51
|
Maegaard K, Nielsen LP, Revsbech NP. Hydrogen Dynamics in Cyanobacteria Dominated Microbial Mats Measured by Novel Combined H 2/H 2S and H 2/O 2 Microsensors. Front Microbiol 2017; 8:2022. [PMID: 29093704 PMCID: PMC5651244 DOI: 10.3389/fmicb.2017.02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Hydrogen may accumulate to micromolar concentrations in cyanobacterial mat communities from various environments, but the governing factors for this accumulation are poorly described. We used newly developed sensors allowing for simultaneous measurement of H2S and H2 or O2 and H2 within the same point to elucidate the interactions between oxygen, sulfate reducing bacteria, and H2 producing microbes. After onset of darkness and subsequent change from oxic to anoxic conditions within the uppermost ∼1 mm of the mat, H2 accumulated to concentrations of up to 40 μmol L-1 in the formerly oxic layer, but with high variability among sites and sampling dates. The immediate onset of H2 production after darkening points to fermentation as the main H2 producing process in this mat. The measured profiles indicate that a gradual disappearance of the H2 peak was mainly due to the activity of sulfate reducing bacteria that invaded the formerly oxic surface layer from below, or persisted in an inactive state in the oxic mat during illumination. The absence of significant H2 consumption in the formerly oxic mat during the first ∼30 min after onset of anoxic conditions indicated absence of active sulfate reducers in this layer during the oxic period. Addition of the methanogenesis inhibitor BES led to increase in H2, indicating that methanogens contributed to the consumption of H2. Both H2 formation and consumption seemed unaffected by the presence/absence of H2S.
Collapse
Affiliation(s)
| | | | - Niels P. Revsbech
- Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
52
|
Cantine MD, Fournier GP. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. ORIGINS LIFE EVOL B 2017; 48:35-54. [PMID: 28685374 DOI: 10.1007/s11084-017-9542-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
Abstract
Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.
Collapse
Affiliation(s)
- Marjorie D Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
53
|
Cardoso DC, Sandionigi A, Cretoiu MS, Casiraghi M, Stal L, Bolhuis H. Comparison of the active and resident community of a coastal microbial mat. Sci Rep 2017; 7:2969. [PMID: 28592823 PMCID: PMC5462767 DOI: 10.1038/s41598-017-03095-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/20/2017] [Indexed: 01/04/2023] Open
Abstract
Coastal microbial mats form a nearly closed micro-scale ecosystem harboring a complex microbial community. Previous DNA based analysis did not necessarily provide information about the active fraction of the microbial community because it includes dormant, inactive cells as well as a potential stable pool of extracellular DNA. Here we focused on the active microbial community by comparing 16S rRNA sequences obtained from the ribosomal RNA pool with gene sequences obtained from the DNA fraction. In addition, we aimed to establish an optimal and feasible sampling protocol that takes potential spatial and temporal heterogeneity into account. The coastal microbial mat investigated here was sampled randomly and at regular time points during one 24-h period. DNA and RNA was extracted and after conversion of the RNA fraction to cDNA, the V1-V3 and the V3-V4 regions of the 16S rRNA gene were targeted for high-throughput amplicon sequencing. We show that the community composition varies little in time and space whereas two amplified 16S regions gave significant different results. The largest differences were found when comparing the "resident community" (DNA) with the "active community" (cDNA/RNA); in the latter, Cyanobacteria dominated for almost 95% while they represented 60% of the resident fraction.
Collapse
Affiliation(s)
- Daniela Clara Cardoso
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Mariana Silvia Cretoiu
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
- Department of Freshwater and Marine Ecology, IBED, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Lucas Stal
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands
- Department of Freshwater and Marine Ecology, IBED, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk Bolhuis
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, and Utrecht University, Den Hoorn, The Netherlands.
| |
Collapse
|
54
|
Swain SS, Paidesetty SK, Padhy RN. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother 2017; 90:760-776. [PMID: 28419973 DOI: 10.1016/j.biopha.2017.04.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
Infections from multidrug resistant (MDR) pathogenic bacteria, fungi and Mycobacterium tuberculosis remain progressively intractable. The search of effective antimicrobials from other possible non-conventional sources against MDR pathogenic bacteria, fungi and mycobacteria is call of the day. This review considers 121 cyanobacterial compounds or cyano-compounds with antimicrobial activities. Chemical structures of cyano-compounds were retrieved from ChemSpider and PubChem databases and were visualized by the software ChemDraw Ultra. Chemical information on cyano-compounds pertaining to Lipinski rules of five was assessed. The reviewed cyano-compounds belong to the following chemical classes (with examples): alkaloids (ambiguine isonitriles and 12-epi-hapalindole E isonitrile), aromatic compounds (benzoic acid and cyanobacterin), cyclic depsipeptides (cryptophycin 52 and lyngbyabellin A), cyclic peptides (calophycin and tenuecyclamides), cyclic undecapeptides (kawaguchipeptins and lyngbyazothrin A), cyclophane (carbamidocyclophane), extracellular pigment (nostocine A), fatty acids (alpha-dimorphecolic acid and majusculonic acid), linear peptides (muscoride A), lipopeptides (fischerellins and scytonemin A), nucleosides (tolytoxin and tubercidin), phenols (ambigols and 4-4'-hydroxybiphenyl), macrolides (scytophycin A and tolytoxin), polyketides (malyngolide and nostocyclyne), polyphenyl ethers (crossbyanol A), porphinoids (tolyporphin J) and terpenoids (noscomin and scytoscalarol). Cyanobacteria appear to be a diverse source of compounds with antimicrobial activity. Further attention is required to elucidate whether those could be applied as pharmaceuticals.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
55
|
Kinsman-Costello LE, Sheik CS, Sheldon ND, Allen Burton G, Costello DM, Marcus D, Uyl PAD, Dick GJ. Groundwater shapes sediment biogeochemistry and microbial diversity in a submerged Great Lake sinkhole. GEOBIOLOGY 2017; 15:225-239. [PMID: 27671809 DOI: 10.1111/gbi.12215] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/25/2016] [Indexed: 06/06/2023]
Abstract
For a large part of earth's history, cyanobacterial mats thrived in low-oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment-water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment-mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low-oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic-rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low-throughput or shotgun metagenomic approaches, our high-throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate-reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.
Collapse
Affiliation(s)
| | - C S Sheik
- Department of Biology, Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, USA
| | - N D Sheldon
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - G Allen Burton
- School of Natural Resources and the Environment, University of Michigan, Ann Arbor, MI, USA
| | - D M Costello
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - D Marcus
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - P A Den Uyl
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - G J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
56
|
Masuda LSM, Enrich-Prast A. Benthic microalgae community response to flooding in a tropical salt flat. BRAZ J BIOL 2017; 76:577-82. [PMID: 27097089 DOI: 10.1590/1519-6984.18314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/29/2015] [Indexed: 11/22/2022] Open
Abstract
This research evaluated the effect of flooding on the microphytobenthos community structure in a microbial mat from a tropical salt flat. Field samples were collected during four consecutive days: on the first three days the salt flat was dry, on the fourth day it was flooded by rain. In order to evaluate the community maintained in flood conditions, samples from this area were collected and kept in the laboratory for 10 days with sea water. The results of total abundance of microphytobenthos varied from 4.2 × 108 to 2.9 × 109 organisms L-1, total density increased one order of magnitude under the effect of water for both situations of precipitation in the salt flat and in experimental conditions, an increase due to the high abundance of Microcoleus spp. Shannon index (H') was higher during the desiccation period. Our data suggest that changes in the abundance of organisms were due to the effect of water. The dominance of the most abundant taxa remained the same under conditions of desiccation and influence of water, and there is probably a consortium of microorganisms in the microbial mat that helps to maintain these dominances.
Collapse
Affiliation(s)
- L S M Masuda
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ , Brazil, Programa de Pós-graduação em Ciências Biológicas (Microbiologia), Departamento Microbiologia Ambiental, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, Bloco I, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto de Biologia, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ , Brazil, Laboratório de Biogeoquímica, Instituto de Biologia, Universidade Federal do Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, Bloco A, Ilha do Fundão, CEP 21941-971, Rio de Janeiro, RJ, Brazil
| | - A Enrich-Prast
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ , Brazil, Programa de Pós-graduação em Ciências Biológicas (Microbiologia), Departamento Microbiologia Ambiental, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, Bloco I, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto de Biologia, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ , Brazil, Laboratório de Biogeoquímica, Instituto de Biologia, Universidade Federal do Rio de Janeiro - UFRJ, Av. Carlos Chagas Filho, 373, Bloco A, Ilha do Fundão, CEP 21941-971, Rio de Janeiro, RJ, Brazil.,Department of Environmental Change, Linköping University, Linköpings Universitet, Linköping , Sweden, Department of Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
57
|
Grim SL, Dick GJ. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium. Front Microbiol 2016; 7:1546. [PMID: 27790189 PMCID: PMC5061849 DOI: 10.3389/fmicb.2016.01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the regulation, evolutionary context, and biogeochemical implications of these co-occurring metabolisms in Earth history.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
58
|
Garcia GD, Santos EDO, Sousa GV, Zingali RB, Thompson CC, Thompson FL. Metaproteomics reveals metabolic transitions between healthy and diseased stony coral Mussismilia braziliensis. Mol Ecol 2016; 25:4632-44. [PMID: 27492757 DOI: 10.1111/mec.13775] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
Infectious diseases such as white plague syndrome (WPS) and black band disease (BBD) have caused massive coral loss worldwide. We performed a metaproteomic study on the Abrolhos coral Mussismilia braziliensis to define the types of proteins expressed in healthy corals compared to WPS- and BBD-affected corals. A total of 6363 MS/MS spectra were identified as 361 different proteins. Healthy corals had a set of proteins that may be considered markers of holobiont homoeostasis, including tubulin, histone, Rab family, ribosomal, peridinin-chlorophyll a-binding protein, F0F1-type ATP synthase, alpha-iG protein, calmodulin and ADP-ribosylation factor. Cnidaria proteins found in healthy M. braziliensis were associated with Cnidaria-Symbiodinium endosymbiosis and included chaperones (hsp70, hsp90 and calreticulin), structural and membrane modelling proteins (actin) and proteins with functions related to intracellular vesicular traffic (Rab7 and ADP-ribosylation factor 1) and signal transduction (14-3-3 protein and calmodulin). WPS resulted in a clear shift in the predominance of proteins, from those related to aerobic nitrogen-fixing bacteria (i.e. Rhizobiales, Sphingomonadales and Actinomycetales) in healthy corals to those produced by facultative/anaerobic sulphate-reducing bacteria (i.e. Enterobacteriales, Alteromonadales, Clostridiales and Bacteroidetes) in WPS corals. BBD corals developed a diverse community dominated by cyanobacteria and sulphur cycle bacteria. Hsp60, hsp90 and adenosylhomocysteinase proteins were produced mainly by cyanobacteria in BBD corals, which is consistent with elevated oxidative stress in hydrogen sulphide- and cyanotoxin-rich environments. This study demonstrates the usefulness of metaproteomics for gaining better comprehension of coral metabolic status in health and disease, especially in reef systems such as the Abrolhos that are suffering from the increase in global and local threatening events.
