51
|
Wang P, Wang Y, Ren F. Genome-wide identification of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family in grape (Vitis vinifera L.). BMC Genomics 2019; 20:553. [PMID: 31277568 PMCID: PMC6612224 DOI: 10.1186/s12864-019-5944-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
Background CLE genes play various biological roles in plant growth and development, as well as in responses to environmental stimuli. Results In the present study, we identified nine CLE genes in the grape genome using an effective identification method. We analyzed the expression profiles of grape CLE genes in different tissues and under environmental different stimuli. VvCLE3 was expressed in shoot apical meristem (SAM) enriched regions, and VvCLE6 was expressed in shoot tissue without SAM. When grapes were infected with bois noir, VvCLE2 was up-regulated. Under ABA treatment, VvCLE3 was down-regulated. VvCLE6 was up-regulated under high temperature stress. We found that VvCLE6 and VvCLE1 were highly expressed in root tissue. In addition, we compared the characteristics of CLEs from grape and other plant species. The CLE family in Sphagnum fallax underwent positive selection, while the CLE family in grape underwent purifying selection. The frequency of optimal codons and codon adaptation index of rice and grape CLE family members were positively correlated with GC content at the third site of synonymous codons, indicating that the dominant evolutionary pressure acting on rice and grape CLE genes was mutation pressure. We also found that closely related species had higher levels of similarity in relative synonymous codon usage in CLE genes. The rice CLE family was biased toward C and G nucleotides at third codon positions. Gene duplication and loss events were also found in grape CLE genes. Conclusion These results demonstrate an effective identification method for CLE motifs and increase the understanding of grape CLEs. Future research on CLE genes may have applications for grape breeding and cultivation to better understand root and nodulation development. Electronic supplementary material The online version of this article (10.1186/s12864-019-5944-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pengfei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Yongmei Wang
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| | - Fengshan Ren
- Shandong Academy of Grape; Shandong Engineering Research Center for Grape Cultivation and Deep-Processing, Jinan, 250100, People's Republic of China.
| |
Collapse
|
52
|
Li H, Cai Z, Wang X, Li M, Cui Y, Cui N, Yang F, Zhu M, Zhao J, Du W, He K, Yi J, Tax FE, Hou S, Li J, Gou X. SERK Receptor-like Kinases Control Division Patterns of Vascular Precursors and Ground Tissue Stem Cells during Embryo Development in Arabidopsis. MOLECULAR PLANT 2019; 12:984-1002. [PMID: 31059824 DOI: 10.1016/j.molp.2019.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 05/03/2023]
Abstract
During embryo development, the vascular precursors and ground tissue stem cells divide to renew themselves and produce the vascular tissue, endodermal cells, and cortical cells. However, the molecular mechanisms regulating division of these stem cells have remained largely elusive. In this study, we show that loss of function of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes results in aberrant embryo development. Fewer cortical, endodermal, and vascular cells are generated in the embryos of serk1 serk2 bak1 triple mutants. WUSCHEL-RELATED HOMEOBOX 5 (WOX5) is ectopically expressed in vascular cells of serk1 serk2 bak1 embryos. The first transverse division of vascular precursors in mid-globular embryos and second asymmetric division of ground tissue stem cells in early-heart embryos are abnormally altered to a longitudinal division. The embryo defects can be partially rescued by constitutively activated mitogen-activated protein kinase (MAPK) kinase kinase YODA (YDA) and MAPK kinase MKK5. Taken together, our results reveal that SERK-mediated signals regulate division patterns of vascular precursors and ground tissue stem cells, likely via the YDA-MKK4/5 cascade, during embryo development.
Collapse
Affiliation(s)
- Huiqiang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zeping Cai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; College of Forestry, Hainan University, Danzhou, Hainan 571737, China
| | - Xiaojuan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Nan Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fei Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Junxiang Zhao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenbin Du
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Frans E Tax
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
53
|
Abstract
A fascinating feature of plant growth and development is that plants initiate organs continually throughout their lifespan. The ability to do this relies on specialized groups of pluripotent stem cells termed meristems, which allow for the elaboration of the shoot, root, and vascular systems. We now have a deep understanding of the genetic networks that control meristem initiation and stem cell maintenance, including the roles of receptors and their ligands, transcription factors, and integrated hormonal and chromatin control. This review describes these networks and discusses how this knowledge is being applied to improve crop productivity by increasing fruit size and seed number.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
54
|
Le Marquer M, Bécard G, Frei Dit Frey N. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. THE NEW PHYTOLOGIST 2019; 222:1030-1042. [PMID: 30554405 DOI: 10.1111/nph.15643] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/07/2018] [Indexed: 05/03/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is a beneficial association established between land plants and the members of a subphylum of fungi, the Glomeromycotina. How the two symbiotic partners regulate their association is still enigmatic. Secreted fungal peptides are candidates for regulating this interaction. We searched for fungal peptides with similarities with known plant signalling peptides. We identified CLAVATA (CLV)/EMBRYO SURROUNDING REGION (ESR)-RELATED PROTEIN (CLE) genes in phylogenetically distant AM fungi: four Rhizophagus species and one Gigaspora species. These CLE genes encode a signal peptide for secretion and the conserved CLE C-terminal motif. They seem to be absent in the other fungal clades. Rhizophagus irregularis and Gigaspora rosea CLE genes (RiCLE1 and GrCLE1) are transcriptionally induced in symbiotic vs asymbiotic conditions. Exogenous application of synthetic RiCLE1 peptide on Medicago truncatula affects root architecture, by slowing the apical growth of primary roots and stimulating the formation of lateral roots. In addition, pretreatment of seedlings with RiCLE1 peptide stimulates mycorrhization. Our findings demonstrate for the first time that in addition to plants and nematodes, AM fungi also possess CLE genes. These results pave the way for deciphering new mechanisms by which AM fungi modulate plant cellular responses during the establishment of AM symbiosis.
Collapse
Affiliation(s)
- Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
55
|
Zhang L, Shi X, Zhang Y, Wang J, Yang J, Ishida T, Jiang W, Han X, Kang J, Wang X, Pan L, Lv S, Cao B, Zhang Y, Wu J, Han H, Hu Z, Cui L, Sawa S, He J, Wang G. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2019; 42:1033-1044. [PMID: 30378140 DOI: 10.1111/pce.13475] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 05/06/2023]
Abstract
CLE peptides have been implicated in various developmental processes of plants and mediate their responses to environmental stimuli. However, the biological relevance of most CLE genes remains to be functionally characterized. Here, we report that CLE9, which is expressed in stomata, acts as an essential regulator in the induction of stomatal closure. Exogenous application of CLE9 peptides or overexpression of CLE9 effectively led to stomatal closure and enhanced drought tolerance, whereas CLE9 loss-of-function mutants were sensitivity to drought stress. CLE9-induced stomatal closure was impaired in abscisic acid (ABA)-deficient mutants, indicating that ABA is required for CLE9-medaited guard cell signalling. We further deciphered that two guard cell ABA-signalling components, OST1 and SLAC1, were responsible for CLE9-induced stomatal closure. MPK3 and MPK6 were activated by the CLE9 peptide, and CLE9 peptides failed to close stomata in mpk3 and mpk6 mutants. In addition, CLE9 peptides stimulated the induction of hydrogen peroxide (H2 O2 ) and nitric oxide (NO) synthesis associated with stomatal closure, which was abolished in the NADPH oxidase-deficient mutants or nitric reductase mutants, respectively. Collectively, our results reveal a novel ABA-dependent function of CLE9 in the regulation of stomatal apertures, thereby suggesting a potential role of CLE9 in the stress acclimatization of plants.
Collapse
Affiliation(s)
- Luosha Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiong Shi
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yutao Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jiajing Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jingwei Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Takashi Ishida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, 860-8555, Japan
| | - Wenqian Jiang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xiangyu Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Jingke Kang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Xuening Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Lixia Pan
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shuo Lv
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Bing Cao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Yonghong Zhang
- Laboratory of Medicinal Plant, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, China
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen University, 6708PB, Wageningen, The Netherlands
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, 3400, Austria
| | - Zhubing Hu
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, 475001, China
| | - Langjun Cui
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Junmin He
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Guodong Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
56
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
57
|
G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem J 2018; 475:3331-3357. [PMID: 30413679 DOI: 10.1042/bcj20160819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 12/15/2022]
Abstract
Heterotrimeric G proteins composed of Gα, Gβ, and Gγ subunits are vital eukaryotic signaling elements that convey information from ligand-regulated G protein-coupled receptors (GPCRs) to cellular effectors. Heterotrimeric G protein-based signaling pathways are fundamental to human health [Biochimica et Biophysica Acta (2007) 1768, 994-1005] and are the target of >30% of pharmaceuticals in clinical use [Biotechnology Advances (2013) 31, 1676-1694; Nature Reviews Drug Discovery (2017) 16, 829-842]. This review focuses on phosphorylation of G protein subunits as a regulatory mechanism in mammals, budding yeast, and plants. This is a re-emerging field, as evidence for phosphoregulation of mammalian G protein subunits from biochemical studies in the early 1990s can now be complemented with contemporary phosphoproteomics and genetic approaches applied to a diversity of model systems. In addition, new evidence implicates a family of plant kinases, the receptor-like kinases, which are monophyletic with the interleukin-1 receptor-associated kinase/Pelle kinases of metazoans, as possible GPCRs that signal via subunit phosphorylation. We describe early and modern observations on G protein subunit phosphorylation and its functional consequences in these three classes of organisms, and suggest future research directions.
