells with 8-azido 8-deoxy Kdo (Kdo-N3 ) followed by coupling to an alkyne-containing fluorescent probe resulted in the specific in muro labelling of RG-II through a copper-catalysed azide-alkyne cycloaddition reaction. CMP-Kdo synthetase inhibition and competition assays showing that Kdo and D-Ara, a precursor of Kdo, but not L-Ara, inhibit incorporation of Kdo-N3 demonstrated that incorporation of Kdo-N3 occurs in RG-II through the endogenous biosynthetic machinery of the cell. Co-localisation of Kdo-N3 labelling with the cellulose-binding dye calcofluor white demonstrated that RG-II exists throughout the primary cell wall. Additionally, after incubating plants with Kdo-N3 and an alkynated derivative of L-fucose that incorporates into rhamnogalacturonan I, co-localised fluorescence was observed in the cell wall in the elongation zone of the root. Finally, pulse labelling experiments demonstrated that metabolic click-mediated labelling with Kdo-N3 provides an efficient method to study the synthesis and redistribution of RG-II during root growth.
Collapse
Affiliation(s)
- Marie Dumont
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Arnaud Lehner
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Boris Vauzeilles
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) UMR CNRS 8182, Université de Paris Sud, 91405, Orsay, France
- Click4Tag, Zone Luminy Biotech, Case 922, 163 Avenue de Luminy, 13009, Marseille, France
| | - Julien Malassis
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Alan Marchant
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kevin Smyth
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Bruno Linclau
- Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Aurélie Baron
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
| | - Jordi Mas Pons
- Institut de Chimie des Substances Naturelles (ICSN) UPR CNRS 2301, 91198, Gif-sur-Yvette, France
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA, USA
| | - Damien Schapman
- PRIMACEN, IRIB, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Ludovic Galas
- PRIMACEN, IRIB, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Jean-Claude Mollet
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| | - Patrice Lerouge
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (Glyco-MEV), EA 4358, IRIB, VASI, Normandie Université, 76821, Mont-Saint-Aignan, France
| |
Collapse
|
73
|
Abstract
The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, 208 Mueller Lab, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
74
|
Zhao S, Wei H, Lin CY, Zeng Y, Tucker MP, Himmel ME, Ding SY. Burkholderia phytofirmans Inoculation-Induced Changes on the Shoot Cell Anatomy and Iron Accumulation Reveal Novel Components of Arabidopsis-Endophyte Interaction that Can Benefit Downstream Biomass Deconstruction. FRONTIERS IN PLANT SCIENCE 2016; 7:24. [PMID: 26858740 PMCID: PMC4731519 DOI: 10.3389/fpls.2016.00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 01/08/2016] [Indexed: 06/05/2023]
Abstract
It is known that plant growth promoting bacteria (PGPB) elicit positive effects on plant growth and biomass yield. However, the actual mechanism behind the plant-PGPB interaction is poorly understood, and the literature is scarce regarding the thermochemical pretreatability and enzymatic degradability of biomass derived from PGPB-inoculated plants. Most recent transcriptional analyses of PGPB strain Burkholderia phytofirmans PsJN inoculating potato in literature and Arabidopsis in our present study have revealed the expression of genes for ferritin and the biosynthesis and transport of siderophores (i.e., the molecules with high affinity for iron), respectively. The expression of such genes in the shoots of PsJN-inoculated plants prompted us to propose that PsJN-inoculation can improve the host plant's iron uptake and accumulation, which facilitates the downstream plant biomass pretreatment and conversion to simple sugars. In this study, we employed B. phytofirmans PsJN to inoculate the Arabidopsis thaliana plants, and conducted the first investigation for its effects on the biomass yield, the anatomical organization of stems, the iron accumulation, and the pretreatment and enzymatic hydrolysis of harvested biomass. The results showed that the strain PsJN stimulated plant growth in the earlier period of plant development and enlarged the cell size of stem piths, and it also indeed enhanced the essential metals uptake and accumulation in host plants. Moreover, we found that the PsJN-inoculated plant biomass released more glucose and xylose after hot water pretreatment and subsequent co-saccharification, which provided a novel insight into development of lignocellulosic biofuels from renewable biomass resources.