Collapse
Affiliation(s)
- Gizele D Garcia
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil
| | - Eidy de O Santos
- Divisão de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém Duque de Caxias, Rio de Janeiro, RJ, CEP 25250-020, Brasil.,Unidade de Biologia, Centro Universitário Estadual da Zona Oeste (UEZO), Av. Manoel Caldeira de Alvarenga, 1203, Campo Grande, Rio de Janeiro, RJ, CEP 23070200, Brasil
| | - Gabriele V Sousa
- Divisão de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém Duque de Caxias, Rio de Janeiro, RJ, CEP 25250-020, Brasil
| | - Russolina B Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN, Ilha do Fundão, Rio de Janeiro, RJ, CEP21941-902, Brasil
| | - Cristiane C Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil
| | - Fabiano L Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Fo. SN., Ilha do Fundão, Rio de Janeiro, RJ, CEP 21941-902, Brasil. .,Laboratório de Sistemas Avançados de Gestão da Produção (SAGE), COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rua Moniz de Aragão, no.360 - Bloco 2, Ilha do Fundão - Cidade Universitária, Rio de Janeiro, RJ, 21.941-972, Brasil.
| |
Collapse
|
59
|
Everroad RC, Stuart RK, Bebout BM, Detweiler AM, Lee JZ, Woebken D, Prufert-Bebout L, Pett-Ridge J. Permanent draft genome of strain ESFC-1: ecological genomics of a newly discovered lineage of filamentous diazotrophic cyanobacteria. Stand Genomic Sci 2016; 11:53. [PMID: 27559430 PMCID: PMC4995827 DOI: 10.1186/s40793-016-0174-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 08/15/2016] [Indexed: 11/10/2022] Open
Abstract
The nonheterocystous filamentous cyanobacterium, strain ESFC-1, is a recently described member of the order Oscillatoriales within the Cyanobacteria. ESFC-1 has been shown to be a major diazotroph in the intertidal microbial mat system at Elkhorn Slough, CA, USA. Based on phylogenetic analyses of the 16S RNA gene, ESFC-1 appears to belong to a unique, genus-level divergence; the draft genome sequence of this strain has now been determined. Here we report features of this genome as they relate to the ecological functions and capabilities of strain ESFC-1. The 5,632,035 bp genome sequence encodes 4914 protein-coding genes and 92 RNA genes. One striking feature of this cyanobacterium is the apparent lack of either uptake or bi-directional hydrogenases typically expected within a diazotroph. Additionally, a large genomic island is found that contains numerous low GC-content genes and genes related to extracellular polysaccharide production and cell wall synthesis and maintenance.
Collapse
Affiliation(s)
- R. Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Rhona K. Stuart
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Brad M. Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
| | - Angela M. Detweiler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Jackson Z. Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Bay Area Environmental Research Institute, Petaluma, CA USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA USA
- Current address: Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry meets Microbiology”, University of Vienna, Vienna, Austria
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA USA
| |
Collapse
|
60
|
Walter JM, Tschoeke DA, Meirelles PM, de Oliveira L, Leomil L, Tenório M, Valle R, Salomon PS, Thompson CC, Thompson FL. Taxonomic and Functional Metagenomic Signature of Turfs in the Abrolhos Reef System (Brazil). PLoS One 2016; 11:e0161168. [PMID: 27548380 PMCID: PMC4993507 DOI: 10.1371/journal.pone.0161168] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/01/2016] [Indexed: 12/25/2022] Open
Abstract
Turfs are widespread assemblages (consisting of microbes and algae) that inhabit reef systems. They are the most abundant benthic component in the Abrolhos reef system (Brazil), representing greater than half the coverage of the entire benthic community. Their presence is associated with a reduction in three-dimensional coral reef complexity and decreases the habitats available for reef biodiversity. Despite their importance, the taxonomic and functional diversity of turfs remain unclear. We performed a metagenomics and pigments profile characterization of turfs from the Abrolhos reefs. Turf microbiome primarily encompassed Proteobacteria (mean 40.57% ± s.d. 10.36, N = 1.548,192), Cyanobacteria (mean 35.04% ± s.d. 15.5, N = 1.337,196), and Bacteroidetes (mean 11.12% ± s.d. 4.25, N = 424,185). Oxygenic and anoxygenic phototrophs, chemolithotrophs, and aerobic anoxygenic phototrophic (AANP) bacteria showed a conserved functional trait of the turf microbiomes. Genes associated with oxygenic photosynthesis, AANP, sulfur cycle (S oxidation, and DMSP consumption), and nitrogen metabolism (N2 fixation, ammonia assimilation, dissimilatory nitrate and nitrite ammonification) were found in the turf microbiomes. Principal component analyses of the most abundant taxa and functions showed that turf microbiomes differ from the other major Abrolhos benthic microbiomes (i.e., corals and rhodoliths) and seawater. Taken together, these features suggest that turfs have a homogeneous functional core across the Abrolhos Bank, which holds diverse microbial guilds when comparing with other benthic organisms.
Collapse
Affiliation(s)
- Juline M Walter
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo A Tschoeke
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Pedro M Meirelles
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Louisi de Oliveira
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luciana Leomil
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Márcio Tenório
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rogério Valle
- COPPE-Production Engineering Program, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Paulo S Salomon
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Cristiane C Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fabiano L Thompson
- Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Center of Technology-CT2, SAGE-COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
61
|
Cerqueda-García D, Falcón LI. Metabolic potential of microbial mats and microbialites: Autotrophic capabilities described by an in silico stoichiometric approach from shared genomic resources. J Bioinform Comput Biol 2016; 14:1650020. [PMID: 27324427 DOI: 10.1142/s0219720016500207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Microbialites and microbial mats are complex communities with high phylogenetic diversity. These communities are mostly composed of bacteria and archaea, which are the earliest living forms on Earth and relevant to biogeochemical evolution. In this study, we identified the shared metabolic pathways for uptake of inorganic C and N in microbial mats and microbialites based on metagenomic data sets. An in silico analysis for autotrophic pathways was used to trace the paths of C and N to the system, following an elementary flux modes (EFM) approach, resulting in a stoichiometric model. The fragility was analyzed by the minimal cut sets method. We found four relevant pathways for the incorporation of CO2 (Calvin cycle, reverse tricarboxylic acid cycle, reductive acetyl-CoA pathway, and dicarboxylate/4-hydroxybutyrate cycle), some of them present only in archaea, while nitrogen fixation was the most important source of N to the system. The metabolic potential to incorporate nitrate to biomass was also relevant. The fragility of the network was low, suggesting a high redundancy of the autotrophic pathways due to their broad metabolic diversity, and highlighting the relevance of reducing power source. This analysis suggests that microbial mats and microbialites are "metabolic pumps" for the incorporation of inorganic gases and formation of organic matter.
