51
|
Cani PD, Plovier H, Van Hul M, Geurts L, Delzenne NM, Druart C, Everard A. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol 2016; 12:133-43. [PMID: 26678807 DOI: 10.1038/nrendo.2015.211] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Various metabolic disorders are associated with changes in inflammatory tone. Among the latest advances in the metabolism field, the discovery that gut microorganisms have a major role in host metabolism has revealed the possibility of a plethora of associations between gut bacteria and numerous diseases. However, to date, few mechanisms have been clearly established. Accumulating evidence indicates that the endocannabinoid system and related bioactive lipids strongly contribute to several physiological processes and are a characteristic of obesity, type 2 diabetes mellitus and inflammation. In this Review, we briefly define the gut microbiota as well as the endocannabinoid system and associated bioactive lipids. We discuss existing literature regarding interactions between gut microorganisms and the endocannabinoid system, focusing specifically on the triad of adipose tissue, gut bacteria and the endocannabinoid system in the context of obesity and the development of fat mass. We highlight gut-barrier function by discussing the role of specific factors considered to be putative 'gate keepers' or 'gate openers', and their role in the gut microbiota-endocannabinoid system axis. Finally, we briefly discuss data related to the different pharmacological strategies currently used to target the endocannabinoid system, in the context of cardiometabolic disorders and intestinal inflammation.
Collapse
Affiliation(s)
- Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Hubert Plovier
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Matthias Van Hul
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Lucie Geurts
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Nathalie M Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Céline Druart
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| | - Amandine Everard
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Avenue E. Mounier 73, Box B1.73.11, Brussels B-1200, Belgium
| |
Collapse
|
52
|
Abstract
Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract. The discovery of our bodies' own "cannabis-like molecules" and associated receptors and metabolic machinery - collectively called the endocannabinoid system - enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease. Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system. This review highlights research that reveals an important - and at times surprising - role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.
Collapse
Affiliation(s)
- Nicholas V. DiPatrizio
- Address correspondence to: Nicholas V. DiPatrizio, PhD, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave., Riverside, CA 92521, E-mail:
| |
Collapse
|
53
|
Patterson E, Ryan PM, Cryan JF, Dinan TG, Ross RP, Fitzgerald GF, Stanton C. Gut microbiota, obesity and diabetes. Postgrad Med J 2016; 92:286-300. [PMID: 26912499 DOI: 10.1136/postgradmedj-2015-133285] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
Abstract
The central role of the intestinal microbiota in the progression and, equally, prevention of metabolic dysfunction is becoming abundantly apparent. The symbiotic relationship between intestinal microbiota and host ensures appropriate development of the metabolic system in humans. However, disturbances in composition and, in turn, functionality of the intestinal microbiota can disrupt gut barrier function, a trip switch for metabolic endotoxemia. This low-grade chronic inflammation, brought about by the influx of inflammatory bacterial fragments into circulation through a malfunctioning gut barrier, has considerable knock-on effects for host adiposity and insulin resistance. Conversely, recent evidence suggests that there are certain bacterial species that may interact with host metabolism through metabolite-mediated stimulation of enteric hormones and other systems outside of the gastrointestinal tract, such as the endocannabinoid system. When the abundance of these keystone species begins to decline, we see a collapse of the symbiosis, reflected in a deterioration of host metabolic health. This review will investigate the intricate axis between the microbiota and host metabolism, while also addressing the promising and novel field of probiotics as metabolic therapies.
Collapse
Affiliation(s)
- Elaine Patterson
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Paul M Ryan
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland School of Microbiology, University College Cork, Co. Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Department of Anatomy and Neuroscience, University College Cork, Co. Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Department of Psychiatry and Neurobehavioural Science, University College Cork, Co. Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland College of Science, Engineering and Food Science, University College Cork, Co. Cork, Ireland
| | - Gerald F Fitzgerald
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Institute, University College Cork, Co. Cork, Ireland Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
54
|
The potential relevance of the endocannabinoid, 2-arachidonoylglycerol, in diffuse large B-cell lymphoma. Oncoscience 2016; 3:31-41. [PMID: 26973858 PMCID: PMC4751914 DOI: 10.18632/oncoscience.289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
Diffuse large B-cell lymphoma is an aggressive, genetically heterogenerous disease and the most common type of non-Hodgkin lymphoma among adults. To gain further insights into the etiology of DLBCL and to discover potential disease-related factors, we performed a serum lipid analysis on a subset of individuals from a population-based NHL case-control study. An untargeted mass-spectrometry-based metabolomics platform was used to analyze serum samples from 100 DLBCL patients and 100 healthy matched controls. Significantly elevated levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), were detected in the serum of DLBCL patients (121%, P < 0.05). In the male controls, elevated 2-AG levels were observed in those who were overweight (BMI ≥ 25 - < 30 kg/m2; 108%, P < 0.01) and obese (BMI ≥ 30 kg/m2; 118%, P < 0.001) compared to those with a BMI < 25 kg/m2. DLBCL cell lines treated with exogenous 2-AG across a range of concentrations, exhibited heterogenous responses: proliferation rates were markedly higher in 4 cell lines by 22%-68% (P < 0.001) and lower in 8 by 20%-75% (P < 0.001). The combined findings of elevated 2-AG levels in DLBCL patients and the proliferative effects of 2-AG on a subset of DLBCL cell lines suggests that 2-AG may play a potential role in the pathogenesis or progression of a subset of DLBCLs.
Collapse
|
55
|
Lopategi A, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Rius B, Titos E, Clària J. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol Cell Endocrinol 2016; 419:44-59. [PMID: 26433072 DOI: 10.1016/j.mce.2015.09.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
White adipose tissue is recognized as an active endocrine organ implicated in the maintenance of metabolic homeostasis. However, adipose tissue function, which has a crucial role in the development of obesity-related comorbidities including insulin resistance and non-alcoholic fatty liver disease, is dysregulated in obese individuals. This review explores the physiological functions and molecular actions of bioactive lipids biosynthesized in adipose tissue including sphingolipids and phospholipids, and in particular fatty acids derived from phospholipids of the cell membrane. Special emphasis is given to polyunsaturated fatty acids of the omega-6 and omega-3 families and their conversion to bioactive lipid mediators through the cyclooxygenase and lipoxygenase pathways. The participation of omega-3-derived lipid autacoids in the resolution of adipose tissue inflammation and in the prevention of obesity-associated hepatic complications is also thoroughly discussed.
Collapse
Affiliation(s)
- Aritz Lopategi
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain.
| | - Cristina López-Vicario
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - José Alcaraz-Quiles
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Verónica García-Alonso
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Bibiana Rius
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain
| | - Esther Titos
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain
| | - Joan Clària
- Department of Biochemistry and Molecular Genetics, Hospital Clínic, IDIBAPS, Barcelona 08036, Spain; CIBERehd, University of Barcelona, Barcelona 08036, Spain; Department of Physiological Sciences I, University of Barcelona, Barcelona 08036, Spain.
| |
Collapse
|
56
|
Cluny NL, Keenan CM, Reimer RA, Le Foll B, Sharkey KA. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Δ9-Tetrahydrocannabinol. PLoS One 2015; 10:e0144270. [PMID: 26633823 PMCID: PMC4669115 DOI: 10.1371/journal.pone.0144270] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
Objective Acute administration of cannabinoid CB1 receptor agonists, or the ingestion of cannabis, induces short-term hyperphagia. However, the incidence of obesity is lower in frequent cannabis users compared to non-users. Gut microbiota affects host metabolism and altered microbial profiles are observed in obese states. Gut microbiota modifies adipogenesis through actions on the endocannabinoid system. This study investigated the effect of chronic THC administration on body weight and gut microbiota in diet-induced obese (DIO) and lean mice. Methods Adult male DIO and lean mice were treated daily with vehicle or THC (2mg/kg for 3 weeks and 4 mg/kg for 1 additional week). Body weight, fat mass, energy intake, locomotor activity, whole gut transit and gut microbiota were measured longitudinally. Results THC reduced weight gain, fat mass gain and energy intake in DIO but not lean mice. DIO-induced changes in select gut microbiota were prevented in mice chronically administered THC. THC had no effect on locomotor activity or whole gut transit in either lean or DIO mice. Conclusions Chronic THC treatment reduced energy intake and prevented high fat diet-induced increases in body weight and adiposity; effects that were unlikely to be a result of sedation or altered gastrointestinal transit. Changes in gut microbiota potentially contribute to chronic THC-induced actions on body weight in obesity.
Collapse
Affiliation(s)
- Nina L. Cluny
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M. Keenan
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A. Reimer
- Faculty of Kinesiology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Ontario, Canada
| | - Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
57
|
Rigamonti AE, Piscitelli F, Aveta T, Agosti F, De Col A, Bini S, Cella SG, Di Marzo V, Sartorio A. Anticipatory and consummatory effects of (hedonic) chocolate intake are associated with increased circulating levels of the orexigenic peptide ghrelin and endocannabinoids in obese adults. Food Nutr Res 2015; 59:29678. [PMID: 26546790 PMCID: PMC4636866 DOI: 10.3402/fnr.v59.29678] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/23/2015] [Accepted: 10/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG) in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. METHODS To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), anandamide (AEA), 2-AG, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. RESULTS The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. CONCLUSIONS When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity.
