51
|
Physiological and interactomic analysis reveals versatile functions of Arabidopsis 14-3-3 quadruple mutants in response to Fe deficiency. Sci Rep 2021; 11:15551. [PMID: 34330973 PMCID: PMC8324900 DOI: 10.1038/s41598-021-94908-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/14/2021] [Indexed: 11/15/2022] Open
Abstract
To date, few phenotypes have been described for Arabidopsis 14-3-3 mutants or the phenotypes showing the role of 14-3-3 in plant responding to abiotic stress. Although one member of the 14-3-3 protein family (14-3-3 omicron) was shown to be involved in the proper operation of Fe acquisition mechanisms at physiological and gene expression levels in Arabidopsis thaliana, it remains to be explored whether other members play a role in regulating iron acquisition. To more directly and effectively observe whether members of 14-3-3 non-epsilon group have a function in Fe-deficiency adaptation, three higher order quadruple KOs, kappa/lambda/phi/chi (klpc), kappa/lambda/upsilon/nu(klun), and upsilon/nu/phi/chi (unpc) were generated and studied for physiological analysis in this study. The analysis of iron-utilization efficiency, root phenotyping, and transcriptional level of Fe-responsive genes suggested that the mutant with kl background showed different phenotypes from Wt when plants suffered Fe starved, while these phenotypes were absent in the unpc mutant. Moreover, the absence of the four 14-3-3 isoforms in the klun mutant has a clear impact on the 14-3-3 interactome upon Fe deficiency. Dynamics of 14-3-3-client interactions analysis showed that 27 and 17 proteins differentially interacted with 14-3-3 in Wt and klun roots caused by Fe deficiency, respectively. Many of these Fe responsive proteins have a role in glycolysis, oxidative phosphorylation and TCA cycle, the FoF1-synthase and in the cysteine/methionine synthesis. A clear explanation for the observed phenotypes awaits a more detailed analysis of the functional aspects of 14-3-3 binding to the target proteins identified in this study.
Collapse
|
52
|
Lee ES, Park JH, Wi SD, Kang CH, Chi YH, Chae HB, Paeng SK, Ji MG, Kim WY, Kim MG, Yun DJ, Stacey G, Lee SY. Redox-dependent structural switch and CBF activation confer freezing tolerance in plants. NATURE PLANTS 2021; 7:914-922. [PMID: 34155371 DOI: 10.1038/s41477-021-00944-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/12/2021] [Indexed: 05/20/2023]
Abstract
The activities of cold-responsive C-repeat-binding transcription factors (CBFs) are tightly controlled as they not only induce cold tolerance but also regulate normal plant growth under temperate conditions1-4. Thioredoxin h2 (Trx-h2)-a cytosolic redox protein identified as an interacting partner of CBF1-is normally anchored to cytoplasmic endomembranes through myristoylation at the second glycine residue5,6. However, after exposure to cold conditions, the demyristoylated Trx-h2 is translocated to the nucleus, where it reduces the oxidized (inactive) CBF oligomers and monomers. The reduced (active) monomers activate cold-regulated gene expression. Thus, in contrast to the Arabidopsis trx-h2 (AT5G39950) null mutant, Trx-h2 overexpression lines are highly cold tolerant. Our findings reveal the mechanism by which cold-mediated redox changes induce the structural switching and functional activation of CBFs, therefore conferring plant cold tolerance.
Collapse
Affiliation(s)
- Eun Seon Lee
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Seong Dong Wi
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Chang Ho Kang
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Yong Hun Chi
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Myung Geun Ji
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea
| | - Min Gab Kim
- College of Pharmacy, Gyeongsang National University, Jinju, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, Korea
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, University of Missouri, Columbia, MO, USA
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+) and PMBBRC, Gyeongsang National University, Jinju, Korea.
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
53
|
The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2024592118. [PMID: 33526703 DOI: 10.1073/pnas.2024592118] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gaseous phytohormone ethylene mediates numerous aspects of plant growth and development as well as stress responses. The F-box proteins EIN3-binding F-box protein 1 (EBF1) and EBF2 are key components that ubiquitinate and degrade the master transcription factors ethylene insensitive 3 (EIN3) and EIN3-like 1 (EIL1) in the ethylene response pathway. Notably, EBF1 and EBF2 themselves undergo the 26S proteasome-mediated proteolysis induced by ethylene and other stress signals. However, despite their importance, little is known about the mechanisms regulating the degradation of these proteins. Here, we show that a really interesting new gene (RING)-type E3 ligase, salt- and drought-induced ring finger 1 (SDIR1), positively regulates the ethylene response and promotes the accumulation of EIN3. Further analyses indicate that SDIR1 directly interacts with EBF1/EBF2 and targets them for ubiquitination and proteasome-dependent degradation. We show that SDIR1 is required for the fine tuning of the ethylene response to ambient temperature changes by mediating temperature-induced EBF1/EBF2 degradation and EIN3 accumulation. Thus, our work demonstrates that SDIR1 functions as an important modulator of ethylene signaling in response to ambient temperature changes, thereby enabling plant adaptation under fluctuating environmental conditions.
Collapse
|
54
|
Castroverde CDM, Dina D. Temperature regulation of plant hormone signaling during stress and development. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab257. [PMID: 34081133 DOI: 10.1093/jxb/erab257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/20/2023]
Abstract
Global climate change has broad-ranging impacts on the natural environment and human civilization. Increasing average temperatures along with more frequent heat waves collectively have negative effects on cultivated crops in agricultural sectors and wild species in natural ecosystems. These aberrantly hot temperatures, together with cold stress, represent major abiotic stresses to plants. Molecular and physiological responses to high and low temperatures are intricately linked to the regulation of important plant hormones. In this review, we shall highlight our current understanding of how changing temperatures regulate plant hormone pathways during immunity, stress responses and development. This article will present an overview of known temperature-sensitive or temperature-reinforced molecular hubs in hormone biosynthesis, homeostasis, signaling and downstream responses. These include recent advances on temperature regulation at the genomic, transcriptional, post-transcriptional and post-translational levels - directly linking some plant hormone pathways to known thermosensing mechanisms. Where applicable, diverse plant species and various temperature ranges will be presented, along with emerging principles and themes. It is anticipated that a grand unifying synthesis of current and future fundamental outlooks on how fluctuating temperatures regulate important plant hormone signaling pathways can be leveraged towards forward-thinking solutions to develop climate-smart crops amidst our dynamically changing world.
Collapse
Affiliation(s)
| | - Damaris Dina
- Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
55
|
Chen H, Liu N, Xu R, Chen X, Zhang Y, Hu R, Lan X, Tang Z, Lin G. Quantitative proteomics analysis reveals the response mechanism of peanut (Arachis hypogaea L.) to imbibitional chilling stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:517-527. [PMID: 33502082 DOI: 10.1111/plb.13238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Imbibitional chilling stress inhibits normal seed germination and seedling establishment and leads to large losses in peanut production. This is a major limiting factor when sowing peanut earlier and further north. To reveal the response mechanism of peanut to imbibitional chilling stress, a Tandem Mass Tag (TMT)-based quantitative proteomics analysis was conducted to identify differentially accumulated proteins (DAPs) under imbibitional chilling stress. Hormone profiling and transcriptional analysis were performed to confirm the proteomics data. Further seed priming analysis with exogenous cytokinins was conducted to validate the role of cytokinins in alleviating imbibitional chilling injury. A total of 5029 proteins were identified and quantified in all of the experimental groups. Among these, 104 proteins were DAPs as compared with the control. Enrichment analysis revealed that these DAPs were significant in various molecular functional and biological processes, especially for biosynthesis and metabolism of plant hormones. Hormone profiling and transcription analysis suggested that the reduced abundance of cytokinin oxidase may be caused by down-regulation of gene expression of the corresponding genes and leads to an elevated content of cytokinins under chilling stress. Seed priming analysis suggested that exogenous application of cytokinins may alleviate injury caused by imbibitional chilling. Our study provides a comprehensive proteomics analysis of peanut under imbibitional chilling stress, suggesting the role of plant hormones in the response mechanism. The results provide a better understanding of the imbibitional chilling stress response mechanism in peanut that will aid in peanut production.
Collapse
Affiliation(s)
- H Chen
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - N Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People's Republic of China, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - R Xu
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - X Chen
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - Y Zhang
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - R Hu
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - X Lan
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - Z Tang
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| | - G Lin
- Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People's Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Fuzhou, China
| |
Collapse
|
56
|
Catalá R, López-Cobollo R, Berbís MÁ, Jiménez-Barbero J, Salinas J. Trimethylamine N-oxide is a new plant molecule that promotes abiotic stress tolerance. SCIENCE ADVANCES 2021; 7:7/21/eabd9296. [PMID: 34138745 PMCID: PMC8133759 DOI: 10.1126/sciadv.abd9296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/29/2021] [Indexed: 05/20/2023]
Abstract
Trimethylamine N-oxide (TMAO) is a well-known naturally occurring osmolyte in animals that counteracts the effect of different denaturants related to environmental stress and has recently been associated with severe human chronic diseases. In plants, however, the presence of TMAO has not yet been reported. In this study, we demonstrate that plants contain endogenous levels of TMAO, that it is synthesized by flavin-containing monooxygenases, and that its levels increase in response to abiotic stress conditions. In addition, our results reveal that TMAO operates as a protective osmolyte in plants, promoting appropriate protein folding and as an activator of abiotic stress-induced gene expression. Consistent with these functions, we show that TMAO enhances plant adaptation to low temperatures, drought, and high salt. We have thus uncovered a previously unidentified plant molecule that positively regulates abiotic stress tolerance.
