51
|
Farr OM, Mantzoros CS. Sleep apnea in relation to metabolism: An urgent need to study underlying mechanisms and to develop novel treatments for this unmet clinical need. Metabolism 2017; 69:207-210. [PMID: 28190524 PMCID: PMC5865071 DOI: 10.1016/j.metabol.2017.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA.
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| |
Collapse
|
52
|
Esteves JV, Enguita FJ, Machado UF. MicroRNAs-Mediated Regulation of Skeletal Muscle GLUT4 Expression and Translocation in Insulin Resistance. J Diabetes Res 2017; 2017:7267910. [PMID: 28428964 PMCID: PMC5385897 DOI: 10.1155/2017/7267910] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
The solute carrier family 2 facilitated glucose transporter member 4 (GLUT4) plays a key role in the insulin-induced glucose uptake by muscle and adipose tissues. In prediabetes and diabetes, GLUT4 expression/translocation has been detected as reduced, participating in mechanisms that impair glycemic control. Recently, a class of short endogenous noncoding RNAs named microRNAs (miRNAs) has been increasingly described as involved in the posttranscriptional epigenetic regulation of gene expression. The present review focuses on miRNAs potentially involved in the expression of GLUT4 expression, and proteins related to GLUT4 and translocation in skeletal muscle, seeking to correlate them with insulin resistance and diabetes. So far, miR-21a-5p, miR-29a-3p, miR-29c-3p, miR-93-5p, miR-106b-5p, miR-133a-3p, miR-133b-3p, miR-222-3p, and miR-223-3p have been reported to directly and/or indirectly regulate the GLUT4 expression; and their expression is altered under diabetes-related conditions. Besides, some miRNAs that have been linked to the expression of proteins involved in GLUT4 translocation machinery in muscle could also impact glucose uptake. That makes these miRNAs promising targets for preventive and/or therapeutic approaches, which could improve glycemic control, thus deserving future new investigations.
Collapse
Affiliation(s)
- João Victor Esteves
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Francisco Javier Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
- *Ubiratan Fabres Machado:
| |
Collapse
|
53
|
Mukaida S, Evans BA, Bengtsson T, Hutchinson DS, Sato M. Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacol Res 2016; 116:87-92. [PMID: 28025104 DOI: 10.1016/j.phrs.2016.12.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/12/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Uptake of glucose into skeletal muscle and adipose tissue plays a vital role in metabolism and energy balance. Insulin released from β-islet cells of the pancreas promotes glucose uptake in these target tissues by stimulating translocation of GLUT4 transporters to the cell surface. This process is complex, involving signaling proteins including the mechanistic (or mammalian) target of rapamycin (mTOR) and Akt that intersect with multiple pathways controlling cell survival, growth and proliferation. mTOR exists in two forms, mTOR complex 1 (mTORC1), and mTOR complex 2 (mTORC2). mTORC1 has been intensively studied, acting as a key regulator of protein and lipid synthesis that integrates cellular nutrient availability and energy balance. Studies on mTORC2 have focused largely on its capacity to activate Akt by phosphorylation at Ser473, however recent findings demonstrate a novel role for mTORC2 in cellular glucose uptake. For example, agonists acting at β2-adrenoceptors (ARs) in skeletal muscle or β3-ARs in brown adipose tissue increase glucose uptake in vitro and in vivo via mechanisms dependent on mTORC2 but not Akt. In this review, we will focus on the signaling pathways downstream of β-ARs that promote glucose uptake in skeletal muscle and brown adipocytes, and will highlight how the insulin and adrenergic pathways converge and interact in these cells. The identification of insulin-independent mechanisms that promote glucose uptake should facilitate novel treatment strategies for metabolic disease.