Collapse
Affiliation(s)
- Daniel Cerqueda-García
- 1 Universidad Nacional Autónoma de México, Instituto de Ecología, Circuito Exterior, Ciudad Universitaria, Distrito Federal 04510, Mexico
| | - Luisa I Falcón
- 1 Universidad Nacional Autónoma de México, Instituto de Ecología, Circuito Exterior, Ciudad Universitaria, Distrito Federal 04510, Mexico
| |
Collapse
|
62
|
Bañares-España E, del Mar Fernández-Arjona M, García-Sánchez MJ, Hernández-López M, Reul A, Mariné MH, Flores-Moya A. Sulphide Resistance in the Cyanobacterium Microcystis aeruginosa: a Comparative Study of Morphology and Photosynthetic Performance Between the Sulphide-Resistant Mutant and the Wild-Type Strain. MICROBIAL ECOLOGY 2016; 71:860-872. [PMID: 26677166 DOI: 10.1007/s00248-015-0715-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The cyanobacterium Microcystis aeruginosa is a mesophilic freshwater organism, which cannot tolerate sulphide. However, it was possible to isolate a sulphide-resistant (S(r)) mutant strain that was able to survive in a normally lethal medium sulphide. In order to evaluate the cost of the mutation conferring sulphide resistance in the S(r) strain of M. aeruginosa, the morphology and the photosynthetic performance were compared to that found in the wild-type, sulphide-sensitive (S(s)) strain. An increase in size and a disrupted morphology was observed in S(r) cells in comparison to the S(s) counterpart. Phycoerythrin and phycocyanin levels were higher in the S(r) than in the S(s) cells, whereas a higher carotenoid content, per unit volume, was found in the S(s) strain. The irradiance-saturated photosynthetic oxygen-production rate (GPR max) and the photosynthetic efficiency (measured both by oxygen production and fluorescence, α(GPR) and α(ETR)) were lower in the S(r) strain than in the wild-type. These results appear to be the result of package effect. On the other hand, the S(r) strain showed higher quantum yield of non-photochemical quenching, especially those regulated mechanisms (estimated throughout qN and Y(NPQ)) and a significantly lower slope in the maximum quantum yield of light-adapted samples (Fv'/Fm') compared to the S(s) strain. These findings point to a change in the regulation of the quenching of the transition states (qT) in the S(r) strain which may be generated by a change in the distribution of thylakoidal membranes, which somehow could protect metalloenzymes of the electron transport chain from the lethal effect of sulphide.
Collapse
Affiliation(s)
- Elena Bañares-España
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain.
| | - María del Mar Fernández-Arjona
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - María Jesús García-Sánchez
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Miguel Hernández-López
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Andreas Reul
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | - Mariona Hernández Mariné
- Departamento de Productos Naturales, Biología Vegetal y Edafología, Facultad de Farmacia, Universidad de Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
| | - Antonio Flores-Moya
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| |
Collapse
|
63
|
Ma P, Mori T, Zhao C, Thiel T, Johnson CH. Evolution of KaiC-Dependent Timekeepers: A Proto-circadian Timing Mechanism Confers Adaptive Fitness in the Purple Bacterium Rhodopseudomonas palustris. PLoS Genet 2016; 12:e1005922. [PMID: 26982486 PMCID: PMC4794148 DOI: 10.1371/journal.pgen.1005922] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/16/2016] [Indexed: 11/18/2022] Open
Abstract
Circadian (daily) rhythms are a fundamental and ubiquitous property of eukaryotic organisms. However, cyanobacteria are the only prokaryotic group for which bona fide circadian properties have been persuasively documented, even though homologs of the cyanobacterial kaiABC central clock genes are distributed widely among Eubacteria and Archaea. We report the purple non-sulfur bacterium Rhodopseudomonas palustris (that harbors homologs of kaiB and kaiC) only poorly sustains rhythmicity in constant conditions-a defining characteristic of circadian rhythms. Moreover, the biochemical characteristics of the Rhodopseudomonas homolog of the KaiC protein in vivo and in vitro are different from those of cyanobacterial KaiC. Nevertheless, R. palustris cells exhibit adaptive kaiC-dependent growth enhancement in 24-h cyclic environments, but not under non-natural constant conditions. Therefore, our data indicate that Rhodopseudomonas does not have a classical circadian rhythm, but a novel timekeeping mechanism that does not sustain itself in constant conditions. These results question the adaptive value of self-sustained oscillatory capability for daily timekeepers and establish new criteria for circadian-like systems that are based on adaptive properties (i.e., fitness enhancement in rhythmic environments), rather than upon observations of persisting rhythms in constant conditions. We propose that the Rhodopseudomonas system is a "proto" circadian timekeeper, as in an ancestral system that is based on KaiC and KaiB proteins and includes some, but not necessarily all, of the canonical properties of circadian clocks. These data indicate reasonable intermediate steps by which bona fide circadian systems evolved in simple organisms.
Collapse
Affiliation(s)
- Peijun Ma
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Tetsuya Mori
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Chi Zhao
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, United States of America
| | - Carl Hirschie Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
64
|
Paraneeiswaran A, Shukla SK, Kumar R, Rao TS. Reduction of [Co( iii)–EDTA] −complex by a novel process using phototrophic granules: a step towards sustainable bioremediation. RSC Adv 2016. [DOI: 10.1039/c6ra01160h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study shows that phototrophic granules are more efficient as compared to microbial granules or monoculture bacterial culture and are a self-sustainable system to be used in bioremediation process of environmental contaminants.
Collapse
Affiliation(s)
| | - Sudhir K. Shukla
- Water and Steam Chemistry Division
- BARC
- India
- Homi Bhabha National Institute
- Mumbai 400094
| | | | - T. Subba Rao
- Water and Steam Chemistry Division
- BARC
- India
- Homi Bhabha National Institute
- Mumbai 400094
| |
Collapse
|
65
|
Chennu A, Grinham A, Polerecky L, de Beer D, Al-Najjar MAA. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats. Front Microbiol 2015; 6:1472. [PMID: 26733996 PMCID: PMC4689872 DOI: 10.3389/fmicb.2015.01472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/07/2015] [Indexed: 01/24/2023] Open
Abstract
Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min-48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.
Collapse
Affiliation(s)
- Arjun Chennu
- Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Alistair Grinham
- School of Civil Engineering, The University of Queensland, St. LuciaQLD, Australia
| | - Lubos Polerecky
- Max Planck Institute for Marine MicrobiologyBremen, Germany
- Department of Earth Sciences, Utrecht UniversityUtrecht, Netherlands
| | - Dirk de Beer
- Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Mohammad A. A. Al-Najjar
- Max Planck Institute for Marine MicrobiologyBremen, Germany
- Red Sea Research Center, King Abdullah University of Science and TechnologyJeddah, Saudi Arabia
| |
Collapse
|
66
|
Abd El-Kar MS. Chemical Composition and Antimicrobial Activities of Cyanobacterial Mats from Hyper Saline Lakes, Northern Western Desert, Egypt. JOURNAL OF APPLIED SCIENCES 2015; 16:1-10. [DOI: 10.3923/jas.2016.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
67
|
Wong HL, Smith DL, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep 2015; 5:15607. [PMID: 26499760 PMCID: PMC4620479 DOI: 10.1038/srep15607] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023] Open
Abstract
Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Daniela-Lee Smith
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Pieter T. Visscher
- Department of Marine Sciences, University of Connecticut, USA
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| | - Brendan P. Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
- Australian Centre for Astrobiology, University of New South Wales Sydney, Australia
| |
Collapse
|
68
|
Estrella Alcamán M, Fernandez C, Delgado A, Bergman B, Díez B. The cyanobacterium Mastigocladus fulfills the nitrogen demand of a terrestrial hot spring microbial mat. THE ISME JOURNAL 2015; 9:2290-303. [PMID: 26230049 PMCID: PMC4579480 DOI: 10.1038/ismej.2015.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 11/09/2022]
Abstract
Cyanobacteria from Subsection V (Stigonematales) are important components of microbial mats in non-acidic terrestrial hot springs. Despite their diazotrophic nature (N2 fixers), their impact on the nitrogen cycle in such extreme ecosystems remains unknown. Here, we surveyed the identity and activity of diazotrophic cyanobacteria in the neutral hot spring of Porcelana (Northern Patagonia, Chile) during 2009 and 2011-2013. We used 16S rRNA and the nifH gene to analyze the distribution and diversity of diazotrophic cyanobacteria. Our results demonstrate the dominance of the heterocystous genus Mastigocladus (Stigonematales) along the entire temperature gradient of the hot spring (69-38 °C). In situ nitrogenase activity (acetylene reduction), nitrogen fixation rates (cellular uptake of (15)N2) and nifH transcription levels in the microbial mats showed that nitrogen fixation and nifH mRNA expression were light-dependent. Nitrogen fixation activities were detected at temperatures ranging from 58 °C to 46 °C, with maximum daily rates of 600 nmol C2H4 cm(-2) per day and 94.1 nmol N cm(-2) per day. These activity patterns strongly suggest a heterocystous cyanobacterial origin and reveal a correlation between nitrogenase activity and nifH gene expression during diurnal cycles in thermal microbial mats. N and C fixation in the mats contributed ~3 g N m(-2) per year and 27 g C m(-2) per year, suggesting that these vital demands are fully met by the diazotrophic and photoautotrophic capacities of the cyanobacteria in the Porcelana hot spring.
