51
|
Metal bioremediation by CrMTP4 over-expressing Chlamydomonas reinhardtii in comparison to natural wastewater-tolerant microalgae strains. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
52
|
Gomes T, Xie L, Brede D, Lind OC, Solhaug KA, Salbu B, Tollefsen KE. Sensitivity of the green algae Chlamydomonas reinhardtii to gamma radiation: Photosynthetic performance and ROS formation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 183:1-10. [PMID: 27978482 DOI: 10.1016/j.aquatox.2016.12.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/19/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
The aquatic environment is continuously exposed to ionizing radiation from both natural and anthropogenic sources, making the characterization of ecological and health risks associated with radiation of large importance. Microalgae represent the main source of biomass production in the aquatic ecosystem, thus becoming a highly relevant biological model to assess the impacts of gamma radiation. However, little information is available on the effects of gamma radiation on microalgal species, making environmental radioprotection of this group of species challenging. In this context, the present study aimed to improve the understanding of the effects and toxic mechanisms of gamma radiation in the unicellular green algae Chlamydomonas reinhardtii focusing on the activity of the photosynthetic apparatus and ROS formation. Algal cells were exposed to gamma radiation (0.49-1677mGy/h) for 6h and chlorophyll fluorescence parameters obtained by PAM fluorometry, while two fluorescent probes carboxy-H2DFFDA and DHR 123 were used for the quantification of ROS. The alterations seen in functional parameters of C. reinhardtii PSII after 6h of exposure to gamma radiation showed modifications of PSII energy transfer associated with electron transport and energy dissipation pathways, especially at the higher dose rates used. Results also showed that gamma radiation induced ROS in a dose-dependent manner under both light and dark conditions. The observed decrease in photosynthetic efficiency seems to be connected to the formation of ROS and can potentially lead to oxidative stress and cellular damage in chloroplasts. To our knowledge, this is the first report on changes in several chlorophyll fluorescence parameters associated with photosynthetic performance and ROS formation in microalgae after exposure to gamma radiation.
Collapse
Affiliation(s)
- Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway.
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway
| | - Dag Brede
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway; Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås, Norway
| | - Ole-Christian Lind
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway; Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås, Norway
| | - Knut Asbjørn Solhaug
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway; Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Postbox 5003, N-1432, Ås, Norway
| | - Brit Salbu
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway; Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349, Oslo, Norway; Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432 Ås, Norway; Department for Environmental Sciences, Faculty of Environmental Science & Technology, Norwegian University of Life Sciences (NMBU), Post Box 5003, N-1432, Ås, Norway
| |
Collapse
|
53
|
Aharchaou I, Rosabal M, Liu F, Battaglia E, Vignati DAL, Fortin C. Bioaccumulation and subcellular partitioning of Cr(III) and Cr(VI) in the freshwater green alga Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 182:49-57. [PMID: 27866075 DOI: 10.1016/j.aquatox.2016.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/31/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
Chromium occurs in aquatic environments under two main redox forms, namely Cr(III) and Cr(VI), with different geochemical and biochemical properties. Cr(VI) readily crosses biological membranes of living organisms and once inside the cells it undergoes a rapid reduction to Cr(III). The route of entry for the latter form is, however, poorly known. Using the radioactive tracer 51Cr we compared the accumulation (absorption and adsorption) of the two Cr forms by the green unicellular alga Chlamydomonas reinhardii after 1h and 72h of exposure to 100nM of either Cr(III) or Cr(VI) at pH 7. Both Cr forms had similar accumulation, with a major part in the extracellular (adsorbed) fraction after 1h and a major part of total accumulated Cr in the intracellular (absorbed) fraction after 72h. We also investigated the intracellular partitioning of Cr using an operational fractionation scheme and found that both Cr forms had similar distributions among fractions: Cr was mostly associated with organelles (23±12% after 1h and 37±7% after 72h) and cytosolic heat-stable proteins and peptides (39±18% after 1h and 35±3% after 72h) fractions. Further investigations using a metallomic approach (SEC-ICP-MS) were performed with the heat-stable proteins and peptides fraction to compare the distribution of the two Cr forms among various biomolecules of this fraction. One Cr-binding biomolecule (∼28kDa) appeared after 1h of exposure for both Cr species. After 72h another biomolecule of lower molecular weight (∼0.7kDa) was involved in binding Cr and higher signal intensities were observed for Cr(VI) than for Cr(III). We show, for the first time, that both Cr(III) and Cr(VI) have similar fate within algal cells, supporting the tenet that a unique redox form occurs within cells.
Collapse
Affiliation(s)
- Imad Aharchaou
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz, France
| | - Maikel Rosabal
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Fengjie Liu
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9, Canada
| | - Eric Battaglia
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz, France
| | - Davide A L Vignati
- Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360, Université de Lorraine and CNRS, 8 rue du Général Delestraint, 57070 Metz, France
| | - Claude Fortin
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 rue de la Couronne, Québec (Québec) G1K 9A9, Canada.
| |
Collapse
|
54
|
Pino MR, Muñiz S, Val J, Navarro E. Phytotoxicity of 15 common pharmaceuticals on the germination of Lactuca sativa and photosynthesis of Chlamydomonas reinhardtii. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:22530-22541. [PMID: 27553001 DOI: 10.1007/s11356-016-7446-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC50 values obtained were in the range of 170-5656 mg L-1 in the case of the radicle and 188-4558 mg L-1 for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L-1), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC50 values below 1000 mg L-1. The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.
Collapse
Affiliation(s)
- Ma Rosa Pino
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Selene Muñiz
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Jonatan Val
- Faculty of Health Sciences, San Jorge University, Villanueva de Gállego, 50830, Zaragoza, Spain
| | - Enrique Navarro
- Pyrenean Institute of Ecology, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| |
Collapse
|
55
|
Costa CHD, Perreault F, Oukarroum A, Melegari SP, Popovic R, Matias WG. Effect of chromium oxide (III) nanoparticles on the production of reactive oxygen species and photosystem II activity in the green alga Chlamydomonas reinhardtii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:951-960. [PMID: 26803219 DOI: 10.1016/j.scitotenv.2016.01.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
With the growth of nanotechnology and widespread use of nanomaterials, there is an increasing risk of environmental contamination by nanomaterials. However, the potential implications of such environmental contamination are hard to evaluate since the toxicity of nanomaterials if often not well characterized. The objective of this study was to evaluate the toxicity of a chromium-based nanoparticle, Cr2O3-NP, used in a wide diversity of industrial processes and commercial products, on the unicellular green alga Chlamydomonas reinhardtii. The deleterious impacts of Cr2O3-NP were characterized using cell density measurements, production of reactive oxygen species (ROS), esterase enzymes activity, and photosystem II electron transport as indicators of toxicity. Cr2O3-NP exposure inhibited culture growth and significantly lowered cellular Chlorophyll a content. From cell density measurements, EC50 values of 2.05±0.20 and 1.35±0.06gL(-1) Cr2O3-NP were obtained after 24 and 72h of exposure, respectively. In addition, ROS levels were increased to 160.24±2.47% and 59.91±0.15% of the control value after 24 and 72h of exposition to 10gL(-1) Cr2O3-NP. At 24h of exposure, the esterase activity increased to 160.24% of control value, revealing a modification of the short-term metabolic response of algae to Cr2O3-NP exposure. In conclusion, the metabolism of C. reinhardtii was the most sensitive to Cr2O3-NP after 24h of treatment.
Collapse
Affiliation(s)
- Cristina Henning da Costa
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil
| | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, United States
| | - Abdallah Oukarroum
- Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6, Canada
| | - Sílvia Pedroso Melegari
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil; Center of Marine Studies, Federal University of Parana, Beira-mar Avenue, 83255-976, Pontal do Parana, PR, Brazil
| | - Radovan Popovic
- Department of Chemistry, University of Quebec in Montréal, 2101, Jeanne Mance Street, Station Centre-Ville, Montréal, QC H2X 2J6, Canada
| | - William Gerson Matias
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário, CEP: 88040-970, Florianópolis, SC, Brazil.
| |
Collapse
|
56
|
Dao LHT, Beardall J. Effects of lead on growth, photosynthetic characteristics and production of reactive oxygen species of two freshwater green algae. CHEMOSPHERE 2016; 147:420-9. [PMID: 26774308 DOI: 10.1016/j.chemosphere.2015.12.117] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 05/23/2023]
Abstract
In the natural environment, heavy metal contamination can occur as long-term pollution of sites or as pulses of pollutants from wastewater disposal. In this study two freshwater green algae, Chlorella sp. FleB1 and Scenedesmus YaA6, were isolated from lead-polluted water samples and the effects of 24 h vs 4 and 8 d exposure of cultures to lead on growth, photosynthetic physiology and production of reactive oxygen species (ROS) of these algae were investigated. In Chlorella sp. FleB1, there was agreement between lead impacts on chlorophyll content, photosynthesis and growth in most case. However, in Scenedesmus acutus YaA6 growth was inhibited at lower lead concentrations (0.03-0.87 × 10(-9) M), under which ROS, measured by 2',7' dichlorodihydrofluorescein diacetate fluorescence, were 4.5 fold higher than in controls but photosynthesis was not affected, implying that ROS had played a role in the growth inhibition that did not involve direct effects on photosynthesis. Effects of short-term (5 h, 24 h) vs long-term (4 d and 8 d) exposure to lead were also compared between the two algae. The results contribute to our understanding of the mechanisms of lead toxicity to algae.