Collapse
Affiliation(s)
- Saori Mukaida
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Masaaki Sato
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
54
|
Zhou Z, Menzel F, Benninghoff T, Chadt A, Du C, Holman GD, Al-Hasani H. Rab28 is a TBC1D1/TBC1D4 substrate involved in GLUT4 trafficking. FEBS Lett 2016; 591:88-96. [PMID: 27929607 DOI: 10.1002/1873-3468.12509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023]
Abstract
The Rab-GTPase-activating proteins (GAPs) TBC1D1 and TBC1D4 play important roles in the insulin-stimulated translocation of the glucose transporter GLUT4 from intracellular vesicles to the plasma membrane in muscle cells and adipocytes. We identified Rab28 as a substrate for the GAP domains of both TBC1D1 and TBC1D4 in vitro. Rab28 is expressed in adipose cells and skeletal muscle, and its GTP-binding state is acutely regulated by insulin. We found that in intact isolated mouse skeletal muscle, siRNA-mediated knockdown of Rab28 decreases basal glucose uptake. Conversely, in primary rat adipose cells, overexpression of Rab28-Q72L, a constitutively active mutant, increases basal cell surface levels of an epitope-tagged HA-GLUT4. Our results indicate that Rab28 is a novel GTPase involved in the intracellular retention of GLUT4 in insulin target cells.
Collapse
Affiliation(s)
- Zhou Zhou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | | | - Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| | - Chen Du
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich Heine University, Düsseldorf, Germany
| | | | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research (DZD), München, Neuherberg, Germany
| |
Collapse
|
55
|
Tu W, Ye J, Wang ZJ. Embryonic liver fordin is involved in glucose glycolysis of hepatic stellate cell by regulating PI3K/Akt signaling. World J Gastroenterol 2016; 22:8519-8527. [PMID: 27784964 PMCID: PMC5064033 DOI: 10.3748/wjg.v22.i38.8519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/27/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of embryonic liver fordin (ELF) in liver fibrosis by regulating hepatic stellate cells (HSCs) glucose glycolysis.
METHODS The expression of ELF and the glucose glycolysis-related proteins were evaluated in activated HSCs. siRNA was used to silence ELF expression in activated HSCs in vitro and the subsequent changes in PI3K/Akt signaling and glucose glycolysis-related proteins were observed.
RESULTS The expression of ELF increased remarkably in HSCs of the fibrosis mouse model and HSCs that were cultured for 3 wk in vitro. Glucose glycolysis-related proteins showed an obvious increase in the activated HSCs, such as phosphofructokinase, platelet and glucose transporter 1. ELF-siRNA, which perfectly silenced the expression of ELF in activated HSCs, led to the induction of glucose glycolysis-related proteins and extracellular matrix (ECM) components. Moreover, pAkt, which is an important downstream factor in PI3K/Akt signaling, showed a significant change in response to the ELF silencing. The expression of glucose glycolysis-related proteins and ECM components decreased remarkably when the PI3K/Akt signaling was blocked by Ly294002 in the activated HSCs.
CONCLUSION ELF is involved in HSC glucose glycolysis by regulating PI3K/Akt signaling.
Collapse
|
56
|
Li W, Liang X, Zeng Z, Yu K, Zhan S, Su Q, Yan Y, Mansai H, Qiao W, Yang Q, Qi Z, Huang Z. Simvastatin inhibits glucose uptake activity and GLUT4 translocation through suppression of the IR/IRS-1/Akt signaling in C2C12 myotubes. Biomed Pharmacother 2016; 83:194-200. [PMID: 27470565 DOI: 10.1016/j.biopha.2016.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/17/2016] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Simvastatin,a 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitor, is clinically used in the prevention and treatment of cardiovascular diseases. Numerous studies demonstrate that statins increase the risk of new-onset diabetes in long-term therapy, but mechanisms underpinning this effect are still unclear. Here, we investigated whether simvastatin inhibited the glucose uptake activity and the underlying mechanisms in C2C12 myotubes. Our studies showed that simvastatin significantly inhibited glucose uptake activity and GLUT4 translocation, whereas the effect was reversible with mevalonolactone (ML), which acts as an intermediate of cholesterol synthesis pathway. Mechanistically, the inhibition of glucose uptake and GLUT4 translocation elicited by simvastatin were associated with the suppression of the insulin receptor (IR)/IR substrate (IRS)/Akt signaling cascade. Simvastatin suppressed the phosphorylation of IR, IRS-1 and Akt, and total expression of IR or IRS-1, but did not affect Akt. Furthermore, simvastatin decreased Rac1 GTP binding. In conclusion, our findings indicate that simvastatin suppresses glucose uptake activity and GLUT4 translocation via IR-dependent IRS-1/PI3K/Akt pathway. These results provide an important new insight into the mechanism of statins on insulin sensitivity which may be associated with new-onset diabetes.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Xiaojing Liang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Zhipeng Zeng
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China; Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kaizhen Yu
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Shaopeng Zhan
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Qiang Su
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Yinzhi Yan
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Huseen Mansai
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Weitong Qiao
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Qi Yang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.