Collapse
Affiliation(s)
- María Estrella Alcamán
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Fernandez
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, UMR 7621, Banyuls/mer, France
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, Banyuls/mer, France
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research (INCAR) and COPAS SURAUSTRAL Program, University of Concepción, Concepción, Chile
| | - Antonio Delgado
- Instituto Andaluz de Ciencias de la Tierra (CSIC-Univ. Granada), Armilla, Granada, Spain
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences and Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Climate and Resilience Research (CR)2, Santiago, Chile
| |
Collapse
|
69
|
Biddanda BA, McMillan AC, Long SA, Snider MJ, Weinke AD. Seeking sunlight: rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron's submerged sinkholes. Front Microbiol 2015; 6:930. [PMID: 26441867 PMCID: PMC4561352 DOI: 10.3389/fmicb.2015.00930] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/24/2015] [Indexed: 11/13/2022] Open
Abstract
We studied the motility of filamentous mat-forming cyanobacteria consisting primarily of Oscillatoria-like cells growing under low-light, low-oxygen, and high-sulfur conditions in Lake Huron's submerged sinkholes using in situ observations, in vitro measurements and time-lapse microscopy. Gliding movement of the cyanobacterial trichomes (100-10,000 μm long filaments, composed of cells ∼10 μm wide and ∼3 μm tall) revealed individual as well as group-coordinated motility. When placed in a petri dish and dispersed in ground water from the sinkhole, filaments re-aggregated into defined colonies within minutes, then dispersed again. Speed of individual filaments increased with temperature from ∼50 μm min(-1) or ∼15 body lengths min(-1) at 10°C to ∼215 μm min(-1) or ∼70 body lengths min(-1) at 35°C - rates that are rapid relative to non-flagellated/ciliated microbes. Filaments exhibited precise and coordinated positive phototaxis toward pinpoints of light and congregated under the light of foil cutouts. Such light-responsive clusters showed an increase in photosynthetic yield - suggesting phototactic motility aids in light acquisition as well as photosynthesis. Once light source was removed, filaments slowly spread out evenly and re-aggregated, demonstrating coordinated movement through inter-filament communication regardless of light. Pebbles and pieces of broken shells placed upon intact mat were quickly covered by vertically motile filaments within hours and became fully buried in the anoxic sediments over 3-4 diurnal cycles - likely facilitating the preservation of falling debris. Coordinated horizontal and vertical filament motility optimize mat cohesion and dynamics, photosynthetic efficiency and sedimentary carbon burial in modern-day sinkhole habitats that resemble the shallow seas in Earth's early history. Analogous cyanobacterial motility may have played a key role in the oxygenation of the planet by optimizing photosynthesis while favoring carbon burial.
Collapse
Affiliation(s)
- Bopaiah A. Biddanda
- Annis Water Resources Institute, Grand Valley State University, MuskegonMI, USA
| | | | | | | | | |
Collapse
|
70
|
Schirrmeister BE, Gugger M, Donoghue PCJ. Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. PALAEONTOLOGY 2015; 58:769-785. [PMID: 26924853 PMCID: PMC4755140 DOI: 10.1111/pala.12178] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/26/2015] [Indexed: 05/22/2023]
Abstract
Cyanobacteria are among the most ancient of evolutionary lineages, oxygenic photosynthesizers that may have originated before 3.0 Ga, as evidenced by free oxygen levels. Throughout the Precambrian, cyanobacteria were one of the most important drivers of biological innovations, strongly impacting early Earth's environments. At the end of the Archean Eon, they were responsible for the rapid oxygenation of Earth's atmosphere during an episode referred to as the Great Oxidation Event (GOE). However, little is known about the origin and diversity of early cyanobacterial taxa, due to: (1) the scarceness of Precambrian fossil deposits; (2) limited characteristics for the identification of taxa; and (3) the poor preservation of ancient microfossils. Previous studies based on 16S rRNA have suggested that the origin of multicellularity within cyanobacteria might have been associated with the GOE. However, single-gene analyses have limitations, particularly for deep branches. We reconstructed the evolutionary history of cyanobacteria using genome scale data and re-evaluated the Precambrian fossil record to get more precise calibrations for a relaxed clock analysis. For the phylogenomic reconstructions, we identified 756 conserved gene sequences in 65 cyanobacterial taxa, of which eight genomes have been sequenced in this study. Character state reconstructions based on maximum likelihood and Bayesian phylogenetic inference confirm previous findings, of an ancient multicellular cyanobacterial lineage ancestral to the majority of modern cyanobacteria. Relaxed clock analyses provide firm support for an origin of cyanobacteria in the Archean and a transition to multicellularity before the GOE. It is likely that multicellularity had a greater impact on cyanobacterial fitness and thus abundance, than previously assumed. Multicellularity, as a major evolutionary innovation, forming a novel unit for selection to act upon, may have served to overcome evolutionary constraints and enabled diversification of the variety of morphotypes seen in cyanobacteria today.
Collapse
Affiliation(s)
- Bettina E. Schirrmeister
- School of Earth SciencesUniversity of BristolLife Science Building24 Tyndall AvenueBristolBS8 1TQUK
| | - Muriel Gugger
- Institut PasteurCollection des Cyanobactéries75724Paris Cedex 15France
| | - Philip C. J. Donoghue
- School of Earth SciencesUniversity of BristolLife Science Building24 Tyndall AvenueBristolBS8 1TQUK
| |
Collapse
|
71
|
Lau NS, Matsui M, Abdullah AAA. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products. BIOMED RESEARCH INTERNATIONAL 2015; 2015:754934. [PMID: 26199945 PMCID: PMC4496466 DOI: 10.1155/2015/754934] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022]
Abstract
Cyanobacteria are widely distributed Gram-negative bacteria with a long evolutionary history and the only prokaryotes that perform plant-like oxygenic photosynthesis. Cyanobacteria possess several advantages as hosts for biotechnological applications, including simple growth requirements, ease of genetic manipulation, and attractive platforms for carbon neutral production process. The use of photosynthetic cyanobacteria to directly convert carbon dioxide to biofuels is an emerging area of interest. Equipped with the ability to degrade environmental pollutants and remove heavy metals, cyanobacteria are promising tools for bioremediation and wastewater treatment. Cyanobacteria are characterized by the ability to produce a spectrum of bioactive compounds with antibacterial, antifungal, antiviral, and antialgal properties that are of pharmaceutical and agricultural significance. Several strains of cyanobacteria are also sources of high-value chemicals, for example, pigments, vitamins, and enzymes. Recent advances in biotechnological approaches have facilitated researches directed towards maximizing the production of desired products in cyanobacteria and realizing the potential of these bacteria for various industrial applications. In this review, the potential of cyanobacteria as sources of energy, bioactive compounds, high-value chemicals, and tools for aquatic bioremediation and recent progress in engineering cyanobacteria for these bioindustrial applications are discussed.
Collapse
Affiliation(s)
- Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
| | - Minami Matsui
- Synthetic Genomics Research Team, RIKEN Centre for Sustainable Resource Science, Biomass Engineering Research Division, Yokohama, Kanagawa 230-0045, Japan
| | - Amirul Al-Ashraf Abdullah
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
72
|
Karaushu EV, Lazebnaya IV, Kravzova TR, Vorobey NA, Lazebny OE, Kiriziy DA, Olkhovich OP, Taran NY, Kots SY, Popova AA, Omarova E, Koksharova OA. Biochemical and Molecular Phylogenetic Study of Agriculturally Useful Association of a Nitrogen-Fixing Cyanobacterium and Nodule Sinorhizobium with Medicago sativa L. BIOMED RESEARCH INTERNATIONAL 2015; 2015:202597. [PMID: 26114100 PMCID: PMC4465650 DOI: 10.1155/2015/202597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Abstract
Seed inoculation with bacterial consortium was found to increase legume yield, providing a higher growth than the standard nitrogen treatment methods. Alfalfa plants were inoculated by mono- and binary compositions of nitrogen-fixing microorganisms. Their physiological and biochemical properties were estimated. Inoculation by microbial consortium of Sinorhizobium meliloti T17 together with a new cyanobacterial isolate Nostoc PTV was more efficient than the single-rhizobium strain inoculation. This treatment provides an intensification of the processes of biological nitrogen fixation by rhizobia bacteria in the root nodules and an intensification of plant photosynthesis. Inoculation by bacterial consortium stimulates growth of plant mass and rhizogenesis and leads to increased productivity of alfalfa and to improving the amino acid composition of plant leaves. The full nucleotide sequence of the rRNA gene cluster and partial sequence of the dinitrogenase reductase (nifH) gene of Nostoc PTV were deposited to GenBank (JQ259185.1, JQ259186.1). Comparison of these gene sequences of Nostoc PTV with all sequences present at the GenBank shows that this cyanobacterial strain does not have 100% identity with any organisms investigated previously. Phylogenetic analysis showed that this cyanobacterium clustered with high credibility values with Nostoc muscorum.
Collapse
Affiliation(s)
- E. V. Karaushu
- Educational and Scientific “Institute of Biology”, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - I. V. Lazebnaya
- N. I. Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin Street 3, Moscow 119333, Russia
| | - T. R. Kravzova
- Lomonosov Moscow State University, Biocenter, Leninskie Gory 1-12, Moscow 119991, Russia
| | - N. A. Vorobey
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska Street, Kyiv 03022, Ukraine
| | - O. E. Lazebny
- N. K. Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Street 26, Moscow 119334, Russia
| | - D. A. Kiriziy
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska Street, Kyiv 03022, Ukraine
| | - O. P. Olkhovich
- Educational and Scientific “Institute of Biology”, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - N. Yu. Taran
- Educational and Scientific “Institute of Biology”, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Street, Kyiv 01601, Ukraine
| | - S. Ya. Kots
- Institute of Plant Physiology and Genetics, National Academy of Sciences of Ukraine, 31/17 Vasylkivska Street, Kyiv 03022, Ukraine
| | - A. A. Popova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - E. Omarova
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory 1-40, Moscow 119992, Russia
| | - O. A. Koksharova
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
- Lomonosov Moscow State University, Belozersky Institute of Physical-Chemical Biology, Leninskie Gory 1-40, Moscow 119992, Russia
| |
Collapse
|
73
|
Carreira C, Piel T, Staal M, Stuut JBW, Middelboe M, Brussaard CPD. Microscale spatial distributions of microbes and viruses in intertidal photosynthetic microbial mats. SPRINGERPLUS 2015; 4:239. [PMID: 26140256 PMCID: PMC4480233 DOI: 10.1186/s40064-015-0977-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/13/2015] [Indexed: 11/10/2022]
Abstract
Intertidal photosynthetic microbial mats from the Wadden Sea island Schiermonnikoog were examined for microscale (millimetre) spatial distributions of viruses, prokaryotes and oxygenic photoautotrophs (filamentous cyanobacteria and benthic diatoms) at different times of the year. Abundances of viruses and prokaryotes were among the highest found in benthic systems (0.05-5.43 × 10(10) viruses g(-1) and 0.05-2.14 × 10(10) prokaryotes g(-1)). The spatial distribution of viruses, prokaryotes and oxygenic photoautotrophs were highly heterogeneous at mm scales. The vertical distributions of both prokaryotic and viral abundances were related to the depth of the oxygenic photoautotrophic layer, implying that the photosynthetic mat fuelled the microbial processes in the underlying layer. Our data suggest that viruses could make an important component in these productive environments potentially affecting the biodiversity and nutrient cycling within the mat.