Collapse
Affiliation(s)
- Ly H T Dao
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia; Faculty of Biology, Hanoi National University of Education, Hanoi, Viet Nam.
| | - John Beardall
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
57
|
von Moos N, Koman VB, Santschi C, Martin OJF, Maurizi L, Jayaprakash A, Bowen P, Slaveykova VI. Pro-oxidant effects of nano-TiO2on Chlamydomonas reinhardtii during short-term exposure. RSC Adv 2016. [DOI: 10.1039/c6ra16639c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This is the first continuous quantification of abiotic and biotic nano-TiO2– stimulated H2O2revealing that measured extracellular and intracellular pro-oxidant endpoints inC. reinhardtiican differ significantly.
Collapse
Affiliation(s)
- Nadia von Moos
- Environmental Biogeochemistry and Ecotoxicology
- Department F.-A. Forel for Environmental and Aquatic Sciences
- School of Earth and Environmental Science
- University of Geneva
- Uni Carl Vogt
| | - Volodymyr B. Koman
- Nanophotonics and Metrology Laboratory
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland
| | - Lionel Maurizi
- Powder Technology Laboratory
- Institute of Materials
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland; ; Tel: +41 21 69 36902
| | - Amarnath Jayaprakash
- Powder Technology Laboratory
- Institute of Materials
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland; ; Tel: +41 21 69 36902
| | - Paul Bowen
- Powder Technology Laboratory
- Institute of Materials
- Swiss Federal Institute of Technology Lausanne (EPFL)
- CH-1015 Lausanne
- Switzerland; ; Tel: +41 21 69 36902
| | - Vera I. Slaveykova
- Environmental Biogeochemistry and Ecotoxicology
- Department F.-A. Forel for Environmental and Aquatic Sciences
- School of Earth and Environmental Science
- University of Geneva
- Uni Carl Vogt
| |
Collapse
|
58
|
Cheloni G, Marti E, Slaveykova VI. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:120-128. [PMID: 26655656 DOI: 10.1016/j.aquatox.2015.11.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/15/2015] [Accepted: 11/19/2015] [Indexed: 05/13/2023]
Abstract
The present study explores the effect of light with different spectral composition on the stability of CuO-nanoparticle (CuO-NP) dispersions and their effects to green alga Chlamydomonas reinhardtii. The results showed that simulated natural light (SNL) and light with enhanced UVB radiation (UVR*) do not affect the dissolution of CuO-NPs as compared to light irradiation conditions typically used in laboratory incubator (INC). Comparable values of ζ-potential and hydrodynamic size during 24h were found under all studied conditions. Concentrations of CuO-NPs below 1mgL(-1) do not attenuate the light penetration in the algal suspensions in comparison with NP-free system. Exposure to a combination of 8μgL(-1) or 0.8mgL(-1) CuO-NPs and INC or SNL has no significant effect on the algal growth inhibition, algal fluorescence and membrane integrity under short-term exposure. However, an enhancement of the percentage of cells experiencing oxidative stress was observed upon exposure to 0.8mgL(-1) CuO-NPs and SNL for 4 and 8h. Combination of UVR* and 0.8mgL(-1) CuO-NPs resulted in synergistic effects for all biological endpoints. Despite the photocatalytic properties of CuO-NPs no significant increase in abiotic reactive oxygen species (ROS) production under simulated solar radiation was observed suggesting that the synergistic effect observed might be correlated to other factors than CuO-NP-mediated ROS photoproduction. Tests performed with CuSO4 confirmed the important role of dissolution as toxicity driving force for lower CuO-NP concentration. However, they failed to clarify the contribution of dissolved Cu on the combined effects at 0.8mgL(-1) CuO-NPs. The results point out the necessity of taking into account the possible interactions between ENPs and changing light conditions when evaluating the potential effects of ENPs to phytoplankton in natural waters.
Collapse
Affiliation(s)
- Giulia Cheloni
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10 route de Suisse, CH-1290 Versoix, Switzerland
| | - Elodie Marti
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10 route de Suisse, CH-1290 Versoix, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10 route de Suisse, CH-1290 Versoix, Switzerland.
| |
Collapse
|
59
|
Lavoie M, Raven JA, Jones OAH, Qian H. Energy cost of intracellular metal and metalloid detoxification in wild-type eukaryotic phytoplankton. Metallomics 2016; 8:1097-1109. [DOI: 10.1039/c6mt00049e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
60
|
Machado MD, Lopes AR, Soares EV. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:82-92. [PMID: 25913674 DOI: 10.1016/j.jhazmat.2015.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/07/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
The green alga Pseudokirchneriella subcapitata has been widely used in ecological risk assessment, usually based on the impact of the toxicants in the alga growth. However, the physiological causes that lead algal growth inhibition are not completely understood. This work aimed to evaluate the biochemical and structural modifications in P. subcapitata after exposure, for 72 h, to three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II), corresponding approximately to 72 h-EC10 and 72 h-EC50 values and a high concentration (above 72 h-EC90 values). The incubation of algal cells with the highest concentration of Cd(II), Cr(VI) or Cu(II) resulted in a loss of membrane integrity of ~16, 38 and 55%, respectively. For all metals tested, an inhibition of esterase activity, in a dose-dependent manner, was observed. Reduction of chlorophyll a content, decrease of maximum quantum yield of photosystem II and modification of mitochondrial membrane potential was also verified. In conclusion, the exposure of P. subcapitata to metals resulted in a perturbation of the cell physiological status. Principal component analysis revealed that the impairment of esterase activity combined with the reduction of chlorophyll a content were related with the inhibition of growth caused by a prolonged exposure to the heavy metals.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Lopes
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|
61
|
Korkaric M, Xiao M, Behra R, Eggen RIL. Acclimation of Chlamydomonas reinhardtii to ultraviolet radiation and its impact on chemical toxicity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 167:209-219. [PMID: 26349947 DOI: 10.1016/j.aquatox.2015.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 06/05/2023]
Abstract
The toxicity of chemical pollutants can be modulated under stressful environmental conditions, such as increased temperature, salinity or ultraviolet radiation (UVR), due to the interaction of effects during simultaneous stressor exposure. However, organisms may acclimate to such conditions by activation of physiological and biochemical defence mechanisms. In sequential exposures, organisms acclimated to environmental stressors may display an increased sensitivity or co-tolerance towards chemical pollutants. It has been suggested that co-tolerance might be expected for similarly acting stressors due to common defence mechanisms. To test this for combinations of UVR and chemical stressors, we first acclimatized the model green alga Chlamydomonas reinhardtii to UVR and subsequently compared the sensitivity of UVR pre-exposed and control algae towards chemicals. Selected chemicals all act on photosynthesis and thus share a common physiological target, but display distinct toxicity mechanisms. Results showed that UVR pre-exposure for four days partially inhibited algal growth and photosynthesis, but also increased algal tolerance to higher UVR levels, confirming UVR acclimation. HPLC analysis of algal pigments indicated that UVR acclimation might in part be explained by the protective function of lutein while the contribution of UVR absorbing compounds was less clear. Challenge exposure to chemicals in the absence of UVR showed that acclimated algae were co-tolerant to the photosensitizer rose bengal, but not to the herbicides paraquat and diuron, suggesting that the fast physiological and biochemical defence mechanisms that conferred tolerance of algae towards higher UVR levels were related to singlet oxygen defence. The presented study suggests that knowledge of the molecular toxicity mechanisms of chemicals, rather than their general physiological target, is needed in order to predict co-tolerance between environmental and chemical stressors.
Collapse
Affiliation(s)
- Muris Korkaric
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Mao Xiao
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600 Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland.
| |
Collapse
|
62
|
Stewart TJ, Szlachetko J, Sigg L, Behra R, Nachtegaal M. Tracking the Temporal Dynamics of Intracellular Lead Speciation in a Green Alga. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11176-81. [PMID: 26320742 DOI: 10.1021/acs.est.5b02603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Organisms have developed metal regulatory mechanisms in response to changes in the bioavailability of trace metals. Just as metal bioavailability dictates cellular uptake, intracellular metal speciation determines the availability of metals to exert biological effects. However, the missing link in understanding the relationship between metal uptake and biological responses is the ability to accurately measure intracellular metal speciation. We conducted Pb exposure studies on the well-characterized model green alga Chlamydomonas reinhardtii and identified temporal changes in intracellular Pb speciation under conditions relevant for fresh water ecosystems using resonant X-ray emission spectroscopy (RXES), which possesses enhanced sensitivity to functional group chemistry relative to X-ray absorption spectroscopy (XAS). Analysis of RXES maps show that only a small fraction of total intracellular Pb was complexed by thiol groups. Initial sequestration of Pb in oxides and inorganic phosphate was followed by binding of Pb to organic phosphate, suggesting potential interference in vital cellular functions. These results contrast proposed detoxification responses involving complexation by thiol groups from peptides.