| | - Zhengrong Huang
- Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, China.
| |
Collapse
|
57
|
Domanova W, Krycer J, Chaudhuri R, Yang P, Vafaee F, Fazakerley D, Humphrey S, James D, Kuncic Z. Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies. PLoS One 2016; 11:e0157763. [PMID: 27336693 PMCID: PMC4918924 DOI: 10.1371/journal.pone.0157763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/03/2016] [Indexed: 01/04/2023] Open
Abstract
In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds), making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs) is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE) in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same linear consensus motif, and provide evidence suggesting IRS-1 S265 as a novel Akt site. KSR-LIVE is an open-access algorithm that allows users to dissect phosphorylation signaling within a specific biological context, with the potential to be included in the standard analysis workflow for studying temporal high-throughput signal transduction data.
Collapse
Affiliation(s)
- Westa Domanova
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - James Krycer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rima Chaudhuri
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Pengyi Yang
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, United States of America
| | - Fatemeh Vafaee
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Daniel Fazakerley
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sean Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried, 82152, Germany
| | - David James
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zdenka Kuncic
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
58
|
Di Camillo B, Carlon A, Eduati F, Toffolo GM. A rule-based model of insulin signalling pathway. BMC SYSTEMS BIOLOGY 2016; 10:38. [PMID: 27245161 PMCID: PMC4888568 DOI: 10.1186/s12918-016-0281-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 05/12/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND The insulin signalling pathway (ISP) is an important biochemical pathway, which regulates some fundamental biological functions such as glucose and lipid metabolism, protein synthesis, cell proliferation, cell differentiation and apoptosis. In the last years, different mathematical models based on ordinary differential equations have been proposed in the literature to describe specific features of the ISP, thus providing a description of the behaviour of the system and its emerging properties. However, protein-protein interactions potentially generate a multiplicity of distinct chemical species, an issue referred to as "combinatorial complexity", which results in defining a high number of state variables equal to the number of possible protein modifications. This often leads to complex, error prone and difficult to handle model definitions. RESULTS In this work, we present a comprehensive model of the ISP, which integrates three models previously available in the literature by using the rule-based modelling (RBM) approach. RBM allows for a simple description of a number of signalling pathway characteristics, such as the phosphorylation of signalling proteins at multiple sites with different effects, the simultaneous interaction of many molecules of the signalling pathways with several binding partners, and the information about subcellular localization where reactions take place. Thanks to its modularity, it also allows an easy integration of different pathways. After RBM specification, we simulated the dynamic behaviour of the ISP model and validated it using experimental data. We the examined the predicted profiles of all the active species and clustered them in four clusters according to their dynamic behaviour. Finally, we used parametric sensitivity analysis to show the role of negative feedback loops in controlling the robustness of the system. CONCLUSIONS The presented ISP model is a powerful tool for data simulation and can be used in combination with experimental approaches to guide the experimental design. The model is available at http://sysbiobig.dei.unipd.it/ was submitted to Biomodels Database ( https://www.ebi.ac.uk/biomodels-main/ # MODEL 1604100005).