Collapse
Affiliation(s)
- Cátia Carreira
- />Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, NL 1790 AB Den Burg, The Netherlands
- />Section for Marine Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Tim Piel
- />Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, NL 1790 AB Den Burg, The Netherlands
| | - Marc Staal
- />Section for Marine Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Jan-Berend W Stuut
- />Department of Marine Geology and Chemical Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, NL 1790 AB Den Burg, The Netherlands
- />Department of Marine Geology, MARUM – Center for Marine Environmental Sciences, PO Box 330440, D 28334 Bremen, Germany
| | - Mathias Middelboe
- />Section for Marine Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Corina P D Brussaard
- />Department of Biological Oceanography, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 59, NL 1790 AB Den Burg, The Netherlands
- />Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
74
|
Hoffmann D, Maldonado J, Wojciechowski MF, Garcia-Pichel F. Hydrogen export from intertidal cyanobacterial mats: sources, fluxes and the influence of community composition. Environ Microbiol 2015; 17:3738-53. [DOI: 10.1111/1462-2920.12769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 12/23/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Dörte Hoffmann
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
| | - Juan Maldonado
- School of Life Sciences; Arizona State University; Tempe AZ 85287-4501 USA
| | | | | |
Collapse
|
75
|
Klemke F, Beyer G, Sawade L, Saitov A, Korte T, Maldener I, Lockau W, Nürnberg DJ, Volkmer T. All1371 is a polyphosphate-dependent glucokinase in Anabaena sp. PCC 7120. MICROBIOLOGY (READING, ENGLAND) 2014; 160:2807-2819. [PMID: 25320362 PMCID: PMC4252912 DOI: 10.1099/mic.0.081836-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022]
Abstract
The polyphosphate glucokinases can phosphorylate glucose to glucose 6-phosphate using polyphosphate as the substrate. ORF all1371 encodes a putative polyphosphate glucokinase in the filamentous heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Here, ORF all1371 was heterologously expressed in Escherichia coli, and its purified product was characterized. Enzyme activity assays revealed that All1371 is an active polyphosphate glucokinase that can phosphorylate both glucose and mannose in the presence of divalent cations in vitro. Unlike many other polyphosphate glucokinases, for which nucleoside triphosphates (e.g. ATP or GTP) act as phosphoryl group donors, All1371 required polyphosphate to confer its enzymic activity. The enzymic reaction catalysed by All1371 followed classical Michaelis-Menten kinetics, with kcat = 48.2 s(-1) at pH 7.5 and 28 °C and KM = 1.76 µM and 0.118 mM for polyphosphate and glucose, respectively. Its reaction mechanism was identified as a particular multi-substrate mechanism called the 'bi-bi ping-pong mechanism'. Bioinformatic analyses revealed numerous polyphosphate-dependent glucokinases in heterocyst-forming cyanobacteria. Viability of an Anabaena sp. PCC 7120 mutant strain lacking all1371 was impaired under nitrogen-fixing conditions. GFP promoter studies indicate expression of all1371 under combined nitrogen deprivation. All1371 might play a substantial role in Anabaena sp. PCC 7120 under these conditions.
Collapse
Affiliation(s)
| | - Gabriele Beyer
- Plant Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Linda Sawade
- Plant Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ali Saitov
- Plant Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Korte
- Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Iris Maldener
- Institute of Microbiology and Infection Medicine/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | - Wolfgang Lockau
- Plant Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dennis J Nürnberg
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Thomas Volkmer
- Plant Biochemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
76
|
Guidi-Rontani C, Jean MR, Gonzalez-Rizzo S, Bolte-Kluge S, Gros O. Description of new filamentous toxicCyanobacteria(Oscillatoriales) colonizing the sulfidic periphyton mat in marine mangroves. FEMS Microbiol Lett 2014; 359:173-81. [DOI: 10.1111/1574-6968.12551] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022] Open
Affiliation(s)
- Chantal Guidi-Rontani
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- Equipe Biologie de la Mangrove; UMR 7138 - Evolution Paris-Seine; Paris France
| | - Maïtena R.N. Jean
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| | - Silvina Gonzalez-Rizzo
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| | - Susanne Bolte-Kluge
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- Plateform: Cellular Imaging Facility-Department of Platforms and Technology Development; Paris France
| | - Olivier Gros
- Institut de Biologie Paris-Seine; C.N.R.S, Institut de Biologie Paris-Seine; Sorbonne Universités Paris VI; Paris France
- UFR des Sciences Exactes et Naturelles; Département de Biologie; UMR 7138 - Evolution Paris-Seine, Equipe Biologie de la Mangrove; Université des Antilles et de la Guyane; Pointe-à-Pitre Guadeloupe France
| |
Collapse
|
77
|
Kempes CP, Okegbe C, Mears-Clarke Z, Follows MJ, Dietrich LEP. Morphological optimization for access to dual oxidants in biofilms. Proc Natl Acad Sci U S A 2014; 111:208-13. [PMID: 24335705 PMCID: PMC3890773 DOI: 10.1073/pnas.1315521110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A major theme driving research in biology is the relationship between form and function. In particular, a longstanding goal has been to understand how the evolution of multicellularity conferred fitness advantages. Here we show that biofilms of the bacterium Pseudomonas aeruginosa produce structures that maximize cellular reproduction. Specifically, we develop a mathematical model of resource availability and metabolic response within colony features. This analysis accurately predicts the measured distribution of two types of electron acceptors: oxygen, which is available from the atmosphere, and phenazines, redox-active antibiotics produced by the bacterium. Using this model, we demonstrate that the geometry of colony structures is optimal with respect to growth efficiency. Because our model is based on resource dynamics, we also can anticipate shifts in feature geometry based on changes to the availability of electron acceptors, including variations in the external availability of oxygen and genetic manipulation that renders the cells incapable of phenazine production.
Collapse
Affiliation(s)
- Christopher P. Kempes
- Exobiology Branch, National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA 94035
- Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125
- SETI Institute, Mountain View, CA 94034
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | - Chinweike Okegbe
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and
| | | |
Collapse
|
78
|
Bilyj M, Lepitzki D, Hughes E, Swiderski J, Stackebrandt E, Pacas C, Yurkov VV. Abundance and Diversity of the Phototrophic Microbial Mat Communities of Sulphur Mountain Banff Springs and Their Significance to the Endangered Snail, <i>Physella johnsoni</i>. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/oje.2014.48041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
79
|
del Mar Fernández-Arjona M, Bañares-España E, García-Sánchez MJ, Hernández-López M, López-Rodas V, Costas E, Flores-Moya A. Disentangling mechanisms involved in the adaptation of photosynthetic microorganisms to the extreme sulphureous water from Los Baños de Vilo (S Spain). MICROBIAL ECOLOGY 2013; 66:742-751. [PMID: 23880793 DOI: 10.1007/s00248-013-0268-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
Los Baños de Vilo (S Spain) is a natural spa characterized by extreme sulphureous waters; however, populations of chlorophyceans inhabit in the spa. The adaptation mechanisms allowing resistance by photosynthetic microorganisms to the extreme sulphureous waters were studied by using a modified Luria-Delbrück fluctuation analysis. For this purpose, the adaptation of the chlorophycean Dictyosphaerium chlorelloides and the cyanobacterium Microcystis aeruginosa (both isolated from non-sulphureous water) were analysed in order to distinguish between physiological adaptation (acclimation) and genetic adaptation by the selection of rare spontaneous mutations. Acclimation to the extreme water was achieved by D. chlorelloides; however, M. aeruginosa cells proliferated as a consequence of selection of favoured mutants (i.e. genetic adaptation). The resistant cells of M. aeruginosa appeared with a frequency of 7.1 × 10(-7) per cell per generation, and the frequency of the resistant allele, under non-selective conditions, was estimated to be 1.1 × 10(-6) per cells as a consequence of the balance mutation-selection. It could be hypothesized that the populations of eukaryotic algae living in the Los Baños de Vilo could be the descendants of chlorophyceans that arrived fortuitously at the spa in the past. On the other hand, cyanobacteria could quickly adapt by the selection of favoured mutants. The single mutation that allows resistance to sulphureous water from Baños de Vilo in M. aeruginosa represents a phenotypic burden impairing growth rate and photosynthetic performance. The resistant-variant cells of M. aeruginosa showed a lower acclimated growth rate and a decreased maximum quantum yield and photosynthetic efficiency, in comparison to the wild-type cells.