Collapse
Affiliation(s)
- Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain.
| | - Rosa López-Cobollo
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - M Álvaro Berbís
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - Jesús Jiménez-Barbero
- Departamento de Biología Estructural y Química, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid 28040, Spain.
| |
Collapse
|
57
|
Comparative transcriptome analysis of Rheum australe, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. Sci Rep 2021; 11:3702. [PMID: 33580100 PMCID: PMC7881009 DOI: 10.1038/s41598-020-79020-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Rheum australe is an endangered medicinal herb of high altitude alpine region of Himalayas and is known to possess anti-cancerous properties. Unlike many herbs of the region, R. australe has broad leaves. The species thrives well under the environmental extremes in its niche habitat, therefore an understanding of transcriptome of R. australe to environmental cues was of significance. Since, temperature is one of the major environmental variables in the niche of R. australe, transcriptome was studied in the species growing in natural habitat and those grown in growth chambers maintained at 4 °C and 25 °C to understand genes associated with different temperatures. A total of 39,136 primarily assembled transcripts were obtained from 10,17,74,336 clean read, and 21,303 unigenes could match to public databases. An analysis of transcriptome by fragments per kilobase of transcript per million, followed by validation through qRT-PCR showed 22.4% up- and 22.5% down-regulated common differentially expressed genes in the species growing under natural habitat and at 4 °C as compared to those at 25 °C. These genes largely belonged to signaling pathway, transporters, secondary metabolites, phytohormones, and those associated with cellular protection, suggesting their importance in imparting adaptive advantage to R. australe in its niche.
Collapse
|
58
|
Lin M, Sun S, Fang J, Qi X, Sun L, Zhong Y, Sun Y, Hong G, Wang R, Li Y. BSR-Seq analysis provides insights into the cold stress response of Actinidia arguta F1 populations. BMC Genomics 2021; 22:72. [PMID: 33482717 PMCID: PMC7821520 DOI: 10.1186/s12864-021-07369-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Freezing injury, which is an important abiotic stress in horticultural crops, influences the growth and development and the production area of kiwifruit (Actinidia Lind1). Among Actinidia species, Actinidia arguta has excellent cold resistance, but knowledge relevant to molecular mechanisms is still limited. Understanding the mechanism underlying cold resistance in kiwifruit is important for breeding cold resistance. RESULTS In our study, a population resulting from the cross of A. arguta 'Ruby-3' × 'Kuilv' male was generated for kiwifruit hardiness study, and 20 cold-tolerant and 20 cold-sensitive populations were selected from 492 populations according to their LT50. Then, we performed bulked segregant RNA-seq combined with single-molecule real-time sequencing to identify differentially expressed genes that provide cold hardiness. We found that the content of soluble sucrose and the activity of β-amylase were higher in the cold-tolerant population than in the cold-sensitive population. Upon - 30 °C low-temperature treatment, 126 differentially expressed genes were identify; the expression of 59 genes was up-regulated and that of 67 genes was down-regulated between the tolerant and sensitive pools, respectively. KEGG pathway analysis showed that the DEGs were primarily related to starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism. Ten major key enzyme-encoding genes and two regulatory genes were up-regulated in the tolerant pool, and regulatory genes of the CBF pathway were found to be differentially expressed. In particular, a 14-3-3 gene was down-regulated and an EBF gene was up-regulated. To validate the BSR-Seq results, 24 DEGs were assessed via qRT-PCR, and the results were consistent with those obtained by BSR-Seq. CONCLUSION Our research provides valuable insights into the mechanism related to cold resistance in Actinidia and identified potential genes that are important for cold resistance in kiwifruit.
Collapse
Affiliation(s)
- Miaomiao Lin
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Shihang Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Jinbao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China.
| | - Xiujuan Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China.
| | - Leiming Sun
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yunpeng Zhong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yanxiang Sun
- Langfang Normal University, Langfang, 065000, China
| | - Gu Hong
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Ran Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| | - Yukuo Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450000, China
| |
Collapse
|
59
|
Guo T, Zhang X, Li Y, Liu C, Wang N, Jiang Q, Wu J, Ma F, Liu C. Overexpression of MdARD4 Accelerates Fruit Ripening and Increases Cold Hardiness in Tomato. Int J Mol Sci 2020; 21:ijms21176182. [PMID: 32867065 PMCID: PMC7503420 DOI: 10.3390/ijms21176182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
Ethylene plays an important role in stress adaptation and fruit ripening. Acireductone dioxygenase (ARD) is pivotal for ethylene biosynthesis. However, the response of ARD to fruit ripening or cold stress is still unclear. In this study, we identified three members of Malus ARD family, and expression profile analysis revealed that the transcript level of MdARD4 was induced during apple fruit ripening and after apple plants were being treated with cold stress. To investigate its function in cold tolerance and fruit ripening, MdARD4 was ectopically expressed in Solanum lycopersicum cultivar ‘Micro-Tom’, which has been considered as an excellent model plant for the study of fruit ripening. At the cellular level, the MdARD protein expressed throughout Nicotiana benthamiana epidermal cells. Overexpression of MdARD4 in tomato demonstrated that MdARD4 regulates the ethylene and carotenoid signaling pathway, increases ethylene and carotenoid concentrations, and accelerates fruit ripening. Furthermore, MdARD4 increased the antioxidative ability and cold hardiness in tomato. To conclude, MdARD4 may potentially be used in apple breeding to accelerate fruit ripening and increase cold hardiness.
Collapse
Affiliation(s)
- Tianli Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Xiuzhi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Chenlu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Na Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Qi Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Junyao Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
60
|
An ERF Transcription Factor Gene from Malus baccata (L.) Borkh, MbERF11, Affects Cold and Salt Stress Tolerance in Arabidopsis. FORESTS 2020. [DOI: 10.3390/f11050514] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apple, as one of the most important economic forest tree species, is widely grown in the world. Abiotic stress, such as low temperature and high salt, affect apple growth and development. Ethylene response factors (ERFs) are widely involved in the responses of plants to biotic and abiotic stresses. In this study, a new ethylene response factor gene was isolated from Malus baccata (L.) Borkh and designated as MbERF11. The MbERF11 gene encoded a protein of 160 amino acid residues with a theoretical isoelectric point of 9.27 and a predicated molecular mass of 17.97 kDa. Subcellular localization showed that MbERF11 was localized to the nucleus. The expression of MbERF11 was enriched in root and stem, and was highly affected by cold, salt, and ethylene treatments in M. baccata seedlings. When MbERF11 was introduced into Arabidopsis thaliana, it greatly increased the cold and salt tolerance in transgenic plant. Increased expression of MbERF11 in transgenic A. thaliana also resulted in higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher contents of proline and chlorophyll, while malondialdehyde (MDA) content was lower, especially in response to cold and salt stress. Therefore, these results suggest that MbERF11 probably plays an important role in the response to cold and salt stress in Arabidopsis by enhancing the scavenging capability for reactive oxygen species (ROS).
Collapse
|
61
|
Hu Z, Huang X, Amombo E, Liu A, Fan J, Bi A, Ji K, Xin H, Chen L, Fu J. The ethylene responsive factor CdERF1 from bermudagrass (Cynodon dactylon) positively regulates cold tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110432. [PMID: 32234227 DOI: 10.1016/j.plantsci.2020.110432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/26/2019] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
Cold stress is one of the major environmental factors that limit growth and utilization of bermudagrass [Cynodon dactylon (L.) Pers], a prominent warm-season turfgrass. However, the molecular mechanism of cold response in bermudagrass remains largely unknown. In this study, we characterized a cold-responsive ERF (ethylene responsive factor) transcription factor, CdERF1, from bermudagrass. CdERF1 expression was induced by cold, drought and salinity stresses. The CdERF1 protein was nucleus-localized and encompassed transcriptional activation activity. Transgenic Arabidopsis plants overexpressing CdERF1 showed enhanced cold tolerance, whereas CdERF1-underexpressing bermudagrass plants via virus induced gene silencing (VIGS) method exhibited reduced cold resistance compared with control, respectively. Under cold stress, electrolyte leakage (EL), malondialdehyde (MDA), H2O2 and O2- contents were reduced, while the activities of SOD and POD were elevated in transgenic Arabidopsis. By contrast, these above physiological indicators in CdERF1-underexpressing bermudagrass exhibited the opposite trend. To further explore the possible molecular mechanism of bermudagrass cold stress response, the RNA-Seq analyses were performed. The result indicated that overexpression of CdERF1 activated a subset of stress-related genes in transgenic Arabidopsis, such as CBF2, pEARLI1 (lipid transfer protein), PER71 (peroxidase) and LTP (lipid transfer protein). Interestingly, under-expression of CdERF1 suppressed the transcription of many genes in CdERF1-underexpressing bermudagrass, also including pEARLI1 (lipid transfer protein) and PER70 (peroxidase). All these results revealed that CdERF1 positively regulates plant cold response probably by activating stress-related genes, PODs, CBF2 and LTPs. This study also suggests that CdERF1 may be an ideal candidate in the effort to improve cold tolerance of bermudagrass in the further molecular breeding.
Collapse
Affiliation(s)
- Zhengrong Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuebing Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Ao Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou Jiangsu 225009, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Kang Ji
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China.
| | - Jinmin Fu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan Hubei 430074, China; Shandong Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai 264025, China.
| |
Collapse
|
62
|
Hiraki H, Watanabe M, Uemura M, Kawamura Y. Season specificity in the cold-induced calcium signal and the volatile chemicals in the atmosphere. PHYSIOLOGIA PLANTARUM 2020; 168:803-818. [PMID: 31390065 DOI: 10.1111/ppl.13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/12/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Cold-induced Ca2+ signals in plants are widely accepted to be involved in cold acclimation. Surprisingly, despite using Arabidopsis plants grown in a growth chamber, we observed a clear seasonal change in cold-induced Ca2+ signals only in roots. Ca2+ signals were captured using Arabidopsis expressing Yellow Cameleon 3.60. In winter, two Ca2+ signal peaks were observed during a cooling treatment from 20 to 0°C, but in summer only one small peak was observed under the same cooling condition. In the spring and autumn seasons, an intermediate type of Ca2+ signal, which had a delayed first peak and smaller second peaks compared with the those of the winter type, was observed. Volatile chemicals and/or particles in the air from the outside may affect plants in the growth chamber. This idea is supported by the fact that incubation of plants with activated carbon changed the intermediate-type Ca2+ signal to the summer-type. The seasonality was also observed in the freezing tolerance of plants cold-acclimated in a low-temperature chamber. The solar radiation intensity was weakly correlated, not only with the seasonal characteristics of the Ca2+ signal but also with freezing tolerance. It has been reported that the ethylene concentration in the atmosphere seasonally changes depending on the solar radiation intensity. Ethylene gas and 1-aminocyclopropane-1-carboxylic acid treatment affected the Ca2+ signals, the shape of which became a shape close to, but not the same as, the winter type from the other types, indicating that ethylene may be one of several factors influencing the cold-induced Ca2+ signal.