Collapse
Affiliation(s)
- Barbara Di Camillo
- Department of Information Engineering, University of Padova, Via Gradenigo 6A, Padova, 35131, Italy
| | - Azzurra Carlon
- Department of Information Engineering, University of Padova, Via Gradenigo 6A, Padova, 35131, Italy.,Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Federica Eduati
- Department of Information Engineering, University of Padova, Via Gradenigo 6A, Padova, 35131, Italy.,European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Cambridge, UK
| | - Gianna Maria Toffolo
- Department of Information Engineering, University of Padova, Via Gradenigo 6A, Padova, 35131, Italy.
| |
Collapse
|
59
|
Moore CEJ, Pickford J, Cagampang FR, Stead RL, Tian S, Zhao X, Tang X, Byrne CD, Proud CG. MNK1 and MNK2 mediate adverse effects of high-fat feeding in distinct ways. Sci Rep 2016; 6:23476. [PMID: 27087055 PMCID: PMC4834573 DOI: 10.1038/srep23476] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
Abstract
The MAP kinase-interacting kinases (MNK1 and MNK2) are non-essential enzymes which are activated by MAP kinases. They are implicated in controlling protein synthesis. Here we show that mice in which the expression of either MNK1 or MNK2 has been knocked out (KO) are protected against adverse effects of high-fat feeding, and in distinct ways. High-fat diet (HFD)-fed MNK2-KO show less weight gain than wild-type animals, and improved glucose tolerance, better insulin sensitivity and markedly diminished adipose tissue inflammation. This suggests MNK2 plays a role in adipogenesis and/or lipogenesis and in macrophage biology. MNK1-KO/HFD mice show better glucose tolerance and insulin sensitivity, but gain weight and show similar adipose inflammation to WT animals. These data suggest MNK1 participates in mediating HFD-induced insulin resistance. Our findings reveal distinct roles for the MNKs in a novel area of disease biology, metabolic dysfunction, and suggests they are potential new targets for managing metabolic disease.
Collapse
Affiliation(s)
- C E J Moore
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,Nutrition and Metabolism, South Australian Health &Medical Research Institute, North Terrace, Adelaide, SA5000, Australia
| | - J Pickford
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - F R Cagampang
- Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton SO16 6YD, United Kingdom
| | - R L Stead
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - S Tian
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,Nutrition and Metabolism, South Australian Health &Medical Research Institute, North Terrace, Adelaide, SA5000, Australia
| | - X Zhao
- Nutrition and Metabolism, South Australian Health &Medical Research Institute, North Terrace, Adelaide, SA5000, Australia
| | - X Tang
- Department of Biochemistry &Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 China
| | - C D Byrne
- Nutrition and Metabolism, University of Southampton, Faculty of Medicine, Southampton SO16 6YD, United Kingdom.,Southampton National Institute for Health Research, Biomedical Research Centre, University Hospital, Southampton, UK
| | - C G Proud
- Centre for Biological Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,Nutrition and Metabolism, South Australian Health &Medical Research Institute, North Terrace, Adelaide, SA5000, Australia.,School of Biological Sciences, University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
60
|
Liu Y, Li X, Xie C, Luo X, Bao Y, Wu B, Hu Y, Zhong Z, Liu C, Li M. Prevention Effects and Possible Molecular Mechanism of Mulberry Leaf Extract and its Formulation on Rats with Insulin-Insensitivity. PLoS One 2016; 11:e0152728. [PMID: 27054886 PMCID: PMC4824359 DOI: 10.1371/journal.pone.0152728] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022] Open
Abstract