Collapse
|
58
|
Di Ruocco G, Di Mambro R, Dello Ioio R. Building the differences: a case for the ground tissue patterning in plants. Proc Biol Sci 2018; 285:20181746. [PMID: 30404875 PMCID: PMC6235038 DOI: 10.1098/rspb.2018.1746] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/12/2018] [Indexed: 01/03/2023] Open
Abstract
A key question in biology is to understand how interspecies morphological diversities originate. Plant roots present a huge interspecific phenotypical variability, mostly because roots largely contribute to adaptation to different kinds of soils. One example is the interspecific cortex layer number variability, spanning from one to several. Here, we review the latest advances in the understanding of the mechanisms expanding and/or restricting cortical layer number in Arabidopsis thaliana and their involvement in cortex pattern variability among multi-cortical layered species such as Cardamine hirsuta or Oryza sativa.
Collapse
Affiliation(s)
- Giovanna Di Ruocco
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| | - Riccardo Di Mambro
- Dipartimento di Biologia, Università di Pisa, via Luca Ghini, 13-56126 Pisa, Italy
| | - Raffaele Dello Ioio
- Laboratory of Functional Genomics and Proteomics of Model Systems, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Via dei Sardi 70, 00185 Rome, Italy
| |
Collapse
|
59
|
Pierre-Jerome E, Drapek C, Benfey PN. Regulation of Division and Differentiation of Plant Stem Cells. Annu Rev Cell Dev Biol 2018; 34:289-310. [PMID: 30134119 DOI: 10.1146/annurev-cellbio-100617-062459] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A major challenge in developmental biology is unraveling the precise regulation of plant stem cell maintenance and the transition to a fully differentiated cell. In this review, we highlight major themes coordinating the acquisition of cell identity and subsequent differentiation in plants. Plant cells are immobile and establish position-dependent cell lineages that rely heavily on external cues. Central players are the hormones auxin and cytokinin, which balance cell division and differentiation during organogenesis. Transcription factors and miRNAs, many of which are mobile in plants, establish gene regulatory networks that communicate cell position and fate. Small peptide signaling also provides positional cues as new cell types emerge from stem cell division and progress through differentiation. These pathways recruit similar players for patterning different organs, emphasizing the modular nature of gene regulatory networks. Finally, we speculate on the outstanding questions in the field and discuss how they may be addressed by emerging technologies.
Collapse
Affiliation(s)
- Edith Pierre-Jerome
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| | - Colleen Drapek
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| | - Philip N Benfey
- Department of Biology and Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
60
|
Dotson BR, Soltan D, Schmidt J, Areskoug M, Rabe K, Swart C, Widell S, Rasmusson AG. The antibiotic peptaibol alamethicin from Trichoderma permeabilises Arabidopsis root apical meristem and epidermis but is antagonised by cellulase-induced resistance to alamethicin. BMC PLANT BIOLOGY 2018; 18:165. [PMID: 30097019 PMCID: PMC6086028 DOI: 10.1186/s12870-018-1370-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/25/2018] [Indexed: 05/08/2023]
Abstract
BACKGROUND Trichoderma fungi live in the soil rhizosphere and are beneficial for plant growth and pathogen resistance. Several species and strains are currently used worldwide in co-cultivation with crops as a biocontrol alternative to chemical pesticides even though little is known about the exact mechanisms of the beneficial interaction. We earlier found alamethicin, a peptide antibiotic secreted by Trichoderma, to efficiently permeabilise cultured tobacco cells. However, pre-treatment with Trichoderma cellulase made the cells resistant to subsequent alamethicin, suggesting a potential mechanism for plant tolerance to Trichoderma, needed for mutualistic symbiosis. RESULTS We here investigated intact sterile-grown Arabidopsis thaliana seedlings germinated in water or growth medium. These could be permeabilised by alamethicin but not if pretreated with cellulase. By following the fluorescence from the membrane-impermeable DNA-binding probe propidium iodide, we found alamethicin to mainly permeabilise root tips, especially the apical meristem and epidermis cells, but not the root cap and basal meristem cells nor cortex cells. Alamethicin permeabilisation and cellulase-induced resistance were confirmed by developing a quantitative in situ assay based on NADP-isocitrate dehydrogenase accessibility. The combined assays also showed that hyperosmotic treatment after the cellulase pretreatment abolished the induced cellulase resistance. CONCLUSION We here conclude the presence of cell-specific alamethicin permeabilisation, and cellulase-induced resistance to it, in root tip apical meristem and epidermis of the model organism A. thaliana. We suggest that contact between the plasma membrane and the cell wall is needed for the resistance to remain. Our results indicate a potential mode for the plant to avoid negative effects of alamethicin on plant growth and localises the point of potential damage and response. The results also open up for identification of plant genetic components essential for beneficial effects from Trichoderma on plants.
Collapse
Affiliation(s)
- Bradley R. Dotson
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Dia Soltan
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: Botany Department, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - John Schmidt
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: MariboHilleshög AB, Säbyholmsvägen 24, 261 91 Landskrona, Sweden
| | - Mariam Areskoug
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Kenny Rabe
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: Institute of Natural Materials Technology, Technische Universität Dresden, Bergstraße 120, 01069 Dresden, Germany
| | - Corné Swart
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
- Present Address: Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Susanne Widell
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| | - Allan G. Rasmusson
- Department of Biology, Lund University, Sölvegatan 35B, 223 62 Lund, Sweden
| |
Collapse
|
61
|
Whitewoods CD, Cammarata J, Nemec Venza Z, Sang S, Crook AD, Aoyama T, Wang XY, Waller M, Kamisugi Y, Cuming AC, Szövényi P, Nimchuk ZL, Roeder AHK, Scanlon MJ, Harrison CJ. CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants. Curr Biol 2018; 28:2365-2376.e5. [PMID: 30033333 PMCID: PMC6089843 DOI: 10.1016/j.cub.2018.05.068] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/10/2018] [Accepted: 05/23/2018] [Indexed: 11/24/2022]
Abstract
How genes shape diverse plant and animal body forms is a key question in biology. Unlike animal cells, plant cells are confined by rigid cell walls, and cell division plane orientation and growth rather than cell movement determine overall body form. The emergence of plants on land coincided with a new capacity to rotate stem cell divisions through multiple planes, and this enabled three-dimensional (3D) forms to arise from ancestral forms constrained to 2D growth. The genes involved in this evolutionary innovation are largely unknown. The evolution of 3D growth is recapitulated during the development of modern mosses when leafy shoots arise from a filamentous (2D) precursor tissue. Here, we show that a conserved, CLAVATA peptide and receptor-like kinase pathway originated with land plants and orients stem cell division planes during the transition from 2D to 3D growth in a moss, Physcomitrella. We find that this newly identified role for CLAVATA in regulating cell division plane orientation is shared between Physcomitrella and Arabidopsis. We report that roles for CLAVATA in regulating cell proliferation and cell fate are also shared and that CLAVATA-like peptides act via conserved receptor components in Physcomitrella. Our results suggest that CLAVATA was a genetic novelty enabling the morphological innovation of 3D growth in land plants.
Collapse
Affiliation(s)
- Chris D Whitewoods
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK
| | - Joseph Cammarata
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK; Plant Biology Section, School of Integrative Plant Science, Cornell University, Tower Road, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Zoe Nemec Venza
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Stephanie Sang
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Ashley D Crook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tsuyoshi Aoyama
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK; School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Xiao Y Wang
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Yasuko Kamisugi
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew C Cuming
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrienne H K Roeder
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Tower Road, Ithaca, NY 14853, USA; Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Tower Road, Ithaca, NY 14853, USA
| | - C Jill Harrison
- Plant Sciences Department, Cambridge University, Downing Street, Cambridge CB2 3EA, UK; School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
62
|
Gutiérrez-Alanís D, Ojeda-Rivera JO, Yong-Villalobos L, Cárdenas-Torres L, Herrera-Estrella L. Adaptation to Phosphate Scarcity: Tips from Arabidopsis Roots. TRENDS IN PLANT SCIENCE 2018; 23:721-730. [PMID: 29764728 DOI: 10.1016/j.tplants.2018.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 05/21/2023]
Abstract
Phosphorus (P) availability is a limiting factor for plant growth and development. Root tip contact with low Pi media triggers diverse changes in the root architecture of Arabidopsis thaliana. The most conspicuous among these modifications is the inhibition of root growth, which is triggered by a shift from an indeterminate to a determinate root growth program. This phenomenon takes place in the root tip and involves a reduction in cell elongation, a decrease in cell proliferation, and the induction of premature cell differentiation, resulting in meristem exhaustion. Here, we review recent findings in the root response of A. thaliana to low Pi availability and discuss the cellular and genetic basis of the inhibition of root growth in Pi-deprived seedlings.