Collapse
Affiliation(s)
- Antonello E Rigamonti
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy;
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Teresa Aveta
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Fiorenza Agosti
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Alessandra De Col
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy
| | - Silvia Bini
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Silvano G Cella
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Alessandro Sartorio
- Istituto Auxologico Italiano, IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan and Verbania, Italy.,Istituto Auxologico Italiano, IRCCS, Division of Metabolic Diseases, Verbania, Italy
| |
Collapse
|
58
|
France M, Skorich E, Kadrofske M, Swain GM, Galligan JJ. Sex-related differences in small intestinal transit and serotonin dynamics in high-fat-diet-induced obesity in mice. Exp Physiol 2015; 101:81-99. [PMID: 26381722 DOI: 10.1113/ep085427] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/15/2015] [Indexed: 12/17/2022]
Abstract
Obesity alters gastrointestinal (GI) motility and 5-HT signalling. Altered 5-HT signalling disrupts control of GI motility. Levels of extracellular 5-HT depend on enterochromaffin (EC) cell release and serotonin transporter (SERT) uptake. We assessed GI transit and 5-HT signalling in the jejunum of normal and obese mice. Male and female mice were fed a control diet (CD; 10% of kilocalories as fat) or a high-fat diet (HFD; 60% of kilocalories as fat). Gastrointestinal transit was increased in male HFD-fed and female CD-fed compared with male CD-fed mice. The 5-HT3 receptor blocker, alosetron, increased gastric emptying in male CD-fed mice, but decreased transit in female CD-fed mice. The 5-HT-induced jejunal longitudinal muscle contractions in vitro were similar in all mice. In contrast to male CD-fed mice, 5-HT uptake (measured using continuous amperometry in vitro) in male HFD-fed mice was fluoxetine insensitive, yet sensitive to cocaine and the dopamine transporter (DAT) blocker GBR 12909. Immunoreactivity for DAT was present in the mucosa, and protein levels were greater in male HFD-fed compared with CD-fed mice. Extracellular 5-HT and mucosal 5-hydroxyindolacetic acid (5-HT metabolite) were similar in male HFD-fed compared with CD-fed mice. 5-Hydroxytryptamine uptake was fluoxetine sensitive in all females. Greater SERT protein, decreased extracellular 5-HT and greater mucosal 5-hydroxyindolacetic acid were observed in female HFD-fed compared with CD-fed mice. Mucosal 5-HT and EC cell numbers were similar in CD-fed and HFD-fed mice of both sexes; female 5-HT and EC cell numbers were increased compared with males. The HFD did not alter plasma sex hormone levels in any mice. Overall, obesity alters GI transit and 5-HT signalling in a sex-dependent manner.
Collapse
Affiliation(s)
- Marion France
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Emmalee Skorich
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Mark Kadrofske
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI, USA
| | - Greg M Swain
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J Galligan
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.,Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
59
|
Rajaraman G, Simcocks A, Hryciw DH, Hutchinson DS, McAinch AJ. G protein coupled receptor 18: A potential role for endocannabinoid signaling in metabolic dysfunction. Mol Nutr Food Res 2015; 60:92-102. [PMID: 26337420 DOI: 10.1002/mnfr.201500449] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 02/06/2023]
Abstract
Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels. Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression. These cannabinoid receptors are part of a large family of G protein coupled receptors (GPCRs). GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal, and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus. Obesity is considered a state of chronic low-grade inflammation elicited by an immunological response. Interestingly, the newly deorphanized GPCR (GPR18), which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function. In this review, the current scientific knowledge on GPR18 is explored including its localization, signaling pathways, and pharmacology. Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described. Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.
Collapse
Affiliation(s)
- Gayathri Rajaraman
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Anna Simcocks
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Dana S Hutchinson
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health & Biomedicine, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
60
|
DiPatrizio NV, Igarashi M, Narayanaswami V, Murray C, Gancayco J, Russell A, Jung KM, Piomelli D. Fasting stimulates 2-AG biosynthesis in the small intestine: role of cholinergic pathways. Am J Physiol Regul Integr Comp Physiol 2015; 309:R805-13. [PMID: 26290104 DOI: 10.1152/ajpregu.00239.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/15/2015] [Indexed: 12/29/2022]
Abstract
The endocannabinoids are lipid-derived signaling molecules that control feeding and energy balance by activating CB1-type cannabinoid receptors in the brain and peripheral tissues. Previous studies have shown that oral exposure to dietary fat stimulates endocannabinoid signaling in the rat small intestine, which provides positive feedback that drives further food intake and preference for fat-rich foods. We now describe an unexpectedly broader role for cholinergic signaling of the vagus nerve in the production of the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), in the small intestine. We show that food deprivation increases levels of 2-AG and its lipid precursor, 1,2-diacylglycerol, in rat jejunum mucosa in a time-dependent manner. This response is abrogated by surgical resection of the vagus nerve or pharmacological blockade of small intestinal subtype-3 muscarinic acetylcholine (m3 mAch) receptors, but not inhibition of subtype-1 muscarinic acetylcholine (m1 mAch). We further show that blockade of peripheral CB1 receptors or intestinal m3 mAch receptors inhibits refeeding in fasted rats. The results suggest that food deprivation stimulates 2-AG-dependent CB1 receptor activation through a mechanism that requires efferent vagal activation of m3 mAch receptors in the jejunum, which, in turn, may promote feeding after a fast.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California, Riverside, School of Medicine, Riverside, California; Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Miki Igarashi
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Vidya Narayanaswami
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Conor Murray
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Joseph Gancayco
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Amy Russell
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, School of Medicine, Irvine, California; Department of Pharmacology, University of California, Irvine, School of Medicine, Irvine, California; Department of Biological Chemistry, University of California, Irvine, School of Medicine, Irvine, California; and Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
61
|
Vähätalo LH, Ruohonen ST, Mäkelä S, Ailanen L, Penttinen AM, Stormi T, Kauko T, Piscitelli F, Silvestri C, Savontaus E, Di Marzo V. Role of the endocannabinoid system in obesity induced by neuropeptide Y overexpression in noradrenergic neurons. Nutr Diabetes 2015; 5:e151. [PMID: 25915740 PMCID: PMC4423197 DOI: 10.1038/nutd.2015.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/12/2014] [Accepted: 12/23/2014] [Indexed: 01/06/2023] Open
Abstract
Objective: Endocannabinoids and neuropeptide Y (NPY) promote energy storage via central and peripheral mechanisms. In the hypothalamus, the two systems were suggested to interact. To investigate such interplay also in non-hypothalamic tissues, we evaluated endocannabinoid levels in obese OE-NPYDβH mice, which overexpress NPY in the noradrenergic neurons in the sympathetic nervous system and the brain. Methods: The levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG) were measured in key regulatory tissues, that is, hypothalamus, pancreas, epididymal white adipose tissue (WAT), liver and soleus muscle, over the development of metabolic dysfunctions in OE-NPYDβH mice. The effects of a 5-week treatment with the CB1 receptor inverse agonist AM251 on adiposity and glucose metabolism were studied. Results: 2-AG levels were increased in the hypothalamus and epididymal WAT of pre-obese and obese OE-NPYDβH mice. Anandamide levels in adipose tissue and pancreas were increased at 4 months concomitantly with higher fat mass and impaired glucose tolerance. CB1 receptor blockage reduced body weight gain and glucose intolerance in OE-NPYDβH to the level of vehicle-treated wild-type mice. Conclusions: Altered endocannabinoid tone may underlie some of the metabolic dysfunctions in OE-NPYDβH mice, which can be attenuated with CB1 inverse agonism suggesting interactions between endocannabinoids and NPY also in the periphery. CB1 receptors may offer a target for the pharmacological treatment of the metabolic syndrome with altered NPY levels.
Collapse
Affiliation(s)
- L H Vähätalo
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - S T Ruohonen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - S Mäkelä
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - L Ailanen
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - A-M Penttinen
- Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - T Stormi
- Department of Biostatistics, University of Turku, Turku, Finland
| | - T Kauko
- Department of Biostatistics, University of Turku, Turku, Finland
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - C Silvestri
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| | - E Savontaus
- 1] Department of Pharmacology, Drug Development and Therapeutics and Turku Center for Disease Modeling, University of Turku, Turku, Finland [2] Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli (NA), Italy
| |
Collapse
|
62
|
Abstract
Fat is a vital macronutrient, and its intake is closely monitored by an array of molecular sensors distributed throughout the alimentary canal. In the mouth, dietary fat constituents such as mono- and diunsaturated fatty acids give rise to taste signals that stimulate food intake, in part by enhancing the production of lipid-derived endocannabinoid messengers in the gut. As fat-containing chyme enters the small intestine, it causes the formation of anorexic lipid mediators, such as oleoylethanolamide, which promote satiety. These anatomically and functionally distinct responses may contribute to the homeostatic control and, possibly, the pathological dysregulation of food intake.
Collapse
Affiliation(s)
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology
- Department of Pharmacology, and
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, USA
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
63
|
Monteleone AM, Di Marzo V, Aveta T, Piscitelli F, Dalle Grave R, Scognamiglio P, El Ghoch M, Calugi S, Monteleone P, Maj M. Deranged endocannabinoid responses to hedonic eating in underweight and recently weight-restored patients with anorexia nervosa. Am J Clin Nutr 2015; 101:262-269. [PMID: 25646322 DOI: 10.3945/ajcn.114.096164] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A dysregulation of reward mechanisms was suggested in the pathophysiology of anorexia nervosa (AN), but the role of the endogenous mediators of reward has been poorly investigated. Endocannabinoids, including anandamide and 2-arachidonoylglycerol, and the endocannabinoid-related compounds oleoylethanolamide and palmitoylethanolamide modulate food-related and unrelated reward. Hedonic eating, which is the consumption of food just for pleasure and not homeostatic need, is a suitable paradigm to explore food-related reward. OBJECTIVE We investigated responses of endocannabinoids and endocannabinoid-related compounds to hedonic eating in AN. DESIGN Peripheral concentrations of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide were measured in 7 underweight and 7 weight-restored AN patients after eating favorite and nonfavorite foods in the condition of no homeostatic needs, and these measurements were compared with those of previously studied healthy control subjects. RESULTS 1) In healthy controls, plasma 2-arachidonoylglycerol concentrations decreased after both types of meals but were significantly higher in hedonic eating; in underweight AN patients, 2-arachidonoylglycerol concentrations did not show specific time patterns after eating either favorite or nonfavorite foods, whereas in weight-restored patients, 2-arachidonoylglycerol concentrations showed similar increases with both types of meals. 2) Anandamide plasma concentrations exhibited no differences in their response patterns to hedonic eating in the groups. 3) Compared with 2-arachidonoylglycerol, palmitoylethanolamide concentrations exhibited an opposite response pattern to hedonic eating in healthy controls; this pattern was partially preserved in underweight AN patients but not in weight-restored ones. 4) Like palmitoylethanolamide, oleoylethanolamide plasma concentrations tended to be higher in nonhedonic eating than in hedonic eating in healthy controls; moreover, no difference between healthy subjects and AN patients was observed for food-intake-induced changes in oleoylethanolamide concentrations. CONCLUSION These data confirm that endocannabinoids and endocannabinoid-related compounds are involved in food-related reward and suggest a dysregulation of their physiology in AN. This trial was registered at ISRCTN.org as ISRCTN64683774.