Collapse
Affiliation(s)
- Hayato Hiraki
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
| | - Manabu Watanabe
- Field Science Center, Faculty of Agriculture, Iwate University, Iwate, 020-0611, Japan
| | - Matsuo Uemura
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
- Department of Plant Bioscience, Iwate University, Iwate, 020-8550, Japan
| | - Yukio Kawamura
- The United Graduate School of Agricultural Sciences, Iwate University, Iwate, 020-8550, Japan
- Department of Plant Bioscience, Iwate University, Iwate, 020-8550, Japan
| |
Collapse
|
63
|
Jankovska-Bortkevič E, Gavelienė V, Šveikauskas V, Mockevičiūtė R, Jankauskienė J, Todorova D, Sergiev I, Jurkonienė S. Foliar Application of Polyamines Modulates Winter Oilseed Rape Responses to Increasing Cold. PLANTS 2020; 9:plants9020179. [PMID: 32024174 PMCID: PMC7076441 DOI: 10.3390/plants9020179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
Cold stress is one of the most common abiotic stresses experienced by plants and is caused by low temperature extremes and variations. Polyamines (PAs) have been reported to contribute in abiotic stress defense processes in plants. The present study investigates the survival and responses of PA-treated non-acclimated (N) and acclimated (A) winter oilseed rape to increasing cold conditions. The study was conducted under controlled conditions. Seedlings were foliarly sprayed with spermidine (Spd), spermine (Spm), and putrescine (Put) solutions (1 mM) and exposed to four days of cold acclimation (4 °C) and two days of increasing cold (from −1 to −3 °C). Two cultivars with different cold tolerance were used in this study. The recorded traits included the percentage of survival, H+-ATPase activity, proline accumulation, and ethylene emission. Exogenous PA application improved cold resistance, maintained the activity of plasma membrane H+-ATPase, increased content of free proline, and delayed stimulation of ethylene emission under increasing cold. The results of the current study on winter oilseed rape revealed that foliar application of PAs may activate a defensive response (act as elicitor to trigger physiological processes), which may compensate the negative impact of cold stress. Thus, cold tolerance of winter oilseed rape can be enhanced by PA treatment.
Collapse
Affiliation(s)
- Elžbieta Jankovska-Bortkevič
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
- Correspondence: ; Tel.: +370-5-2729839
| | - Virgilija Gavelienė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Vaidevutis Šveikauskas
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Rima Mockevičiūtė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Jurga Jankauskienė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Dessislava Todorova
- Bulgarian Academy of Sciences, Institute of Plant Physiology and Genetics, Acad. G. Bonchev Str. Bl. 21, Sofia BG-1113, Bulgaria; (D.T.); (I.S.)
| | - Iskren Sergiev
- Bulgarian Academy of Sciences, Institute of Plant Physiology and Genetics, Acad. G. Bonchev Str. Bl. 21, Sofia BG-1113, Bulgaria; (D.T.); (I.S.)
| | - Sigita Jurkonienė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| |
Collapse
|
64
|
14-3-3 proteins contribute to leaf and root development via brassinosteroid insensitive 1 in Arabidopsis thaliana. Genes Genomics 2020; 42:347-354. [DOI: 10.1007/s13258-019-00909-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022]
|
65
|
Hendrickson C, Hewitt S, Swanson ME, Einhorn T, Dhingra A. Evidence for pre-climacteric activation of AOX transcription during cold-induced conditioning to ripen in European pear (Pyrus communis L.). PLoS One 2019; 14:e0225886. [PMID: 31800597 PMCID: PMC6892529 DOI: 10.1371/journal.pone.0225886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/14/2019] [Indexed: 11/28/2022] Open
Abstract
European pears (Pyrus communis L.) require a range of cold-temperature exposure to induce ethylene biosynthesis and fruit ripening. Physiological and hormonal responses to cold temperature storage in pear have been well characterized, but the molecular underpinnings of these phenomena remain unclear. An established low-temperature conditioning model was used to induce ripening of 'D'Anjou' and 'Bartlett' pear cultivars and quantify the expression of key genes representing ripening-related metabolic pathways in comparison to non-conditioned fruit. Physiological indicators of pear ripening were recorded, and fruit peel tissue sampled in parallel, during the cold-conditioning and ripening time-course experiment to correlate gene expression to ontogeny. Two complementary approaches, Nonparametric Multi-Dimensional Scaling and efficiency-corrected 2-(ΔΔCt), were used to identify genes exhibiting the most variability in expression. Interestingly, the enhanced alternative oxidase (AOX) transcript abundance at the pre-climacteric stage in 'Bartlett' and 'D'Anjou' at the peak of the conditioning treatments suggests that AOX may play a key and a novel role in the achievement of ripening competency. There were indications that cold-sensing and signaling elements from ABA and auxin pathways modulate the S1-S2 ethylene transition in European pears, and that the S1-S2 ethylene biosynthesis transition is more pronounced in 'Bartlett' as compared to 'D'Anjou' pear. This information has implications in preventing post-harvest losses of this important crop.
Collapse
Affiliation(s)
- Christopher Hendrickson
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
| | - Seanna Hewitt
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States of America
| | - Mark E. Swanson
- School of the Environment, Washington State University, Pullman, WA, United States of America
| | - Todd Einhorn
- Department of Horticulture, Michigan State University, East Lansing, MI, United States of America
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, WA, United States of America
- Molecular Plant Sciences Program, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
66
|
Visconti S, D'Ambrosio C, Fiorillo A, Arena S, Muzi C, Zottini M, Aducci P, Marra M, Scaloni A, Camoni L. Overexpression of 14-3-3 proteins enhances cold tolerance and increases levels of stress-responsive proteins of Arabidopsis plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110215. [PMID: 31623776 DOI: 10.1016/j.plantsci.2019.110215] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 05/13/2023]
Abstract
14-3-3 proteins are a family of conserved proteins present in eukaryotes as several isoforms, playing a regulatory role in many cellular and physiological processes. In plants, 14-3-3 proteins have been reported to be involved in the response to stress conditions, such as drought, salt and cold. In the present study, 14-3-3ε and 14-3-3ω isoforms, which were representative of ε and non-ε phylogenetic groups, were overexpressed in Arabidopsis thaliana plants; the effect of their overexpression was investigated on H+-ATPase activation and plant response to cold stress. Results demonstrated that H+-ATPase activity was increased in 14-3-3ω-overexpressing plants, whereas overexpression of both 14-3-3 isoforms brought about cold stress tolerance, which was evaluated through ion leakage, lipid peroxidation, osmolyte synthesis, and ROS production assays. A dedicated tandem mass tag (TMT)-based proteomic analysis demonstrated that different proteins involved in the plant response to cold or oxidative stress were over-represented in 14-3-3ε-overexpressing plants.
Collapse
Affiliation(s)
- Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Chiara D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy.
| | - Anna Fiorillo
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Simona Arena
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy
| | - Carlo Muzi
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Michela Zottini
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Patrizia Aducci
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory ISPAAM, National Research Council, 80147, Naples, Italy
| | - Lorenzo Camoni
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
67
|
Yang J, Xie MY, Yang XL, Liu BH, Lin HH. Phosphoproteomic Profiling Reveals the Importance of CK2, MAPKs and CDPKs in Response to Phosphate Starvation in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2785-2796. [PMID: 31424513 DOI: 10.1093/pcp/pcz167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/14/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus is one of the most important macronutrients required for plant growth and development. The importance of phosphorylation modification in regulating phosphate (Pi) homeostasis in plants is emerging. We performed phosphoproteomic profiling to characterize proteins whose degree of phosphorylation is altered in response to Pi starvation in rice root. A subset of 554 proteins, including 546 down-phosphorylated and eight up-phosphorylated proteins, exhibited differential phosphorylation in response to Pi starvation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the differentially phosphorylated proteins indicated that RNA processing, transport, splicing and translation and carbon metabolism played critical roles in response to Pi starvation in rice. Levels of phosphorylation of four mitogen-activated protein kinases (MAPKs), including OsMAPK6, five calcium-dependent protein kinases (CDPKs) and OsCK2β3 decreased in response to Pi starvation. The decreased phosphorylation level of OsMAPK6 was confirmed by Western blotting. Mutation of OsMAPK6 led to Pi accumulation under Pi-sufficient conditions. Motif analysis indicated that the putative MAPK, casein kinase 2 (CK2) and CDPK substrates represented about 54.4%, 21.5% and 4.7%, respectively, of the proteins exhibiting differential phosphorylation. Based on the motif analysis, 191, 151 and 46 candidate substrates for MAPK, CK2 and CDPK were identified. These results indicate that modification of phosphorylation profiles provides complementary information on Pi-starvation-induced processes, with CK2, MAPK and CDPK protein kinase families playing key roles in these processes in rice.