Collapse
Affiliation(s)
- Dolores Gutiérrez-Alanís
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México; These authors contributed equally to this manuscript
| | - Jonathan Odilón Ojeda-Rivera
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México; These authors contributed equally to this manuscript
| | - Lenin Yong-Villalobos
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México
| | - Luis Cárdenas-Torres
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, 62250, Morelos, México
| | - Luis Herrera-Estrella
- Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) del Centro de Investigación y Estudios Avanzados, Km. 9.6 Libramiento Norte Carr. Irapuato-León, 36821, Irapuato, Guanajuato, México.
| |
Collapse
|
63
|
Anne P, Amiguet-Vercher A, Brandt B, Kalmbach L, Geldner N, Hothorn M, Hardtke CS. CLERK is a novel receptor kinase required for sensing of root-active CLE peptides in Arabidopsis. Development 2018; 145:145/10/dev162354. [PMID: 29789310 PMCID: PMC6001375 DOI: 10.1242/dev.162354] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/30/2018] [Indexed: 01/21/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are secreted endogenous plant ligands that are sensed by receptor kinases (RKs) to convey environmental and developmental inputs. Typically, this involves an RK with narrow ligand specificity that signals together with a more promiscuous co-receptor. For most CLEs, biologically relevant (co-)receptors are unknown. The dimer of the receptor-like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) conditions perception of so-called root-active CLE peptides, the exogenous application of which suppresses root growth by preventing protophloem formation in the meristem. clv2 as well as crn null mutants are resistant to root-active CLE peptides, possibly because CLV2-CRN promotes expression of their cognate receptors. Here, we have identified the CLE-RESISTANT RECEPTOR KINASE (CLERK) gene, which is required for full sensing of root-active CLE peptides in early developing protophloem. CLERK protein can be replaced by its close homologs, SENESCENCE-ASSOCIATED RECEPTOR-LIKE KINASE (SARK) and NSP-INTERACTING KINASE 1 (NIK1). Yet neither CLERK nor NIK1 ectodomains interact biochemically with described CLE receptor ectodomains. Consistently, CLERK also acts genetically independently of CLV2-CRN We, thus, have discovered a novel hub for redundant CLE sensing in the root.
Collapse
Affiliation(s)
- Pauline Anne
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Amelia Amiguet-Vercher
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Lothar Kalmbach
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
64
|
Wang C, Yang H, Chen L, Yang S, Hua D, Wang J. Truncated BAM receptors interfere the apical meristematic activity in a dominant negative manner when ectopically expressed in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:20-31. [PMID: 29606214 DOI: 10.1016/j.plantsci.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 06/08/2023]
Abstract
Small, secreted signaling peptides that are perceived by receptor-like kinases (RLKs) constitute an important regulatory mechanism in plant organ formation and stem cell maintenance. However, functional redundancy at the level of both ligand and receptor families often makes it difficult to clearly discern the role of individual members by a genetic approach. Here, we show that driven by a constitutive CaMV 35S promoter, a truncated BAM protein (BAMΔ) that lacks either the signal peptide (SP) or the cytoplasmic kinase (Ki) domain could cause defective shoot apical meristem (SAM) maintenance, which phenotypically resembled the triple bam mutant. Such a dominant-negative effect could also be achieved when the same transgene was driven by the native AtBAM1 promoter, but not by the CLV1 promoter. When introduced into a clv1-4 background, BAMΔ proteins abolished the typical clv phenotype by suppressing the transcriptional level of clv1-4. In addition to a clear reduction in root length and a decreased number of meristematic cells, the 35S:BAMΔ transgenic seedlings exhibited considerable resistance to CLE40p- but not to CLV3p-mediated root growth inhibition, implying that BAMs play key roles in the regulation of proximal meristem activity in root through CLE40 peptide. Findings present here not only provide evidence that truncated BAM proteins are strongly dominant negative in regulating apical meristem development but also propose that expression of a truncated version of plant LRR receptor kinase could potentially be used as a powerful tool to reveal its in vivo function in signal transduction.
Collapse
Affiliation(s)
- Caili Wang
- School of Environmental Science and Engineerin, Tianjin University, Tianjin 300072, China
| | - Heyu Yang
- School of Environmental Science and Engineerin, Tianjin University, Tianjin 300072, China
| | - Lincai Chen
- School of Environmental Science and Engineerin, Tianjin University, Tianjin 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineerin, Tianjin University, Tianjin 300072, China
| | - Deping Hua
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineerin, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
65
|
Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. eLife 2018; 7:35673. [PMID: 29543153 DOI: 10.7554/elife.35673.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/21/2018] [Indexed: 05/29/2023] Open
Abstract
Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA (CLV) and WUSCHEL (WUS) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins.
Collapse
Affiliation(s)
- Byoung Il Je
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
- Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Fang Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Qingyu Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Robert Meeley
- DuPont Pioneer, Agricultural Biotechnology, Johnston, United States
| | | | | | | | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
66
|
Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D. The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. eLife 2018. [PMID: 29543153 PMCID: PMC5854466 DOI: 10.7554/elife.35673] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA (CLV) and WUSCHEL (WUS) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins.
Collapse
Affiliation(s)
- Byoung Il Je
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States.,Department of Horticultural Bioscience, College of Natural Resource and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Fang Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Qingyu Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| | - Robert Meeley
- DuPont Pioneer, Agricultural Biotechnology, Johnston, United States
| | | | | | | | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
| |
Collapse
|
67
|
Kimura Y, Tasaka M, Torii KU, Uchida N. ERECTA-family genes coordinate stem cell functions between the epidermal and internal layers of the shoot apical meristem. Development 2018; 145:dev.156380. [PMID: 29217754 DOI: 10.1242/dev.156380] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/20/2017] [Indexed: 01/20/2023]
Abstract
The epidermal cell layer and the tissues that lie underneath have different intrinsic functions during plant development. The stem cells within the shoot apical meristem (SAM) that give rise to aerial structures are located in the epidermal and internal tissue layers. However, our understanding of how the functions of these stem cells are coordinated across tissue layers so stem cells can behave as a single population remains limited. WUSCHEL (WUS) functions as a master regulator of stem cell activity. Here, we show that loss of function in the ERECTA (ER)-family receptor kinase genes can rescue the mutant phenotype of wus plants (loss of stem cells), as demonstrated by the reinstated expression of a stem cell marker gene in the SAM epidermis. Localized ER expression in the epidermis can suppress the SAM phenotype caused by loss of ER-family activity. Furthermore, the CLAVATA3- and cytokinin-induced outputs, which contribute to stem cell homeostasis, are dysfunctional in a tissue layer-specific manner in ER-family mutants. Collectively, our findings suggest that the ER family plays a role in the coordination of stem cell behavior between different SAM tissue layers.
Collapse
Affiliation(s)
- Yuka Kimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan .,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.,Department of Biology, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Naoyuki Uchida
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan .,Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| |
Collapse
|
68
|
Hayashi N, Tetsumura T, Sawa S, Wada T, Tominaga-Wada R. CLE14 peptide signaling in Arabidopsis root hair cell fate determination. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:17-22. [PMID: 31275033 PMCID: PMC6543736 DOI: 10.5511/plantbiotechnology.18.0122a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/22/2018] [Indexed: 05/11/2023]
Abstract
Morphological adjustment is a critical strategy for the survival of plant species in various environments. The CLE (CLAVATA3/EMBRYO SURROUNDING REGION) family of plant polypeptides is known to play important roles in various physiological and developmental processes and the relevant signaling pathways are conserved in diverse land plants. Previously, it has been suggested that overexpression of CLE14 promotes root hair cell differentiation in Arabidopsis roots. To clarify this suggested function of CLE14 peptide on root hair induction, we examined the effect of synthetic CLE14 peptide on Arabidopsis root hair development. Consistent with the results of previous overexpression analyses of CLE14, we demonstrated that application of synthetic CLE14 peptide induced excess root hair formation on CLE14-treated Arabidopsis roots. In addition, CLE14 reduced the expression of the non-hair cell fate determinant gene, GLABRA2. Our results thus indicate that CLE14 can activate the transcriptional regulatory cascade of root hair formation.