Collapse
Affiliation(s)
- Alessio Maria Monteleone
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Vincenzo Di Marzo
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Teresa Aveta
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Fabiana Piscitelli
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Riccardo Dalle Grave
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Pasquale Scognamiglio
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Marwan El Ghoch
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Simona Calugi
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Palmiero Monteleone
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| | - Mario Maj
- From the Department of Psychiatry, Second University of Naples, Naples, Italy (AMM, PS, PM, and MM); the Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Naples, Italy (VDM, TA, and FP); the Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, Verona, Italy (RDG, MEG, and SC); and the Neuroscience Section, Department of Medicine and Surgery, University of Salerno, Salerno, Italy (PM)
| |
Collapse
|
64
|
Kentish SJ, Page AJ. The role of gastrointestinal vagal afferent fibres in obesity. J Physiol 2014; 593:775-86. [PMID: 25433079 DOI: 10.1113/jphysiol.2014.278226] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/21/2014] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal (GI) vagal afferents are a key mediatory of food intake. Through a balance of responses to chemical and mechanical stimuli food intake can be tightly controlled via the ascending satiety signals initiated in the GI tract. However, vagal responses to both mechanical and chemical stimuli are modified in diet-induced obesity (DIO). Much of the research to date whilst in relatively isolated/controlled circumstances indicates a shift between a balance of orexigenic and anorexigenic vagal signals to blunted anorexigenic and potentiated orexigenic capacity. Although the mechanism responsible for the DIO shift in GI vagal afferent signalling is unknown, one possible contributing factor is the gut microbiota. Nevertheless, whatever the mechanism, the observed changes in gastrointestinal vagal afferent signalling may underlie the pathophysiological changes in food consumption that are pivotal for the development and maintenance of obesity.
Collapse
Affiliation(s)
- Stephen J Kentish
- Discipline of Medicine, University of Adelaide, Frome Road, Adelaide, SA, 5005, Australia; Royal Adelaide Hospital, North Terrace, Adelaide, SA, 5000, Australia
| | | |
Collapse
|
65
|
Moran CP, Shanahan F. Gut microbiota and obesity: role in aetiology and potential therapeutic target. Best Pract Res Clin Gastroenterol 2014; 28:585-97. [PMID: 25194177 DOI: 10.1016/j.bpg.2014.07.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/20/2014] [Accepted: 07/05/2014] [Indexed: 01/31/2023]
Abstract
Obesity is epidemic; chronic energy surplus is clearly important in obesity development but other factors are at play. Indigenous gut microbiota are implicated in the aetiopathogenesis of obesity and obesity-related disorders. Evidence from murine models initially suggested a role for the gut microbiota in weight regulation and the microbiota has been shown to contribute to the low grade inflammation that characterises obesity. The microbiota and its metabolites mediate some of the alterations of the microbiota-gut-brain axis, the endocannabinoid system, and bile acid metabolism, found in obesity-related disorders. Modulation of the gut microbiota is an attractive proposition for prevention or treatment of obesity, particularly as traditional measures have been sub-optimal.
Collapse
Affiliation(s)
- Carthage P Moran
- Dept. Medicine and Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland
| | - Fergus Shanahan
- Dept. Medicine and Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland.
| |
Collapse
|
66
|
|
67
|
Cluny NL, Baraboi ED, Mackie K, Burdyga G, Richard D, Dockray GJ, Sharkey KA. High fat diet and body weight have different effects on cannabinoid CB(1) receptor expression in rat nodose ganglia. Auton Neurosci 2013; 179:122-30. [PMID: 24145047 DOI: 10.1016/j.autneu.2013.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/21/2023]
Abstract
Energy balance is regulated, in part, by the orexigenic signaling pathways of the vagus nerve. Fasting-induced modifications in the expression of orexigenic signaling systems have been observed in vagal afferents of lean animals. Altered basal cannabinoid (CB1) receptor expression in the nodose ganglia in obesity has been reported. Whether altered body weight or a high fat diet modifies independent or additive changes in CB1 expression is unknown. We investigated the expression of CB1 and orexin 1 receptor (OX-1R) in the nodose ganglia of rats fed ad libitum or food deprived (24h), maintained on low or high fat diets (HFD), with differing body weights. Male Wistar rats were fed chow or HFD (diet-induced obese: DIO or diet-resistant: DR) or were body weight matched to the DR group but fed chow (wmDR). CB1 and OX-1R immunoreactivity were investigated and CB1 mRNA density was determined using in situ hybridization. CB1 immunoreactivity was measured in fasted rats after sulfated cholecystokinin octapeptide (CCK8s) administration. In chow rats, fasting did not modify the level of CB1 mRNA. More CB1 immunoreactive cells were measured in fed DIO, DR and wmDR rats than chow rats; levels increased after fasting in chow and wmDR rats but not in DIO or DR rats. In HFD fasted rats CCK8s did not reduce CB1 immunoreactivity. OX-1R immunoreactivity was modified by fasting only in DR rats. These data suggest that body weight contributes to the proportion of neurons expressing CB1 immunoreactivity in the nodose ganglion, while HFD blunts fasting-induced increases, and CCK-induced suppression of, CB1-immunoreactivity.
Collapse
Affiliation(s)
- N L Cluny
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
68
|
Gajda AM, Zhou YX, Agellon LB, Fried SK, Kodukula S, Fortson W, Patel K, Storch J. Direct comparison of mice null for liver or intestinal fatty acid-binding proteins reveals highly divergent phenotypic responses to high fat feeding. J Biol Chem 2013; 288:30330-30344. [PMID: 23990461 DOI: 10.1074/jbc.m113.501676] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The enterocyte expresses two fatty acid-binding proteins (FABP), intestinal FABP (IFABP; FABP2) and liver FABP (LFABP; FABP1). LFABP is also expressed in liver. Despite ligand transport and binding differences, it has remained uncertain whether these intestinally coexpressed proteins, which both bind long chain fatty acids (FA), are functionally distinct. Here, we directly compared IFABP(-/-) and LFABP(-/-) mice fed high fat diets containing long chain saturated or unsaturated fatty acids, reasoning that providing an abundance of dietary lipid would reveal unique functional properties. The results showed that mucosal lipid metabolism was indeed differentially modified, with significant decreases in FA incorporation into triacylglycerol (TG) relative to phospholipid (PL) in IFABP(-/-) mice, whereas LFABP(-/-) mice had reduced monoacylglycerol incorporation in TG relative to PL, as well as reduced FA oxidation. Interestingly, striking differences were found in whole body energy homeostasis; LFABP(-/-) mice fed high fat diets became obese relative to WT, whereas IFABP(-/-) mice displayed an opposite, lean phenotype. Fuel utilization followed adiposity, with LFABP(-/-) mice preferentially utilizing lipids, and IFABP(-/-) mice preferentially metabolizing carbohydrate for energy production. Changes in body weight and fat may arise, in part, from altered food intake; mucosal levels of the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamine were elevated in LFABP(-/-), perhaps contributing to increased energy intake. This direct comparison provides evidence that LFABP and IFABP have distinct roles in intestinal lipid metabolism; differential intracellular functions in intestine and in liver, for LFABP(-/-) mice, result in divergent downstream effects at the systemic level.
Collapse
Affiliation(s)
- Angela M Gajda
- From the Department of Nutritional Sciences and; the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | | | - Luis B Agellon
- the School of Dietetics and Human Nutrition, McGill University, Montréal, Québec H9X 3V9, Canada, and
| | - Susan K Fried
- the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | | | | | | | - Judith Storch
- From the Department of Nutritional Sciences and; the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901,.
| |
Collapse
|
69
|
Iannotti FA, Piscitelli F, Martella A, Mazzarella E, Allarà M, Palmieri V, Parrella C, Capasso R, Di Marzo V. Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats. Prostaglandins Leukot Essent Fatty Acids 2013; 89:127-35. [PMID: 23830028 DOI: 10.1016/j.plefa.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022]
Abstract
The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity.
Collapse
Affiliation(s)
- F A Iannotti
- Endocannabinoid Research Group (ERG), Institute of Biomolecular Chemistry (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Lagakos WS, Guan X, Ho SY, Sawicki LR, Corsico B, Kodukula S, Murota K, Stark RE, Storch J. Liver fatty acid-binding protein binds monoacylglycerol in vitro and in mouse liver cytosol. J Biol Chem 2013; 288:19805-15. [PMID: 23658011 DOI: 10.1074/jbc.m113.473579] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver fatty acid-binding protein (LFABP; FABP1) is expressed both in liver and intestinal mucosa. Mice null for LFABP were recently shown to have altered metabolism of not only fatty acids but also monoacylglycerol, the two major products of dietary triacylglycerol hydrolysis (Lagakos, W. S., Gajda, A. M., Agellon, L., Binas, B., Choi, V., Mandap, B., Russnak, T., Zhou, Y. X., and Storch, J. (2011) Am. J. Physiol. Gastrointest. Liver Physiol. 300, G803-G814). Nevertheless, the binding and transport of monoacylglycerol (MG) by LFABP are uncertain, with conflicting reports in the literature as to whether this single chain amphiphile is in fact bound by LFABP. In the present studies, gel filtration chromatography of liver cytosol from LFABP(-/-) mice shows the absence of the low molecular weight peak of radiolabeled monoolein present in the fractions that contain LFABP in cytosol from wild type mice, indicating that LFABP binds sn-2 MG in vivo. Furthermore, solution-state NMR spectroscopy demonstrates two molecules of sn-2 monoolein bound in the LFABP binding pocket in positions similar to those found for oleate binding. Equilibrium binding affinities are ∼2-fold lower for MG compared with fatty acid. Finally, kinetic studies examining the transfer of a fluorescent MG analog show that the rate of transfer of MG is 7-fold faster from LFABP to phospholipid membranes than from membranes to membranes and occurs by an aqueous diffusion mechanism. These results provide strong support for monoacylglycerol as a physiological ligand for LFABP and further suggest that LFABP functions in the efficient intracellular transport of MG.