For centuries, mulberry leaf has been used in traditional Chinese medicine for the treatment of diabetes. This study aims to test the prevention effects of a proprietary mulberry leaf extract (MLE) and a formula consisting of MLE, fenugreek seed extract, and cinnamon cassia extract (MLEF) on insulin resistance development in animals. MLE was refined to contain 5% 1-deoxynojirimycin by weight. MLEF was formulated by mixing MLE with cinnamon cassia extract and fenugreek seed extract at a 6:5:3 ratio (by weight). First, the acute toxicity effects of MLE on ICR mice were examined at 5 g/kg BW dose. Second, two groups of normal rats were administrated with water or 150 mg/kg BW MLE per day for 29 days to evaluate MLE’s effect on normal animals. Third, to examine the effects of MLE and MLEF on model animals, sixty SD rats were divided into five groups, namely, (1) normal, (2) model, (3) high-dose MLE (75 mg/kg BW) treatment; (4) low-dose MLE (15 mg/kg BW) treatment; and (5) MLEF (35 mg/kg BW) treatment. On the second week, rats in groups (2)-(5) were switched to high-energy diet for three weeks. Afterward, the rats were injected (ip) with a single dose of 105 mg/kg BW alloxan. After four more days, fasting blood glucose, post-prandial blood glucose, serum insulin, cholesterol, and triglyceride levels were measured. Last, liver lysates from animals were screened with 650 antibodies for changes in the expression or phosphorylation levels of signaling proteins. The results were further validated by Western blot analysis. We found that the maximum tolerance dose of MLE was greater than 5 g/kg in mice. The MLE at a 150 mg/kg BW dose showed no effect on fast blood glucose levels in normal rats. The MLE at a 75 mg/kg BW dose and MLEF at a 35 mg/kg BW dose, significantly (p < 0.05) reduced fast blood glucose levels in rats with impaired glucose and lipid metabolism. In total, 34 proteins with significant changes in expression and phosphorylation levels were identified. The changes of JNK, IRS1, and PDK1 were confirmed by western blot analysis. In conclusion, this study demonstrated the potential protective effects of MLE and MLEF against hyperglycemia induced by high-energy diet and toxic chemicals in rats for the first time. The most likely mechanism is the promotion of IRS1 phosphorylation, which leads to insulin sensitivity restoration.
Collapse
Affiliation(s)
- Yan Liu
- Research and Development Center of Amway (China), Shanghai, China
| | - Xuemei Li
- Beijing Institute for Drug Control (Beijing Center For Health Food And Cosmetics Control), Beijing, China
| | - Chen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiuzhen Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | | | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yuchi Hu
- Beijing Institute for Drug Control (Beijing Center For Health Food And Cosmetics Control), Beijing, China
| | - Zhong Zhong
- Botanic Century (Beijing) Co., Ltd, Beijing, China
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151 Malianwa North Road, Haidian District, Beijing 100193, China
- * E-mail: (CL); (MJL)
| | - MinJie Li
- Research and Development Center of Amway (China), Shanghai, China
- * E-mail: (CL); (MJL)
| |
Collapse
|
61
|
The Akt switch model: Is location sufficient? J Theor Biol 2016; 398:103-11. [PMID: 26992575 DOI: 10.1016/j.jtbi.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 12/18/2022]
Abstract
Akt/PKB is a biochemical regulator that functions as an important cross-talk node between several signalling pathways in the mammalian cell. In particular, Akt is a key mediator of glucose transport in response to insulin. The phosphorylation (activation) of only a small percentage of the Akt pool of insulin-sensitive cells results in maximal translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM). This enables the diffusion of glucose into the cell. The dysregulation of Akt signalling is associated with the development of diabetes, cancer and cardiovascular disease. Akt is synthesised in the cytoplasm in the inactive state. Under the influence of insulin, it moves to the PM, where it is phosphorylated to form pAkt. Although phosphorylation occurs only at the PM, pAkt is found in many cellular locations, including the PM, the cytoplasm, and the nucleus. Indeed, the spatial distribution of pAkt within the cell appears to be an important determinant of downstream regulation. Here we present a simple, linear, four-compartment ordinary differential equation (ODE) model of Akt activation that tracks both the biochemical state and the physical location of Akt. This model embodies the main features of the activation of this important cross-talk node and is consistent with the experimental data. In particular, it allows different downstream signalling motifs without invoking separate feedback pathways. Moreover, the model is computationally tractable, readily analysed, and elucidates some of the apparent anomalies in insulin signalling via Akt.