Collapse
Affiliation(s)
- Naoto Hayashi
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Takuya Tetsumura
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Takuji Wada
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Rumi Tominaga-Wada
- Graduate School of Biosphere Sciences, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
- E-mail: Tel: +81-82-424-7966 Fax: +81-82-424-7966
| |
Collapse
|
69
|
A Common Pathway of Root Growth Control and Response to CLE Peptides Through Two Receptor Kinases in Arabidopsis. Genetics 2017; 208:687-704. [PMID: 29187505 DOI: 10.1534/genetics.117.300148] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
Cell-cell communication is essential for plants to integrate developmental programs with external cues that affect their growth. Recent advances in plant signaling have uncovered similar molecular mechanisms in shoot, root, and vascular meristem signaling that involve receptor-like kinases and small, secreted peptides. Here, we report that the receptor-like kinases TOAD2/RPK2 and RPK1 regulate root growth by controlling cell proliferation and affecting meristem size. Two types of developmental alterations were observed upon exogenous CLE peptide application. The first type was detected in all plants treated, and comprise increased proliferative activity of cells in the stem cell niche and a delay of progression in differentiation of daughter cells. The second type was changes specific to the genotypes that are sensitive to CLE-driven root meristem inhibition and include a large decrease in the occurrence of cell divisions in longitudinal files, correlating with shorter meristems and cessation of root growth. The root meristems of toad2/rpk2 mutant plants are insensitive to the inhibitory effect of CLE17 peptide treatment, consistent with TOAD2/RPK2 function as a receptor for CLE peptides. In addition, a strong reduction in the expression of RPK1 protein upon CLE treatment, dependent on TOAD2/RPK2, suggests that these two RLKs mediate CLE signaling in a common pathway to control root growth.
Collapse
|
70
|
Corcilius L, Hastwell AH, Zhang M, Williams J, Mackay JP, Gresshoff PM, Ferguson BJ, Payne RJ. Arabinosylation Modulates the Growth-Regulating Activity of the Peptide Hormone CLE40a from Soybean. Cell Chem Biol 2017; 24:1347-1355.e7. [PMID: 28943356 DOI: 10.1016/j.chembiol.2017.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/05/2017] [Accepted: 08/15/2017] [Indexed: 11/21/2022]
Abstract
Small post-translationally modified peptide hormones mediate crucial developmental and regulatory processes in plants. CLAVATA/ENDOSPERM-SURROUNDING REGION (CLE) genes are found throughout the plant kingdom and encode for 12-13 amino acid peptides that must often undergo post-translational proline hydroxylation and glycosylation with O-β1,2-triarabinose moieties before they become functional. Apart from a few recent examples, a detailed understanding of the structure and function of most CLE hormones is yet to be uncovered. This is mainly owing to difficulties in isolating mature homogeneously modified CLE peptides from natural plant sources. In this study, we describe the efficient synthesis of a synthetic Araf3Hyp glycosylamino acid building block that was used to access a hitherto uninvestigated CLE hormone from soybean called GmCLE40a. Through the development and implementation of a novel in vivo root growth assay, we show that the synthetic triarabinosylated glycopeptide suppresses primary root growth in this important crop species.
Collapse
Affiliation(s)
- Leo Corcilius
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - April H Hastwell
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Mengbai Zhang
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - James Williams
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Richard J Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
71
|
Wang S, Lu J, Song XF, Ren SC, You C, Xu J, Liu CM, Ma H, Chang F. Cytological and Transcriptomic Analyses Reveal Important Roles of CLE19 in Pollen Exine Formation. PLANT PHYSIOLOGY 2017; 175:1186-1202. [PMID: 28916592 PMCID: PMC5664459 DOI: 10.1104/pp.17.00439] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/12/2017] [Indexed: 05/04/2023]
Abstract
The CLAVATA3/ESR-RELATED (CLE) peptide signals are required for cell-cell communication in several plant growth and developmental processes. However, little is known regarding the possible functions of the CLEs in the anther. Here, we show that a T-DNA insertional mutant, and dominant-negative (DN) and overexpression (OX) transgenic plants of the CLE19 gene, exhibited significantly reduced anther size and pollen grain number and abnormal pollen wall formation in Arabidopsis (Arabidopsis thaliana). Interestingly, the DN-CLE19 pollen grains showed a more extensively covered surface, but CLE19-OX pollen exine exhibited clearly missing connections in the network and lacked separation between areas that normally form the lacunae. With a combination of cell biological, genetic, and transcriptomic analyses on cle19, DN-CLE19, and CLE19-OX plants, we demonstrated that CLE19-OX plants produced highly vacuolated and swollen aborted microspores (ams)-like tapetal cells, lacked lipidic tapetosomes and elaioplasts, and had abnormal pollen primexine without obvious accumulation of sporopollenin precursors. Moreover, CLE19 is important for the normal expression of more than 1,000 genes, including the transcription factor gene AMS, 280 AMS-downstream genes, and other genes involved in pollen coat and pollen exine formation, lipid metabolism, pollen germination, and hormone metabolism. In addition, the DN-CLE19(+/+) ams(-/-) plants exhibited the ams anther phenotype and ams(+/-) partially suppressed the DN-CLE19 transgene-induced pollen exine defects. These findings demonstrate that the proper amount of CLE19 signal is essential for the normal expression of AMS and its downstream gene networks in the regulation of anther development and pollen exine formation.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shi-Chao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jie Xu
- Collaborative Innovation Center for Genetics and Development, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
72
|
Lindsey BE, Rivero L, Calhoun CS, Grotewold E, Brkljacic J. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds. J Vis Exp 2017. [PMID: 29155739 PMCID: PMC5752416 DOI: 10.3791/56587] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and inexpensive seed sterilization for a large number of Arabidopsis lines.
Collapse
Affiliation(s)
- Benson E Lindsey
- Arabidopsis Biological Resource Center, Center for Applied Plant Sciences, The Ohio State University
| | - Luz Rivero
- Arabidopsis Biological Resource Center, Center for Applied Plant Sciences, The Ohio State University
| | - Chistopher S Calhoun
- Arabidopsis Biological Resource Center, Center for Applied Plant Sciences, The Ohio State University
| | - Erich Grotewold
- Arabidopsis Biological Resource Center, Center for Applied Plant Sciences, The Ohio State University; Department of Molecular Genetics, Center for Applied Plant Sciences, The Ohio State University
| | - Jelena Brkljacic
- Arabidopsis Biological Resource Center, Center for Applied Plant Sciences, The Ohio State University;
| |
Collapse
|
73
|
Busatto N, Salvagnin U, Resentini F, Quaresimin S, Navazio L, Marin O, Pellegrini M, Costa F, Mierke DF, Trainotti L. The Peach RGF/GLV Signaling Peptide pCTG134 Is Involved in a Regulatory Circuit That Sustains Auxin and Ethylene Actions. FRONTIERS IN PLANT SCIENCE 2017; 8:1711. [PMID: 29075273 PMCID: PMC5641559 DOI: 10.3389/fpls.2017.01711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
In vascular plants the cell-to-cell interactions coordinating morphogenetic and physiological processes are mediated, among others, by the action of hormones, among which also short mobile peptides were recognized to have roles as signals. Such peptide hormones (PHs) are involved in defense responses, shoot and root growth, meristem homeostasis, organ abscission, nutrient signaling, hormone crosstalk and other developmental processes and act as both short and long distant ligands. In this work, the function of CTG134, a peach gene encoding a ROOT GROWTH FACTOR/GOLVEN-like PH expressed in mesocarp at the onset of ripening, was investigated for its role in mediating an auxin-ethylene crosstalk. In peach fruit, where an auxin-ethylene crosstalk mechanism is necessary to support climacteric ethylene synthesis, CTG134 expression peaked before that of ACS1 and was induced by auxin and 1-methylcyclopropene (1-MCP) treatments, whereas it was minimally affected by ethylene. In addition, the promoter of CTG134 fused with the GUS reporter highlighted activity in plant parts in which the auxin-ethylene interplay is known to occur. Arabidopsis and tobacco plants overexpressing CTG134 showed abnormal root hair growth, similar to wild-type plants treated with a synthetic form of the sulfated peptide. Moreover, in tobacco, lateral root emergence and capsule size were also affected. In Arabidopsis overexpressing lines, molecular surveys demonstrated an impaired hormonal crosstalk, resulting in a re-modulated expression of a set of genes involved in both ethylene and auxin synthesis, transport and perception. These data support the role of pCTG134 as a mediator in an auxin-ethylene regulatory circuit and open the possibility to exploit this class of ligands for the rational design of new and environmental friendly agrochemicals able to cope with a rapidly changing environment.