Collapse
Affiliation(s)
- T J Stewart
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- ETH , Institute of Biogeochemistry and Pollutant Dynamics IBP, CH-8092 Zurich, Switzerland
| | - J Szlachetko
- Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
- Institute of Physics, Jan Kochanowski University , P-25-406 Kielce, Poland
| | - L Sigg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
- ETH , Institute of Biogeochemistry and Pollutant Dynamics IBP, CH-8092 Zurich, Switzerland
| | - R Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf, Switzerland
| | - M Nachtegaal
- Paul Scherrer Institute , 5232 Villigen PSI, Switzerland
| |
Collapse
|
63
|
Esperanza M, Cid Á, Herrero C, Rioboo C. Acute effects of a prooxidant herbicide on the microalga Chlamydomonas reinhardtii: Screening cytotoxicity and genotoxicity endpoints. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:210-221. [PMID: 26117094 DOI: 10.1016/j.aquatox.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 06/04/2023]
Abstract
Since recent evidence has demonstrated that many types of chemicals exhibit oxidative and/or genotoxic potential on living organisms, reactive oxygen species (ROS) formation and DNA damage are currently the best accepted paradigms to assess the potential hazardous biological effects of a wide range of contaminants. The goal of this study was to evaluate the sensitivity of different cytotoxicity and genotoxicity responses on the model microalga Chlamydomonas reinhardtii exposed to the prooxidant herbicide paraquat. In addition to the growth endpoint, cell viability, mitochondrial membrane potential and presence of reactive oxygen species (ROS) were assayed as potential markers of cytotoxicity using flow cytometry (FCM). To study the effects of paraquat on C. reinhardtii DNA, several genotoxicity approaches were implemented for the first time in an ecotoxicological study on microalgae. Oxidative DNA base damage was analysed by measuring the oxidative DNA lesion 8-OHdG by FCM. DNA fragmentation was analysed by different methods: comet assay, and cell cycle analysis by FCM, with a particular focus on the presence of subG1-nuclei. Finally, effects on morphology of nuclei were monitored through DAPI staining. The evaluation of these endpoints showed that several physiological and biochemical parameters reacted to oxidative stress disturbances with greater sensitivity than integrative parameters such as growth rates or cell viability. The experiments revealed concentration-dependent cytotoxicity (ROS formation, depolarization of mitochondrial membrane), genotoxicity (oxidative DNA damage, DNA strand breakage, alterations in nuclear morphology), and cell cycle disturbances (subG1-nuclei, decrease of 4N population) in paraquat-treated cells. Overall, the genotoxicity results indicate that the production of ROS caused by exposure to paraquat induces oxidative DNA damage followed by DNA single- and double-strand breaks and cell cycle alterations, possibly leading to apoptosis in C. reinhardtii cells. This is supported by the observation of typical hallmarks of apoptosis, such as mitochondrial membrane depolarization, alterations in nuclear morphology and subG1 nuclei in cells exposed to the highest assayed concentrations. To our knowledge, this is the first study that provides a comprehensive analysis of oxidative DNA base damage in unicellular algal cells exposed to a prooxidant pollutant, as well as of its possible relation with other physiological effects. These results reinforce the need for additional studies on the genotoxicity of environmental pollutants on ecologically relevant organisms such as microalgae that can provide a promising basis for the characterization of potential pollutant hazards in the aquatic environment.
Collapse
Affiliation(s)
- Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad de A Coruña, Campus de A Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
64
|
Ramesh K, Berry S, Brown MT. Accumulation of silver by Fucus spp. (Phaeophyceae) and its toxicity to Fucus ceranoides under different salinity regimes. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1250-8. [PMID: 26002221 DOI: 10.1007/s10646-015-1495-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2015] [Indexed: 06/04/2023]
Abstract
Metals constitute an important group of abiotic stressors that elicit stress responses in marine algae that include the production of reactive oxygen species (ROS). Silver (Ag) is a highly toxic metal to organisms but despite this there are relatively few studies on how it affects marine macroalgae (seaweeds). In a landmark study published in 1977 the first information was provided on the accumulation of Ag in Fucus spp. (Phaeophyceae) from the Looe estuary, located in south-west England, an area with a long history of mining activity. In the present study, the estuary has been re-visited and the patterns of Ag accumulation in two Fucus spp. and sediment re-examined after 35 years. We conclude that Ag concentrations in sediment and macroalgae from specific sites within the catchment remain high, but more generally sediment concentrations have declined by approximately 65 % and the dissolved, bioavailable fraction by 24 % over this period. In addition, from laboratory studies we provide data on the speciation and toxic effects of Ag under different salinity regimes in the euryhaline brown seaweed, Fucus ceranoides. From these exposure experiments, it was found that with increasing Ag concentrations growth was inhibited and lipid peroxidation associated with ROS production increased. The magnitude of the toxic effects was greater at a salinity of 10 than 28 psu which reflects the greater bioavailability of the toxic species of Ag (Ag(+) and AgCl(0)) at reduced salinities. These findings emphasise the importance of investigating the effects of metal pollution in conjunction with other, natural, environmental stressors such as salinity.
Collapse
Affiliation(s)
- K Ramesh
- GEOMAR Helmholtz Centre for Ocean Research, 2 Hohenbergstraße, 24105, Kiel, Germany,
| | | | | |
Collapse
|
65
|
Siebman C, Velev OD, Slaveykova VI. Two-Dimensional Algal Collection and Assembly by Combining AC-Dielectrophoresis with Fluorescence Detection for Contaminant-Induced Oxidative Stress Sensing. BIOSENSORS 2015; 5:319-36. [PMID: 26083806 PMCID: PMC4493552 DOI: 10.3390/bios5020319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/31/2015] [Accepted: 06/05/2015] [Indexed: 12/23/2022]
Abstract
An alternative current (AC) dielectrophoretic lab-on-chip setup was evaluated as a rapid tool of capture and assembly of microalga Chlamydomonas reinhardtii in two-dimensional (2D) close-packed arrays. An electric field of 100 V·cm⁻¹, 100 Hz applied for 30 min was found optimal to collect and assemble the algae into single-layer structures of closely packed cells without inducing cellular oxidative stress. Combined with oxidative stress specific staining and fluorescence microscopy detection, the capability of using the 2D whole-cell assembly on-chip to follow the reactive oxygen species (ROS) production and oxidative stress during short-term exposure to several environmental contaminants, including mercury, methylmercury, copper, copper oxide nanoparticles (CuO-NPs), and diuron was explored. The results showed significant increase of the cellular ROS when C. reinhardtii was exposed to high concentrations of methylmercury, CuO-NPs, and 10⁻⁵ M Cu. Overall, this study demonstrates the potential of combining AC-dielectrophoretically assembled two-dimensional algal structures with cell metabolic analysis using fluorescence staining, as a rapid analytical tool for probing the effect of contaminants in highly impacted environment.
Collapse
Affiliation(s)
- Coralie Siebman
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Science, Faculty of Sciences, University of Geneva, 10 route de Suisse, Versoix CH-1290, Switzerland.
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Science, Faculty of Sciences, University of Geneva, 10 route de Suisse, Versoix CH-1290, Switzerland.
| |
Collapse
|
66
|
Korkaric M, Behra R, Fischer BB, Junghans M, Eggen RIL. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:18-28. [PMID: 25768714 DOI: 10.1016/j.aquatox.2015.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 06/04/2023]
Abstract
The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed.
Collapse
Affiliation(s)
- Muris Korkaric
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland
| | - Beat B Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland
| | - Marion Junghans
- Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland.
| |
Collapse
|
67
|
von Moos N, Maillard L, Slaveykova VI. Dynamics of sub-lethal effects of nano-CuO on the microalga Chlamydomonas reinhardtii during short-term exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:267-275. [PMID: 25731685 DOI: 10.1016/j.aquatox.2015.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Though nano-CuO has been classified as toxic toward aquatic microorganisms and its use in various applications is expected to increase in near future, its ecotoxicity is currently poorly understood. The aim of this study was to investigate the mechanisms of nano-CuO toxicity based on the paradigm of oxidative stress, the dynamics of response over 24h, and the modulating effect of exposure conditions on toxicity and responses. To this end, the model microalga Chlamydomonas reinhardtii was exposed to 10mgL(-1) nano-CuO in five different exposure media, including two different growth media, two Good's buffers, and natural lake water. The measured endpoints included cell growth, morphological aspect, chlorophyll autofluorescence, oxidative stress, and membrane permeabilization. The results suggest that agglomerated nano-CuO is toxic and that exposure media are decisive in whether or not particles or free Cu ions are the main mediators of toxicity. A significant particle effect was only observed in the Good's buffer 3-(N-morpholino) propanesulfonic acid. However, nano-CuO particles especially influenced the dynamics of response early in exposure, between 0h and 5h, suggesting that an adaptation to particle stress may occur or that particles modify the bioavailability of the free Cu ions in early exposure.
Collapse
Affiliation(s)
- Nadia von Moos
- Environmental Biogeochemistry and Ecotoxicology, Earth and Environmental Science Section, Institute F.-A. Forel, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland
| | - Luca Maillard
- Environmental Biogeochemistry and Ecotoxicology, Earth and Environmental Science Section, Institute F.-A. Forel, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Earth and Environmental Science Section, Institute F.-A. Forel, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland.
| |
Collapse
|
68
|
|
69
|
De Schamphelaere KAC, Nys C, Janssen CR. Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter-species sensitivity comparison. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:348-359. [PMID: 25089923 DOI: 10.1016/j.aquatox.2014.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Scientifically sound risk assessment and derivation of environmental quality standards for lead (Pb) in the freshwater environment are hampered by insufficient data on chronic toxicity and bioavailability to unicellular green algae. Here, we first performed comparative chronic (72-h) toxicity tests with three algal species in medium at pH 6, containing 4 mg fulvic acid (FA)/L and containing organic phosphorous (P), i.e. glycerol-2-phosphate, instead of PO4(3-) to prevent lead-phosphate mineral precipitation. Pseudokirchneriella subcapitata was 4-fold more sensitive to Pb than Chlorella kesslerii, with Chlamydomonas reinhardtii in the middle. The influence of medium physico-chemistry was therefore investigated in detail with P. subcapitata. In synthetic test media, higher concentrations of fulvic acid or lower pH protected against toxicity of (filtered) Pb to P. subcapitata, while effects of increased Ca or Mg on Pb toxicity were less clear. When toxicity was expressed on a free Pb(2+) ion activity basis, a log-linear, 260-fold increase of toxicity was observed between pH 6.0 and 7.6. Effects of fulvic acid were calculated to be much more limited (1.9-fold) and were probably even non-existent (depending on the affinity constant for Pb binding to fulvic acid that was used for calculating speciation). A relatively simple bioavailability model, consisting of a log-linear pH effect on Pb(2+) ion toxicity linked to the geochemical speciation model Visual Minteq (with the default NICA-Donnan description of metal and proton binding to fulvic acid), provided relatively accurate toxicity predictions. While toxicity of (filtered) Pb varied 13.7-fold across 14 different test media (including four Pb-spiked natural waters) with widely varying physico-chemistry (72h-EC50s between 26.6 and 364 μg/L), this bioavailability model displayed mean and maximum prediction errors of only 1.4 and 2.2-fold, respectively, thus indicating the potential usefulness of this bioavailability model to reduce uncertainty in site-specific risk assessment. A model-based comparison with other species indicated that the sensitivity difference between P. subcapitata and two of the most chronically Pb-sensitive aquatic invertebrates (the crustacean Ceriodaphnia dubia and the snail Lymnaea stagnalis) is strongly pH dependent, with P. subcapitata becoming the most sensitive of the three at pH > 7.4. This indicates that inter-species differences in Pb bioavailability relationships should be accounted for in risk assessment and in the derivation of water quality criteria or environmental quality standards for Pb. The chronic toxicity data with three algae species and the bioavailability model presented here will help to provide a stronger scientific basis for evaluating ecological effects of Pb in the freshwater environment.