Collapse
Affiliation(s)
- Jian Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Meng-Yang Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Xiao-Li Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| | - Bao-Hui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hong-Hui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Sichuan, Chengdu 610065, China
| |
Collapse
|
68
|
Yang M, Yang J, Su L, Sun K, Li D, Liu Y, Wang H, Chen Z, Guo T. Metabolic profile analysis and identification of key metabolites during rice seed germination under low-temperature stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110282. [PMID: 31623771 DOI: 10.1016/j.plantsci.2019.110282] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 05/05/2023]
Abstract
The metabolic profile of rice (Oryza sativa) during germination under low temperature (LT) has not been reported. In this study, the rice varieties 02428 (japonica) and YZX (indica) were subjected to experiments consisting of treatments including LT, normal temperature (NT) and a transition from LT to NT, and tissues were sampled at different time points during germination. A total of 730 metabolites were detected by a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based widely targeted metabolomics method. On the basis of the screening criteria of increased contents under LT and decreased contents under NT, we identified 35 different metabolites that responded to LT stress among the 730 metabolites. Furthermore, the content differences of the 35 metabolites were compared when the samples were transferred from LT to NT. According to a fold change <0.5 or a variable importance in projection (VIP) score>1 at the transition point, 7 out of the 35 metabolites responded significantly to LT stress and were defined as key metabolites. A partial least squares (PLS) regression model of seven key metabolites with seedling length (SL), seedling area (SSA), and seedling volume (SV) was constructed, and the fitting effect was good. These seven key metabolites participate in the biosynthesis of amino acids and phenylpropanoids and in the metabolism of glutathione and inositol phosphate. This study laid a foundation for an improved understanding of the LT-germination mechanism of rice seeds.
Collapse
Affiliation(s)
- Meng Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Jing Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Ling Su
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Dongxiu Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Yongzhu Liu
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
69
|
Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ. MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110219. [PMID: 31521216 DOI: 10.1016/j.plantsci.2019.110219] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/11/2019] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
The 14-3-3 proteins are a family of highly conserved phosphoserine-binding proteins that participate in the regulation of diverse physiological and developmental processes. In this research, twenty 14-3-3 genes in apples, which contained a highly conserved 14-3-3 domain, were identified and divided into two subgroups. Among them, MdGRF11 was further cloned and investigated. qRT-PCR analyses and GUS staining show that MdGRF11 is expressed in various organs and tissues with the highest expression levels found in the fruit. MdGRF11 was upregulated by polyethylene glycol 6000 (PEG 6000), NaCl, abscisic acid (ABA) and low temperature (4 °C) treatments. MdGRF11-overexpressing transgenic Arabidopsis and apple calli exhibited reduced sensitivity to salt and PEG 6000 treatments. Moreover, the ectopic expression of MdGRF11 improved the tolerance of transgenic tobacco to salt and drought stresses, which grew longer roots, underwent more growth, and presented higher chlorophyll levels than the wild-type control under salt and drought stress conditions. Furthermore, MdGRF11 expression remarkably reduced electrolyte leakage, malondialdehyde content levels, H2O2 and O2- accumulation under salt and drought stress conditions, which relied on the regulation of ROS-scavenging signaling to reduce oxidative damage of cells after salt and drought stress treatment. MdGRF11 also enhanced tolerance to stress by upregulating expression levels of ROS-scavenging and stress-related genes, especially improving responses to drought stress by modifying the water loss rates and stomatal aperture. Moreover, MdGRF11 could interact with MdAREB/ABF transcription factors through yeast two hybrid analyses. In conclusion, our results indicate that MdGRF11 acts as a positive regulator of salt and drought stress responses through regulating ROS scavenging and other signaling systems.
Collapse
Affiliation(s)
- Yi-Ran Ren
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yu-Ying Yang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Rui Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Qiang Zhao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
70
|
Popov VN, Deryabin AN, Astakhova NV, Antipina OV, Suvorova TA, Alieva GP, Moshkov IE. Ethylene-Insensitive Arabidopsis Mutants etr1-1 and ein2-1 Have a Decreased Freezing Tolerance. DOKL BIOCHEM BIOPHYS 2019; 487:269-271. [PMID: 31559595 DOI: 10.1134/s1607672919040069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Indexed: 11/23/2022]
Abstract
The freezing tolerance of Arabidopsis thaliana (L.) Heynh. was studied in relation to functioning of the ethylene signaling pathway. Constitutive freezing tolerance was compared in wild-type plants (ecotype Col-0) and ethylene-insensitive mutants etr1-1 and ein2-1. For the first time it was established that the ethylene-insensitive mutants had a 25-30% lower net photosynthesis rate, a decreased content of soluble sugars, and, as a result, a lower freezing tolerance. Our work provides evidence that the perception and transduction of ethylene signal are necessary for constitutive tolerance of Arabidopsis to low temperature.
Collapse
Affiliation(s)
- V N Popov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia.
| | - A N Deryabin
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia
| | - N V Astakhova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia
| | - O V Antipina
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia
| | - T A Suvorova
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia
| | - G P Alieva
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia
| | - I E Moshkov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, ul. Botanicheskaya 35, 127276, Moscow, Russia
| |
Collapse
|
71
|
Zafar S, Li YL, Li NN, Zhu KM, Tan XL. Recent advances in enhancement of oil content in oilseed crops. J Biotechnol 2019; 301:35-44. [PMID: 31158409 DOI: 10.1016/j.jbiotec.2019.05.307] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 10/26/2022]
Abstract
Plant oils are very valuable agricultural commodity. The manipulation of seed oil composition to deliver enhanced fatty acid compositions, which are appropriate for feed or fuel, has always been a main objective of metabolic engineers. The last two decennary have been noticeable by numerous significant events in genetic engineering for identification of different gene targets to improve oil yield in oilseed crops. Particularly, genetic engineering approaches have presented major breakthrough in elevating oil content in oilseed crops such as Brassica napus and soybean. Additionally, current research efforts to explore the possibilities to modify the genetic expression of key regulators of oil accumulation along with biochemical studies to elucidate lipid biosynthesis will establish protocols to develop transgenic oilseed crops along much improved oil content. In this review, we describe current distinct genetic engineering approaches investigated by researchers for ameliorating oil content and its nutritional quality. Moreover, we will also discuss some auspicious and innovative approaches and challenges for engineering oil content to yield oil at much higher rate in oilseed crops.
Collapse
Affiliation(s)
- Sundus Zafar
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yu-Long Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Nan-Nan Li
- School of Resource and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
72
|
Deng S, Ma J, Zhang L, Chen F, Sang Z, Jia Z, Ma L. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC PLANT BIOLOGY 2019; 19:321. [PMID: 31319815 PMCID: PMC6637634 DOI: 10.1186/s12870-019-1933-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Magnolia wufengensis is a new species of Magnolia L. and has considerable ornamental and economic value due to its unique characteristics. However, because of its characteristic of poor low temperature resistance, M. wufengensis is hardly popularization and application in the north of China. Furthermore, the mechanisms of gene regulation and signaling pathways involved in the cold-stress response remained unclear in this species. In order to solve the above-mentioned problems, we performed de novo transcriptome assembly and compared the gene expression under the natural (25 °C) and cold (4 °C) conditions for M. wufengensis seedlings. RESULTS More than 46 million high-quality clean reads were produced from six samples (RNA was extracted from the leaves) and were used for performing de novo transcriptome assembly. A total of 59,764 non-redundant unigenes with an average length of 899 bp (N50 = 1,110) were generated. Among these unigenes, 31,038 unigenes exhibited significant sequence similarity to known genes, as determined by BLASTx searches (E-value ≤1.0E-05) against the Nr, SwissProt, String, GO, KEGG, and Cluster of COG databases. Based on a comparative transcriptome analysis, 3,910 unigenes were significantly differentially expressed (false discovery rate [FDR] < 0.05 and |log2FC (CT/CK)| ≥ 1) in the cold-treated samples, and 2,616 and 1,294 unigenes were up- and down-regulated by cold stress, respectively. Analysis of the expression patterns of 16 differentially expressed genes (DEGs) by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Gene Ontology and KEGG pathway functional enrichment analyses allowed us to better understand these differentially expressed unigenes. The most significant transcriptomic changes observed under cold stress were related to plant hormone and signal transduction pathways, primary and secondary metabolism, and photosynthesis. In addition, 113 transcription factors, including members of the AP2-EREBP, bHLH, WRKY, MYB, NAC, HSF, and bZIP families, were identified as cold responsive. CONCLUSION We generated a genome-wide transcript profile of M. wufengensis and a de novo-assembled transcriptome that can be used to analyze genes involved in biological processes. In this study, we provide the first report of transcriptome sequencing of cold-stressed M. wufengensis. Our findings provide important clues not only for understanding the molecular mechanisms of cold stress in plants but also for introducing cold hardiness into M. wufengensis.
Collapse
Affiliation(s)
- Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Lili Zhang
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Faju Chen
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province 443002 People’s Republic of China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Wufeng, Hubei Province 443400 People’s Republic of China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Luyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
73
|
Demenkov PS, Saik OV, Ivanisenko TV, Kolchanov NA, Kochetov AV, Ivanisenko VA. Prioritization of potato genes involved in the formation of agronomically valuable traits using the SOLANUM TUBEROSUM knowledge base. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of highly efficient technologies in genomics, transcriptomics, proteomics and metabolomics, as well as new technologies in agriculture has led to an “information explosion” in plant biology and crop production, including potato production. Only a small part of the information reaches formalized databases (for example, Uniprot, NCBI Gene, BioGRID, IntAct, etc.). One of the main sources of reliable biological data is the scientific literature. The well-known PubMed database contains more than 18 thousand abstracts of articles on potato. The effective use of knowledge presented in such a number of non-formalized documents in natural language requires the use of modern intellectual methods of analysis. However, in the literature, there is no evidence of a widespread use of intelligent methods for automatically extracting knowledge from scientific publications on cultures such as potatoes. Earlier we developed the SOLANUM TUBEROSUM knowledge base (http://www-bionet.sysbio.cytogen. ru/and/plant/). Integrated into the knowledge base information about the molecular genetic mechanisms underlying the selection of significant traits helps to accelerate the identification of candidate genes for the breeding characteristics of potatoes and the development of diagnostic markers for breeding. The article searches for new potential participants of the molecular genetic mechanisms of resistance to adverse factors in plants. Prioritizing candidate genes has shown that the PHYA, GF14, CNIH1, RCI1A, ABI5, CPK1, RGS1, NHL3, GRF8, and CYP21-4 genes are the most promising for further testing of their relationships with resistance to adverse factors. As a result of the analysis, it was shown that the molecular genetic relationships responsible for the formation of significant agricultural traits are complex and include many direct and indirect interactions. The construction of associative gene networks and their analysis using the SOLANUM TUBEROSUM knowledge base is the basis for searching for target genes for targeted mutagenesis and marker-oriented selection of potato varieties with valuable agricultural characteristics.