Collapse
Affiliation(s)
- Nicola Busatto
- Department of Biology, University of Padova, Padova, Italy
- Department of Genomics and Crop Biology, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | | | | | | | | | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Pellegrini
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | - Fabrizio Costa
- Department of Genomics and Crop Biology, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
| | - Dale F. Mierke
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
74
|
Kim HJ, Wu CY, Yu HM, Sheen J, Lee H. Dual CLAVATA3 Peptides in Arabidopsis Shoot Stem Cell Signaling. JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2017; 60:506-512. [PMID: 30310351 PMCID: PMC6176727 DOI: 10.1007/s12374-017-0083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant shoot stem cell pool is constantly maintained by a negative feedback loop through peptide-receptor mediated signaling pathway. CLAVATA3 (CLV3) encode a 96 amino-acid protein which is processed to 12-amino-acid or arabinosylated 13-amino-acid peptides, acting as a ligand signal to regulate stem cell homeostasis in the shoot apical meristem (SAM). Although arabinosylated 13-amino-acid CLV3 peptide (CLV3p) shows more significant binding affinity to its receptors and biological activities in the SAM, the physiological function of two mature forms of CLV3p remained an unresolved puzzle in the past decade due to the technical difficulties of arabinosylation modification in the peptide synthesis. Here, we analyzed the role of two mature CLV3 peptides with newly synthesized arabinosylated peptide. Beside shoot meristem phenotypes, arabinosylated CLV3p showed the conventional trait of CLV2-dependent root growth inhibition. Moreover, both 12-amino-acid and arabinosylated 13-amino-acid CLV3 peptides have analogous activities in shoot stem cell signaling. Notably, we demonstrated that non-arabinosylated 12-amino acid CLV3p can affect shoot stem cell signaling at the physiological level unlike previously suggested (Ohyama et al., 2009; Shinohara and Matsubayashi, 2013; Shinohara and Matsubayashi, 2015). Therefore, these results support the physiological role of the 12-amino-acid CLV3p in shoot stem cell signaling in the deficient condition of arabinosylated 13-amino-acid CLV3p in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hyeon-Ji Kim
- Department of Pre-PharmMed, College of Natural Sciences, Duksung Women’s University, Seoul 01369, South Korea
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Hui-Ming Yu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Massachusetts 02114, USA
- To whom correspondence should be addressed. Horim Lee, Tel: +82-2-901-8753, ;
| | - Horim Lee
- Department of Pre-PharmMed, College of Natural Sciences, Duksung Women’s University, Seoul 01369, South Korea
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Massachusetts 02114, USA
- To whom correspondence should be addressed. Horim Lee, Tel: +82-2-901-8753, ;
| |
Collapse
|
75
|
Abstract
Shoot meristems are maintained by pluripotent stem cells that are controlled by CLAVATA-WUSCHEL feedback signaling. This pathway, which coordinates stem cell proliferation with differentiation, was first identified in Arabidopsis, but appears to be conserved in diverse higher plant species. In this Review, we highlight the commonalities and differences between CLAVATA-WUSCHEL pathways in different species, with an emphasis on Arabidopsis, maize, rice and tomato. We focus on stem cell control in shoot meristems, but also briefly discuss the role of these signaling components in root meristems.
Collapse
Affiliation(s)
- Marc Somssich
- Heinrich-Heine-University, Düsseldorf D-40225, Germany
| | - Byoung Il Je
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Rüdiger Simon
- Heinrich-Heine-University, Düsseldorf D-40225, Germany
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
76
|
Ezura K, Ji-Seong K, Mori K, Suzuki Y, Kuhara S, Ariizumi T, Ezura H. Genome-wide identification of pistil-specific genes expressed during fruit set initiation in tomato (Solanum lycopersicum). PLoS One 2017; 12:e0180003. [PMID: 28683065 PMCID: PMC5500324 DOI: 10.1371/journal.pone.0180003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/07/2017] [Indexed: 11/19/2022] Open
Abstract
Fruit set involves the developmental transition of an unfertilized quiescent ovary in the pistil into a fruit. While fruit set is known to involve the activation of signals (including various plant hormones) in the ovary, many biological aspects of this process remain elusive. To further expand our understanding of this process, we identified genes that are specifically expressed in tomato (Solanum lycopersicum L.) pistils during fruit set through comprehensive RNA-seq-based transcriptome analysis using 17 different tissues including pistils at six different developmental stages. First, we identified 532 candidate genes that are preferentially expressed in the pistil based on their tissue-specific expression profiles. Next, we compared our RNA-seq data with publically available transcriptome data, further refining the candidate genes that are specifically expressed within the pistil. As a result, 108 pistil-specific genes were identified, including several transcription factor genes that function in reproductive development. We also identified genes encoding hormone-like peptides with a secretion signal and cysteine-rich residues that are conserved among some Solanaceae species, suggesting that peptide hormones may function as signaling molecules during fruit set initiation. This study provides important information about pistil-specific genes, which may play specific roles in regulating pistil development in relation to fruit set.
Collapse
Affiliation(s)
- Kentaro Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kim Ji-Seong
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuki Mori
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yutaka Suzuki
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Satoru Kuhara
- Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
77
|
Hazak O, Brandt B, Cattaneo P, Santiago J, Rodriguez-Villalon A, Hothorn M, Hardtke CS. Perception of root-active CLE peptides requires CORYNE function in the phloem vasculature. EMBO Rep 2017; 18:1367-1381. [PMID: 28607033 PMCID: PMC5538625 DOI: 10.15252/embr.201643535] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 12/03/2022] Open
Abstract
Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor‐like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root‐active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co‐receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3‐mediated CLE45 signaling. Moreover, protophloem‐specific CRN expression complements resistance of the crn mutant to root‐active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.
Collapse
Affiliation(s)
- Ora Hazak
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Pietro Cattaneo
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Julia Santiago
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | | | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
78
|
Phosphate Starvation-Dependent Iron Mobilization Induces CLE14 Expression to Trigger Root Meristem Differentiation through CLV2/PEPR2 Signaling. Dev Cell 2017; 41:555-570.e3. [DOI: 10.1016/j.devcel.2017.05.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/02/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
|
79
|
Nimchuk ZL. CLAVATA1 controls distinct signaling outputs that buffer shoot stem cell proliferation through a two-step transcriptional compensation loop. PLoS Genet 2017; 13:e1006681. [PMID: 28355208 PMCID: PMC5371295 DOI: 10.1371/journal.pgen.1006681] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
The regulation of stem cell proliferation in plants is controlled by intercellular signaling pathways driven by the diffusible CLAVATA3 (CLV3p) peptide. CLV3p perception is thought to be mediated by an overlapping array of receptors in the stem cell niche including the transmembrane receptor kinase CLV1, Receptor-Like Protein Kinase 2 (RPK2), and a dimer of the receptor-like protein CLV2 and the CORYNE (CRN) pseudokinase. Mutations in these receptors have qualitatively similar effects on stem cell function but it is unclear if this represents common or divergent signaling outputs. Previous work in heterologous systems has suggested that CLV1, RPK2 and CLV2/CRN could form higher order complexes but it is also unclear what relevance these putative complexes have to in vivo receptor functions. Here I use the in vivo regulation of a specific transcriptional target of CLV1 signaling in Arabidopsis to demonstrate that, despite the phenotypic similarities between the different receptor mutants, CLV1 controls distinct signaling outputs in living stem cell niches independent of other receptors. This regulation is separable from stem cell proliferation driven by WUSCHEL, a proposed common transcriptional target of CLV3p signaling. In addition, in the absence of CLV1, CLV1-related receptor kinases are ectopically expressed but also buffer stem cell proliferation through the auto-repression of their own expression. Collectively these data reveal a unique in vivo role for CLV1 separable from other stem cell receptors and provides a framework for dissecting the signaling outputs in stem cell regulation. The proliferation of plant stem cells in above ground tissues is controlled by a suite of receptors in response to the CLAVATA3 peptide ligand. Receptor signaling in response to CLAVATA3 prevents over-proliferation of stem cells. It is unclear what the functional relationship is between the proposed CLAVATA3 receptors or if they impact common signaling outputs. Here I demonstrate that CLAVATA1 signals independently of the other receptors kinases to control distinct transcriptional outputs independent of stem cell proliferation. Stem cell proliferation is buffered by a two-step mechanism which transcriptionally regulates receptor levels in the stem cell niche. This mechanism helps explain the strict control of stem cell proliferation and could provide new avenues for improving plant growth.
Collapse
Affiliation(s)
- Zachary L. Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
80
|
Abstract
Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase family (approximately 5% of the protein coding genes), although the specific function for only a few dozen of these kinases is clearly established. Recent comparative genomics studies have revealed that parasitic nematodes and pathogenic microbes produce plant peptide hormone mimics that target specific plant plasma membrane receptor-like protein kinases, thus usurping endogenous signaling pathways for their own pathogenic purposes. With biochemical, genetic, and physiological analyses of the regulation of hormone receptor signal pathways, we are thus just now beginning to understand how plants optimize the development of their body shape and cope with constantly changing environmental conditions.