Collapse
Affiliation(s)
- K A C De Schamphelaere
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Jozef Plateaustraat 22, B-9000 Gent, Belgium.
| | - C Nys
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Jozef Plateaustraat 22, B-9000 Gent, Belgium.
| | - C R Janssen
- Faculty of Bioscience Engineering, Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit (GhEnToxLab), Ghent University (UGent), Jozef Plateaustraat 22, B-9000 Gent, Belgium.
| |
Collapse
|
70
|
Cheloni G, Cosio C, Slaveykova VI. Antagonistic and synergistic effects of light irradiation on the effects of copper on Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 155:275-282. [PMID: 25072593 DOI: 10.1016/j.aquatox.2014.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
The present study showed the important role of light intensity and spectral composition on Cu uptake and effects on green alga Chlamydomonas reinhardtii. High-intenisty light (HL) increased cellular Cu concentrations, but mitigated the Cu-induced decrease in chlorophyll fluorescence, oxidative stress and lipid peroxidation at high Cu concentrations, indicating that Cu and HL interact in an antagonistic manner. HL up-regulated the transcription of genes involved in the antioxidant response in C. reinhardtii and thus reduced the oxidative stress upon exposure to Cu and HL. Combined exposure to Cu and UVBR resulted in an increase of cellular Cu contents and caused severe oxidative damage to the cells. The observed effects were higher than the sum of the effects corresponding to exposure to UVBR or Cu alone suggesting a synergistic interaction.
Collapse
Affiliation(s)
- Giulia Cheloni
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland
| | - Claudia Cosio
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, Route de Suisse, CH-1290 Versoix, Switzerland.
| |
Collapse
|
71
|
Lomba L, Muñiz S, Pino MR, Navarro E, Giner B. Ecotoxicity studies of the levulinate ester series. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1484-1493. [PMID: 25081381 DOI: 10.1007/s10646-014-1290-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
The increasing interest in the development of novel green solvents has led to the synthesis of benign alternative products with minimized environmental impacts. However, most of published studies on green solvents focus primarily on their physicochemical properties, with limited emphasis on absence of ecotoxicological assessment. In this study, we evaluated the acute ecotoxicity of four levulinates (levulinic acid, methyl levulinate, ethyl levulinate and butyl levulinate) on freshwater algae (Chlamydomonas reinhardtii), bacteria (Vibrio fischeri), daphnids (Daphnia magna) and earthworms (Eisenia foetida) using various dose-response tests. As a general trend, the toxicity of levulinate esters in aquatic exposure (assessed as the EC50) increased as a function of increasing alkyl chain length; accordingly, the most toxic compound for the aquatic organisms was butyl levulinate, followed by ethyl levulinate and methyl levulinate. The most toxic compound for E. foetida (terrestrial exposure) was methyl levulinate, followed by ethyl levulinate, butyl levulinate and levulinic acid; in this case, we observed an inverse relationship between toxicity and alkyl chain length. Based on both the lowest EC50 found in the aquatic media and the ratio between predicted environmental concentration and the predicted no-effect concentration, we have estimated the maximum allowable values in the environment for these chemicals to be 1.093 mg L(-1) for levulinic acid, 2.761 mg L(-1) for methyl levulinate, 0.982 mg L(-1) for ethyl levulinate and 0.151 mg L(-1) for butyl levulinate.
Collapse
Affiliation(s)
- Laura Lomba
- Facultad de Ciencias de la Salud, Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
72
|
Röhder LA, Brandt T, Sigg L, Behra R. Influence of agglomeration of cerium oxide nanoparticles and speciation of cerium(III) on short term effects to the green algae Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 152:121-130. [PMID: 24747084 DOI: 10.1016/j.aquatox.2014.03.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
Cerium oxide nanoparticles (CeO2 NP) are increasingly used in industrial applications and may be released to the aquatic environment. The fate of CeO2 NP and effects on algae are largely unknown. In this study, the short term effects of CeO2 NP in two different agglomeration states on the green algae Chlamydomonas reinhardtii were examined. The role of dissolved cerium(III) on toxicity, its speciation and the dissolution of CeO2 NP were considered. The role of cell wall of C. reinhardtii as a barrier and its influence on the sensitivity to CeO2 NP and cerium(III) was evaluated by testing both, the wild type and the cell wall free mutant of C. reinhardtii. Characterization showed that CeO2 NP had a surface charge of ∼0mV at physiological pH and agglomerated in exposure media. Phosphate stabilized CeO2 NP at pH 7.5 over 24h. This effect was exploited to test CeO2 NP dispersed in phosphate with a mean size of 140nm and agglomerated in absence of phosphate with a mean size of 2000nm. The level of dissolved cerium(III) in CeO2 NP suspensions was very low and between 0.1 and 27nM in all tested media. Exposure of C. reinhardtii to Ce(NO3)3 decreased the photosynthetic yield in a concentration dependent manner with EC50 of 7.5±0.84μM for wild type and EC50 of 6.3±0.53μM for the cell wall free mutant. The intracellular level of reactive oxygen species (ROS) increased upon exposure to Ce(NO3)3 with effective concentrations similar to those inhibiting photosynthesis. The agglomerated CeO2 NP caused a slight decrease of photosynthetic yield at the highest concentrations (100μM), while no effect was observed for dispersed CeO2 NP. The low toxicity of agglomerated CeO2 NP was attributed quantitatively to Ce(3+) ions co-occurring in the nanoparticle suspension whereas for dispersed CeO2 NP, dissolved Ce(3+) was precipitated with phosphate and not bioavailable. Furthermore CeO2 NP did not affect the intracellular ROS level. The cell wall free mutant and wild type of C. reinhardtii showed the same sensitivity to CeO2 NP and Ce(NO3)3, indicating a minor role of the cell wall on toxicity. For both algae strains, a flocculation of cells was observed upon exposure to agglomerated CeO2 NP and Ce(NO3)3, only algae exposed to agglomerated CeO2 NP were tightly packed in exopolymeric substances.
Collapse
Affiliation(s)
- Lena A Röhder
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland
| | - Tanja Brandt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland
| | - Laura Sigg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland; ETH-Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zürich 8092, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, Dübendorf 8600, Switzerland.
| |
Collapse
|
73
|
Wen Y, Sheng X, Song S, Li L, Liu W. Protection against Cu(II)-induced oxidative stress and toxicity to Chlorella vulgaris by 2,2'-Bipyridine-5,5'-dicarboxylic acid. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:400-406. [PMID: 24323135 DOI: 10.1007/s00244-013-9977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/20/2013] [Indexed: 06/03/2023]
Abstract
In this study, we evaluated the role of 2,2'-bipyridine-5,5'-dicarboxylic acid (Bpy-COOH) in protecting Chlorella vulgaris from the oxidative stress and toxicity induced by Cu(II). Both in vivo and in vitro tests were performed. Different addition orders of Bpy-COOH and Cu(II) were tried in the former, whereas different Bpy-COOH concentrations were used in both experiments. The in vivo experiments showed that the production of reactive oxygen species in C. pyrenoidosa treated by the addition of Bpy-COOH and Cu(II) in three orders were all significantly less than that in cases treated with only Cu(II). In vitro tests indicated that peroxidase-like complexes could be formed between Bpy-COOH and Cu(II). Based on these results, it could be concluded that the use of Bpy-COOH could significantly decrease Cu(II) toxicity to algal cells by forming peroxidase-like complexes.
Collapse
Affiliation(s)
- Yuezhong Wen
- Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road #866, Hangzhou, 310058, China,
| | | | | | | | | |
Collapse
|
74
|
Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proc Natl Acad Sci U S A 2014; 111:3490-5. [PMID: 24550482 DOI: 10.1073/pnas.1319388111] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Understanding mechanistic and cellular events underlying a toxicological outcome allows the prediction of impact of environmental stressors to organisms living in different habitats. A systems-based approach aids in characterizing molecular events, and thereby the cellular pathways that have been perturbed. However, mapping only adverse outcomes of a toxicant falls short of describing the stress or adaptive response that is mounted to maintain homeostasis on perturbations and may confer resistance to the toxic insult. Silver is a potential threat to aquatic organisms because of the increasing use of silver-based nanomaterials, which release free silver ions. The effects of silver were investigated at the transcriptome, proteome, and cellular levels of Chlamydomonas reinhardtii. The cells instigate a fast transcriptome and proteome response, including perturbations in copper transport system and detoxification mechanisms. Silver causes an initial toxic insult, which leads to a plummeting of ATP and photosynthesis and damage because of oxidative stress. In response, the cells mount a defense response to combat oxidative stress and to eliminate silver via efflux transporters. From the analysis of the perturbations of the cell's functions, we derived a detailed mechanistic understanding of temporal dynamics of toxicity and adaptive response pathways for C. reinhardtii exposed to silver.