Collapse
Affiliation(s)
- Shuai Zhao
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Hui Wei
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Chien-Yuan Lin
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Yining Zeng
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Melvin P Tucker
- National Bioenergy Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Michael E Himmel
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| | - Shi-You Ding
- Bioscience Center, National Renewable Energy Laboratory Golden, CO, USA
| |
Collapse
|
75
|
Bidhendi AJ, Geitmann A. Relating the mechanics of the primary plant cell wall to morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:449-61. [PMID: 26689854 DOI: 10.1093/jxb/erv535] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Regulation of the mechanical properties of the cell wall is a key parameter used by plants to control the growth behavior of individual cells and tissues. Modulation of the mechanical properties occurs through the control of the biochemical composition and the degree and nature of interlinking between cell wall polysaccharides. Preferentially oriented cellulose microfibrils restrict cellular expansive growth, but recent evidence suggests that this may not be the trigger for anisotropic growth. Instead, non-uniform softening through the modulation of pectin chemistry may be an initial step that precedes stress-induced stiffening of the wall through cellulose. Here we briefly review the major cell wall polysaccharides and their implication for plant cell wall mechanics that need to be considered in order to study the growth behavior of the primary plant cell wall.
Collapse
Affiliation(s)
- Amir J Bidhendi
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H1X 2B2, Canada
| | - Anja Geitmann
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, Montreal, Quebec H1X 2B2, Canada
| |
Collapse
|
76
|
Zhang T, Zheng Y, Cosgrove DJ. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:179-92. [PMID: 26676644 DOI: 10.1111/tpj.13102] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 05/02/2023]
Abstract
We used atomic force microscopy (AFM), complemented with electron microscopy, to characterize the nanoscale and mesoscale structure of the outer (periclinal) cell wall of onion scale epidermis - a model system for relating wall structure to cell wall mechanics. The epidermal wall contains ~100 lamellae, each ~40 nm thick, containing 3.5-nm wide cellulose microfibrils oriented in a common direction within a lamella but varying by ~30 to 90° between adjacent lamellae. The wall thus has a crossed polylamellate, not helicoidal, wall structure. Montages of high-resolution AFM images of the newly deposited wall surface showed that single microfibrils merge into and out of short regions of microfibril bundles, thereby forming a reticulated network. Microfibril direction within a lamella did not change gradually or abruptly across the whole face of the cell, indicating continuity of the lamella across the outer wall. A layer of pectin at the wall surface obscured the underlying cellulose microfibrils when imaged by FESEM, but not by AFM. The AFM thus preferentially detects cellulose microfibrils by probing through the soft matrix in these hydrated walls. AFM-based nanomechanical maps revealed significant heterogeneity in cell wall stiffness and adhesiveness at the nm scale. By color coding and merging these maps, the spatial distribution of soft and rigid matrix polymers could be visualized in the context of the stiffer microfibrils. Without chemical extraction and dehydration, our results provide multiscale structural details of the primary cell wall in its near-native state, with implications for microfibrils motions in different lamellae during uniaxial and biaxial extensions.