Collapse
Affiliation(s)
- Miyoshi Haruta
- University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
81
|
Araya T, von Wirén N, Takahashi H. CLE peptide signaling and nitrogen interactions in plant root development. PLANT MOLECULAR BIOLOGY 2016; 91:607-615. [PMID: 26994997 DOI: 10.1007/s11103-016-0472-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
The CLAVATA signaling pathway is essential for the regulation of meristem activities in plants. This signaling pathway consists of small signaling peptides of the CLE family interacting with CLAVATA1 and leucine-rich repeat receptor-like kinases (LRR-RLKs). The peptide-receptor relationships determine the specificities of CLE-dependent signals controlling stem cell fate and differentiation that are critical for the establishment and maintenance of shoot and root apical meristems. Plants root systems are highly organized into three-dimensional structures for successful anchoring and uptake of water and mineral nutrients from the soil environment. Recent studies have provided evidence that CLE peptides and CLAVATA signaling pathways play pivotal roles in the regulation of lateral root development and systemic autoregulation of nodulation (AON) integrated with nitrogen (N) signaling mechanisms. Integrations of CLE and N signaling pathways through shoot-root vascular connections suggest that N demand modulates morphological control mechanisms and optimize N uptake as well as symbiotic N fixation in roots.
Collapse
Affiliation(s)
- Takao Araya
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, 06466, Gatersleben, Germany
| | - Hideki Takahashi
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Road, East Lansing, MI, 48824, USA.
| |
Collapse
|
82
|
Somssich M, Bleckmann A, Simon R. Shared and distinct functions of the pseudokinase CORYNE (CRN) in shoot and root stem cell maintenance of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4901-15. [PMID: 27229734 PMCID: PMC4983110 DOI: 10.1093/jxb/erw207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stem cell maintenance in plants depends on the activity of small secreted signaling peptides of the CLAVATA3/EMBRYO SURROUNDING REGION (CLE) family, which, in the shoot, act through at least three kinds of receptor complexes, CLAVATA1 (CLV1) homomers, CLAVATA2 (CLV2) / CORYNE (CRN) heteromers, and CLV1/CLV2/CRN multimers. In the root, the CLV2/CRN receptor complexes function in the proximal meristem to transmit signals from the CLE peptide CLE40. While CLV1 consists of an extracellular receptor domain and an intracellular kinase domain, CLV2, a leucine-rich repeat (LRR) receptor-like protein, and CRN, a protein kinase, have to interact to form a receptor-kinase complex. The kinase domain of CRN has been reported to be catalytically inactive, and it is not yet known how the CLV2/CRN complex can relay the perceived signal into the cells, and whether the kinase domain is necessary for signal transduction at all. In this study we show that the kinase domain of CRN is actively involved in CLV3 signal transduction in the shoot apical meristem of Arabidopsis, but it is dispensable for CRN protein function in root meristem maintenance. Hence, we provide an example of a catalytically inactive pseudokinase that is involved in two homologous pathways, but functions in distinctively different ways in each of them.
Collapse
Affiliation(s)
- Marc Somssich
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andrea Bleckmann
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
83
|
Yamaguchi YL, Ishida T, Sawa S. CLE peptides and their signaling pathways in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4813-26. [PMID: 27229733 DOI: 10.1093/jxb/erw208] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell-to-cell communication is crucial for the coherent functioning of multicellular organisms, and they have evolved intricate molecular mechanisms to achieve such communication. Small, secreted peptide hormones participate in cell-to-cell communication to regulate various physiological processes. One such family of plant peptide hormones is the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) family, whose members play crucial roles in the differentiation of shoot and root meristems. Recent biochemical and genetic studies have characterized various CLE signaling modules, which include CLE peptides, transmembrane receptors, and downstream intracellular signaling components. CLE signaling systems are conserved across the plant kingdom but have divergent modes of action in various developmental processes in different species. Moreover, several CLE peptides play roles in symbiosis, parasitism, and responses to abiotic cues. Here we review recent studies that have provided new insights into the mechanisms of CLE signaling.
Collapse
Affiliation(s)
- Yasuka L Yamaguchi
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
84
|
Abstract
A significant part of the communication between plant cells is mediated by signaling peptides and their corresponding plasma membrane-localized receptor-like kinases. This communication mechanism serves as a key regulatory unit for coordination of plant growth and development. In the past years more peptide–receptor signaling pathways have been shown to regulate developmental processes, such as shoot and root meristem maintenance, seed formation, and floral abscission. More detailed understanding of the processes behind this regulation might also be helpful to increase the yield of crop plants.
Collapse
Affiliation(s)
- Maike Breiden
- Institute for Developmental Genetics, Heinrich-Heine-Universität Düsseldorf, University Street, D-40225, Düsseldorf, Germany
| | - Rüdiger Simon
- Cluster of Excellence on Plant Sciences and Institute for Developmental Genetics, Heinrich-Heine University, University Street 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
85
|
Liu Z, Yang N, Lv Y, Pan L, Lv S, Han H, Wang G. The CLE gene family in Populus trichocarpa. PLANT SIGNALING & BEHAVIOR 2016; 11:e1191734. [PMID: 27232947 PMCID: PMC4973754 DOI: 10.1080/15592324.2016.1191734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The CLE (CLAVATA3/Embryo Surrounding Region-related) peptides are small secreted signaling peptides that are primarily involved in the regulation of stem cell homeostasis in different plant meristems. Particularly, the characterization of the CLE41-PXY/TDR signaling pathway has greatly advanced our understanding on the potential roles of CLE peptides in vascular development and wood formation. Nevertheless, our knowledge on this gene family in a tree species is limited. In a recent study, we reported on a systematically investigation of the CLE gene family in Populus trichocarpa. The potential roles of PtCLE genes were studied by comparative analysis and transcriptional profiling. Among fifty PtCLE members, many PtCLE proteins share identical CLE motifs or contain the same CLE motif as that of AtCLEs, while PtCLE genes exhibited either comparable or distinct expression patterns comparing to their Arabidopsis counterparts. These findings indicate the existence of both functional conservation and functional divergence between PtCLEs and their AtCLE orthologues. Our results provide valuable resources for future functional investigations of these critical signaling molecules in woody plants.
Collapse
Affiliation(s)
- Zhijun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Nan Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yanting Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lixia Pan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuo Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Huibin Han
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
- CONTACT Dr. Guodong Wang Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
86
|
RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Res 2016; 26:686-98. [PMID: 27229312 DOI: 10.1038/cr.2016.63] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
RGF1, a secreted peptide hormone, plays key roles in root meristem development in Arabidopsis. Previous studies indicated that a functional RGF1 needs to be sulfated at a tyrosine residue by a tyrosylprotein sulfotransferase and that RGF1 regulates the root meristem activity mainly via two downstream transcription factors, PLETHORA 1 (PLT1) and PLT2. How extracellular RGF1 is perceived by a plant cell, however, is unclear. Using genetic approaches, we discovered a clade of leucine-rich repeat receptor-like kinases, designated as RGF1 INSENSITIVE 1 (RGI1) to RGI5, serving as receptors of RGF1. Two independent rgi1 rgi2 rgi3 rgi4 rgi5 quintuple mutants display a consistent short primary root phenotype with a small size of meristem. An rgi1 rgi2 rgi3 rgi4 quadruple mutant shows a significantly reduced sensitivity to RGF1, and the quintuple mutant is completely insensitive to RGF1. The expression of PLT1 and PLT2 is almost undetectable in the quintuple mutant. Ectopic expression of PLT2 driven by an RGI2 promoter in the quintuple mutant greatly rescued its root meristem defects. One of the RGIs, RGI1, was subsequently analyzed biochemically in detail. In vitro dot blotting and pull-down analyses indicated that RGI1 can physically interact with RGF1. Exogenous application of RGF1 can quickly and simultaneously induce the phosphorylation and ubiquitination of RGI1, indicating that RGI1 can perceive and transduce the RGF1 peptide signal. Yet, the activated RGI1 is likely turned over rapidly. These results demonstrate that RGIs, acting as the receptors of RGF1, play essential roles in RGF1-PLT-mediated root meristem development in Arabidopsis thaliana.