Collapse
|
75
|
Machado MD, Soares EV. Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 147:1-6. [PMID: 24342441 DOI: 10.1016/j.aquatox.2013.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 06/03/2023]
Abstract
The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwater alga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells were exposed to three nominal concentrations of each metal: low (closed to 72 h-EC10 values), intermediate (closed to 72 h-EC50 values) and high (upper than 72 h-EC90 values). The exposure to low metal concentrations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations an increase of cell volume was observed; this effect was particularly notorious for Cd and less pronounced for Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations of metals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an opposite effect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases in P. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus; and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrations resulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after the second nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). The different impact of metals on algal cell volume and cell-cycle progression, suggests that different toxicity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining and cell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of the pollutants, in P. subcapitata, and help in the elucidation of their different modes of action.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory-CIETI, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Rua Dr António Bernardino de Almeida, 431, 4200-072 Porto, Portugal; IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
76
|
Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii. Biometals 2014; 27:173-81. [DOI: 10.1007/s10534-013-9699-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/27/2013] [Indexed: 12/29/2022]
|
77
|
Pokora W, Baścik-Remisiewicz A, Tukaj S, Kalinowska R, Pawlik-Skowrońska B, Dziadziuszko M, Tukaj Z. Adaptation strategies of two closely related Desmodesmus armatus (green alga) strains contained different amounts of cadmium: a study with light-induced synchronized cultures of algae. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:69-77. [PMID: 24331421 DOI: 10.1016/j.jplph.2013.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 05/25/2023]
Abstract
During the Desmodesmus armatus cell cycle, 8-celled coenobia of 276-4d strain accumulated a much lower amounts of cadmium than unicells of B1-76 strain. Cadmium reduced growth and photosynthesis in the cells of strain B1-76, but not those of 276-4d strain. Cells of 276-4d strain revealed a higher activity of superoxide dismutase (SOD) isoforms, in particular the activity and protein content of Fe-SOD. Cu/Zn-SOD was earlier and much stronger induced by cadmium in 276-4d than in B1-76 strain, whereas Fe- and Mn-SOD activity and Fe-SOD synthesis were induced only in 276-4d strain. Cadmium did not affect the heat shock protein 70 synthesis in B1-76 strain, but significantly stimulated this process in 276-4d strain. The level of glutathione increased 30-fold during cell development of Cd-exposed 276-4d strain, while in B1-76 it increased about 12 timed. Matured cells of both strains exposed to cadmium produced comparable amounts of phytochelatins and other thiol peptides, but their production in young cells of B1-76 strain was much higher than in 276-4d strain. In conclusion, a complex of internal detoxification mechanisms appeared to be more efficient in cells of 276-4d strain than B1-76 one.
Collapse
Affiliation(s)
- Wojciech Pokora
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Baścik-Remisiewicz
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Stefan Tukaj
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Renata Kalinowska
- PAS Centre for Ecological Research, Experimental Station, ul. Niecała 18, 20-080 Lublin, Poland
| | - Barbara Pawlik-Skowrońska
- Department of Hydrobiology, University of Life Sciences, ul. Dobrzańskiego 37, 20-262 Lublin, Poland
| | - Małgorzata Dziadziuszko
- Department of Toxicology, Medical University of Gdansk, Al. Gen. Hallera, 107, 80-416 Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
78
|
Suárez G, Santschi C, Slaveykova VI, Martin OJF. Sensing the dynamics of oxidative stress using enhanced absorption in protein-loaded random media. Sci Rep 2013; 3:3447. [PMID: 24316586 PMCID: PMC3856402 DOI: 10.1038/srep03447] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 11/15/2013] [Indexed: 12/05/2022] Open
Abstract
Reactive oxygen species play a key role in cell signalling and oxidative stress mechanisms, therefore, sensing their production by living organisms is of fundamental interest. Here we describe a novel biosensing method for extracellular detection of endogenous hydrogen peroxide (H2O2). The method is based on the enhancement of the optical absorption spectrum of the hemoprotein cytochrome c when loaded into a highly scattering random medium. Such a configuration enables, in contrast to existing techniques, non-invasive and dynamic detection of the oxidation of cyt c in the presence of H2O2 with unprecedented sensitivity. Dynamic information on the modification of the cell oxidative status of Chlamydomonas reinhardtii, an aquatic green algae, was obtained under oxidative stress conditions induced by the presence of trace concentrations of Cd(II). Furthermore, the dynamics of H2O2 production was investigated under different lighting conditions confirming the impact of Cd(II) on the photosynthetic activity of those phytoplanktonic cells.
Collapse
Affiliation(s)
- Guillaume Suárez
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015 Lausanne, Switzerland
- These authors contributed equally to this work
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015 Lausanne, Switzerland
- These authors contributed equally to this work
| | - Vera I. Slaveykova
- Institute F. A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Route de Suisse 10, CH-1290 Versoix, Switzerland
| | - Olivier J. F. Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), EPFL-STI-NAM, Station 11, CH-1015 Lausanne, Switzerland
| |
Collapse
|
79
|
Carfagna S, Lanza N, Salbitani G, Basile A, Sorbo S, Vona V. Physiological and morphological responses of Lead or Cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). SPRINGERPLUS 2013; 2:147. [PMID: 23641320 PMCID: PMC3639356 DOI: 10.1186/2193-1801-2-147] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/04/2013] [Indexed: 11/24/2022]
Abstract
The heavy metal pollution in soils and aquatic environments is a serious ecological problem. In the green-microalga Chlorella sorokiniana 211-8K (Chlorophyceae) exposed to ions of lead (Pb) and cadmium (Cd) we studied the metabolic responses to the toxicity of these two heavy metals. Our data indicate that both the pollutants alter the alga cell ultrastructure and its physiological characteristics (growth, photosynthesis, respiration, enzyme activities). The toxic effects of the two metals resulted time-dependent to the exposure. After 24 h of treatment with 250 μM Pb or Cd, photosynthesis was inhibited until to 77 and 86%, however respiration was strongly enhanced up to 300 and 350%, respectively. In the algal cells Pb or Cd exposure induced a reduction in the content of the total chlorophylls and a decrease of the soluble protein levels, significantly compromising the growth, particularly in cultures cadmium-treated. We report data on ultrastructural changes induced by the two heavy metals; they affected overall chloroplast ultrastructure of the alga. Most importantly, the O-acetyl-L-serine(thiol)lyase (OASTL) activity was appreciably increased after only 2 h of Cd exposure, indicating the existence of a link between the metal contamination and cysteine synthesis. Then, Chlorella sorokiniana cells seem to better tolerate high concentrations of Pb while appear to be more sensitive to Cd ions. These results provide some additional information that can lead to better understand consequences of heavy metal poisoning in microalgae.
Collapse
Affiliation(s)
- Simona Carfagna
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, Naples, I-80139 Italy
| | - Nicola Lanza
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, Naples, I-80139 Italy
| | - Giovanna Salbitani
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, Naples, I-80139 Italy
| | - Adriana Basile
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, Naples, I-80139 Italy
| | - Sergio Sorbo
- CISME, Università di Napoli Federico II, Via Foria 223, Naples, I-80139 Italy
| | - Vincenza Vona
- Dipartimento di Biologia, Università di Napoli Federico II, Via Foria 223, Naples, I-80139 Italy
| |
Collapse
|
80
|
Oukarroum A, Gaudreault MH, Pirastru L, Popovic R. Alleviation of silver toxicity by calcium chloride (CaCl2) in Lemna gibba L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:235-239. [PMID: 23974355 DOI: 10.1016/j.plaphy.2013.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
The toxicity effects of silver (Ag) and the protective role of calcium chloride (CaCl2) was studied in Lemna gibba L. (L. gibba) plants. Silver speciation showed that silver toxicity in L. gibba culture medium can be attributed to free ionic Ag(+) concentration. Frond abscission, intracellular reactive oxygen species (ROS) formation and intracellular uptake of Ag(+) were investigated when L. gibba plants were exposed to AgNO3 concentrations (0.5, 1, 5, and 10 μM) supplemented or not by 10 μM CaCl2. An increase in frond abscission, intracellular ROS and intracellular uptake of Ag(+) were detected in L. gibba plants for all tested concentrations of AgNO3 after 24 h treatment. However, addition of 10 μM CaCl2 to the L. gibba culture medium reduced the toxic effects of Ag by decreasing silver uptake into the plant and intracellular ROS formation. The results suggest that Ag-induced toxicity was attributed to Ag(+) accumulation and chloride was able to protect L. gibba plants against Ag toxicity by formation of complexes with Ag and then alleviation of the metal induced oxidative stress.