Collapse
Affiliation(s)
- P. S. Demenkov
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - O. V. Saik
- Institute of Cytology and Genetics, SB RAS
| | | | | | | | | |
Collapse
|
74
|
Prado K, Cotelle V, Li G, Bellati J, Tang N, Tournaire-Roux C, Martinière A, Santoni V, Maurel C. Oscillating Aquaporin Phosphorylation and 14-3-3 Proteins Mediate the Circadian Regulation of Leaf Hydraulics. THE PLANT CELL 2019; 31:417-429. [PMID: 30674691 PMCID: PMC6447024 DOI: 10.1105/tpc.18.00804] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/20/2018] [Accepted: 01/16/2019] [Indexed: 05/20/2023]
Abstract
The circadian clock regulates plant tissue hydraulics to synchronize water supply with environmental cycles and thereby optimize growth. The circadian fluctuations in aquaporin transcript abundance suggest that aquaporin water channels play a role in these processes. Here, we show that hydraulic conductivity (K ros) of Arabidopsis (Arabidopsis thaliana) rosettes displays a genuine circadian rhythmicity with a peak around midday. Combined immunological and proteomic approaches revealed that phosphorylation at two C-terminal sites (Ser280, Ser283) of PLASMA MEMBRANE INTRINSIC PROTEIN 2;1 (AtPIP2;1), a major plasma membrane aquaporin in rosettes, shows circadian oscillations and is correlated with K ros Transgenic expression of phosphodeficient and phosphomimetic forms of this aquaporin indicated that AtPIP2;1 phosphorylation is necessary but not sufficient for K ros regulation. We investigated the supporting role of 14-3-3 proteins, which are known to interact with and regulate phosphorylated proteins. Individual knockout plants for five 14-3-3 protein isoforms expressed in rosettes lacked circadian activation of K ros Two of these [GRF4 (14-3-3Phi); GRF10 (14-3-3Epsilon)] showed direct interactions with AtPIP2;1 in the plant and upon coexpression in Xenopus laevis oocytes and activated AtPIP2;1, preferentially when the latter was phosphorylated at its two C-terminal sites. We propose that this regulatory mechanism assists in the activation of phosphorylated AtPIP2;1 during circadian regulation of K ros.
Collapse
Affiliation(s)
- Karine Prado
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP 42617, F-31326, Castanet-Tolosan, France
| | - Guowei Li
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Jorge Bellati
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Ning Tang
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Colette Tournaire-Roux
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Alexandre Martinière
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Véronique Santoni
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| | - Christophe Maurel
- Biochimie et Physiologie Moléculaire des Plantes, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, 34090 Montpellier, France
| |
Collapse
|
75
|
Huertas R, Catalá R, Jiménez-Gómez JM, Mar Castellano M, Crevillén P, Piñeiro M, Jarillo JA, Salinas J. Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity. THE PLANT CELL 2019; 31:537-554. [PMID: 30696706 PMCID: PMC6447010 DOI: 10.1105/tpc.18.00689] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/14/2018] [Accepted: 01/25/2019] [Indexed: 05/19/2023]
Abstract
The control of precursor-messenger RNA (pre-mRNA) splicing is emerging as an important layer of regulation in plant responses to endogenous and external cues. In eukaryotes, pre-mRNA splicing is governed by the activity of a large ribonucleoprotein machinery, the spliceosome, whose protein core is composed of the Sm ring and the related Sm-like 2-8 complex. Recently, the Arabidopsis (Arabidopsis thaliana) Sm-like 2-8 complex has been characterized. However, the role of plant Sm proteins in pre-mRNA splicing remains largely unknown. Here, we present the functional characterization of Sm protein E1 (SME1), an Arabidopsis homolog of the SME subunit of the eukaryotic Sm ring. Our results demonstrate that SME1 regulates the spliceosome activity and that this regulation is controlled by the environmental conditions. Indeed, depending on the conditions, SME1 ensures the efficiency of constitutive and alternative splicing of selected pre-mRNAs. Moreover, missplicing of most targeted pre-mRNAs leads to the generation of nonsense-mediated decay signatures, indicating that SME1 also guarantees adequate levels of the corresponding functional transcripts. In addition, we show that the selective function of SME1 in ensuring appropriate gene expression patterns through the regulation of specific pre-mRNA splicing is essential for adequate plant development and adaptation to freezing temperatures. These findings reveal that SME1 plays a critical role in plant development and interaction with the environment by providing spliceosome activity specificity.
Collapse
Affiliation(s)
- Raul Huertas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| | - Rafael Catalá
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| | | | - M Mar Castellano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA, 28223 Pozuelo de Alarcón, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA, 28223 Pozuelo de Alarcón, Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, UPM/INIA, 28223 Pozuelo de Alarcón, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas-CSIC, 28040 Madrid, Spain
| |
Collapse
|
76
|
Struk S, Jacobs A, Sánchez Martín-Fontecha E, Gevaert K, Cubas P, Goormachtig S. Exploring the protein-protein interaction landscape in plants. PLANT, CELL & ENVIRONMENT 2019; 42:387-409. [PMID: 30156707 DOI: 10.1111/pce.13433] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Protein-protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Elena Sánchez Martín-Fontecha
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Pilar Cubas
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| |
Collapse
|
77
|
Chen T, Chen JH, Zhang W, Yang G, Yu LJ, Li DM, Li B, Sheng HM, Zhang H, An LZ. BYPASS1-LIKE, A DUF793 Family Protein, Participates in Freezing Tolerance via the CBF Pathway in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:807. [PMID: 31297122 PMCID: PMC6607965 DOI: 10.3389/fpls.2019.00807] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/05/2019] [Indexed: 05/13/2023]
Abstract
The C-REPEAT BINDING FACTOR signaling pathway is strictly modulated by numerous factors and is essential in the cold response of plants. Here, we show that the DUF793 family gene BYPASS1-LIKE modulates freezing tolerance through the CBFs in Arabidopsis. The expression of B1L was rapidly induced under cold treatment. Comparing to wild type, B1L knockout mutants were more sensitive to freezing treatment, whereas B1L-overexpressing lines were more tolerant. The expression of CBFs and CBF target genes was significantly decreased in b1l mutant. Using yeast two-hybrid screening system, 14-3-3λ was identified as one of proteins interacting with B1L. The interaction was confirmed with bimolecular fluorescence complementation assay and co-immunoprecipitation assay. Biochemical assays revealed that b1l mutation promoted the degradation of CBF3 compared to wild type, whereas 14-3-3κλ mutant and b1l 14-3-3κλ mutant suppressed the degradation of CBF3. Consistently, 14-3-3κλ and b1l 14-3-3κλ mutants showed enhanced freezing tolerance compared to wild type. These results indicate that B1L enhances the freezing tolerance of plants, at least partly through stabilizing CBF. Our findings improve our understanding of the regulation of CBF in response to cold stress.
Collapse
Affiliation(s)
- Tao Chen
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Jia-Hui Chen
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Wei Zhang
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Gang Yang
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Li-Juan Yu
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Dong-Ming Li
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bo Li
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Hong-Mei Sheng
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Hua Zhang
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- *Correspondence: Hua Zhang,
| | - Li-Zhe An
- School of Life Sciences, The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou, China
- School of Forestry, Beijing Forestry University, Beijing, China
- Li-Zhe An,
| |
Collapse
|
78
|
Jegadeesan S, Chaturvedi P, Ghatak A, Pressman E, Meir S, Faigenboim A, Rutley N, Beery A, Harel A, Weckwerth W, Firon N. Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains. FRONTIERS IN PLANT SCIENCE 2018; 9:1558. [PMID: 30483278 PMCID: PMC6240657 DOI: 10.3389/fpls.2018.01558] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/04/2018] [Indexed: 05/19/2023]
Abstract
Heat stress is a major cause for yield loss in many crops, including vegetable crops. Even short waves of high temperature, becoming more frequent during recent years, can be detrimental. Pollen development is most heat-sensitive, being the main cause for reduced productivity under heat-stress across a wide range of crops. The molecular mechanisms involved in pollen heat-stress response and thermotolerance are however, not fully understood. Recently, we have demonstrated that ethylene, a gaseous plant hormone, plays a role in tomato (Solanum lycopersicum) pollen thermotolerance. These results were substantiated in the current work showing that increasing ethylene levels by using an ethylene-releasing substance, ethephon, prior to heat-stress exposure, increased pollen quality. A proteomic approach was undertaken, to unravel the mechanisms underlying pollen heat-stress response and ethylene-mediated pollen thermotolerance in developing pollen grains. Proteins were extracted and analyzed by means of a gel LC-MS fractionation protocol, and a total of 1,355 proteins were identified. A dataset of 721 proteins, detected in three biological replicates of at least one of the applied treatments, was used for all analyses. Quantitative analysis was performed based on peptide count. The analysis revealed that heat-stress affected the developmental program of pollen, including protein homeostasis (components of the translational and degradation machinery), carbohydrate, and energy metabolism. Ethephon-pre-treatment shifted the heat-stressed pollen proteome closer to the proteome under non-stressful conditions, namely, by showing higher abundance of proteins involved in protein synthesis, degradation, tricarboxylic acid cycle, and RNA regulation. Furthermore, up-regulation of protective mechanisms against oxidative stress was observed following ethephon-treatment (including higher abundance of glutathione-disulfide reductase, glutaredoxin, and protein disulfide isomerase). Taken together, the findings identified systemic and fundamental components of pollen thermotolerance, and serve as a valuable quantitative protein database for further research.