Collapse
|
87
|
Galli M, Gallavotti A. Expanding the Regulatory Network for Meristem Size in Plants. Trends Genet 2016; 32:372-383. [PMID: 27129984 DOI: 10.1016/j.tig.2016.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022]
Abstract
The remarkable plasticity of post-embryonic plant development is due to groups of stem-cell-containing structures called meristems. In the shoot, meristems continuously produce organs such as leaves, flowers, and stems. Nearly two decades ago the WUSCHEL/CLAVATA (WUS/CLV) negative feedback loop was established as being essential for regulating the size of shoot meristems by maintaining a delicate balance between stem cell proliferation and cell recruitment for the differentiation of lateral primordia. Recent research in various model species (Arabidopsis, tomato, maize, and rice) has led to discoveries of additional components that further refine and improve the current model of meristem regulation, adding new complexity to a vital network for plant growth and productivity.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA; Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
88
|
Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs. Cell Res 2016; 26:543-55. [PMID: 27055373 PMCID: PMC4856767 DOI: 10.1038/cr.2016.45] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 01/18/2016] [Indexed: 01/03/2023] Open
Abstract
Plants can achieve amazing lifespans because of their continuous and repetitive formation of new organs by stem cells present within meristems. The balance between proliferation and differentiation of meristem cells is largely regulated by the CLAVATA3/ENDOSPERM SURROUNDING REGION (CLE) peptide hormones. One of the well-characterized CLE peptides, CLE41/TDIF (tracheary elements differentiation inhibitory factor), functions to suppress tracheary element differentiation and promote procambial cell proliferation, playing important roles in vascular development and wood formation. The recognition mechanisms of TDIF or other CLE peptides by their respective receptors, however, remain largely elusive. Here we report the crystal structure of TDIF in complex with its receptor PXY, a leucine-rich repeat receptor kinase (LRR-RK). Our structure reveals that TDIF mainly adopts an “Ω”-like conformation binding to the inner surface of the LRR domain of PXY. Interaction between TDIF and PXY is predominately mediated by the relatively conserved amino acids of TDIF. Structure-based sequence alignment showed that the TDIF-interacting motifs are also conserved among other known CLE receptors. Our data provide a structural template for understanding the recognition mechanism of CLE peptides by their receptors, offering an opportunity for the identification of receptors of other uncharacterized CLE peptides.
Collapse
|
89
|
Liu Y, Yang S, Song Y, Men S, Wang J. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2309-24. [PMID: 26912800 DOI: 10.1093/jxb/erw045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development.
Collapse
Affiliation(s)
- Yisen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shuzhen Men
- College of Life Sciences, Nankai University, Tianjin 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
90
|
Pan L, Lv S, Yang N, Lv Y, Liu Z, Wu J, Wang G. The Multifunction of CLAVATA2 in Plant Development and Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1573. [PMID: 27822222 PMCID: PMC5075529 DOI: 10.3389/fpls.2016.01573] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/06/2016] [Indexed: 05/06/2023]
Abstract
The CLAVATA2 (CLV2) gene encodes a leucine-rich repeat receptor-like protein, a class of cell surface receptors that lacks a cytoplasmic kinase domain. As such, CLV2 is capable of functioning in concert with additional receptor(s), possibly receptor-like kinase(s), to activate cellular responses upon ligand perception. Accumulating data indicate that CLV2 is implicated in distinct biological processes including plant growth and development as well as innate immunity to microbe and nematode infections. This article focuses on recent advances in our understanding of multiple signaling pathways mediated by multifunctional CLV2 that modulate various physiological processes. The challenges and future perspectives of elucidating the specificity of CLV2-mediated signaling pathways and identifying potential co-receptors and putative ligands for CLV2 are also discussed.
Collapse
Affiliation(s)
- Lixia Pan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Shuo Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Nan Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Yanting Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Zhijun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
| | - Jinbin Wu
- Laboratory of Phytopathology, Wageningen UniversityWageningen, Netherlands
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal UniversityXi’an, China
- *Correspondence: Guodong Wang,
| |
Collapse
|
91
|
Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: from genes to networks. ANNALS OF BOTANY 2016; 117:9-24. [PMID: 26558398 PMCID: PMC4701154 DOI: 10.1093/aob/mcv160] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. SCOPE This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. CONCLUSIONS While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
92
|
Ding L, Yan S, Jiang L, Liu M, Zhang J, Zhao J, Zhao W, Han YY, Wang Q, Zhang X. HANABA TARANU regulates the shoot apical meristem and leaf development in cucumber (Cucumis sativus L.). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7075-87. [PMID: 26320238 PMCID: PMC4765787 DOI: 10.1093/jxb/erv409] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The shoot apical meristem (SAM) is essential for continuous organogenesis in higher plants, while the leaf is the primary source organ and the leaf shape directly affects the efficiency of photosynthesis. HANABA TARANU (HAN) encodes a GATA3-type transcription factor that functions in floral organ development, SAM organization, and embryo development in Arabidopsis, but is involved in suppressing bract outgrowth and promoting branching in grass species. Here the function of the HAN homologue CsHAN1 was characterized in cucumber, an important vegetable with great agricultural and economic value. CsHAN1 is predominantly expressed at the junction of the SAM and the stem, and can partially rescue the han-2 floral organ phenotype in Arabidopsis. Overexpression and RNAi of CsHAN1 transgenic cucumber resulted in retarded growth early after embryogenesis and produced highly lobed leaves. Further, it was found that CsHAN1 may regulate SAM development through regulating the WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM) pathways, and mediate leaf development through a complicated gene regulatory network in cucumber.
Collapse
Affiliation(s)
- Lian Ding
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Li Jiang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Meiling Liu
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Juan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Ying-Yan Han
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Qian Wang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
93
|
Shimizu N, Ishida T, Yamada M, Shigenobu S, Tabata R, Kinoshita A, Yamaguchi K, Hasebe M, Mitsumasu K, Sawa S. BAM 1 and RECEPTOR-LIKE PROTEIN KINASE 2 constitute a signaling pathway and modulate CLE peptide-triggered growth inhibition in Arabidopsis root. THE NEW PHYTOLOGIST 2015; 208:1104-13. [PMID: 26083273 DOI: 10.1111/nph.13520] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/17/2015] [Indexed: 05/05/2023]
Abstract
Ligand receptor-based signaling is a means of cell-to-cell communication for coordinating developmental and physiological processes in multicellular organisms. In plants, cell-producing meristems utilize this signaling to regulate their activities and ensure for proper development. Shoot and root systems share common requirements for carrying out this process; however, its molecular basis is largely unclear. It has been suggested that synthetic CLV3/EMBRYO SURROUNDING REGION (CLE) peptide shrinks the root meristem through the actions of CLAVATA2 (CLV2) and the RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) pathway in Arabidopsis thaliana. Our genetic screening for mutations that resist CLE peptide signaling in roots determined that BAM1, which is a member of the leucine-rich repeat receptor-like kinase (LRR-RLK) family, is also involved in this pathway. BAM1 is preferentially expressed in the root tip, including the quiescent center and its surrounding stem cells. Our genetic analysis revealed that BAM1 functions together with RPK2. Using coimmunoprecipitation assay, we showed that BAM1 is capable of forming heteromeric complexes with RPK2. These findings suggest that the BAM1 and RPK2 receptors constitute a signaling pathway that modulates cell proliferation in the root meristem and that related molecules are employed in root and shoot meristems.
Collapse
Affiliation(s)
- Noriko Shimizu
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Masashi Yamada
- Department of Biology and Institute for Genome Science and Policy Center for Systems Biology, Duke University, Durham, NC, 27708, USA
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Ryo Tabata
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Atsuko Kinoshita
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mitsuyasu Hasebe
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Kanako Mitsumasu
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555, Japan
| |
Collapse
|
94
|
Kucukoglu M, Nilsson O. CLE peptide signaling in plants - the power of moving around. PHYSIOLOGIA PLANTARUM 2015; 155:74-87. [PMID: 26096704 DOI: 10.1111/ppl.12358] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 05/25/2023]
Abstract
The CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-RELATED (CLE) gene family encodes small secreted peptide ligands in plants. These peptides function non-cell autonomously through interactions with plasma membrane-associated LEUCINE-RICH REPEAT RECEPTOR-LIKE KINASEs (LRR-RLKs). These interactions are critical for cell-to-cell communications and control a variety of developmental and physiological processes in plants, such as regulation of stem cell proliferation and differentiation in the meristems, embryo and endosperm development, vascular development and autoregulation of nodulation. Here, we review the current knowledge in the field of CLE polypeptide signaling.