Collapse
Affiliation(s)
- Abdallah Oukarroum
- Department of Chemistry and Biochemistry, University of Québec in Montréal, Case Postal 8888, Succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada.
| | | | | | | |
Collapse
|
81
|
Gunawan C, Sirimanoonphan A, Teoh WY, Marquis CP, Amal R. Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:984-992. [PMID: 23892165 DOI: 10.1016/j.jhazmat.2013.06.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The work investigates the eco-cytoxicity of submicron and nano TiO₂ and ZnO, arising from the unique interactions of freshwater microalga Chlamydomonas reinhardtii to soluble and undissolved components of the metal oxides. In a freshwater medium, submicron and nano TiO₂ exist as suspended aggregates with no-observable leaching. Submicron and nano ZnO undergo comparable concentration-dependent fractional leaching, and exist as dissolved zinc and aggregates of undissolved ZnO. Cellular internalisation of solid TiO₂ stimulates cellular ROS generation as an early stress response. The cellular redox imbalance was observed for both submicron and nano TiO₂ exposure, despite exhibiting benign effects on the alga proliferation (8-day EC50>100 mg TiO₂/L). Parallel exposure of C. reinhardtii to submicron and nano ZnO saw cellular uptake of both the leached zinc and solid ZnO and resulting in inhibition of the alga growth (8-day EC50≥0.01 mg ZnO/L). Despite the sensitivity, no zinc-induced cellular ROS generation was detected, even at 100 mg ZnO/L exposure. Taken together, the observations confront the generally accepted paradigm of cellular oxidative stress-mediated cytotoxicity of particles. The knowledge of speciation of particles and the corresponding stimulation of unique cellular responses and cytotoxicity is vital for assessment of the environmental implications of these materials.
Collapse
Affiliation(s)
- Cindy Gunawan
- ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
82
|
Stoiber TL, Shafer MM, Armstrong DE. Induction of reactive oxygen species in chlamydomonas reinhardtii in response to contrasting trace metal exposures. ENVIRONMENTAL TOXICOLOGY 2013; 28:516-523. [PMID: 21786384 DOI: 10.1002/tox.20743] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 05/02/2011] [Accepted: 05/07/2011] [Indexed: 05/28/2023]
Abstract
The toxicity of metals to organisms is, in-part, related to the formation of reactive oxygen species (ROS) in cells and subsequent oxidative stress. ROS are by-products of normal respiration and photosynthesis processes in organisms, but environmental factors, like metal exposure, can stimulate excess production. Metals involved in several different mechanisms such as Haber-Weiss cycling and Fenton-type reactions can produce ROS. Some metals, such as Cd, may contribute to oxidative stress indirectly by depleting cellular antioxidants. We investigated the measurement of ROS as a sensitive biomarker of metal toxicity (that could possibly be implemented in a biotic ligand model for algae) and we compared ROS induction in response to several contrasting transition metals (Cu, V, Ni, Zn, and Cd). We also compared the ROS response to glutathione and growth toxicity endpoints measured in a previous study. The cell-permeable dye, 2'7'dichlorodihydrofluorescein diacetate, was used as a probe to detect formation of ROS in Chlamydomonas reinhardtii cells. Metal-exposed cells were incubated with the fluorescent dye in a 96-well plate and monitored over 5.5 h. A dose-response of ROS formation was observed with Cu exposure in the range of 20-500 nM. Cu produced more ROS compared with either Zn or Cd (both nonredox active metals). The redox-active metal V produced increased ROS with increased concentration. The measurement of ROS may be a useful indicator of Cu toxicity, but the signal to noise ratio was better for the glutathione endpoint assay.
Collapse
Affiliation(s)
- Tasha L Stoiber
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, 660 North Park Street, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
83
|
Cheloni G, Slaveykova VI. Optimization of the C11-BODIPY(581/591) dye for the determination of lipid oxidation in Chlamydomonas reinhardtii by flow cytometry. Cytometry A 2013; 83:952-61. [PMID: 23943236 DOI: 10.1002/cyto.a.22338] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 11/07/2022]
Abstract
Lipid oxidation is a recognized end point for the study of oxidative stress and is an important parameter to describe the mode of micropollutant action on aquatic microorganisms. Therefore, the development of quick and reliable methodologies probing the oxidative stress and damage in living cells is highly sought. In the present proof-of-concept work, we examined the potential of the fluorescent dye C11-BODIPY(591/581) to probe lipid oxidation in the green microalga Chlamydomonas reinhardtii. C11-BODIPY(591/581) staining was combined with flow cytometry measurements to obtain multiparameter information on cellular features and oxidative stress damage within single cells. First, staining conditions were optimized by exploring the capability of the dye to stain algal cells under increasing cell and dye concentrations and different staining procedures. Then lipid oxidation in algae induced by short- and long-term exposures to the three metallic micropollutants, copper, mercury, and nanoparticulate copper oxide, and the two organic contaminants, diethyldithiocarbamate (DDC) and diuron was determined. In this work we pointed out C11-BODIPY(591/581) applicability in a wide range of exposure conditions, including studies of oxidation as a function of time and that it is suitable for in vivo measurements of lipid oxidation due to its high permeation and stability in cells and its low interference with algal autofluorescence. © 2013 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Giulia Cheloni
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, 10, route de Suisse, CH-1290, Versoix, Switzerland
| | | |
Collapse
|
84
|
von Moos N, Slaveykova VI. Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae--state of the art and knowledge gaps. Nanotoxicology 2013; 8:605-30. [PMID: 23738945 DOI: 10.3109/17435390.2013.809810] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nanotechnology has revolutionised many areas of modern life, technology and research, which is reflected in the steadily increasing global demand for and consumption of engineered nanomaterials and the inevitable increase of their release into the environment by human activity. The overall long-term impact of engineered nanomaterials on ecosystems is still unknown. Various inorganic nanoparticles have been found to exhibit bactericidal properties and cause growth inhibition in model aquatic microalgae, but the mechanisms of toxicity are not yet fully understood. The causal link between particle properties and biological effects or reactive oxygen species generation is not well established and represents the most eminent quest of nanoecotoxicological investigation. In this review, the current mechanistic understanding of the toxicity of inorganic metal and metal oxide engineered nanomaterials towards bacterial and aquatic microalgal model organisms based on the paradigm of oxidative stress is presented along with a detailed compilation of available literature on the major toxicity factors and research methods.
Collapse
Affiliation(s)
- Nadia von Moos
- Environmental Biogeochemistry and Ecotoxicology, Institute F.-A. Forel, Earth and Environmental Science, Faculty of Sciences, University of Geneva , Versoix , Switzerland
| | | |
Collapse
|
85
|
Suárez G, Santschi C, Martin OJ, Slaveykova VI. Biosensor based on chemically-designed anchorable cytochrome c for the detection of H2O2 released by aquaticcells. Biosens Bioelectron 2013; 42:385-90. [DOI: 10.1016/j.bios.2012.10.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 11/27/2022]
|
86
|
Oukarroum A, Barhoumi L, Pirastru L, Dewez D. Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:902-907. [PMID: 23341248 DOI: 10.1002/etc.2131] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/19/2012] [Accepted: 11/30/2012] [Indexed: 05/29/2023]
Abstract
The toxicity effect of silver nanoparticles (AgNPs) on growth and cellular viability was investigated on the aquatic plant Lemna gibba exposed over 7 d to 0, 0.01, 0.1, 1, and 10 mg/L of AgNPs. Growth inhibition was demonstrated by a significant decrease of frond numbers dependent on AgNP concentration. Under these conditions, reduction in plant cellular viability was detected for 0.1, 1, and 10 mg/L of AgNPs within 7 d of AgNPs treatment. This effect was highly correlated with the production of intracellular reactive oxygen species (ROS). A significant increase of intracellular ROS formation was triggered by 1 and 10 mg/L of AgNP exposure. The induced oxidative stress was related to Ag accumulation within L. gibba plant cells and with the increasing concentration of AgNP exposure in the medium. The authors' results clearly suggested that AgNP suspension represented a potential source of toxicity for L. gibba plant cells. Due to the low release capacity of free soluble Ag from AgNP dissolution in the medium, it is most likely that the intracellular uptake of Ag was directly from AgNPs, triggering cellular oxidative stress that may be due to the release of free Ag inside plant cells. Therefore, the present study demonstrated that AgNP accumulation in an aquatic environment may represent a potential source of toxicity and a risk for the viability of duckweeds.
Collapse
Affiliation(s)
- Abdallah Oukarroum
- Department of Chemistry, University of Quebec in Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
87
|
Didur O, Dewez D, Popovic R. Alteration of chromium effect on photosystem II activity in Chlamydomonas reinhardtii cultures under different synchronized state of the cell cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1870-1875. [PMID: 23238598 DOI: 10.1007/s11356-012-1389-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
The inhibitory effect of chromium (Cr) on photosystem II (PSII) activity was investigated in the green alga Chlamydomonas reinhardtii during different phases of the cell cycle. Algae were cultivated in continuous light or a light/dark cycle (16:8 h) to obtain a synchronously dividing cell culture. The cell division phases were determined with the DNA-specific fluorescent probe SYBR green using flow cytometry. The effect of Cr on PSII activity was investigated after a 24-h treatment with algal cultures having different proportions of newly divided cells (G(0)/G(1)), dividing cells at the DNA replication phase (S), and dividing cells at the mitosis phase (G(2)/M). Using chlorophyll a fluorescence parameters based on PSII electron transport capacity in dark- (Φ(M)II) and light-adapted (Φ'(M)II) equilibrium state, we found that the effect of Cr differs depending on the stage of the cell cycle. When algal cultures had a high proportion of cells actively dividing (M phase), the toxic effect of Cr on PSII activity appeared to be much higher and PSII quantum yield was decreased by 80 % compared to algal cultures mainly in the G(0)/G(1) phase. Therefore, the inhibitory effect of Cr on photosynthesis appears to be different according to the cell cycle state of the algal population.
Collapse
Affiliation(s)
- Olivier Didur
- Department of Chemistry, University of Quebec in Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, Quebec, H3C 3P8, Canada
| | | | | |
Collapse
|
88
|
Bonet B, Corcoll N, Acuňa V, Sigg L, Behra R, Guasch H. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 444:60-72. [PMID: 23262325 DOI: 10.1016/j.scitotenv.2012.11.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 06/01/2023]
Abstract
While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution.