Collapse
Affiliation(s)
- Tian Zhang
- Department of Biology and Center for Lignocellulose Structure and Formation, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Yunzhen Zheng
- Department of Biology and Center for Lignocellulose Structure and Formation, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Daniel J Cosgrove
- Department of Biology and Center for Lignocellulose Structure and Formation, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
77
|
Anderson CT. We be jammin': an update on pectin biosynthesis, trafficking and dynamics. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:495-502. [PMID: 26590862 DOI: 10.1093/jxb/erv501] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pectins are complex polysaccharides that contain acidic sugars and are major determinants of the cohesion, adhesion, extensibility, porosity and electrostatic potential of plant cell walls. Recent evidence has solidified their positions as key regulators of cellular growth and tissue morphogenesis, although important details of how they achieve this regulation are still missing. Pectins are also hypothesized to function as ligands for wall integrity sensors that enable plant cells to respond to intrinsic defects in wall biomechanics and to wall degradation by attacking pathogens. This update highlights recent advances in our understanding of the biosynthesis of pectins, how they are delivered to the cell surface and become incorporated into the cell wall matrix and how pectins are modified over time in the apoplast. It also poses unanswered questions for further research into this enigmatic but essential class of carbohydrate polymers.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
78
|
Lee YRJ, Qiu W, Liu B. Kinesin motors in plants: from subcellular dynamics to motility regulation. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:120-126. [PMID: 26556761 DOI: 10.1016/j.pbi.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/30/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
Plants produce enormous forms of the microtubule (MT)-based motor kinesins that have been inspiring plant cell biologists to uncover their functions in relation to plant growth and development. Subcellular localization of kinesin proteins detected through live-cell imaging or immunofluorescence microscopy has provided great insights into the functions of these motors. Dozens of mitotic kinesins exhibit particularly splendid localization patterns from chromosomes and kinetochores to MT arrays like the preprophase band, spindle poles, the spindle midzone, phragmoplast distal ends, and the phragmoplast midzone. Different subcellular localizations indicate distinct functions of these motors that are yet to be characterized. The localization difference between plant kinesins and their animal counterparts implies mechanistic differences in mitosis and cytokinesis between the two kingdoms. When many forms of kinesins are present simultaneously, it becomes critical that their motility is differentially regulated with spatial and temporal precision. Insights into regulatory mechanisms of motors can often be brought about by in vitro single-molecule biophysical studies. Significant advances are expected in this area in the coming years owing to rapid technological advances that are being brought to various model plants.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | - Weihong Qiu
- Departments of Physics and Biophysics & Biochemistry, Oregon State University, Covallis, OR 97331, USA
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
79
|
Swamy PS, Hu H, Pattathil S, Maloney VJ, Xiao H, Xue LJ, Chung JD, Johnson VE, Zhu Y, Peter GF, Hahn MG, Mansfield SD, Harding SA, Tsai CJ. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6507-18. [PMID: 26246616 PMCID: PMC4588895 DOI: 10.1093/jxb/erv383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.
Collapse
Affiliation(s)
- Prashant S Swamy
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Victoria J Maloney
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hui Xiao
- Laboratory for Macromolecular Analysis and Proteomics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Liang-Jiao Xue
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei 10066, Taiwan
| | - Virgil E Johnson
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yingying Zhu
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Gary F Peter
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Scott A Harding
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
80
|
Daher FB, Braybrook SA. How to let go: pectin and plant cell adhesion. FRONTIERS IN PLANT SCIENCE 2015; 6:523. [PMID: 26236321 PMCID: PMC4500915 DOI: 10.3389/fpls.2015.00523] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Plant cells do not, in general, migrate. They maintain a fixed position relative to their neighbors, intimately linked through growth and differentiation. The mediator of this connection, the pectin-rich middle lamella, is deposited during cell division and maintained throughout the cell's life to protect tissue integrity. The maintenance of adhesion requires cell wall modification and is dependent on the actin cytoskeleton. There are developmental processes that require cell separation, such as organ abscission, dehiscence, and ripening. In these instances, the pectin-rich middle lamella must be actively altered to allow cell separation, a process which also requires cell wall modification. In this review, we will focus on the role of pectin and its modification in cell adhesion and separation. Recent insights gained in pectin gel mechanics will be discussed in relation to existing knowledge of pectin chemistry as it relates to cell adhesion. As a whole, we hope to begin defining the physical mechanisms behind a cells' ability to hang on, and how it lets go.
Collapse
|
81
|
Oda Y. Cortical microtubule rearrangements and cell wall patterning. FRONTIERS IN PLANT SCIENCE 2015; 6:236. [PMID: 25904930 PMCID: PMC4389349 DOI: 10.3389/fpls.2015.00236] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 03/25/2015] [Indexed: 05/17/2023]
Abstract
Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Center for Frontier Research, National Institute of Genetics, Mishima, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Mishima, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- *Correspondence: Yoshihisa Oda, Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411–8540, Japan
| |
Collapse
|