Collapse
Affiliation(s)
- Sridharan Jegadeesan
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture of The Hebrew University of Jerusalem, Rehovot, Israel
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Etan Pressman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Shimon Meir
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Adi Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Nicholas Rutley
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Avital Beery
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Arye Harel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Nurit Firon
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
79
|
Liu J, Shi Y, Yang S. Insights into the regulation of C-repeat binding factors in plant cold signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:780-795. [PMID: 29667328 DOI: 10.1111/jipb.12657] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/16/2018] [Indexed: 05/02/2023]
Abstract
Cold temperatures, a major abiotic stress, threaten the growth and development of plants, worldwide. To cope with this adverse environmental cue, plants from temperate climates have evolved an array of sophisticated mechanisms to acclimate to cold periods, increasing their ability to tolerate freezing stress. Over the last decade, significant progress has been made in determining the molecular mechanisms underpinning cold acclimation, including following the identification of several pivotal components, including candidates for cold sensors, protein kinases, and transcription factors. With these developments, we have a better understanding of the CBF-dependent cold-signaling pathway. In this review, we summarize recent progress made in elucidating the cold-signaling pathways, especially the C-repeat binding factor-dependent pathway, and describe the regulatory function of the crucial components of plant cold signaling. We also discuss the unsolved questions that should be the focus of future work.
Collapse
Affiliation(s)
- Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Crops Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
80
|
Shi Y, Ding Y, Yang S. Molecular Regulation of CBF Signaling in Cold Acclimation. TRENDS IN PLANT SCIENCE 2018; 23:623-637. [PMID: 29735429 DOI: 10.1016/j.tplants.2018.04.002] [Citation(s) in RCA: 427] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 05/19/2023]
Abstract
Cold stress restricts plant growth, development, and distribution. Understanding how plants transduce and respond to cold signals has long been a topic of interest. Traditional genetic and molecular analyses have identified C-repeat/DREB binding factors (CBFs) as key transcription factors that function in cold acclimation. Recent studies revealed the involvement of pivotal protein kinases and transcription factors in CBF-dependent signaling, expanding our knowledge of cold signal transduction from perception to downstream gene expression events. In this review, we summarize recent advances in our understanding of the molecular regulation of these core components of the CBF cold signaling pathway. Knowledge of the mechanism underlying the ability of plants to survive freezing temperatures will facilitate the development of crop plants with increased freezing tolerance.
Collapse
Affiliation(s)
- Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; These authors contributed equally
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; These authors contributed equally
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
81
|
Zhang Y, Zhao H, Zhou S, He Y, Luo Q, Zhang F, Qiu D, Feng J, Wei Q, Chen L, Chen M, Chang J, Yang G, He G. Expression of TaGF14b, a 14-3-3 adaptor protein gene from wheat, enhances drought and salt tolerance in transgenic tobacco. PLANTA 2018; 248:117-137. [PMID: 29616395 DOI: 10.1007/s00425-018-2887-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 05/22/2023]
Abstract
MAIN CONCLUSION TaGF14b enhances tolerance to multiple stresses through ABA signaling pathway by altering physiological and biochemical processes, including ROS-scavenging system, stomatal closure, compatible osmolytes, and stress-related gene expressions in tobaccos. The 14-3-3 proteins are involved in plant growth, development, and in responding to abiotic stresses. However, the precise functions of 14-3-3s in responding to drought and salt stresses remained unclear, especially in wheat. In this study, a 14-3-3 gene from wheat, designated TaGF14b, was cloned and characterized. TaGF14b was upregulated by polyethylene glycol 6000, sodium chloride, hydrogen peroxide, and abscisic acid (ABA) treatments. Ectopic expression of TaGF14b in tobacco conferred enhanced tolerance to drought and salt stresses. Transgenic tobaccos had longer root, better growth status, and higher relative water content, survival rate, photosynthetic rate, and water use efficiency than control plants under drought and salt stresses. The contribution of TaGF14b to drought and salt tolerance relies on the regulations of ABA biosynthesis and ABA signaling, as well as stomatal closure and stress-related gene expressions. Moreover, TaGF14b expression could significantly enhance the reactive oxygen species (ROS) scavenging system to ameliorate oxidative damage to cells. In addition, TaGF14b increased tolerance to osmotic stress evoked by drought and salinity through modifying water conservation and compatible osmolytes in plants. In conclusion, TaGF14b enhances tolerance to multiple abiotic stresses through the ABA signaling pathway in transgenic tobaccos by altering physiological and biochemical processes.
Collapse
Affiliation(s)
- Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongyan Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shiyi Zhou
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, 430205, China
| | - Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ding Qiu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuhui Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lihong Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mingjie Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
82
|
Kazemi-Shahandashti SS, Maali-Amiri R. Global insights of protein responses to cold stress in plants: Signaling, defence, and degradation. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:123-135. [PMID: 29758377 DOI: 10.1016/j.jplph.2018.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 05/20/2023]
Abstract
Cold stress (CS) as one of the unfavorable abiotic tensions proceeds different aspects of plant responses. These responses are generated through CS effects on crucial processes such as photosynthesis, energy metabolism, ROS homeostasis, membrane fluidity and cell wall architecture. As a tolerance response, plants apply proteins in various strategies such as transferring the message of cold entrance named as signaling, producing defensive and protective molecules against the stress and degrading some unfavorable or unnecessary proteins to produce other required ones. A change in one part of these networks can irritate alternations in others. These strategies as acclimation mechanisms are conducted through gene expression reprogramming to provide a new adjusted metabolic homeostasis dependent on the stress severity and duration and plant species. Investigating protein alterations in metabolic pathways and their role in adjusting cellular components from upstream to downstream levels can provide a profound knowledge of plants tolerance mechanism against the damaging effects of CS. In this review, we summarized the activity of some cold-responsive proteins from the perception phase to tolerance response against CS.
Collapse
Affiliation(s)
- Seyyedeh-Sanam Kazemi-Shahandashti
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran
| | - Reza Maali-Amiri
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871, Karaj, Iran.
| |
Collapse
|
83
|
Costa-Broseta Á, Perea-Resa C, Castillo MC, Ruíz MF, Salinas J, León J. Nitric Oxide Controls Constitutive Freezing Tolerance in Arabidopsis by Attenuating the Levels of Osmoprotectants, Stress-Related Hormones and Anthocyanins. Sci Rep 2018; 8:9268. [PMID: 29915353 PMCID: PMC6006431 DOI: 10.1038/s41598-018-27668-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/08/2018] [Indexed: 11/09/2022] Open
Abstract
Plant tolerance to freezing temperatures is governed by endogenous constitutive components and environmental inducing factors. Nitric oxide (NO) is one of the endogenous components that participate in freezing tolerance regulation. A combined metabolomic and transcriptomic characterization of NO-deficient nia1,2noa1-2 mutant plants suggests that NO acts attenuating the production and accumulation of osmoprotective and regulatory metabolites, such as sugars and polyamines, stress-related hormones, such as ABA and jasmonates, and antioxidants, such as anthocyanins and flavonoids. Accordingly, NO-deficient plants are constitutively more freezing tolerant than wild type plants.
Collapse
Affiliation(s)
- Álvaro Costa-Broseta
- Instituto de Biología Molecular y Celular de Plantas, (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - Carlos Perea-Resa
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02214, USA
| | - Mari-Cruz Castillo
- Instituto de Biología Molecular y Celular de Plantas, (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022, Valencia, Spain
| | - M Fernanda Ruíz
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Julio Salinas
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - José León
- Instituto de Biología Molecular y Celular de Plantas, (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), 46022, Valencia, Spain.
| |
Collapse
|
84
|
Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Sci Rep 2018; 8:7790. [PMID: 29773844 PMCID: PMC5958118 DOI: 10.1038/s41598-018-25959-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/01/2018] [Indexed: 12/24/2022] Open
Abstract
In this study, we aimed to identify differentially accumulated proteins (DAPs) involved in PEG mock osmotic stress, cadmium (Cd2+) stress, and their combined stress responses in Brachypodium distachyon seedling roots. The results showed that combined PEG and Cd2+ stresses had more significant effects on Brachypodium seedling root growth, physiological traits, and ultrastructures when compared with each individual stress. Totally, 106 DAPs were identified that are responsive to individual and combined stresses in roots. These DAPs were mainly involved in energy metabolism, detoxification and stress defense and protein metabolism. Principal component analysis revealed that DAPs from Cd2+ and combined stress treatments were grouped closer than those from osmotic stress treatment, indicating that Cd2+ and combined stresses had more severe influences on the root proteome than osmotic stress alone. Protein-protein interaction analyses highlighted a 14-3-3 centered sub-network that synergistically responded to osmotic and Cd2+ stresses and their combined stresses. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of 14 key DAP genes revealed that most genes showed consistency between transcriptional and translational expression patterns. A putative pathway of proteome metabolic changes in Brachypodium seedling roots under different stresses was proposed, which revealed a complicated synergetic responsive network of plant roots to adverse environments.
Collapse
|
85
|
Abstract
Plants tightly regulate the biosynthesis of ethylene to control growth and development and respond to a wide range of biotic and abiotic stresses. To understand the molecular mechanism by which plants regulate ethylene biosynthesis as well as to identify stimuli triggering the alteration of ethylene production in plants, it is essential to have a reliable tool with which one can directly measure in vivo ethylene concentration. Gas chromatography is a routine detection technique for separation and analysis of volatile compounds with relatively high sensitivity. Gas chromatography has been widely used to measure the ethylene produced by plants, and has in turn become a valuable tool for ethylene research. Here, we describe a protocol for measuring the ethylene produced by dark-grown Arabidopsis seedlings using a gas chromatograph.