Collapse
Affiliation(s)
- Berta Bonet
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071 Girona, Spain.
| | | | | | | | | | | |
Collapse
|
89
|
Cirulis JT, Scott JA, Ross GM. Management of oxidative stress by microalgae. Can J Physiol Pharmacol 2013; 91:15-21. [PMID: 23368282 DOI: 10.1139/cjpp-2012-0249] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.
Collapse
Affiliation(s)
- Judith T Cirulis
- Medical Sciences, Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | | | | |
Collapse
|
90
|
Kroll A, Kühnel D, Schirmer K. Testing nanomaterial toxicity in unicellular eukaryotic algae and fish cell lines. Methods Mol Biol 2013; 1028:165-95. [PMID: 23740120 DOI: 10.1007/978-1-62703-475-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanoecotoxicology as a sub-discipline of ecotoxicology aims to identify and predict effects elicited on ecosystems by nano-sized materials (NM). Two key groups of model organisms in this context are algae and fish. In this chapter, we present considerations for testing NM with respect to their impact on unicellular algae and cell lines derived from various organs of fish.Based on currently available literature on NM effects in unicellular algae and fish cell lines, and our own experience, we provide guidance on test design, including principle test considerations, materials, NM presentation to cells, exposure, bioavailability, and effect assessment. Assessment needs to be based on a meaningful choice of exposure scenario(s) related to the research question. As a first step, one needs to address whether effects of NMs are to be investigated under environmentally relevant or probable conditions, which may include processes such as agglomeration, or whether NM effects from mono-dispersed particles are of interest, which may require special steps to ensure stable NM suspension. Moreover, whether effects on cells are to be studied in the short- or long-term is important with regard to experimental design. Preparation of NM suspensions, which can be done in aqueous media different from the exposure medium, is addressed with regard to energy input, sterility (as required for algae and fish cell exposure) and particle purity.Specified for the two model systems, algae and fish cell lines, availability and choice of culture media are presented and discussed with regard to impact on NM behavior. Light, temperature, and agitation, which are variables during exposure, are discussed. We further provide guidance on the characterization of the NM in the chosen aqueous exposure media regarding size, zeta potential and electrophoretic mobility. The state of NM in exposure media is decisive for their bioavailability and therefore for potential particle effects. Therefore, we present ways of deriving a mass balance and quantitative/qualitative information on the uptake and distribution of NM in cells.As NM have a high surface-to-volume ratio and possess specific physical-chemical properties, which make them prone to interfere with various compounds and certain types of toxicity tests, potential interferences and appropriate controls are introduced. Furthermore, different types of dose metrics, which is still a strongly debated issue in nanotoxicology, are highlighted. We also consider laboratory safety regarding NM handling and disposal.
Collapse
Affiliation(s)
- Alexandra Kroll
- Department of Environmental Toxicology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | | |
Collapse
|
91
|
Fischer BB, Roffler S, Eggen RIL. Multiple stressor effects of predation by rotifers and herbicide pollution on different Chlamydomonas strains and potential impacts on population dynamics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2832-2840. [PMID: 22996994 DOI: 10.1002/etc.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/10/2012] [Accepted: 08/11/2012] [Indexed: 06/01/2023]
Abstract
Environmental factors can interact with the effects of chemical pollutants on natural systems by inducing multiple stressor effects in individual organisms as well as by altering selection pressure on tolerant strains in heterogeneous populations. Predation is a stressful environmental factor relevant for many species. Therefore, the impact of predation by the rotifer Brachionus calyciflorus on tolerance of eight genetically different strains of the green alga Chlamydomonas reinhardtii to simultaneous exposure to each of the three herbicides (diuron, paraquat, and S-metolachlor) was tested. Interactions of combined stressors were analyzed based on the independent action model; additive, synergistic, and antagonistic effects of the combined exposure could be detected depending on the herbicide and strain tested. If cultures were acclimated (pre-exposed) to one stressor, tolerance to the second stressor could be increased. This indicates that physiological changes can induce cotolerance of predation-exposed algae to herbicides and of herbicide-treated algae to predation depending on the combination of stressors. The strain-specific differences in multiple stressor effects also changed the correlation of strains' tolerances to individual stressors determined during combined and single-stressor exposure. Changes in cotolerance to stressors affect selection pressure and population dynamics during long-term exposure. This shows that predation stress can have adverse effects on the toxicity of chemical pollutants to microalgae on the organism and population levels.
Collapse
Affiliation(s)
- Beat B Fischer
- Department of Environmental Toxicology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | | | | |
Collapse
|
92
|
Hyka P, Lickova S, Přibyl P, Melzoch K, Kovar K. Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol Adv 2012; 31:2-16. [PMID: 22561949 DOI: 10.1016/j.biotechadv.2012.04.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 01/24/2023]
Abstract
The current interest in microalgae as a sustainable source of next generation biofuels and other valuable substances is driving exploration of their use as unique biotechnological production systems. To design and optimise appropriate production strategies, the behaviour of particular microalgal species should be well characterised under different culture conditions. Thus, flow cytometric (FCM) methods, which are already well established in environmental and toxicological studies of microalgae, are also useful for analysing the physiological state of microalgae, and have the potential to contribute to the rapid development of feasible bioprocesses. These methods are commonly based on the examination of intrinsic features of individual cells within a population (such as autofluorescence or size). Cells possessing the desired physiological or morphological features, which are detectable with or without fluorescent staining, are counted or isolated (sorted) using an FCM device. The options for implementation of FCM in the development of biotechnological processes detailed in this review are (i) analysing the chemical composition of biomass, (ii) monitoring cellular enzyme activity and cell viability, and (iii) sorting cells to isolate those overproducing the target compound or for the preparation of axenic cultures.
Collapse
Affiliation(s)
- P Hyka
- Institute of Biotechnology, Zurich University of Applied Sciences (ZHAW), Campus Grüental, CH-8820 Wädenswil, Switzerland
| | | | | | | | | |
Collapse
|
93
|
Nestler H, Groh KJ, Schönenberger R, Behra R, Schirmer K, Eggen RIL, Suter MJF. Multiple-endpoint assay provides a detailed mechanistic view of responses to herbicide exposure in Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 110-111:214-224. [PMID: 22357416 DOI: 10.1016/j.aquatox.2012.01.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 05/31/2023]
Abstract
The release of herbicides into the aquatic environment raises concerns about potential detrimental effects on ecologically important non-target species, such as unicellular algae, necessitating ecotoxicological risk assessment. Algal toxicity tests based on growth, a commonly assessed endpoint, are integrative, and hence do not provide information about underlying toxic mechanisms and effects. This limitation may be overcome by measuring more specific biochemical and physiological endpoints. In the present work, we developed and applied a novel multiple-endpoint assay, and analyzed the effects of the herbicides paraquat, diuron and norflurazon, each representing a specific mechanism of toxic action, on the single celled green alga Chlamydomonas reinhardtii. The endpoints added to assessment of growth were pigment content, maximum and effective photosystem II quantum yield, ATP content, esterase and oxidative activity. All parameters were measured at 2, 6 and 24h of exposure, except for growth and pigment content, which were determined after 6 and 24h only. Effective concentrations causing 50% of response (EC50s) and lowest observable effect concentrations (LOECs) were determined for all endpoints and exposure durations where possible. The assay provided a detailed picture of the concentration- and time-dependent development of effects elicited by the analyzed herbicides, thus improving the understanding of the underlying toxic mechanisms. Furthermore, the response patterns were unique to the respective herbicide and reflected the different mechanisms of toxicity. The comparison of the endpoint responses and sensitivities revealed that several physiological and biochemical parameters reacted earlier or stronger to disturbances than growth. Overall, the presented multiple-endpoint assay constitutes a promising basis for investigating stressor and toxicant effects in green algae.
Collapse
Affiliation(s)
- Holger Nestler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland
| | | | | | | | | | | | | |
Collapse
|
94
|
Zampella G, Neupane KP, De Gioia L, Pecoraro VL. The importance of stereochemically active lone pairs for influencing Pb(II) and As(III) protein binding. Chemistry 2012; 18:2040-50. [PMID: 22231489 PMCID: PMC3357087 DOI: 10.1002/chem.201102786] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 10/14/2022]
Abstract
The toxicity of heavy metals, which is associated with the high affinity of the metals for thiolate rich proteins, constitutes a problem worldwide. However, despite this tremendous toxicity concern, the binding mode of As(III) and Pb(II) to proteins is poorly understood. To clarify the requirements for toxic metal binding to metalloregulatory sensor proteins such as As(III) in ArsR/ArsD and Pb(II) in PbrR or replacing Zn(II) in δ-aminolevulinc acid dehydratase (ALAD), we have employed computational and experimental methods examining the binding of these heavy metals to designed peptide models. The computational results show that the mode of coordination of As(III) and Pb(II) is greatly influenced by the steric bulk within the second coordination environment of the metal. The proposed basis of this selectivity is the large size of the ion and, most important, the influence of the stereochemically active lone pair in hemidirected complexes of the metal ion as being crucial. The experimental data show that switching a bulky leucine layer above the metal binding site by a smaller alanine residue enhances the Pb(II) binding affinity by a factor of five, thus supporting experimentally the hypothesis of lone pair steric hindrance. These complementary approaches demonstrate the potential importance of a stereochemically active lone pair as a metal recognition mode in proteins and, specifically, how the second coordination sphere environment affects the affinity and selectivity of protein targets by certain toxic ions.