Collapse
Affiliation(s)
- William S Lagakos
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Endocannabinoids and cannabinoid CB1 receptors are known to play a generalized role in energy homeostasis. However, clinical trials with the first generation of CB1 blockers, now discontinued due to psychiatric side effects, were originally designed to reduce food intake and body weight rather than the metabolic risk factors associated with obesity. In this review, we discuss how, in addition to promoting energy intake, endocannabinoids control lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in skeletal muscle and pancreas are also emerging. This knowledge may help in the design of future therapies for the metabolic syndrome.
Collapse
|
72
|
DiPatrizio NV, Joslin A, Jung KM, Piomelli D. Endocannabinoid signaling in the gut mediates preference for dietary unsaturated fats. FASEB J 2013; 27:2513-20. [PMID: 23463697 DOI: 10.1096/fj.13-227587] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dietary fat exerts a potent stimulatory effect on feeding. This effect is mediated, at least in part, by a cephalic mechanism that involves recruitment of the vagus nerve and subsequent activation of endocannabinoid signaling in the gut. Here, we used a sham-feeding protocol in rats to identify fatty-acid constituents of dietary fat that might be responsible for triggering small-intestinal endocannabinoid signaling. Sham feeding rats with a corn oil emulsion increased endocannabinoid levels in jejunum, relative to animals that received either mineral oil (which contains no fatty acids) or no oil. Sham-feeding emulsions containing oleic acid (18:1) or linoleic acid (18:2) caused, on average, a nearly 2-fold accumulation of jejunal endocannabinoids, whereas emulsions containing stearic acid (18:0) or linolenic acid (18:3) had no such effect. In a 2-bottle-choice sham-feeding test, rats displayed strong preference for emulsions containing 18:2, which was blocked by pretreatment with the peripherally restricted CB1 cannabinoid receptor antagonists, AM6546 and URB447. Our results suggest that oral exposure to the monoenoic and dienoic fatty acid component of dietary fat selectively initiates endocannabinoid mobilization in the gut, and that this local signaling event is essential for fat preference.
Collapse
Affiliation(s)
- Nicholas V DiPatrizio
- Department of Anatomy and Neurobiology, University of California-Irvine School of Medicine, Irvine, CA 92697-1275, USA
| | | | | | | |
Collapse
|
73
|
Park JH, Kwon OD, Ahn SH, Lee S, Choi BK, Jung KY. Fatty diets retarded the propulsive function of and attenuated motility in the gastrointestinal tract of rats. Nutr Res 2013; 33:228-34. [DOI: 10.1016/j.nutres.2012.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 12/17/2012] [Accepted: 12/28/2012] [Indexed: 12/01/2022]
|
74
|
Naughton SS, Mathai ML, Hryciw DH, McAinch AJ. Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int J Endocrinol 2013; 2013:361895. [PMID: 23762050 PMCID: PMC3677644 DOI: 10.1155/2013/361895] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/25/2013] [Accepted: 05/07/2013] [Indexed: 01/26/2023] Open
Abstract
Endocannabinoids and their G-protein coupled receptors (GPCR) are a current research focus in the area of obesity due to the system's role in food intake and glucose and lipid metabolism. Importantly, overweight and obese individuals often have higher circulating levels of the arachidonic acid-derived endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) and an altered pattern of receptor expression. Consequently, this leads to an increase in orexigenic stimuli, changes in fatty acid synthesis, insulin sensitivity, and glucose utilisation, with preferential energy storage in adipose tissue. As endocannabinoids are products of dietary fats, modification of dietary intake may modulate their levels, with eicosapentaenoic and docosahexaenoic acid based endocannabinoids being able to displace arachidonic acid from cell membranes, reducing AEA and 2-AG production. Similarly, oleoyl ethanolamide, a product of oleic acid, induces satiety, decreases circulating fatty acid concentrations, increases the capacity for β -oxidation, and is capable of inhibiting the action of AEA and 2-AG in adipose tissue. Thus, understanding how dietary fats alter endocannabinoid system activity is a pertinent area of research due to public health messages promoting a shift towards plant-derived fats, which are rich sources of AEA and 2-AG precursor fatty acids, possibly encouraging excessive energy intake and weight gain.
Collapse
Affiliation(s)
- Shaan S. Naughton
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
| | - Michael L. Mathai
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- Florey Neuroscience Institutes, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Deanne H. Hryciw
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew J. McAinch
- Biomedical and Lifestyle Diseases Unit, College of Health and Biomedicine, Victoria University, P.O. Box 14428, Melbourne, VIC 8001, Australia
- *Andrew J. McAinch:
| |
Collapse
|
75
|
Mendieta Zerón H, Domínguez García MV, Camarillo Romero MDS, Flores-Merino MV. Peripheral Pathways in the Food-Intake Control towards the Adipose-Intestinal Missing Link. Int J Endocrinol 2013; 2013:598203. [PMID: 24381591 PMCID: PMC3870110 DOI: 10.1155/2013/598203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/16/2013] [Indexed: 02/07/2023] Open
Abstract
In the physiological state a multitude of gut hormones are released into the circulation at the same time depending on the quality and quantity of the diet. These hormones interact with receptors at various points in the "gut-brain axis" to affect short-term and intermediate-term feelings of hunger and satiety. The combined effects of macronutrients on the predominant gut hormone secretion are still poorly understood. Besides, adipokines form an important part of an "adipoinsular axis" dysregulation which may contribute to β -cell failure and hence to type 2 diabetes mellitus (T2DM). Even more, gestational diabetes mellitus (GDM) and T2DM seem to share a genetic basis. In susceptible individuals, chronic exaggerated stimulation of the proximal gut with fat and carbohydrates may induce overproduction of an unknown factor that causes impairment of incretin production and/or action, leading to insufficient or untimely production of insulin, so that glucose intolerance develops. The bypass of the duodenum and jejunum might avoid a putative hormone overproduction in the proximal foregut in diabetic patients that might counteract the action of insulin, while the early presentation of undigested or incompletely digested food to the ileum may anticipate the production of hormones such as GLP1, further improving insulin action.
Collapse
Affiliation(s)
- Hugo Mendieta Zerón
- Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), 50170 Toluca, Mexico
- Asociación Científica Latina (ASCILA) and Ciprés Grupo Médico (CGM), Felipe Villanueva sur 1209 Col. Rancho Dolores Z.C., 50170 Toluca, Mexico
- *Hugo Mendieta Zerón:
| | - Ma. Victoria Domínguez García
- Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), 50170 Toluca, Mexico
| | | | - Miriam V. Flores-Merino
- Medical Sciences Research Center (CICMED), Autonomous University of the State of Mexico (UAEMex), 50170 Toluca, Mexico
| |
Collapse
|
76
|
Boomhower SR, Rasmussen EB, Doherty TS. Impulsive-choice patterns for food in genetically lean and obese Zucker rats. Behav Brain Res 2012; 241:214-21. [PMID: 23261877 DOI: 10.1016/j.bbr.2012.12.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023]
Abstract
Behavioral-economic studies have shown that differences between lean and obese Zuckers in food consumption depend on the response requirement for food. Since a response requirement inherently increases the delay to reinforcement, differences in sensitivity to delay may also be a relevant mechanism of food consumption in the obese Zucker rat. Furthermore, the endocannabinoid neurotransmitter system has been implicated in impulsivity, but studies that attempt to characterize the effects of cannabinoid drugs (e.g., rimonabant) on impulsive choice may be limited by floor effects. The present study aimed to characterize impulsive-choice patterns for sucrose using an adjusting-delay procedure in genetically lean and obese Zuckers. Ten lean and ten obese Zucker rats chose between one lever that resulted in one pellet after a standard delay (either 1 s or 5 s) and a second lever that resulted in two or three pellets after an adjusting delay. After behavior stabilized under baseline, rimonabant (0-10 mg/kg) was administered prior to some choice sessions in the two-pellet condition. Under baseline, obese Zuckers made more impulsive choices than leans in three of the four standard-delay/pellet conditions. Additionally, in the 2-pellet condition, rimonabant increased impulsive choice in lean rats in the 1-s standard-delay condition; however, rimonabant decreased impulsive choice in obese rats in the 1-s and 5-s standard-delay conditions. These data suggest that genetic factors that influence impulsive choice are stronger in some choice conditions than others, and that the endocannabinoid system may be a relevant neuromechanism.
Collapse
Affiliation(s)
- Steven R Boomhower
- Idaho State University, Department of Psychology, Mail Stop 8112, Pocatello, ID 83209-8112, United States
| | | | | |
Collapse
|
77
|
Moss CE, Marsh WJ, Parker HE, Ogunnowo-Bada E, Riches CH, Habib AM, Evans ML, Gribble FM, Reimann F. Somatostatin receptor 5 and cannabinoid receptor 1 activation inhibit secretion of glucose-dependent insulinotropic polypeptide from intestinal K cells in rodents. Diabetologia 2012; 55:3094-103. [PMID: 22872212 PMCID: PMC3464380 DOI: 10.1007/s00125-012-2663-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/03/2012] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS Glucose-dependent insulinotropic polypeptide (GIP) is an enteroendocrine hormone that promotes storage of glucose and fat. Its secretion from intestinal K cells is triggered by nutrient ingestion and is modulated by intracellular cAMP. In view of the proadipogenic actions of GIP, this study aimed to identify pathways in K cells that lower cAMP levels and GIP secretion. METHODS Murine K cells purified by flow cytometry were analysed for expression of G(αi)-coupled receptors by transcriptomic microarrays. Somatostatin and cannabinoid receptor expression was confirmed by quantitative RT-PCR. Hormone secretion in vitro was measured in GLUTag and primary murine intestinal cultures. cAMP was monitored in GLUTag cells using the genetically encoded sensor Epac2-camps. In vivo tolerance tests were performed in cannulated rats. RESULTS Purified murine K cells expressed high mRNA levels for somatostatin receptors (Sstrs) Sstr2, Sstr3 and Sstr5, and cannabinoid receptor type 1 (Cnr1, CB1). Somatostatin inhibited GIP and glucagon-like peptide-1 (GLP-1) secretion from primary small intestinal cultures, in part through SSTR5, and reduced cAMP generation in GLUTag cells. Although the CB1 agonist methanandamide (mAEA) inhibited GIP secretion, no significant effect was observed on GLP-1 secretion from primary cultures. In cannulated rats, treatment with mAEA prior to an oral glucose tolerance test suppressed plasma GIP but not GLP-1 levels, whereas the CB1 antagonist AM251 elevated basal GIP concentrations. CONCLUSIONS/INTERPRETATION GIP release is inhibited by somatostatin and CB1 agonists. The differential effects of CB1 ligands on GIP and GLP-1 release may provide a new tool to dissociate secretion of these incretin hormones and lower GIP but not GLP-1 levels in vivo.