Collapse
Affiliation(s)
- Gyeong Mee Yoon
- Department of Botany and Plant Pathology, Purdue University, 915 West State St., West Lafayette, IN, 47907, USA.
| | - Yi-Chun Chen
- Department of Botany and Plant Pathology, Purdue University, 915 West State St., West Lafayette, IN, 47907, USA
| |
Collapse
|
86
|
Camoni L, Visconti S, Aducci P, Marra M. 14-3-3 Proteins in Plant Hormone Signaling: Doing Several Things at Once. FRONTIERS IN PLANT SCIENCE 2018; 9:297. [PMID: 29593761 PMCID: PMC5859350 DOI: 10.3389/fpls.2018.00297] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/21/2018] [Indexed: 05/19/2023]
Abstract
In this review we highlight the advances achieved in the investigation of the role of 14-3-3 proteins in hormone signaling, biosynthesis, and transport. 14-3-3 proteins are a family of conserved molecules that target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. As a result, they regulate several cellular processes, ranging from metabolism to transport, growth, development, and stress response. High-throughput proteomic data and two-hybrid screen demonstrate that 14-3-3 proteins physically interact with many protein clients involved in the biosynthesis or signaling pathways of the main plant hormones, while increasing functional evidence indicates that 14-3-3-target interactions play pivotal regulatory roles. These advances provide a framework of our understanding of plant hormone action, suggesting that 14-3-3 proteins act as hubs of a cellular web encompassing different signaling pathways, transducing and integrating diverse hormone signals in the regulation of physiological processes.
Collapse
|
87
|
Kong Q, Ma W. WRINKLED1 as a novel 14-3-3 client: function of 14-3-3 proteins in plant lipid metabolism. PLANT SIGNALING & BEHAVIOR 2018; 13:e1482176. [PMID: 30067435 PMCID: PMC6149467 DOI: 10.1080/15592324.2018.1482176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The conserved plant 14-3-3 proteins (14-3-3s) function by binding to phosphorylated client proteins to regulate their function. Previous studies indicate that 14-3-3s are involved in the regulation of plant primary metabolism; however, not much is known regarding the functions of 14-3-3s in plant oil biosynthesis. Our recent work shows that 14-3-3 plays a role in mediating plant oil biosynthesis through interacting with the transcription factor, WRINKLED1 (WRI1). WRI1 is critical for the transcriptional control of plant oil biosynthesis. Arabidopsis WRI1 physically interacts with 14-3-3s. Transient co-expression of AtWRI1 with 14-3-3s enhances plant oil biosynthesis in leaves of Nicotiana benthamiana. Transgenic plants overexpressing of a 14-3-3 show enhanced seed oil content. Co-expression of a 14-3-3 with AtWRI1 results in increased transcriptional activity and protein stability of AtWRI1. Our transcriptional regulation model supports a concept that interaction of a 14-3-3 with a transcription factor enhances the transcriptional activity through protein stabilization.
Collapse
Affiliation(s)
- Que Kong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- CONTACT Wei Ma School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
88
|
Gene Regulatory Networks Mediating Cold Acclimation: The CBF Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1081:3-22. [PMID: 30288701 DOI: 10.1007/978-981-13-1244-1_1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Under low nonfreezing temperature conditions, plants from temperate climates undergo physiological and biochemical adjustments that increase their tolerance to freezing temperatures. This response, termed cold acclimation, is largely regulated by changes in gene expression. Molecular and genetic studies have identified a small family of transcription factors, called C-repeat binding factors (CBFs), as key regulators of the transcriptomic rearrangement that leads to cold acclimation. The function of these proteins is tightly controlled, and an inadequate supply of CBF activity may be detrimental to the plant. Accumulated evidence has revealed an extremely intricate network of positive and negative regulators of cold acclimation that coalesce at the level of CBF promoters constituting a central hub where multiple internal and external signals are integrated. Moreover, CBF expression is also controlled at posttranscriptional and posttranslational levels further refining CBF regulation. Recently, natural variation studies in Arabidopsis have demonstrated that mutations resulting in changes in CBF expression have an adaptive value for wild populations. Intriguingly, CBF genes are also present in plant species that do not cold acclimate, which suggest that they may also have additional functions. For instance, CBFs are required for some cold-related abiotic stress responses. In addition, their involvement in plant development deserves further study. Although more studies are necessary to fully harness CBF biotechnological potential, these transcription factors are meant to be key for a rational design of crops with enhanced tolerance to abiotic stress.
Collapse
|
89
|
Zhong J, Robbett M, Poire A, Preston JC. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions. THE NEW PHYTOLOGIST 2018; 217:925-938. [PMID: 29091285 DOI: 10.1111/nph.14868] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Angiosperm adaptations to seasonally cold climates have occurred multiple times independently. However, the observation that less than half of all angiosperm families are represented in temperate latitudes suggests internal constraints on the evolution of cold tolerance/avoidance strategies. Similar to angiosperms as a whole, grasses are primarily tropical, but one major clade, subfamily Pooideae, radiated extensively within temperate regions. It is posited that this Pooideae niche transition was facilitated by an early origin of long-term cold responsiveness around the base of the subfamily, and that a set of more ancient pathways enabled evolution of seasonal cold tolerance. To test this, we compared transcriptome-level responses of disparate Pooideae to short-/long-term cold and with those previously known in the subtropical grass rice (Ehrhartoideae). Analyses identified several highly conserved cold-responsive 'orthogroups' within our focal Pooideae species that originated successively during the diversification of land plants, predominantly via gene duplication. The majority of conserved Pooideae cold-responsive genes appear to have ancient roles in stress responses, with most of the orthogroups also being sensitive to cold in rice. However, a subgroup of genes was likely co-opted de novo early in the Pooideae. These results highlight a plausible stepwise evolutionary trajectory for cold adaptations across Pooideae.
Collapse
Affiliation(s)
- Jinshun Zhong
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Meghan Robbett
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Alfonso Poire
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| | - Jill C Preston
- Department of Plant Biology, University of Vermont, 111 Jeffords Hall, 63 Carrigan Drive, Burlington, VT, 05405, USA
| |
Collapse
|
90
|
Wang DZ, Jin YN, Ding XH, Wang WJ, Zhai SS, Bai LP, Guo ZF. Gene Regulation and Signal Transduction in the ICE-CBF-COR Signaling Pathway during Cold Stress in Plants. BIOCHEMISTRY (MOSCOW) 2017; 82:1103-1117. [PMID: 29037131 DOI: 10.1134/s0006297917100030] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Low temperature is an abiotic stress that adversely affects the growth and production of plants. Resistance and adaptation of plants to cold stress is dependent upon the activation of molecular networks and pathways involved in signal transduction and the regulation of cold-stress related genes. Because it has numerous and complex genes, regulation factors, and pathways, research on the ICE-CBF-COR signaling pathway is the most studied and detailed, which is thought to be rather important for cold resistance of plants. In this review, we focus on the function of each member, interrelation among members, and the influence of manipulators and repressors in the ICE-CBF-COR pathway. In addition, regulation and signal transduction concerning plant hormones, circadian clock, and light are discussed. The studies presented provide a detailed picture of the ICE-CBF-COR pathway.
Collapse
Affiliation(s)
- Da-Zhi Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| | | | | | | | | | | | | |
Collapse
|
91
|
Lv X, Ge S, Jalal Ahammed G, Xiang X, Guo Z, Yu J, Zhou Y. Crosstalk between Nitric Oxide and MPK1/2 Mediates Cold Acclimation-induced Chilling Tolerance in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:1963-1975. [PMID: 29036450 DOI: 10.1093/pcp/pcx134] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
The participation of nitric oxide (NO) in the responses of plants towards biotic and abiotic stresses is well established. However, the mechanism involved particularly in cold acclimation-induced chilling tolerance remains elusive. Here we show the cold acclimation induced-chilling tolerance was associated with inductions of nitrate reductase (NR)-dependent NO production, S-nitrosylated glutathione reductase (GSNOR) activity and mitogen-activated protein kinases MPK1/2 activation in tomato plants. Silencing of NR resulted in decreased GSNOR activity and MPK1/2 activation, which subsequently compromised cold acclimation-induced chilling tolerance. By contrast, silencing of GSNOR caused decreased NR activity, increased NO accumulation and MPK1/2 activation, and enhanced cold acclimation-induced chilling tolerance. Furthermore, co-silencing of MPK1 and MPK2 attenuated the NR-dependent NO production and cold acclimation-induced tolerance to chilling. Results from present study suggest the importance of MPK1/2 for the induction of NR-dependent NO generation, while the accumulation of nitrosylated glutathione from NO-derived reactive nitrogen species could potentially S-nitrosylate NR. These findings provide new insight into the crosstalk of NO and MPK1/2 in cold acclimation-induced chilling tolerance in tomato plants.
Collapse
Affiliation(s)
- Xiangzhang Lv
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shibei Ge
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xun Xiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhixin Guo
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
92
|
Bian S, Jin D, Li R, Xie X, Gao G, Sun W, Li Y, Zhai L, Li X. Genome-Wide Analysis of CCA1-Like Proteins in Soybean and Functional Characterization of GmMYB138a. Int J Mol Sci 2017; 18:E2040. [PMID: 28937654 PMCID: PMC5666722 DOI: 10.3390/ijms18102040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/10/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022] Open
Abstract
Plant CIRCADIAN CLOCK ASSOCIATED1 (CCA1)-like proteins are a class of single-repeat MYELOBLASTOSIS ONCOGENE (MYB) transcription factors generally featured by a highly conserved motif SHAQK(Y/F)F, which play important roles in multiple biological processes. Soybean is an important grain legume for seed protein and edible vegetable oil. However, essential understandings regarding CCA1-like proteins are very limited in soybean. In this study, 54 CCA1-like proteins were identified by data mining of soybean genome. Phylogenetic analysis indicated that soybean CCA1-like subfamily showed evolutionary conservation and diversification. These CCA1-like genes displayed tissue-specific expression patterns, and analysis of genomic organization and evolution revealed 23 duplicated gene pairs. Among them, GmMYB138a was chosen for further investigation. Our protein-protein interaction studies revealed that GmMYB138a, but not its alternatively spliced isoform, interacts with a 14-3-3 protein (GmSGF14l). Although GmMYB138a was predominately localized in nucleus, the resulting complex of GmMYB138a and GmSGF14l was almost evenly distributed in nucleus and cytoplasm, supporting that 14-3-3s interact with their clients to alter their subcellular localization. Additionally, qPCR analysis suggested that GmMYB138a and GmSGF14l synergistically or antagonistically respond to drought, cold and salt stresses. Our findings will contribute to future research in regard to functions of soybean CCA1-like subfamily, especially regulatory mechanisms of GmMYB138a in response to abiotic stresses.