Collapse
Affiliation(s)
- María del Mar Fernández-Arjona
- Departamento de Biología Vegetal, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
80
|
Catherine Q, Susanna W, Isidora ES, Mark H, Aurélie V, Jean-François H. A review of current knowledge on toxic benthic freshwater cyanobacteria--ecology, toxin production and risk management. WATER RESEARCH 2013; 47:5464-79. [PMID: 23891539 DOI: 10.1016/j.watres.2013.06.042] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 05/12/2023]
Abstract
Benthic cyanobacteria are found globally in plethora of environments. Although they have received less attention than their planktonic freshwater counterparts, it is now well established that they produce toxins and reports of their involvement in animal poisonings have increased markedly during the last decade. Most of the known cyanotoxins have been identified from benthic cyanobacteria including: the hepatotoxic microcystins, nodularins and cylindrospermopsins, the neurotoxic saxitoxins, anatoxin-a and homoanatoxin-a and dermatotoxins, such as lyngbyatoxin. In most countries, observations of toxic benthic cyanobacteria are fragmented, descriptive and in response to animal toxicosis events. Only a limited number of long-term studies have aimed to understand why benthic proliferations occur, and/or how toxin production is regulated. These studies have shown that benthic cyanobacterial blooms are commonly a mixture of toxic and non-toxic genotypes and that toxin concentrations can be highly variable spatially and temporally. Physiochemical parameters responsible for benthic proliferation vary among habitat type with physical disturbance (e.g., flow regimes, wave action) and nutrients commonly identified as important. As climatic conditions change and anthropogenic pressures on waterways increase, it seems likely that the prevalence of blooms of benthic cyanobacteria will increase. In this article we review current knowledge on benthic cyanobacteria: ecology, toxin-producing species, variables that regulate toxin production and bloom formation, their impact on aquatic and terrestrial organisms and current monitoring and management strategies. We suggest research needs that will assist in filling knowledge gaps and ultimately allow more robust monitoring and management protocols to be developed.
Collapse
Affiliation(s)
- Quiblier Catherine
- MNHN, UMR 7245, 57 rue Cuvier, CP39, 75231 Paris Cedex 05, France; Université Paris Diderot, 5 rue T. Mann, 75013 Paris, France.
| | | | | | | | | | | |
Collapse
|
81
|
Everroad RC, Woebken D, Singer SW, Burow LC, Kyrpides N, Woyke T, Goodwin L, Detweiler A, Prufert-Bebout L, Pett-Ridge J. Draft Genome Sequence of an Oscillatorian Cyanobacterium, Strain ESFC-1. GENOME ANNOUNCEMENTS 2013; 1:e00527-13. [PMID: 23908279 PMCID: PMC3731833 DOI: 10.1128/genomea.00527-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/24/2013] [Indexed: 11/20/2022]
Abstract
The nonheterocystous filamentous cyanobacterium strain ESFC-1 has recently been isolated from a marine microbial mat system, where it was identified as belonging to a recently discovered lineage of active nitrogen-fixing microorganisms. Here, we report the draft genome sequence of this isolate. The assembly consists of 3 scaffolds and contains 5,632,035 bp with a GC content of 46.5%.
Collapse
Affiliation(s)
- R. Craig Everroad
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Dagmar Woebken
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
- Departments of Chemical Engineering and Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Steven W. Singer
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Luke C. Burow
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
- Departments of Chemical Engineering and Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Nikos Kyrpides
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, California, USA
| | - Lynne Goodwin
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Angela Detweiler
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA
| | | | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California, USA
| |
Collapse
|
82
|
Bourne DG, van der Zee MJJ, Botté ES, Sato Y. Sulfur-oxidizing bacterial populations within cyanobacterial dominated coral disease lesions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:518-524. [PMID: 23864565 DOI: 10.1111/1758-2229.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
This study investigated the diversity and quantitative shifts of sulfur-oxidizing bacteria (SOB) during the onset of black band disease (BBD) in corals using quantitative PCR (qPCR) and cloning approaches targeting the soxB gene, involved in sulfur oxidation. Four Montipora sp. coral colonies identified with lesions previously termed cyanobacterial patches (CP) (comprising microbial communities different from those of BBD lesions), was monitored in situ as CP developed into BBD. The overall abundance of SOB in both CP and BBD lesions were very low and near the detection limit of the qPCR assay, although consistently indicated that SOB populations decreased as the lesions transitioned from CP to BBD. Phylogenetic assessment of retrieved soxB genes showed that SOB in both CP and BBD lesions were dominated by one sequence type, representing > 70% of all soxB gene sequences and affiliated with members of the Rhodobacteraceae within the α-Proteobacteria. This study represents the first assessment targeting SOB within BBD lesions and clearly shows that SOB are not highly diverse or abundant in this complex microbial mat. The lack of oxidation of reduced sulfur compounds by SOB likely aids the accumulation of high levels of sulfide at the base of the BBD mat, a compound contributing to the pathogenicity of BBD lesions.
Collapse
Affiliation(s)
- David G Bourne
- Australian Institute of Marine Science, Townsville, Qld, Australia.
| | | | | | | |
Collapse
|
83
|
Dobretsov S, Abed RMM, Teplitski M. Mini-review: Inhibition of biofouling by marine microorganisms. BIOFOULING 2013; 29:423-41. [PMID: 23574279 DOI: 10.1080/08927014.2013.776042] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Any natural or artificial substratum exposed to seawater is quickly fouled by marine microorganisms and later by macrofouling species. Microfouling organisms on the surface of a substratum form heterogenic biofilms, which are composed of multiple species of heterotrophic bacteria, cyanobacteria, diatoms, protozoa and fungi. Biofilms on artificial structures create serious problems for industries worldwide, with effects including an increase in drag force and metal corrosion as well as a reduction in heat transfer efficiency. Additionally, microorganisms produce chemical compounds that may induce or inhibit settlement and growth of other fouling organisms. Since the last review by the first author on inhibition of biofouling by marine microbes in 2006, significant progress has been made in the field. Several antimicrobial, antialgal and antilarval compounds have been isolated from heterotrophic marine bacteria, cyanobacteria and fungi. Some of these compounds have multiple bioactivities. Microorganisms are able to disrupt biofilms by inhibition of bacterial signalling and production of enzymes that degrade bacterial signals and polymers. Epibiotic microorganisms associated with marine algae and invertebrates have a high antifouling (AF) potential, which can be used to solve biofouling problems in industry. However, more information about the production of AF compounds by marine microorganisms in situ and their mechanisms of action needs to be obtained. This review focuses on the AF activity of marine heterotrophic bacteria, cyanobacteria and fungi and covers publications from 2006 up to the end of 2012.
Collapse
Affiliation(s)
- Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman.
| | | | | |
Collapse
|
84
|
Gallagher KL, Kading TJ, Braissant O, Dupraz C, Visscher PT. Inside the alkalinity engine: the role of electron donors in the organomineralization potential of sulfate-reducing bacteria. GEOBIOLOGY 2012; 10:518-530. [PMID: 22925453 DOI: 10.1111/j.1472-4669.2012.00342.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
Mineral precipitation in microbial mats may have been the key to their preservation as fossil stromatolites, potentially documenting evidence of the earliest life on Earth. Two factors that contribute to carbonate mineral precipitation are the saturation index (SI) and the presence of nucleation sites. Both of these can be influenced by micro-organisms, which can either alter SI through their metabolisms, or produce and consume organic substances such as extracellular polymeric substances (EPS) that can affect nucleation. It is the balance of individual metabolisms within the mat community that determines the pH and the dissolved inorganic carbon concentration, thereby potentially increasing the alkalinity and consequently the SI. Sulfate-reducing bacteria (SRB) are an important component of this 'alkalinity engine.' The activity of SRB often peaks in layers where CaCO(3) precipitates, and mineral precipitation has been demonstrated in SRB cultures; however, the effect of their metabolism on the alkalinity engine and actual contribution to mineral precipitation is the subject of controversy. Here, we show through culture experiments, theoretical calculations, and geochemical modeling studies that the pH, alkalinity, and organomineralization potential will vary depending on the type of electron donor. Specifically, hydrogen and formate can increase the pH, but electron donors like lactate and ethanol, and to a lesser extent glycolate, decrease the pH. The implication of this for the lithification of mats is that the combination of processes supplying electron donors and the utilization of these compounds by SRB may be critical to promoting mineral precipitation.
Collapse
Affiliation(s)
- K L Gallagher
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| | | | | | | | | |
Collapse
|
85
|
Abstract
Dune slacks are a unique type of wetland ecosystem, highly ranked on the international conservation agenda because of the occurrence of many rare and endangered plant species and their associated fauna. Ecologically they present some of the few examples of primary succession seres with a high degree of facilitation between functionally distinct groups of plants and a strong impact of the interannual variation of the water table. Recent research has focussed on the biological and environmental processes counteracting the rapid loss of diversity owing to human impacts along most north-west European coasts.
Collapse
|
86
|
Long RA, Eveillard D, Franco SLM, Reeves E, Pinckney JL. Antagonistic interactions between heterotrophic bacteria as a potential regulator of community structure of hypersaline microbial mats. FEMS Microbiol Ecol 2012; 83:74-81. [PMID: 22809069 DOI: 10.1111/j.1574-6941.2012.01457.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/02/2012] [Accepted: 07/08/2012] [Indexed: 11/28/2022] Open
Abstract
Microbial mats are laminae of self-sustaining microbial communities with a high level of competition for resources. We tested the hypothesis that chemically mediated antagonism is a potential mechanism for structuring the bacterial community. In the co-culturing assay, 57% of the isolates expressed antagonistic behavior toward one or more isolates and 5% of the isolates inhibited more than 80% of the isolates. We observed greater levels of antagonism between isolates from adjacent laminae than within. The bacterial isolate library derived from the mat was predominately Gram-positive, and inhibition within this group was greater than against the few Gram-negative isolates. Microdiversity of 16S rRNA gene was observed for Bacillus marisflavi isolates, which represented 23 of the 75 isolates in the library. Within this and other groups, the patterns of inhibition and sensitivity varied greatly, suggesting rapid gain and loss of the ability to produce antagonistic secondary metabolites and resistance toward such molecules. Our observations are consistent with the hypothesis that antagonistic interactions are a potential mechanism in addition to physiochemical properties that regulate the vertical distribution of aerobic heterotrophic bacteria in hypersaline microbial mats.