Collapse
Affiliation(s)
- Giuseppe Zampella
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy), Tel: + 39 02 64483416, Fax: +39 02 64483478,
| | - Kosh P. Neupane
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA), Tel.: +1 734 763 1519, Fax: +1 734 936 7628,
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milan (Italy), Tel: + 39 02 64483416, Fax: +39 02 64483478,
| | - Vincent L. Pecoraro
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA), Tel.: +1 734 763 1519, Fax: +1 734 936 7628,
| |
Collapse
|
95
|
Wang NX, Zhang XY, Wu J, Xiao L, Yin Y, Miao AJ, Ji R, Yang LY. Effects of microcystin-LR on the metal bioaccumulation and toxicity in Chlamydomonas reinhardtii. WATER RESEARCH 2012; 46:369-377. [PMID: 22078256 DOI: 10.1016/j.watres.2011.10.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/25/2011] [Accepted: 10/17/2011] [Indexed: 05/31/2023]
Abstract
Microcystin-LR (MC-LR) is one of the most notorious toxins liberated from cyanobacteria in eutrophicated freshwater ecosystems. Its effects on the bioaccumulation and toxicity of Cd(2+), CrO(4)(2-), Cu(2+), and Zn(2+) in a green alga Chlamydomonas reinhardtii were investigated in the present study. The metal bioaccumulation in the alga was unaffected by MC-LR. The surface-adsorbed and intracellular metal concentrations in the treatments with and without the addition of MC-LR could be well simulated by a single Freundlich isotherm for each metal with their accumulation ability following the order of Cu(2+) > Cd(2+) > Zn(2+) > CrO(4)(2-). The bioavailable metal concentrations measured by diffusion gradients in thin-films remained unchanged when MC-LR was applied. Accordingly, the growth of C. reinhardtii was similarly inhibited at the same metal concentration regardless of the addition of MC-LR. The metal toxicity could also be well delineated with the classic free ion activity and biotic ligand models. However, the intracellular metal concentration was found to have the best predictability suggesting its more direct relationship with metal toxicity. Metal exposure induced the accumulation of MC-LR in the alga, which was leveled off at high metal levels. The underlying uptake mechanisms need to be further examined.
Collapse
Affiliation(s)
- Ning-Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210093, PR China
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Bräutigam A, Schaumlöffel D, Preud'homme H, Thondorf I, Wesenberg D. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2011; 34:2071-2082. [PMID: 21819413 DOI: 10.1111/j.1365-3040.2011.02404.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chlamydomonas reinhardtii is a common model organism for investigation of metal stress. This green alga produces phytochelatins in the presence of metal ions. The influence of cadmium is of main interest, because it is a strong activator of phytochelatin synthase. Cell wall bound and intracellular cadmium content was determined after exposition to 70 µm CdCl(2), showing the main portion of the metal outside the cell. Nevertheless, imported cadmium was sufficient to cause significant changes in thiolpeptide metabolism and its transcriptional regulation. Modern analytical approaches enable new insights into phytochelatin (PC) distribution. A new rapid and precise UPLC-MS method allowed high-throughput PC quantification in algal samples after 1, 4, 24 and 48 h cadmium stress. Initially, canonic PCs were synthesized in C. reinhardtii during cadmium exposition, but afterwards CysPCs became the major thiolpeptides. Thus, after 48 h the concentration of the PC-isoforms CysPC(2-3) and CysGSH attained between 105 and 199 nmol g(-1) fresh weight (FW), whereas the PC(2-3) concentrations were only 15 nmol g(-1) FW. The relative quantification of γ-glutamyl transpeptidase (γ-GT) mRNA suggests the generation of CysPCs by glutamate cleavage from canonic PCs by γ-GT. Furthermore, a homology model of C. reinhardtii phytochelatin synthase was constructed to verify the use of crystal structures from Anabaena sp. phytochelatin synthase (PCS) for docking studies with canonical PCs and CysPCs. From the difference in energy scores, we hypothesize that CysPC may prevent the synthesis of canonical PCs by blocking the binding pocket. Finally, possible physiological reasons for the high abundance of CysPC compared with their canonic precursors are discussed.
Collapse
Affiliation(s)
- Anja Bräutigam
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
97
|
Scheidegger C, Sigg L, Behra R. Characterization of lead induced metal-phytochelatin complexes in Chlamydomonas reinhardtii. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2546-52. [PMID: 21898554 DOI: 10.1002/etc.654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/21/2011] [Accepted: 07/25/2011] [Indexed: 05/23/2023]
Abstract
Accumulation of Pb and induction of phytochelatin synthesis were observed in Chlamydomonas reinhardtii upon Pb(II) exposure. Our aim was to examine whether Pb(II) is bound by phytochelatins (PCs) in C. reinhardtii and to examine formed complexes for their stoichiometry and composition. Metal-phytochelatin (Me-PC) complexes induced by Pb were isolated by size-exclusion chromatography in 13 collected fractions, which were analyzed for their PC and metal content by high-performance liquid chromatography and inductively coupled plasma mass spectrometry. A recovery of more than 90% of Pb from standard Pb-PC₂ complexes within the total volume of the size-exclusion column indicated the adequacy of the method for Pb-PC(n) complex separation and characterization. Phytochelatins were detected mainly in a molecular weight ranging from 1,000 to 5,300 daltons (Da), indicating the formation of complexes with various stoichiometries. Approximately 72% of total PC₂ eluted in the range from 1,000 to 1,600 Da, and 80% of total PC₃ eluted in the molecular weight range from 1,600 to 2,300 Da. The distribution of Cu, Zn, and Pb showed that more than 70% of these metals were associated with the high-molecular-weight fractions. Copper, zinc, and lead were also observed in PC-containing fractions, suggesting the formation of various Me-PC complexes. The results of the present study indicate that the role of PCs in Pb detoxification is minor, because only 13% of total Pb was associated with PCs.
Collapse
Affiliation(s)
- Christian Scheidegger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | | | |
Collapse
|
98
|
Petit AN, Debenest T, Eullaffroy P, Gagné F. Effects of a cationic PAMAM dendrimer on photosynthesis and ROS production of Chlamydomonas reinhardtii. Nanotoxicology 2011; 6:315-26. [PMID: 21554014 DOI: 10.3109/17435390.2011.579628] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Poly(amidoamine) (PAMAM) dendrimers hold great promises for biomedicine. This study sought to examine the toxicity of generation 4 (G4) cationic PAMAM dendrimer to the green microalga, Chlamydomonas reinhardtii, using physiological and molecular biomarkers. Results revealed that the G4 dendrimer at 15 and 25 nM stimulated the photosynthetic process and the production of reactive oxygen species (ROS) in algae. However, the over-production of ROS did not induce the expression of antioxidant enzyme genes, catalase and glutathione peroxidase. In addition, genes encoding light-harvesting proteins (lhca and lhcb), a ferredoxin (fdx) and an oxygen-evolving enhancer protein (psb) involved in photosynthesis were repressed after treatment. Nevertheless, the expression of the lhcbm9 gene, encoding a major light harvesting polypeptide, was increased. These results suggest that the strong modulation of photosynthesis induced by the dendrimer could lead to elevated ROS levels in microalgae.
Collapse
Affiliation(s)
- Anne-Noëlle Petit
- Environment Canada, Fluvial Ecosystem Research, Aquatic Ecosystem Protection Division, 105 McGill, Montréal, QC, Canada.
| | | | | | | |
Collapse
|
99
|
Scheidegger C, Behra R, Sigg L. Phytochelatin formation kinetics and toxic effects in the freshwater alga Chlamydomonas reinhardtii upon short- and long-term exposure to lead(II). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:423-429. [PMID: 21216353 DOI: 10.1016/j.aquatox.2010.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/16/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
Phytochelatins (PC) are metal-binding ligands synthesized by algae in response to elevated concentrations of various metals, such as Pb. Kinetics of PC synthesis and Pb accumulation in Chlamydomonas reinhardtii were investigated as a function of [Pb(2+)]=10(-11)-10(-7)M (pPb11-pPb7.1) in the exposure medium for up to 6h. The role of PC in Pb detoxification was explored by relating PC synthesis to the effects of Pb on growth and photosynthetic yield upon exposure to pPb9 and pPb8.3 for up to 72h. Pb accumulation increased with increasing [Pb(2+)], reaching a maximum concentration of 596±77amol/cell (intracellular concentration 2.98mM) at pPb7.1. Low concentrations of PC(2)-PC(4) were present in C. reinhardtii grown in control media without Pb addition. Upon short-term exposure, PC(2) and PC(3) synthesis was induced within minutes at [Pb(2+)]≥pPb8 and PC(4) synthesis after a lag phase at pPb7.1. Cellular PC(2)-PC(4) concentrations increased with time over 6h and with increasing [Pb(2+)]. PC concentrations after 6h exposure to pPb7.1 were 28.5±0.2amol/cell (142μM) PC(2), 2.8±0.05amol/cell (14μM) PC(3) and 0.30±0.01amol/cell (1.5μM) PC(4). Upon long-term exposure, induction of PC synthesis was detected at pPb9 and synthesis of PCs with a higher degree of polymerization was observed (PC(5)). PC concentrations were lower than intracellular Pb and were thus not present at sufficiently high concentrations to immobilize accumulated Pb. Inhibition of photosynthesis and growth up to 100% was observed upon long-term exposure, whereas in short-term experiments no inhibitory effects were detected.
Collapse
Affiliation(s)
- Christian Scheidegger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, 8600 Duebendorf, Switzerland.
| | | | | |
Collapse
|
100
|
Ševců A, El-Temsah YS, Joner EJ, Černík M. Oxidative Stress Induced in Microorganisms by Zero-valent Iron Nanoparticles. Microbes Environ 2011; 26:271-81. [DOI: 10.1264/jsme2.me11126] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec
| | | | | | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec
| |
Collapse
|