Collapse
MESH Headings
- Animals
- Colon/cytology
- Colon/metabolism
- Cyclic AMP/metabolism
- Enteroendocrine Cells/cytology
- Enteroendocrine Cells/metabolism
- Gastric Inhibitory Polypeptide/metabolism
- Glucagon-Like Peptide 1/metabolism
- Incretins/metabolism
- Intestine, Small/cytology
- Intestine, Small/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Primary Cell Culture
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
Collapse
Affiliation(s)
- C. E. Moss
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Box 139, Hills Road, Cambridge, CB2 0XY UK
| | - W. J. Marsh
- Cambridge Metabolic Research Laboratories and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - H. E. Parker
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Box 139, Hills Road, Cambridge, CB2 0XY UK
| | - E. Ogunnowo-Bada
- Cambridge Metabolic Research Laboratories and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - C. H. Riches
- Cambridge Metabolic Research Laboratories and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - A. M. Habib
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Box 139, Hills Road, Cambridge, CB2 0XY UK
| | - M. L. Evans
- Cambridge Metabolic Research Laboratories and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, UK
| | - F. M. Gribble
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Box 139, Hills Road, Cambridge, CB2 0XY UK
| | - F. Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke’s Hospital, Box 139, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
78
|
Cannabinoid receptor 1 in the vagus nerve is dispensable for body weight homeostasis but required for normal gastrointestinal motility. J Neurosci 2012; 32:10331-7. [PMID: 22836266 DOI: 10.1523/jneurosci.4507-11.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cannabinoid receptor 1 (CB(1)R) is required for body weight homeostasis and normal gastrointestinal motility. However, the specific cell types expressing CB(1)R that regulate these physiological functions are unknown. CB(1)R is widely expressed, including in neurons of the parasympathetic branches of the autonomic nervous system. The vagus nerve has been implicated in the regulation of several aspects of metabolism and energy balance (e.g., food intake and glucose balance), and gastrointestinal functions including motility. To directly test the relevance of CB(1)R in neurons of the vagus nerve on metabolic homeostasis and gastrointestinal motility, we generated and characterized mice lacking CB(1)R in afferent and efferent branches of the vagus nerve (Cnr1(flox/flox); Phox2b-Cre mice). On a chow or on a high-fat diet, Cnr1(flox/flox); Phox2b-Cre mice have similar body weight, food intake, energy expenditure, and glycemia compared with Cnr1(flox/flox) control mice. Also, fasting-induced hyperphagia and after acute or chronic pharmacological treatment with SR141716 [N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole carboxamide] (CB(1)R inverse agonist) paradigms, mutants display normal body weight and food intake. Interestingly, Cnr1(flox/flox); Phox2b-Cre mice have increased gastrointestinal motility compared with controls. These results unveil CB(1)R in the vagus nerve as a key component underlying normal gastrointestinal motility.
Collapse
|
79
|
Izzo AA, Capasso R, Aviello G, Borrelli F, Romano B, Piscitelli F, Gallo L, Capasso F, Orlando P, Di Marzo V. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. Br J Pharmacol 2012; 166:1444-60. [PMID: 22300105 DOI: 10.1111/j.1476-5381.2012.01879.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states. EXPERIMENTAL APPROACH Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS). KEY RESULTS Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB₁ receptors and down-regulation of CB₂ receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists. CONCLUSION AND IMPLICATIONS CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Schicho R, Storr M. Targeting the endocannabinoid system for gastrointestinal diseases: future therapeutic strategies. Expert Rev Clin Pharmacol 2012; 3:193-207. [PMID: 22111567 DOI: 10.1586/ecp.09.62] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cannabinoids extracted from the marijuana plant (Cannabis sativa) and synthetic cannabinoids have numerous effects on gastrointestinal (GI) functions. Recent experimental data support an important role for cannabinoids in GI diseases. Genetic studies in humans have proven that defects in endocannabinoid metabolism underlie functional GI disorders. Mammalian cells have machinery, the so-called endocannabinoid system (ECS), to produce and metabolize their own cannabinoids in order to control homeostasis of the gut in a rapidly adapting manner. Pharmacological manipulation of the ECS by cannabinoids, or by drugs that raise the levels of endogenous cannabinoids, have shown beneficial effects on GI pathophysiology. This review gives an introduction into the functions of the ECS in the GI tract, highlights the role of the ECS in GI diseases and addresses its potential pharmacological exploitation.
Collapse
Affiliation(s)
- Rudolf Schicho
- Division of Gastroenterology, Department of Medicine, University of Calgary, 6D25, TRW Building, 3280 Hospital Drive NW, Calgary T2N 4N1, AB, Canada.
| | | |
Collapse
|
81
|
Over-expression of monoacylglycerol lipase (MGL) in small intestine alters endocannabinoid levels and whole body energy balance, resulting in obesity. PLoS One 2012; 7:e43962. [PMID: 22937137 PMCID: PMC3429419 DOI: 10.1371/journal.pone.0043962] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 07/30/2012] [Indexed: 12/27/2022] Open
Abstract
The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate.
Collapse
|
82
|
Alonso M, Serrano A, Vida M, Crespillo A, Hernandez-Folgado L, Jagerovic N, Goya P, Reyes-Cabello C, Perez-Valero V, Decara J, Macías-González M, Bermúdez-Silva FJ, Suárez J, Rodríguez de Fonseca F, Pavón FJ. Anti-obesity efficacy of LH-21, a cannabinoid CB(1) receptor antagonist with poor brain penetration, in diet-induced obese rats. Br J Pharmacol 2012; 165:2274-91. [PMID: 21951309 DOI: 10.1111/j.1476-5381.2011.01698.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral blockade of cannabinoid CB(1) receptors has been proposed as a safe and effective therapy against obesity, putatively devoid of the adverse psychiatric side effects of centrally acting CB(1) receptor antagonists. In this study we analysed the effects of LH-21, a peripherally acting neutral cannabinoid receptor antagonist with poor brain penetration, in an animal model of diet-induced obesity. EXPERIMENTAL APPROACH To induce obesity, male Wistar rats were fed a high-fat diet (HFD; 60 kcal% fat) whereas controls received a standard diet (SD; 10 kcal% fat). Following 10 weeks of feeding, animals received a daily i.p. injection of vehicle or 3 mg·kg(-1) LH-21 for 10 days. Plasma and liver samples were used for biochemical analyses whereas visceral fat-pad samples were analysed for lipid metabolism gene expression using real-time RT-PCR. In addition, the potential of LH-21 to interact with hepatic cytochrome P450 isoforms and cardiac human Ether-à-go-go Related Gene (hERG) channels was evaluated. KEY RESULTS LH-21 reduced feeding and body weight gain in HFD-fed animals compared with the control group fed SD. In adipose tissue, this effect was associated with decreased gene expression of: (i) leptin; (ii) lipogenic enzymes, including SCD-1; (iii) CB(1) receptors; and (iv) both PPARα and PPARγ. Although there were no significant differences in plasma parameters between HFD- and SD-fed rats, LH-21 did not seem to induce hepatic, cardiac or renal toxicity. CONCLUSIONS AND IMPLICATIONS These results support the hypothesis that treatment with the peripherally neutral acting CB(1) receptor antagonist, LH-21, may promote weight loss through modulation of visceral adipose tissue.
Collapse
Affiliation(s)
- Mónica Alonso
- Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, Fundación IMABIS, Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Capasso R, Aviello G, Romano B, Borrelli F, De Petrocellis L, Di Marzo V, Izzo AA. Modulation of mouse gastrointestinal motility by allyl isothiocyanate, a constituent of cruciferous vegetables (Brassicaceae): evidence for TRPA1-independent effects. Br J Pharmacol 2012; 165:1966-1977. [PMID: 21955242 DOI: 10.1111/j.1476-5381.2011.01703.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Allyl isothiocyanate (AITC, mustard oil), a constituent of many common cruciferous vegetables (Brassicaceae), activates transient receptor potential of ankyrin type-1 (TRPA1) channels, claimed to regulate gastrointestinal contractility. In this study, we have investigated the effect of AITC on intestinal motility. EXPERIMENTAL APPROACH Effects of AITC were investigated in vivo on upper gastrointestinal transit in mice and in mouse isolated ileum [contractions induced by electrical field stimulation (EFS), acetylcholine and spontaneous contractility]. The contractor activity of AITC was studied in mouse isolated colon. The ability of TRPA1 channel antagonists to block AITC-induced elevation of intracellular Ca(2+) [Ca(2+)](i) was assessed in HEK293 cells transfected with rat TRPA1 channels. KEY RESULTS AITC increased [Ca(2+)](i) in HEK293 cells, reduced ileal contractility (acetylcholine-, EFS-induced contractions and spontaneous contractility), but contracted the isolated colon. Gentamicin and camphor (non-selective TRPA1 channel antagonists), HC-030031 and AP18 (selective TRPA1 channel agonists) inhibited AITC-induced effects in HEK293 cells but not in the ileum or colon. AITC-induced contractions were reduced by tetrodotoxin and strongly reduced by nifedipine, cyclopiazonic acid and ryanodine. In vivo, AITC reduced (following i.p. administration) or increased (following intragastric administration) upper gastrointestinal transit in mice These effects were not affected by HC-030031. CONCLUSION AND IMPLICATIONS AITC, depending, in vitro, on the regions of gut examined and, in vivo, on the route of administration, exerted both stimulatory and inhibitory effects on intestinal motility, which were not sensitive to TRPA1 channel antagonists. The proposition that TRPA1 channels are the primary targets for AITC to induce contraction should be revised.