Collapse
Affiliation(s)
- Richard A Long
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | |
Collapse
|
87
|
Centeno CM, Legendre P, Beltrán Y, Alcántara-Hernández RJ, Lidström UE, Ashby MN, Falcón LI. Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 2012; 82:724-35. [PMID: 22775797 DOI: 10.1111/j.1574-6941.2012.01447.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022] Open
Abstract
Microbialites have played an important role in the early history of life on Earth. Their fossilized forms represent the oldest evidence of life on our planet dating back to 3500 Ma. Extant microbialites have been suggested to be highly productive and diverse communities with an evident role in the cycling of major elements, and in contributing to carbonate precipitation. Although their ecological and evolutionary importance has been recognized, the study of their genetic diversity is yet scanty. The main goal of this study was to analyse microbial genetic diversity of microbialites living in different types of environments throughout Mexico, including desert ponds, coastal lagoons and a crater-lake. We followed a pyrosequencing approach of hypervariable regions of the 16S rRNA gene. Results showed that microbialite communities were very diverse (H' = 6-7) and showed geographic variation in composition, as well as an environmental effect related to pH and conductivity, which together explained 33% of the genetic variation. All microbialites had similar proportions of major bacterial and archaeal phyla.
Collapse
Affiliation(s)
- Carla M Centeno
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
88
|
van der Merwe D, Sebbag L, Nietfeld JC, Aubel MT, Foss A, Carney E. Investigation of aMicrocystis aeruginosacyanobacterial freshwater harmful algal bloom associated with acute microcystin toxicosis in a dog. J Vet Diagn Invest 2012; 24:679-87. [DOI: 10.1177/1040638712445768] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Deon van der Merwe
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (van der Merwe, Nietfeld)
- Department of Clinical Sciences and College of Veterinary Medicine, Kansas State University, Manhattan, KS (Sebbag)
- GreenWater Laboratories, Palatka, FL (Aubel, Foss)
- Kansas Department of Health and Environment, Topeka, KS (Carney)
| | - Lionel Sebbag
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (van der Merwe, Nietfeld)
- Department of Clinical Sciences and College of Veterinary Medicine, Kansas State University, Manhattan, KS (Sebbag)
- GreenWater Laboratories, Palatka, FL (Aubel, Foss)
- Kansas Department of Health and Environment, Topeka, KS (Carney)
| | - Jerome C. Nietfeld
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (van der Merwe, Nietfeld)
- Department of Clinical Sciences and College of Veterinary Medicine, Kansas State University, Manhattan, KS (Sebbag)
- GreenWater Laboratories, Palatka, FL (Aubel, Foss)
- Kansas Department of Health and Environment, Topeka, KS (Carney)
| | - Mark T. Aubel
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (van der Merwe, Nietfeld)
- Department of Clinical Sciences and College of Veterinary Medicine, Kansas State University, Manhattan, KS (Sebbag)
- GreenWater Laboratories, Palatka, FL (Aubel, Foss)
- Kansas Department of Health and Environment, Topeka, KS (Carney)
| | - Amanda Foss
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (van der Merwe, Nietfeld)
- Department of Clinical Sciences and College of Veterinary Medicine, Kansas State University, Manhattan, KS (Sebbag)
- GreenWater Laboratories, Palatka, FL (Aubel, Foss)
- Kansas Department of Health and Environment, Topeka, KS (Carney)
| | - Edward Carney
- Kansas State Veterinary Diagnostic Laboratory, Manhattan, KS (van der Merwe, Nietfeld)
- Department of Clinical Sciences and College of Veterinary Medicine, Kansas State University, Manhattan, KS (Sebbag)
- GreenWater Laboratories, Palatka, FL (Aubel, Foss)
- Kansas Department of Health and Environment, Topeka, KS (Carney)
| |
Collapse
|
89
|
Voorhies AA, Biddanda BA, Kendall ST, Jain S, Marcus DN, Nold SC, Sheldon ND, Dick GJ. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat. GEOBIOLOGY 2012; 10:250-67. [PMID: 22404795 DOI: 10.1111/j.1472-4669.2012.00322.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.
Collapse
Affiliation(s)
- A A Voorhies
- Deptartment of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Aoki R, Takeda T, Omata T, Ihara K, Fujita Y. MarR-type transcriptional regulator ChlR activates expression of tetrapyrrole biosynthesis genes in response to low-oxygen conditions in cyanobacteria. J Biol Chem 2012; 287:13500-7. [PMID: 22375005 PMCID: PMC3339928 DOI: 10.1074/jbc.m112.346205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/22/2012] [Indexed: 01/17/2023] Open
Abstract
Oxygen is required for three enzyme reactions in chlorophyll and bilin biosynthesis pathways: coproporphyrinogen III oxidase (HemF), heme oxygenase (HO1), and Mg-protoporphyrin IX monomethylester cyclase (ChlA(I)). The cyanobacterium Synechocystis sp. PCC 6803 has alternative enzymes, HemN, HO2, and ChlA(II), to supply chlorophyll/bilins even under low-oxygen environments. The three genes form an operon, chlA(II)-ho2-hemN, that is induced in response to low-oxygen conditions to bypass the oxygen-dependent reactions. Here we identified a transcriptional regulator for the induction of the operon in response to low-oxygen conditions. A pseudorevertant, Δho1R, was isolated from a HO1-lacking mutant Δho1 that is lethal under aerobic conditions. Δho1R grew well even under aerobic conditions. In Δho1R, HO2 that is induced only under low-oxygen conditions was anomalously expressed under aerobic conditions to complement the loss of HO1. A G-to-C transversion in sll1512 causing the amino acid change from aspartate 35 to histidine was identified as the relevant mutation by resequencing of the Δho1R genome. Sll1512 is a MarR-type transcriptional regulator. An sll1512-lacking mutant grew poorly under low-oxygen conditions with a remarked decrease in Chl content that would be caused by the suppressed induction of the chlA(II) and hemN genes in Chl biosynthesis under low-oxygen conditions. These results demonstrated that Sll1512 is an activator in response to low-oxygen environments and that the D35H variant becomes a constitutive activator. This hypothesis was supported by a gel shift assay showing that the Sll1512-D35H variant binds to the DNA fragment upstream of the operon. We propose to name sll1512 chlR.
Collapse
Affiliation(s)
- Rina Aoki
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tomoya Takeda
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Tatsuo Omata
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kunio Ihara
- the Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan, and
| | - Yuichi Fujita
- From the Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
91
|
Abed RMM. Detection and Capturing of (14)C Radioactively-Labeled Small Subunit rRNA from Mixed Microbial Communities of a Microbial Mat Using Magnetic Beads. Indian J Microbiol 2012; 52:88-93. [PMID: 23449550 PMCID: PMC3298593 DOI: 10.1007/s12088-011-0239-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 10/13/2011] [Indexed: 10/16/2022] Open
Abstract
Carbon cycling in the hypersaline microbial mats from Chiprana Lake, Spain is primarily dependent on phototrophic microorganisms with the ability to fix CO2 into organics that can be further utilized by aerobic as well as anaerobic heterotrophic bacteria. Here, mat pieces were incubated in seawater amended with (14)C sodium bicarbonate and the incorporation of the radiocarbon in the small subunit ribosomal RNA (SSU rRNA) of mat organisms was followed using scintillation counter and autoradiography. Different domains of SSU rRNA were separated from the total RNA by means of streptavidin-coated magnetic beads and biotin-labeled oligonucleotide probes. The (14)C label was detected in isolated RNA by both scintillation counter and autoradiography, however the latter technique was less sensitive. Using scintillation counter, the radiolabel incorporation increased with time with a maximum rate of 0.18 Bq ng(-1) detected after 25 days. The bacterial SSU rRNA could be captured using the magnetic beads, however the hybridization efficiency was around 20%. The captured RNA was radioactively labeled, which could be mainly due to the fixation of radiocarbon by phototrophic organisms. In conclusion, the incubation of microbial mats in the presence of radiolabeled bicarbonate leads to the incorporation of the (14)C label into RNA molecules through photosynthesis and this label can be detected using scintillation counter. The used approach could be useful in studying the fate of fixed carbon and its uptake by other microorganisms in complex microbial mats, particularly when species-specific probes are used and the hybridization efficiency and RNA yield are further optimized.
Collapse
Affiliation(s)
- Raeid M. M. Abed
- Biology Department, College of Science, Sultan Qaboos University, P.O.Box 36, Al Khoud, 123 Muscat, Sultanate of Oman
| |
Collapse
|
92
|
Bolhuis H, Stal LJ. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. THE ISME JOURNAL 2011; 5:1701-12. [PMID: 21544102 PMCID: PMC3197164 DOI: 10.1038/ismej.2011.52] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/14/2011] [Accepted: 03/24/2011] [Indexed: 11/08/2022]
Abstract
Coastal microbial mats are small-scale and largely closed ecosystems in which a plethora of different functional groups of microorganisms are responsible for the biogeochemical cycling of the elements. Coastal microbial mats play an important role in coastal protection and morphodynamics through stabilization of the sediments and by initiating the development of salt-marshes. Little is known about the bacterial and especially archaeal diversity and how it contributes to the ecological functioning of coastal microbial mats. Here, we analyzed three different types of coastal microbial mats that are located along a tidal gradient and can be characterized as marine (ST2), brackish (ST3) and freshwater (ST3) systems. The mats were sampled during three different seasons and subjected to massive parallel tag sequencing of the V6 region of the 16S rRNA genes of Bacteria and Archaea. Sequence analysis revealed that the mats are among the most diverse marine ecosystems studied so far and consist of several novel taxonomic levels ranging from classes to species. The diversity between the different mat types was far more pronounced than the changes between the different seasons at one location. The archaeal community for these mats have not been studied before and revealed a strong reaction on a short period of draught during summer resulting in a massive increase in halobacterial sequences, whereas the bacterial community was barely affected. We concluded that the community composition and the microbial diversity were intrinsic of the mat type and depend on the location along the tidal gradient indicating a relation with salinity.