Collapse
Affiliation(s)
- Melis Kucukoglu
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Ove Nilsson
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| |
Collapse
|
95
|
Czyzewicz N, Wildhagen M, Cattaneo P, Stahl Y, Pinto KG, Aalen RB, Butenko MA, Simon R, Hardtke CS, De Smet I. Antagonistic peptide technology for functional dissection of CLE peptides revisited. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5367-5374. [PMID: 26136270 PMCID: PMC4526918 DOI: 10.1093/jxb/erv284] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the Arabidopsis thaliana genome, over 1000 putative genes encoding small, presumably secreted, signalling peptides can be recognized. However, a major obstacle in identifying the function of genes encoding small signalling peptides is the limited number of available loss-of-function mutants. To overcome this, a promising new tool, antagonistic peptide technology, was recently developed. Here, this antagonistic peptide technology was tested on selected CLE peptides and the related IDA peptide and its usefulness in the context of studies of peptide function discussed. Based on the analyses, it was concluded that the antagonistic peptide approach is not the ultimate means to overcome redundancy or lack of loss-of-function lines. However, information collected using antagonistic peptide approaches (in the broad sense) can be very useful, but these approaches do not work in all cases and require a deep insight on the interaction between the ligand and its receptor to be successful. This, as well as peptide ligand structure considerations, should be taken into account before ordering a wide range of synthetic peptide variants and/or generating transgenic plants.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Mari Wildhagen
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Pietro Cattaneo
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Karine Gustavo Pinto
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Reidunn B Aalen
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK Centre for Plant Integrative Biology, University of Nottingham, Loughborough LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
96
|
Xu TT, Ren SC, Song XF, Liu CM. CLE19 expressed in the embryo regulates both cotyledon establishment and endosperm development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5217-27. [PMID: 26071532 PMCID: PMC4526921 DOI: 10.1093/jxb/erv293] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Embryo and endosperm development are two well co-ordinated developmental processes in seed formation; however, signals involved in embryo and endosperm interactions remain poorly understood. It has been shown before that CLAVATA3/ESR-RELATED 19 (CLE19) peptide is able to trigger root meristem consumption in a CLV2-dependent manner. In this study, the role of CLE19 in Arabidopsis seed development was explored using antagonistic peptide technology. CLE19 is expressed in the epidermal layers of the cotyledon primordia, hypocotyl, and root cap in the embryo. Transgenic plants carrying an antagonistic CLE19 G6T construct expressed under the control of CLE19 regulatory elements exhibited a dominant seed abortion phenotype, with defective cotyledon establishment in embryos and delayed nuclear proliferation and cellularization in endosperms. Ectopic expression of CLE19 G6T in Arabidopsis under the control of an endosperm-specific ALE1 promoter led to a similar defect in cotyledon establishment in embryos but without an evident effect on endosperm development. We therefore propose that CLE19 may act as a mobile peptide co-ordinating embryo and endosperm development.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Chao Ren
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| |
Collapse
|
97
|
Tavormina P, De Coninck B, Nikonorova N, De Smet I, Cammue BPA. The Plant Peptidome: An Expanding Repertoire of Structural Features and Biological Functions. THE PLANT CELL 2015; 27:2095-118. [PMID: 26276833 PMCID: PMC4568509 DOI: 10.1105/tpc.15.00440] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/25/2015] [Indexed: 05/18/2023]
Abstract
Peptides fulfill a plethora of functions in plant growth, development, and stress responses. They act as key components of cell-to-cell communication, interfere with signaling and response pathways, or display antimicrobial activity. Strikingly, both the diversity and amount of plant peptides have been largely underestimated. Most characterized plant peptides to date acting as small signaling peptides or antimicrobial peptides are derived from nonfunctional precursor proteins. However, evidence is emerging on peptides derived from a functional protein, directly translated from small open reading frames (without the involvement of a precursor) or even encoded by primary transcripts of microRNAs. These novel types of peptides further add to the complexity of the plant peptidome, even though their number is still limited and functional characterization as well as translational evidence are often controversial. Here, we provide a comprehensive overview of the reported types of plant peptides, including their described functional and structural properties. We propose a novel, unifying peptide classification system to emphasize the enormous diversity in peptide synthesis and consequent complexity of the still expanding knowledge on the plant peptidome.
Collapse
Affiliation(s)
- Patrizia Tavormina
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven (KU Leuven), B-3000 Leuven, Belgium Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven (KU Leuven), B-3000 Leuven, Belgium Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Natalia Nikonorova
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, University of Leuven (KU Leuven), B-3000 Leuven, Belgium Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
98
|
Czyzewicz N, Shi CL, Vu LD, Van De Cotte B, Hodgman C, Butenko MA, De Smet I. Modulation of Arabidopsis and monocot root architecture by CLAVATA3/EMBRYO SURROUNDING REGION 26 peptide. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5229-43. [PMID: 26188203 PMCID: PMC4526925 DOI: 10.1093/jxb/erv360] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant roots are important for a wide range of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface with the soil environment. Several small signalling peptides and receptor kinases have been shown to affect primary root growth, but very little is known about their role in lateral root development. In this context, the CLE family, a group of small signalling peptides that has been shown to affect a wide range of developmental processes, were the focus of this study. Here, the expression pattern during lateral root initiation for several CLE family members is explored and to what extent CLE1, CLE4, CLE7, CLE26, and CLE27, which show specific expression patterns in the root, are involved in regulating root architecture in Arabidopsis thaliana is assessed. Using chemically synthesized peptide variants, it was found that CLE26 plays an important role in regulating A. thaliana root architecture and interacts with auxin signalling. In addition, through alanine scanning and in silico structural modelling, key residues in the CLE26 peptide sequence that affect its activity are pinpointed. Finally, some interesting similarities and differences regarding the role of CLE26 in regulating monocot root architecture are presented.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Chun-Lin Shi
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Lam Dai Vu
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Brigitte Van De Cotte
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Melinka A Butenko
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, N-0316 Oslo, Norway
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| |
Collapse
|
99
|
Hastwell AH, Gresshoff PM, Ferguson BJ. Genome-wide annotation and characterization of CLAVATA/ESR (CLE) peptide hormones of soybean (Glycine max) and common bean (Phaseolus vulgaris), and their orthologues of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5271-87. [PMID: 26188205 PMCID: PMC4526924 DOI: 10.1093/jxb/erv351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
CLE peptides are key regulators of cell proliferation and differentiation in plant shoots, roots, vasculature, and legume nodules. They are C-terminally encoded peptides that are post-translationally cleaved and modified from their corresponding pre-propeptides to produce a final ligand that is 12-13 amino acids in length. In this study, an array of bionformatic and comparative genomic approaches was used to identify and characterize the complete family of CLE peptide-encoding genes in two of the world's most important crop species, soybean and common bean. In total, there are 84 CLE peptide-encoding genes in soybean (considerably more than the 32 present in Arabidopsis), including three pseudogenes and two multi-CLE domain genes having six putative CLE domains each. In addition, 44 CLE peptide-encoding genes were identified in common bean. In silico characterization was used to establish all soybean homeologous pairs, and to identify corresponding gene orthologues present in common bean and Arabidopsis. The soybean CLE pre-propeptide family was further analysed and separated into seven distinct groups based on structure, with groupings strongly associated with the CLE domain sequence and function. These groups provide evolutionary insight into the CLE peptide families of soybean, common bean, and Arabidopsis, and represent a novel tool that can aid in the functional characterization of the peptides. Transcriptional evidence was also used to provide further insight into the location and function of all CLE peptide-encoding members currently available in gene atlases for the three species. Taken together, this in-depth analysis helped to identify and categorize the complete CLE peptide families of soybean and common bean, established gene orthologues within the two legume species, and Arabidopsis, and provided a platform to help compare, contrast, and identify the function of critical CLE peptide hormones in plant development.
Collapse
Affiliation(s)
- April H Hastwell
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Centre for Integrative Legume Research, School of Agricultural and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
100
|
Kinoshita A, ten Hove CA, Tabata R, Yamada M, Shimizu N, Ishida T, Yamaguchi K, Shigenobu S, Takebayashi Y, Iuchi S, Kobayashi M, Kurata T, Wada T, Seo M, Hasebe M, Blilou I, Fukuda H, Scheres B, Heidstra R, Kamiya Y, Sawa S. A plant U-box protein, PUB4, regulates asymmetric cell division and cell proliferation in the root meristem. Development 2015; 142:444-53. [PMID: 25605779 DOI: 10.1242/dev.113167] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size. Here, we demonstrate that a plant U-box E3 ubiquitin ligase, PUB4, is a novel downstream component of CLV3/CLE signaling in the RM. Mutations in PUB4 reduced the inhibitory effect of exogenous CLV3/CLE peptide on root cell proliferation and columella stem cell maintenance. Moreover, pub4 mutants grown without exogenous CLV3/CLE peptide exhibited characteristic phenotypes in the RM, such as enhanced root growth, increased number of cortex/endodermis stem cells and decreased number of columella layers. Our phenotypic and gene expression analyses indicated that PUB4 promotes expression of a cell cycle regulatory gene, CYCD6;1, and regulates formative periclinal asymmetric cell divisions in endodermis and cortex/endodermis initial daughters. These data suggest that PUB4 functions as a global regulator of cell proliferation and the timing of asymmetric cell division that are important for final root architecture.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Colette A ten Hove
- Molecular Genetics, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, Wageningen 6703HA, The Netherlands
| | - Ryo Tabata
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Masashi Yamada
- Department of Biology and Institute for Genome Science and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Noriko Shimizu
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Satoshi Iuchi
- RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Masatomo Kobayashi
- RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Tetsuya Kurata
- Graduate School of Biological Sciences, NAIST, Ikoma 630-0192, Japan
| | - Takuji Wada
- Graduate School of Biosphere Sciences, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Mitsuyasu Hasebe
- School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Ikram Blilou
- Molecular Genetics, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands Plant Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6700AP, The Netherlands
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ben Scheres
- Molecular Genetics, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands Plant Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6700AP, The Netherlands
| | - Renze Heidstra
- Molecular Genetics, Department of Biology, Utrecht University, Utrecht 3584 CH, The Netherlands Plant Developmental Biology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6700AP, The Netherlands
| | - Yuji Kamiya
- RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|