Collapse
Affiliation(s)
- Raffaele Capasso
- Department of Experimental Pharmacology, Endocannabinoid Research Group, University of Naples Federico II, Naples, ItalyInstitute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council, Pozzuoli (NA), Italy
| | - Gabriella Aviello
- Department of Experimental Pharmacology, Endocannabinoid Research Group, University of Naples Federico II, Naples, ItalyInstitute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council, Pozzuoli (NA), Italy
| | - Barbara Romano
- Department of Experimental Pharmacology, Endocannabinoid Research Group, University of Naples Federico II, Naples, ItalyInstitute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council, Pozzuoli (NA), Italy
| | - Francesca Borrelli
- Department of Experimental Pharmacology, Endocannabinoid Research Group, University of Naples Federico II, Naples, ItalyInstitute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council, Pozzuoli (NA), Italy
| | - Luciano De Petrocellis
- Department of Experimental Pharmacology, Endocannabinoid Research Group, University of Naples Federico II, Naples, ItalyInstitute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council, Pozzuoli (NA), Italy
| | - Vincenzo Di Marzo
- Department of Experimental Pharmacology, Endocannabinoid Research Group, University of Naples Federico II, Naples, ItalyInstitute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council, Pozzuoli (NA), Italy
| | - Angelo A Izzo
- Department of Experimental Pharmacology, Endocannabinoid Research Group, University of Naples Federico II, Naples, ItalyInstitute of Biomolecular Chemistry, Endocannabinoid Research Group, National Research Council, Pozzuoli (NA), Italy
| |
Collapse
|
84
|
Parylak SL, Cottone P, Sabino V, Rice KC, Zorrilla EP. Effects of CB1 and CRF1 receptor antagonists on binge-like eating in rats with limited access to a sweet fat diet: lack of withdrawal-like responses. Physiol Behav 2012; 107:231-42. [PMID: 22776620 DOI: 10.1016/j.physbeh.2012.06.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/02/2012] [Accepted: 06/29/2012] [Indexed: 01/01/2023]
Abstract
Positive reinforcement (e.g., appetitive, rewarding properties) has often been hypothesized to maintain excessive intake of palatable foods. Recently, rats receiving intermittent access to high sucrose diets showed binge-like intake with withdrawal-like signs upon cessation of access, suggesting negative reinforcement mechanisms contribute as well. Whether intermittent access to high fat diets also produces withdrawal-like syndromes is controversial. The present study therefore tested the hypothesis that binge-like eating and withdrawal-like anxiety would arise in a novel model of binge eating based on daily 10-min access to a sweet fat diet (35% fat kcal, 31% sucrose kcal). Within 2-3 weeks, female Wistar rats developed binge-like intake comparable to levels seen previously for high sucrose diets (~40% of daily caloric intake within 10 min) plus excess weight gain and adiposity, but absent increased anxiety-like behavior during elevated plus-maze or defensive withdrawal tests after diet withdrawal. Binge-like intake was unaffected by pretreatment with the corticotropin-releasing factor type 1 (CRF(1)) receptor antagonist R121919, and corticosterone responses to restraint stress did not differ between sweet-fat binge rats and chow-fed controls. In contrast, pretreatment with the cannabinoid type 1 (CB(1)) receptor antagonist SR147778 dose-dependently reduced binge-like intake, albeit less effectively than in ad lib chow or sweet fat controls. A priming dose of the sweet fat diet did not precipitate increased anxiety-like behavior, but rather increased plus-maze locomotor activity. The results suggest that CB(1)-dependent positive reinforcement rather than CRF(1)-dependent negative reinforcement mechanisms predominantly maintain excessive intake in this limited access model of sweet-fat diet binges.
Collapse
Affiliation(s)
- Sarah L Parylak
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.,Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Dr 0634, La Jolla, CA 92093, USA
| | - Pietro Cottone
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.,Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E Concord St, R-618, Boston, MA 02118, USA
| | - Valentina Sabino
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.,Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E Concord St, R-618, Boston, MA 02118, USA
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, SP30-2400, The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.,Neurosciences Graduate Program, University of California, San Diego, 9500 Gilman Dr 0634, La Jolla, CA 92093, USA
| |
Collapse
|
85
|
Cluny NL, Reimer RA, Sharkey KA. Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis. Brain Behav Immun 2012; 26:691-8. [PMID: 22269477 DOI: 10.1016/j.bbi.2012.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/04/2012] [Accepted: 01/08/2012] [Indexed: 01/07/2023] Open
Abstract
Energy balance is controlled by centres of the brain which receive important inputs from the gastrointestinal tract, liver, pancreas, adipose tissue and skeletal muscle, mediated by many different signalling molecules. Obesity occurs when control of energy intake is not matched by the degree of energy expenditure. Obesity is not only a state of disordered energy balance it is also characterized by systemic inflammation. Systemic inflammation is triggered by the leakage of bacterial lipopolysaccharide through changes in intestinal permeability. The endocannabinoid system, consisting of the cannabinoid receptors, endogenous cannabinoid ligands and their biosynthetic and degradative enzymes, plays vital roles in the control of energy balance, the control of intestinal permeability and immunity. In this review we will discuss how the endocannabinoid system, intestinal microbiota and the brain-gut axis are involved in the regulation of energy balance and the development of obesity-associated systemic inflammation. Through direct and indirect actions throughout the body, the endocannabinoid system controls the development of obesity and its inflammatory complications.
Collapse
Affiliation(s)
- Nina L Cluny
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
86
|
Monteleone P, Piscitelli F, Scognamiglio P, Monteleone AM, Canestrelli B, Di Marzo V, Maj M. Hedonic eating is associated with increased peripheral levels of ghrelin and the endocannabinoid 2-arachidonoyl-glycerol in healthy humans: a pilot study. J Clin Endocrinol Metab 2012; 97:E917-E924. [PMID: 22442280 DOI: 10.1210/jc.2011-3018] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. In this condition, the subject eats also when not in a state of short-term energy depletion, and food is consumed uniquely because of its gustatory rewarding properties. The physiological mechanisms underlying this eating behavior are not deeply understood, but endogenous rewarding mediators like ghrelin and endocannabinoids are likely involved. OBJECTIVE AND DESIGN To explore the role of these substances in hedonic eating, we measured changes in their plasma levels in eight satiated healthy subjects after ad libitum consumption of highly palatable food as compared with the consumption of nonpalatable food in isoenergetic amounts with the same nutrient composition of the palatable food. RESULTS The consumption of food for pleasure was characterized by increased peripheral levels of both the peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol. Levels of the other endocannabinoid anandamide and of anandamide-related mediators oleoylethanolamide and palmitoylethanolamide, instead, progressively decreased after the ingestion of both highly pleasurable and isoenergetic nonpleasurable food. A positive correlation was found between plasma 2-arachidonoyl glycerol and ghrelin during hedonic but not nonhedonic, eating. CONCLUSIONS The present preliminary findings suggest that when motivation to eat is generated by the availability of highly palatable food and not by food deprivation, a peripheral activation of two endogenous rewarding chemical signals is observed. Future research should confirm and extend our results to better understand the phenomenon of hedonic eating, which influences food intake and, ultimately, body mass.
Collapse
Affiliation(s)
- Palmiero Monteleone
- Department of Psychiatry, Second University of Naples, Largo Madonna delle Grazie, 80138, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
87
|
Reimann F, Tolhurst G, Gribble FM. G-protein-coupled receptors in intestinal chemosensation. Cell Metab 2012; 15:421-31. [PMID: 22482725 DOI: 10.1016/j.cmet.2011.12.019] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/21/2011] [Accepted: 12/15/2011] [Indexed: 12/25/2022]
Abstract
Food intake is detected by the chemical senses of taste and smell and subsequently by chemosensory cells in the gastrointestinal tract that link the composition of ingested foods to feedback circuits controlling gut motility/secretion, appetite, and peripheral nutrient disposal. G-protein-coupled receptors responsive to a range of nutrients and other food components have been identified, and many are localized to intestinal chemosensory cells, eliciting hormonal and neuronal signaling to the brain and periphery. This review examines the role of G-protein-coupled receptors as signaling molecules in the gut, with a particular focus on pathways relevant to appetite and glucose homeostasis.
Collapse
Affiliation(s)
- Frank Reimann
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Addenbrooke's Hospital, Hills Road, Cambridge, UK.