Collapse
Affiliation(s)
| | - Donghao Jin
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Ruihua Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xin Xie
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Guoli Gao
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Weikang Sun
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Yuejia Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Lulu Zhai
- College of Plant Science, Jilin University, Changchun 130062, China.
| | - Xuyan Li
- College of Plant Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
93
|
Fei Q, Wei S, Zhou Z, Gao H, Li X. Adaptation of root growth to increased ambient temperature requires auxin and ethylene coordination in Arabidopsis. PLANT CELL REPORTS 2017; 36:1507-1518. [PMID: 28660363 DOI: 10.1007/s00299-017-2171-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/21/2017] [Indexed: 05/09/2023]
Abstract
A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change is transduced into a plant root growth response is still relatively unclear. Here, we found that the Arabidopsis ckrc1-1 mutant is sensitive to higher AT. At 27 °C, the ckrc1-1 root length is significantly shortened and the root gravity defect is enhanced, changes that can be restored with addition of 1-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant root growth response to higher AT.
Collapse
Affiliation(s)
- Qionghui Fei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shaodong Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhaoyang Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Huanhuan Gao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaofeng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
94
|
Sarwat M, Tuteja N. Hormonal signaling to control stomatal movement during drought stress. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
95
|
Yang L, You J, Wang Y, Li J, Quan W, Yin M, Wang Q, Chan Z. Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 117:1-11. [PMID: 28575641 DOI: 10.1016/j.plaphy.2017.05.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The 14-3-3 proteins are highly conserved and ubiquitously found in eukaryotes. Plant 14-3-3 proteins are involved in many signaling pathways to regulate plant growth and development. Here we identified seven Brachypodium distachyon 14-3-3 genes and analyzed the evolution, gene structure and expression profiles of these genes. Several cis-elements involved in stress response and hormone pathway were found in the promoter region of 14-3-3 genes. Results of gene expression analysis showed that these genes were induced by abiotic stresses or hormone treatments. Transgenic Arabidopsis overexpressing BdGF14a exhibited increased leaf water content (LWC) and decreased electrolyte leakage (EL) and showed improved drought stress tolerance. BdGF14a transgene significantly up-regulated expression levels of DREB1A and DREB1B, but slightly elevated ABI1 expression. These results indicated that BdGF14a functioned as a positive regulator in plant response to drought stress mainly via ABA independent pathway.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinzhu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wenli Quan
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China
| | - Mingzhu Yin
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qingfeng Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden/Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China.
| |
Collapse
|
96
|
Gonzalez LE, Keller K, Chan KX, Gessel MM, Thines BC. Transcriptome analysis uncovers Arabidopsis F-BOX STRESS INDUCED 1 as a regulator of jasmonic acid and abscisic acid stress gene expression. BMC Genomics 2017; 18:533. [PMID: 28716048 PMCID: PMC5512810 DOI: 10.1186/s12864-017-3864-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/15/2017] [Indexed: 01/14/2023] Open
Abstract
Background The ubiquitin 26S proteasome system (UPS) selectively degrades cellular proteins, which results in physiological changes to eukaryotic cells. F-box proteins are substrate adaptors within the UPS and are responsible for the diversity of potential protein targets. Plant genomes are enriched in F-box genes, but the vast majority of these have unknown roles. This work investigated the Arabidopsis F-box gene F-BOX STRESS INDUCED 1 (FBS1) for its effects on gene expression in order elucidate its previously unknown biological function. Results Using publically available Affymetrix ATH1 microarray data, we show that FBS1 is significantly co-expressed in abiotic stresses with other well-characterized stress response genes, including important stress-related transcriptional regulators. This gene suite is most highly expressed in roots under cold and salt stresses. Transcriptome analysis of fbs1–1 knock-out plants grown at a chilling temperature shows that hundreds of genes require FBS1 for appropriate expression, and that these genes are enriched in those having roles in both abiotic and biotic stress responses. Based on both this genome-wide expression data set and quantitative real-time PCR (qPCR) analysis, it is apparent that FBS1 is required for elevated expression of many jasmonic acid (JA) genes that have established roles in combatting environmental stresses, and that it also controls a subset of JA biosynthesis genes. FBS1 also significantly impacts abscisic acid (ABA) regulated genes, but this interaction is more complex, as FBS1 has both positive and negative effects on ABA-inducible and ABA-repressible gene modules. One noteworthy effect of FBS1 on ABA-related stress processes, however, is the restraint it imposes on the expression of multiple class I LIPID TRANSFER PROTEIN (LTP) gene family members that have demonstrated protective effects in water deficit-related stresses. Conclusion FBS1 impacts plant stress responses by regulating hundreds of genes that respond to the plant stress hormones JA and ABA. The positive effect that FBS1 has on JA processes and the negative effect it has on at least some ABA processes indicates that it in part regulates cellular responses balanced between these two important stress hormones. More broadly then, FBS1 may aid plant cells in switching between certain biotic (JA) and abiotic (ABA) stress responses. Finally, because FBS1 regulates a subset of JA biosynthesis and response genes, we conclude that it might have a role in tuning hormone responses to particular circumstances at the transcriptional level. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3864-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren E Gonzalez
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Genetics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kristen Keller
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA.,Present address: Department of Biostatistics, UCLA Fielding School of Public Health, Los Angeles, CA, 90095, USA
| | - Karen X Chan
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Megan M Gessel
- Chemistry Department, University of Puget Sound, Tacoma, WA, 98416, USA
| | - Bryan C Thines
- Biology Department, University of Puget Sound, Tacoma, WA, 98416, USA.
| |
Collapse
|
97
|
Jin J, Zhang H, Zhang J, Liu P, Chen X, Li Z, Xu Y, Lu P, Cao P. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genomics 2017; 18:496. [PMID: 28662642 PMCID: PMC5492280 DOI: 10.1186/s12864-017-3871-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CB-1 and K326 are closely related tobacco cultivars; however, their cold tolerance capacities are different. K326 is much more cold tolerant than CB-1. RESULTS We studied the transcriptomes and metabolomes of CB-1 and K326 leaf samples treated with cold stress. Totally, we have identified 14,590 differentially expressed genes (DEGs) in CB-1 and 14,605 DEGs in K326; there was also 200 differentially expressed metabolites in CB-1 and 194 in K326. Moreover, there were many overlapping genes (around 50%) that were cold-responsive in both plant cultivars, although there were also many differences in the cold responsive genes between the two cultivars. Importantly, for most of the overlapping cold responsive genes, the extent of the changes in expression were typically much more pronounced in K326 than in CB-1, which may help explain the superior cold tolerance of K326. Similar results were found in the metabolome analysis, particularly with the analysis of primary metabolites, including amino acids, organic acids, and sugars. The large number of specific responsive genes and metabolites highlight the complex regulatory mechanisms associated with cold stress in tobacco. In addition, our work implies that the energy metabolism and hormones may function distinctly between CB-1 and K326. CONCLUSIONS Differences in gene expression and metabolite levels following cold stress treatment seem likely to have contributed to the observed difference in the cold tolerance phenotype of these two tobacco cultivars.
Collapse
Affiliation(s)
- Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peng Lu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001 China
| |
Collapse
|
98
|
Barrero-Gil J, Salinas J. CBFs at the Crossroads of Plant Hormone Signaling in Cold Stress Response. MOLECULAR PLANT 2017; 10:542-544. [PMID: 28323054 DOI: 10.1016/j.molp.2017.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 05/23/2023]
Affiliation(s)
- Javier Barrero-Gil
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
99
|
Liu Z, Jia Y, Ding Y, Shi Y, Li Z, Guo Y, Gong Z, Yang S. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response. Mol Cell 2017; 66:117-128.e5. [PMID: 28344081 DOI: 10.1016/j.molcel.2017.02.016] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/13/2017] [Accepted: 02/16/2017] [Indexed: 11/19/2022]
Abstract
In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.
Collapse
Affiliation(s)
- Ziyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxin Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
100
|
Hu Y, Jiang Y, Han X, Wang H, Pan J, Yu D. Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1361-1369. [PMID: 28201612 DOI: 10.1093/jxb/erx004] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
Plants are challenged with numerous abiotic stresses, such as drought, cold, heat, and salt stress. These environmental stresses are major causes of crop failure and reduced yields worldwide. Phytohormones play essential roles in regulating various plant physiological processes and alleviating stressful perturbations. Jasmonate (JA), a group of oxylipin compounds ubiquitous in the plant kingdom, acts as a crucial signal to modulate multiple plant processes. Recent studies have shown evidence supporting the involvement of JA in leaf senescence and tolerance to cold stress. Concentrations of JA are much higher in senescent leaves compared with those in non-senescent ones. Treatment with exogenous JA induces leaf senescence and expression of senescence-associated genes. In response to cold stress, exogenous application of JA enhances Arabidopsis freezing tolerance with or without cold acclimation. Consistently, biosynthesis of endogenous JA is activated in response to cold exposure. JA positively regulates the CBF (C-REPEAT BINDING FACTOR) transcriptional pathway to up-regulate downstream cold-responsive genes and ultimately improve cold tolerance. JA interacts with other hormone signaling pathways (such as auxin, ethylene, and gibberellin) to regulate leaf senescence and tolerance to cold stress. In this review, we summarize recent studies that have provided insights into JA-mediated leaf senescence and cold-stress tolerance.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Houping Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinjing Pan
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|