Collapse
Affiliation(s)
- Henk Bolhuis
- Department of Marine Microbiology, Centre for Estuarine and Marine Ecology (NIOO-KNAW), Yerseke, The Netherlands.
| | | |
Collapse
|
93
|
Bandyopadhyay A, Elvitigala T, Welsh E, Stöckel J, Liberton M, Min H, Sherman LA, Pakrasi HB. Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece. mBio 2011; 2:e00214-11. [PMID: 21972240 PMCID: PMC3187577 DOI: 10.1128/mbio.00214-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. IMPORTANCE The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of this cyanobacterial group, we analyzed the genome sequences of five additional Cyanothece strains from different geographical habitats, exhibiting diverse morphological and physiological attributes. These strains exhibit high rates of N(2) fixation and H(2) production under aerobic conditions. They can generate copious amounts of carbohydrates that are stored in large starch-like granules and facilitate energy-intensive processes during the dark, anoxic phase of the cells. The genomes of some Cyanothece strains are quite unique in that there are linear elements in addition to a large circular chromosome. Our study provides novel insights into the metabolism of this class of unicellular nitrogen-fixing cyanobacteria.
Collapse
Affiliation(s)
| | | | - Eric Welsh
- Biomedical Informatics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA; and
| | - Jana Stöckel
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Michelle Liberton
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Hongtao Min
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Louis A. Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | | |
Collapse
|
94
|
Biddanda BA, Nold SC, Ruberg SA, Kendall ST, Sanders TG, Gray JJ. Great Lakes Sinkholes: A Microbiogeochemical Frontier. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2009eo080001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
95
|
Bühring SI, Sievert SM, Jonkers HM, Ertefai T, Elshahed MS, Krumholz LR, Hinrichs KU. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. GEOBIOLOGY 2011; 9:166-179. [PMID: 21244620 DOI: 10.1111/j.1472-4669.2010.00268.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Zodletone spring in Oklahoma is a unique environment with high concentrations of dissolved-sulfide (10 mm) and short-chain gaseous alkanes, exhibiting characteristics that are reminiscent of conditions that are thought to have existed in Earth's history, in particular the late Archean and early-to-mid Proterozoic. Here, we present a process-oriented investigation of the microbial community in two distinct mat formations at the spring source, (1) the top of the sediment in the source pool and (2) the purple streamers attached to the side walls. We applied a combination of pigment and lipid biomarker analyses, while functional activities were investigated in terms of oxygen production (microsensor analysis) and carbon utilization ((13)C incorporation experiments). Pigment analysis showed cyanobacterial pigments, in addition to pigments from purple sulfur bacteria (PSB), green sulfur bacteria (GSB) and Chloroflexus-like bacteria (CLB). Analysis of intact polar lipids (IPLs) in the source sediment confirmed the presence of phototrophic organisms via diacylglycerol phospholipids and betaine lipids, whereas glyceroldialkylglyceroltetraether additionally indicated the presence of archaea. No archaeal IPLs were found in the purple streamers, which were strongly dominated by betaine lipids. (13)C-bicarbonate- and -acetate-labeling experiments indicated cyanobacteria as predominant phototrophs in the source sediment, carbon was actively fixed by PSB/CLB/GSB in purple streamers by using near infrared light. Despite the presence of cyanobacteria, no oxygen could be detected in the presence of light, suggesting anoxygenic photosynthesis as the major metabolic process at this site. Our investigations furthermore indicated photoheterotrophy as an important process in both habitats. We obtained insights into a syntrophically operating phototrophic community in an ecosystem that bears resemblance to early Earth conditions, where cyanobacteria constitute an important contributor to carbon fixation despite the presence of high sulfide concentrations.
Collapse
Affiliation(s)
- S I Bühring
- Department of Geosciences, Universität Bremen, Bremen, Germany.
| | | | | | | | | | | | | |
Collapse
|
96
|
Abed RMM, Musat N, Musat F, Mussmann M. Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat. MARINE POLLUTION BULLETIN 2011; 62:539-546. [PMID: 21194714 DOI: 10.1016/j.marpolbul.2010.11.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/27/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
The bacterial communities in the anoxic layer of a heavily polluted microbial mat and their growth on hydrocarbons under sulfate-reducing conditions were investigated. Microbial communities were dominated by members of Alphaproteobacteria (27% of the total rRNA), Planctomycetes (21.1%) and sulfate-reducing bacteria (SRB: 17.5%). 16S rRNA cloning revealed sequences beloning to the same bacterial groups with SRB affiliated to the genera Desulfobulbus, Desulfocapsa, Desulfomicrobium, Desulfobacterium and Desulfosarcina/Desulfococcus. The derived enrichment cultures on crude oil, hexadecane and toluene were dominated by SRB. While most SRB sequences of the toluene and hexadecane cultures were related to the sequence of Desulfotignum toluolica, the crude oil enrichment showed a more diverse bacterial community with sequences from the genera Desulfotignum, Desulfobacter, Desulfatibacillus, Desulfosalina, and Desulfococcus. We conclude that the anoxic layer of the studied mats contains a diverse community of anaerobic bacteria, dominated by SRB, some of which are able to grow on hydrocarbons.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P.O. Box 36, PC 123 Al Khoud, Oman.
| | | | | | | |
Collapse
|
97
|
|
98
|
Microbial Diversity in Modern Stromatolites. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2011. [DOI: 10.1007/978-94-007-0397-1_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
99
|
Stanić D, Oehrle S, Gantar M, Richardson LL. Microcystin production and ecological physiology of Caribbean black band disease cyanobacteria. Environ Microbiol 2010; 13:900-10. [PMID: 21143569 DOI: 10.1111/j.1462-2920.2010.02388.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular studies of black band disease (BBD), a coral disease found on tropical and subtropical reefs worldwide, have shown that one 16S rRNA gene sequence is ubiquitous. This sequence has been reported to be a member of the cyanobacterial genus Oscillatoria. In this study, extracts of two cultured laboratory strains of BBD Oscillatoria, and for comparison two strains of BBD Geitlerinema, all isolated from reefs of the wider Caribbean, were analysed using Ultra-Performance Liquid Chromatography-Tandem Quad Mass Spectrometry (UPLC-MS/MS). The cyanotoxin microcystin-LR (MC-LR) was found in all strains, and one Geitlerinema strain additionally produced MC-YR. Growth experiments that monitored toxin production using enzyme-linked immunosorbent assay (ELISA) showed that BBD Oscillatoria produced yields of MC-LR equivalent (0.02-0.04 mg g(-1)) independent of biomass and culture conditions (varying temperature, pH, light and organic carbon). This pattern is different from BBD Geitlerinema, which increased production of MC-LR equivalent in the presence of organic carbon in the light and dark and at a relatively lower temperature. These results indicate that different species and strains of BBD cyanobacteria, which can occur in the same BBD infection, may contribute to BBD pathobiology by producing different toxins and different amounts of toxin at different stages in the disease process. This is the first detailed study of laboratory cultures of the ubiquitous BBD cyanobacterium Oscillatoria sp. isolated from Caribbean reefs.
Collapse
Affiliation(s)
- Dina Stanić
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | | | | |
Collapse
|
100
|
Villanueva L, Del Campo J, Guerrero R. Diversity and physiology of polyhydroxyalkanoate-producing and -degrading strains in microbial mats. FEMS Microbiol Ecol 2010; 74:42-54. [PMID: 20618859 DOI: 10.1111/j.1574-6941.2010.00928.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Photosynthetic microbial mats are sources of microbial diversity and physiological strategies that reflect the physical and metabolic interactions between their resident species. This study focused on the diversity and activity of polyhydroxyalkanoate-producing and -degrading bacteria and their close partnership with cyanobacteria in an estuarine and a hypersaline microbial mat. The aerobic heterotrophic population was characterized on the basis of lipid biomarkers (respiratory quinones, sphingoid bases), polyhydroxyalkanoate determination, biochemical analysis of the isolates, and interaction assays. Most of the polyhydroxyalkanoate-producing isolates obtained from an estuarine mat belonged to the Halomonas and Labrenzia genera, while species of Sphingomonas and Bacillus were more prevalent in the hypersaline mat. Besides, the characterization of heterotrophic bacteria coisolated with filamentous cyanobacteria after selection suggested a specific association between them and diversification of the heterotrophic partner belonging to the Halomonas genus. Preliminary experiments suggested that syntrophic associations between strains of the Pseudoalteromonas and Halomonas genera explain the dynamics of polyhydroxyalkanoate accumulation in some microbial mats. These metabolic interactions and the diversity of the bacteria that participate in them are most likely supported by the strong mutual dependence of the partners.
Collapse
Affiliation(s)
- Laura Villanueva
- Department of Microbiology, University of Barcelona, Barcelona, Spain.
| | | | | |
Collapse
|