| | | | | |
Collapse
|
88
|
Kim W, Lao Q, Shin YK, Carlson OD, Lee EK, Gorospe M, Kulkarni RN, Egan JM. Cannabinoids induce pancreatic β-cell death by directly inhibiting insulin receptor activation. Sci Signal 2012; 5:ra23. [PMID: 22434934 PMCID: PMC3524575 DOI: 10.1126/scisignal.2002519] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cannabinoid 1 (CB1) receptors have been previously detected in pancreatic β cells, where they attenuate insulin action. We now report that CB1 receptors form a heteromeric complex with insulin receptors and the heterotrimeric guanosine triphosphate-binding protein α subunit Gα(i). Gα(i) inhibited the kinase activity of the insulin receptor in β cells by directly binding to the activation loop in the tyrosine kinase domain of the receptor. Consequently, phosphorylation of proapoptotic protein Bad was reduced and its apoptotic activity was stimulated, leading to β-cell death. Pharmacological blockade or genetic deficiency of CB1 receptors enhanced insulin receptor signaling after injury, leading to reduced blood glucose concentrations and activation of Bad, which increased β-cell survival. These findings provide direct evidence of physical and functional interactions between CB1 and insulin receptors and suggest a mechanism whereby peripherally acting CB1 receptor antagonists improve insulin action in insulin-sensitive tissues independent of the other metabolic effects of CB1 receptors.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Blotting, Western
- Cannabinoids/pharmacology
- Caspase Inhibitors
- Cell Death/drug effects
- Cells, Cultured
- DNA, Complementary/genetics
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Humans
- Immunoprecipitation
- Insulin-Secreting Cells/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Real-Time Polymerase Chain Reaction
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Insulin/antagonists & inhibitors
- Receptor, Insulin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Transfection
- bcl-Associated Death Protein/metabolism
Collapse
Affiliation(s)
- Wook Kim
- National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Qizong Lao
- National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yu-Kyong Shin
- National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | - Eun Kyung Lee
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Myriam Gorospe
- National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Rohit N. Kulkarni
- Department of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
89
|
Lynch CJ, Zhou Q, Shyng SL, Heal DJ, Cheetham SC, Dickinson K, Gregory P, Firnges M, Nordheim U, Goshorn S, Reiche D, Turski L, Antel J. Some cannabinoid receptor ligands and their distomers are direct-acting openers of SUR1 K(ATP) channels. Am J Physiol Endocrinol Metab 2012; 302:E540-51. [PMID: 22167524 PMCID: PMC3311290 DOI: 10.1152/ajpendo.00250.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we examined the chronic effects of two cannabinoid receptor-1 (CB1) inverse agonists, rimonabant and ibipinabant, in hyperinsulinemic Zucker rats to determine their chronic effects on insulinemia. Rimonabant and ibipinabant (10 mg·kg⁻¹·day⁻¹) elicited body weight-independent improvements in insulinemia and glycemia during 10 wk of chronic treatment. To elucidate the mechanism of insulin lowering, acute in vivo and in vitro studies were then performed. Surprisingly, chronic treatment was not required for insulin lowering. In acute in vivo and in vitro studies, the CB1 inverse agonists exhibited acute K channel opener (KCO; e.g., diazoxide and NN414)-like effects on glucose tolerance and glucose-stimulated insulin secretion (GSIS) with approximately fivefold better potency than diazoxide. Followup studies implied that these effects were inconsistent with a CB1-mediated mechanism. Thus effects of several CB1 agonists, inverse agonists, and distomers during GTTs or GSIS studies using perifused rat islets were unpredictable from their known CB1 activities. In vivo rimonabant and ibipinabant caused glucose intolerance in CB1 but not SUR1-KO mice. Electrophysiological studies indicated that, compared with diazoxide, 3 μM rimonabant and ibipinabant are partial agonists for K channel opening. Partial agonism was consistent with data from radioligand binding assays designed to detect SUR1 K(ATP) KCOs where rimonabant and ibipinabant allosterically regulated ³H-glibenclamide-specific binding in the presence of MgATP, as did diazoxide and NN414. Our findings indicate that some CB1 ligands may directly bind and allosterically regulate Kir6.2/SUR1 K(ATP) channels like other KCOs. This mechanism appears to be compatible with and may contribute to their acute and chronic effects on GSIS and insulinemia.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/agonists
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Allosteric Regulation
- Animals
- Anti-Obesity Agents/adverse effects
- Anti-Obesity Agents/chemistry
- Anti-Obesity Agents/pharmacology
- Anti-Obesity Agents/therapeutic use
- Cell Line, Transformed
- Chlorocebus aethiops
- Cricetinae
- Glucose Intolerance/chemically induced
- Glucose Intolerance/metabolism
- Humans
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Ligands
- Male
- Membrane Transport Modulators/adverse effects
- Membrane Transport Modulators/chemistry
- Membrane Transport Modulators/pharmacology
- Membrane Transport Modulators/therapeutic use
- Mice
- Mice, Knockout
- Mice, Obese
- Potassium Channels, Inwardly Rectifying/agonists
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Rats
- Rats, Zucker
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Drug/agonists
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Recombinant Proteins/agonists
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/metabolism
- Stereoisomerism
- Sulfonylurea Receptors
Collapse
Affiliation(s)
- Christopher J Lynch
- Dept. of Cellular & Molecular Physiology, Pennsylvania State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Engeli S. Central and peripheral cannabinoid receptors as therapeutic targets in the control of food intake and body weight. Handb Exp Pharmacol 2012:357-381. [PMID: 22249824 DOI: 10.1007/978-3-642-24716-3_17] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The endocannabinoid system consists of lipid-derived agonists that activate cannabinoid (CB) receptors. CB receptor agonists, namely, the phytocannabinoid Δ(9)-THC and the endocannabinoid anandamide, increase hunger sensation and food intake. These discoveries led to the clinical use of Δ(9)-THC derivatives for the treatment of cancer and HIV-related nausea and cachexia. Animal studies clarified the important role of CB1 receptors in the hypothalamus and in the limbic system in mediating orexigenic effects. In parallel, data on CB1-specific blockade either by drugs or by genetic ablation further demonstrated that CB1 inhibition protects against weight gain induced by high-fat feeding and reduces body weight in obese animals and humans. The mechanisms of weight reduction by CB1 blockade are complex: they comprise interactions with several orexigenic and anorexigenic neuropeptides and hormones, regulation of sympathetic activity, influences on mitochondrial function, and on lipogenesis. Although these mechanisms appear to be mainly mediated by the CNS, weight loss also occurs when drugs that do not reach CNS concentrations sufficient to inhibit CB1 signaling are used. The development of peripherally restricted CB1 inverse agonists and antagonists opened new routes in CB1 pharmacology because centrally acting CB1 inverse agonists, e.g., rimonabant and taranabant, exerted unacceptable side effects that precluded their further development and application as weight loss drugs. Tissue and circulating endocannabinoid concentrations are often increased in animal models of obesity and in obese humans, especially those with visceral fat accumulation. Thus, further research on CB1 inhibition is still promising to treat human obesity.
Collapse
Affiliation(s)
- Stefan Engeli
- Hannover Medical School, Institute of Clinical Pharmacology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
91
|
Bermudez-Silva FJ, Cardinal P, Cota D. The role of the endocannabinoid system in the neuroendocrine regulation of energy balance. J Psychopharmacol 2012; 26:114-24. [PMID: 21824982 DOI: 10.1177/0269881111408458] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Animal and human studies carried out so far have established a role for the endocannabinoid system (ECS) in the regulation of energy balance. Here we critically discuss the role of the endocannabinoid signalling in brain structures, such as the hypothalamus and reward-related areas, and its interaction with neurotransmitter and neuropeptide systems involved in the regulation of food intake and body weight. The ECS has been found to interact with peripheral signals, like leptin, insulin, ghrelin and satiety hormones and the resulting effects on both central and peripheral mechanisms affecting energy balance and adiposity will be described. Furthermore, ECS dysregulation has been associated with the development of dyslipidemia, glucose intolerance and obesity; phenomena that are often accompanied by a plethora of neuroendocrine alterations which might play a causal role in determining ECS dysregulation. Despite the withdrawal of the first generation of cannabinoid type 1 receptor (CB1) antagonists from the pharmaceutical market due to the occurrence of psychiatric adverse events, new evidence suggests that peripherally restricted CB1 antagonists might be efficacious for the treatment of obesity and its associated metabolic disorders. Thus, a perspective on new promising strategies to selectively target the ECS in the context of energy balance regulation is given.
Collapse
|
92
|
Ruby MA, Nomura DK, Hudak CSS, Barber A, Casida JE, Krauss RM. Acute overactive endocannabinoid signaling induces glucose intolerance, hepatic steatosis, and novel cannabinoid receptor 1 responsive genes. PLoS One 2011; 6:e26415. [PMID: 22073164 PMCID: PMC3208546 DOI: 10.1371/journal.pone.0026415] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 09/26/2011] [Indexed: 01/08/2023] Open
Abstract
Endocannabinoids regulate energy balance and lipid metabolism by stimulating the cannabinoid receptor type 1 (CB1). Genetic deletion and pharmacological antagonism have shown that CB1 signaling is necessary for the development of obesity and related metabolic disturbances. However, the sufficiency of endogenously produced endocannabinoids to cause hepatic lipid accumulation and insulin resistance, independent of food intake, has not been demonstrated. Here, we show that a single administration of isopropyl dodecylfluorophosphonate (IDFP), perhaps the most potent pharmacological inhibitor of endocannabinoid degradation, increases hepatic triglycerides (TG) and induces insulin resistance in mice. These effects involve increased CB1 signaling, as they are mitigated by pre-administration of a CB1 antagonist (AM251) and in CB1 knockout mice. Despite the strong physiological effects of CB1 on hepatic lipid and glucose metabolism, little is known about the downstream targets responsible for these effects. To elucidate transcriptional targets of CB1 signaling, we performed microarrays on hepatic RNA isolated from DMSO (control), IDFP and AM251/IDFP-treated mice. The gene for the secreted glycoprotein lipocalin 2 (lcn2), which has been implicated in obesity and insulin resistance, was among those most responsive to alterations in CB1 signaling. The expression pattern of IDFP mice segregated from DMSO mice in hierarchal cluster analysis and AM251 pre-administration reduced (>50%) the majority (303 of 533) of the IDFP induced alterations. Pathway analysis revealed that IDFP altered expression of genes involved in lipid, fatty acid and steroid metabolism, the acute phase response, and amino acid metabolism in a CB1-dependent manner. PCR confirmed array results of key target genes in multiple independent experiments. Overall, we show that acute IDFP treatment induces hepatic TG accumulation and insulin resistance, at least in part through the CB1 receptor, and identify novel cannabinoid responsive genes.
Collapse
Affiliation(s)
- Maxwell A. Ruby
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Daniel K. Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Carolyn S. S. Hudak
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Anne Barber
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
| | - John E. Casida
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, United States of America
| | - Ronald M. Krauss
- Department of Atherosclerosis Research, Children's Hospital Oakland Research Institute, Oakland, California, United States of America
- * E-mail:
| |
Collapse
|
93
|
Bartelt A, Orlando P, Mele C, Ligresti A, Toedter K, Scheja L, Heeren J, Di Marzo V. Altered endocannabinoid signalling after a high-fat diet in Apoe(-/-) mice: relevance to adipose tissue inflammation, hepatic steatosis and insulin resistance. Diabetologia 2011; 54:2900-10. [PMID: 21847582 DOI: 10.1007/s00125-011-2274-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/11/2011] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Apolipoprotein E (ApoE) deficiency is associated with reduced fat accumulation in white adipose tissue (WAT) and high liver triacylglycerol content. Elevated levels of endocannabinoids and cannabinoid receptor type 1 (CB(1)) receptors in the liver and in epididymal vs subcutaneous WAT are associated with fatty liver, visceral adipose tissue, inflammatory markers and insulin resistance. METHODS We investigated, in Apoe (-/-) and wild-type (WT) mice, the effect of a high-fat diet (HFD) on: (1) subcutaneous and epididymal WAT accumulation, liver triacylglycerols, phospholipid-esterified fatty acids, inflammatory markers in WAT and liver, and insulin resistance; and (2) endocannabinoid levels, and the gene expression levels of the Cb ( 1 ) receptor and endocannabinoid metabolic enzymes in liver and WAT. RESULTS After a 16 week HFD, Apoe (-/-) mice exhibited lower body weight, WAT accumulation and fasting leptin, glucose and insulin levels, and higher hepatic steatosis, than WT mice. Glucose clearance and insulin-mediated glucose disposal following the HFD were slower in WT than Apoe (-/-) mice, which exhibited higher levels of mRNA encoding inflammatory markers (tumour necrosis factor-α [TNF-α], monocyte chemoattractant protein-1 [MCP-1], cluster of differentiation 68 [CD68] and EGF-like module-containing mucin-like hormone receptor-like 1 [EMR1]) in the liver, but lower levels in epididymal WAT. HFD-induced elevation of endocannabinoid levels in the liver or epididymal WAT was higher or lower, respectively, in Apoe (-/-) mice, whereas HFD-induced decrease of subcutaneous WAT endocannabinoid and CB(1) receptor levels was significantly less marked. Alterations in endocannabinoid levels reflected changes in endocannabinoid catabolic enzymes in WAT, or the availability of phospholipid precursors in the liver. CONCLUSIONS/INTERPRETATION Liver and adipose tissue endocannabinoid tone following an HFD is altered on Apoe deletion and strongly associated with inflammation, insulin resistance and hepatic steatosis, or lack thereof.
Collapse
MESH Headings
- Adipose Tissue, White/immunology
- Adipose Tissue, White/metabolism
- Animals
- Apolipoproteins E/genetics
- Apolipoproteins E/physiology
- Cannabinoid Receptor Modulators/metabolism
- Cells, Cultured
- Dietary Fats/adverse effects
- Endocannabinoids
- Fatty Liver/immunology
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Gene Expression Regulation
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Inflammation Mediators/metabolism
- Insulin Resistance
- Lipid Metabolism
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Panniculitis/immunology
- Panniculitis/metabolism
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction
- Subcutaneous Fat/immunology
- Subcutaneous Fat/metabolism
Collapse
Affiliation(s)
- A Bartelt
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Janero DR, Lindsley L, Vemuri VK, Makriyannis A. Cannabinoid 1 G protein-coupled receptor (periphero-)neutral antagonists: emerging therapeutics for treating obesity-driven metabolic disease and reducing cardiovascular risk. Expert Opin Drug Discov 2011; 6:995-1025. [DOI: 10.1517/17460441.2011.608063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
Silvestri C, Ligresti A, Di Marzo V. Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle. Rev Endocr Metab Disord 2011; 12:153-62. [PMID: 21336842 DOI: 10.1007/s11154-011-9167-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoid system (ECS) is composed of lipid signalling ligands, their G-protein coupled receptors and the enzymes involved in ligand generation and metabolism. Increasingly, the ECS is emerging as a critical agent of energy metabolism regulation through its ability to modulate caloric intake centrally as well as nutrient transport, cellular metabolism and energy storage peripherally. Visceral obesity has been associated with an upregulation of ECS activity in several systems and inhibition of the ECS, either pharmacologically or genetically, results in decreased energy intake and increased metabolic output. This review aims to summarize the recent advances that have been made regarding our understanding of the role the ECS plays in crucial peripheral systems pertaining to energy homeostasis: adipose tissues, the liver and skeletal muscle.
Collapse
|
96
|
Quarta C, Mazza R, Obici S, Pasquali R, Pagotto U. Energy balance regulation by endocannabinoids at central and peripheral levels. Trends Mol Med 2011; 17:518-26. [PMID: 21816675 DOI: 10.1016/j.molmed.2011.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 12/24/2022]
Abstract
Dysregulation of the endocannabinoid system (ECS) is a universal and, perhaps, causative feature of obesity. Central nervous system (CNS) circuits that regulate food intake were initially believed to be the targets for dysregulation. However, it is increasingly evident that endocannabinoids affect food intake, energy expenditure and substrate metabolism by acting on peripheral sites. Cannabinoid type 1 receptor (CB1r) antagonists can effectively treat obesity and associated metabolic alterations but, unfortunately, cause and exacerbate mood disorders. Drugs restricted to act on peripheral CB1rs might be safer and more effective, retaining the anti-obesity effects but lacking the adverse neurodepressive reactions. This review summarizes the emerging roles of the ECS in energy balance and discusses future pharmacological approaches for developing peripherally restricted CB1r antagonists.
Collapse
Affiliation(s)
- Carmelo Quarta
- Endocrinology Unit and Centro di Ricerca Biomedica Applicata, Department of Clinical Medicine, S. Orsola-Malpighi Hospital, Alma Mater University of Bologna, Bologna 40138, Italy
| | | | | | | | | |
Collapse
|
97
|
DiPatrizio NV, Astarita G, Schwartz G, Li X, Piomelli D. Endocannabinoid signal in the gut controls dietary fat intake. Proc Natl Acad Sci U S A 2011; 108:12904-8. [PMID: 21730161 PMCID: PMC3150876 DOI: 10.1073/pnas.1104675108] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oral sensory signals drive dietary fat intake, but the neural mechanisms underlying this process are largely unknown. The endocannabinoid system has gained recent attention for its central and peripheral roles in regulating food intake, energy balance, and reward. Here, we used a sham-feeding paradigm, which isolates orosensory from postingestive influences of foods, to examine whether endocannabinoid signaling participates in the positive feedback control of fat intake. Sham feeding a lipid-based meal stimulated endocannabinoid mobilization in the rat proximal small intestine by altering enzymatic activities that control endocannabinoid metabolism. This effect was abolished by surgical transection of the vagus nerve and was not observed in other peripheral organs or in brain regions that control feeding. Sham feeding of a nutritionally complete liquid meal produced a similar response to that of fat, whereas protein or carbohydrate alone had no such effect. Local infusion of the CB(1)-cannabinoid receptor antagonist, rimonabant, into the duodenum markedly reduced fat sham feeding. Similarly to rimonabant, systemic administration of the peripherally restricted CB(1)-receptor antagonist, URB 447, attenuated sham feeding of lipid. Collectively, the results suggest that the endocannabinoid system in the gut exerts a powerful regulatory control over fat intake and might be a target for antiobesity drugs.
Collapse
Affiliation(s)
| | - Giuseppe Astarita
- Departments of Pharmacology and
- Unit of Drug Discovery and Development, Italian Institute of Technology, 16163 Genoa, Italy; and
| | - Gary Schwartz
- Diabetes Research Center, Departments of Medicine and Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Xiaosong Li
- Diabetes Research Center, Departments of Medicine and Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Daniele Piomelli
- Departments of Pharmacology and
- Biological Chemistry, University of California, Irvine, School of Medicine, Irvine, CA 92697
- Unit of Drug Discovery and Development, Italian Institute of Technology, 16163 Genoa, Italy; and
| |
Collapse
|
98
|
|
99
|
Geurts L, Lazarevic V, Derrien M, Everard A, Van Roye M, Knauf C, Valet P, Girard M, Muccioli GG, François P, de Vos WM, Schrenzel J, Delzenne NM, Cani PD. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front Microbiol 2011; 2:149. [PMID: 21808634 PMCID: PMC3139240 DOI: 10.3389/fmicb.2011.00149] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/26/2011] [Indexed: 11/13/2022] Open
Abstract
Growing evidence supports the role of gut microbiota in the development of obesity, type 2 diabetes, and low-grade inflammation. The endocrine activity of adipose tissue has been found to contribute to the regulation of glucose homeostasis and low-grade inflammation. Among the key hormones produced by this tissue, apelin has been shown to regulate glucose homeostasis. Recently, it has been proposed that gut microbiota participate in adipose tissue metabolism via the endocannabinoid system (eCB) and gut microbiota-derived compounds, namely lipopolysaccharide (LPS). We have investigated gut microbiota composition in obese and diabetic leptin-resistant mice (db/db) by combining pyrosequencing and phylogenetic microarray analysis of 16S ribosomal RNA gene sequences. We observed a significant higher abundance of Firmicutes, Proteobacteria, and Fibrobacteres phyla in db/db mice compared to lean mice. The abundance of 10 genera was significantly affected by the genotype. We identified the roles of the eCB and LPS in the regulation of apelinergic system tone (apelin and APJ mRNA expression) in genetic obese and diabetic mice. By using in vivo and in vitro models, we have demonstrated that both the eCB and low-grade inflammation differentially regulate apelin and APJ mRNA expression in adipose tissue. Finally, deep-gut microbiota profiling revealed that the gut microbial community of type 2 diabetic mice is significantly different from that of their lean counterparts. This indicates specific relationships between the gut microbiota and the regulation of the apelinergic system. However, the exact roles of specific bacteria in shaping the phenotype of db/db mice remain to be determined.
Collapse
Affiliation(s)
- Lucie Geurts
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université Catholique de Louvain Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Piscitelli F, Carta G, Bisogno T, Murru E, Cordeddu L, Berge K, Tandy S, Cohn JS, Griinari M, Banni S, Di Marzo V. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr Metab (Lond) 2011; 8:51. [PMID: 21749725 PMCID: PMC3154144 DOI: 10.1186/1743-7075-8-51] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/13/2011] [Indexed: 12/24/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (ω-3-PUFA) are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids) and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO), on metabolic parameters in high fat diet (HFD)-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT), liver, gastrocnemius muscle, kidneys and heart, of: 1) the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), 2) two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3) the direct biosynthetic precursors of these compounds. Methods Lipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS) or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS). Results Eight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels. Conclusions Our data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.
Collapse
Affiliation(s)
- Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| | - Gianfranca Carta
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| | - Elisabetta Murru
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | - Lina Cordeddu
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | | | - Sally Tandy
- Nutrition and Metabolism Group, Heart Research Institute, Sydney, Australia
| | - Jeffrey S Cohn
- Nutrition and Metabolism Group, Heart Research Institute, Sydney, Australia
| | | | - Sebastiano Banni
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| |
Collapse
|