Collapse
|
62
|
Maternal periodontitis decreases plasma membrane GLUT4 content in skeletal muscle of adult offspring. Life Sci 2016; 148:194-200. [DOI: 10.1016/j.lfs.2016.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
|
63
|
Regulation of Carbohydrate Metabolism, Lipid Metabolism, and Protein Metabolism by AMPK. EXPERIENTIA SUPPLEMENTUM (2012) 2016; 107:23-43. [PMID: 27812975 DOI: 10.1007/978-3-319-43589-3_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes AMPK function in the regulation of substrate and energy metabolism with the main emphasis on carbohydrate and lipid metabolism, protein turnover, mitochondrial biogenesis, and whole-body energy homeostasis. AMPK acts as whole-body energy sensor and integrates different signaling pathway to meet both cellular and body energy requirements while inhibiting energy-consuming processes but also activating energy-producing ones. AMPK mainly promotes glucose and fatty acid catabolism, whereas it prevents protein, glycogen, and fatty acid synthesis.
Collapse
|
64
|
Cartee GD. Mechanisms for greater insulin-stimulated glucose uptake in normal and insulin-resistant skeletal muscle after acute exercise. Am J Physiol Endocrinol Metab 2015; 309:E949-59. [PMID: 26487009 PMCID: PMC4816200 DOI: 10.1152/ajpendo.00416.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/14/2015] [Indexed: 02/08/2023]
Abstract
Enhanced skeletal muscle and whole body insulin sensitivity can persist for up to 24-48 h after one exercise session. This review focuses on potential mechanisms for greater postexercise and insulin-stimulated glucose uptake (ISGU) by muscle in individuals with normal or reduced insulin sensitivity. A model is proposed for the processes underlying this improvement; i.e., triggers initiate events that activate subsequent memory elements, which store information that is relayed to mediators, which translate memory into action by controlling an end effector that directly executes increased insulin-stimulated glucose transport. Several candidates are potential triggers or memory elements, but none have been conclusively verified. Regarding potential mediators in both normal and insulin-resistant individuals, elevated postexercise ISGU with a physiological insulin dose coincides with greater Akt substrate of 160 kDa (AS160) phosphorylation without improved proximal insulin signaling at steps from insulin receptor binding to Akt activity. Causality remains to be established between greater AS160 phosphorylation and improved ISGU. The end effector for normal individuals is increased GLUT4 translocation, but this remains untested for insulin-resistant individuals postexercise. Following exercise, insulin-resistant individuals can attain ISGU values similar to nonexercising healthy controls, but after a comparable exercise protocol performed by both groups, ISGU for the insulin-resistant group has been consistently reported to be below postexercise values for the healthy group. Further research is required to fully understand the mechanisms underlying the improved postexercise ISGU in individuals with normal or subnormal insulin sensitivity and to explain the disparity between these groups after similar exercise.
Collapse
Affiliation(s)
- Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, Department of Molecular and Integrative Physiology, and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
65
|
Humphrey SJ, James DE, Mann M. Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab 2015; 26:676-687. [PMID: 26498855 DOI: 10.1016/j.tem.2015.09.013] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/26/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
Metabolism research is undergoing a renaissance because many diseases are increasingly recognized as being characterized by perturbations in intracellular metabolic regulation. Metabolic changes can be conferred through changes to the expression of metabolic enzymes, the concentrations of substrates or products that govern reaction kinetics, or post-translational modification (PTM) of the proteins that facilitate these reactions. On the 60th anniversary since its discovery, reversible protein phosphorylation is widely appreciated as an essential PTM regulating metabolism. With the ability to quantitatively measure dynamic changes in protein phosphorylation on a global scale - hereafter referred to as phosphoproteomics - we are now entering a new era in metabolism research, with mass spectrometry (MS)-based proteomics at the helm.
Collapse
Affiliation(s)
- Sean J Humphrey
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried 82152, Germany
| | - David E James
- Charles Perkins Centre, School of Molecular Bioscience, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Martinsried 82152, Germany.
| |
Collapse
|
66
|
van Haare J, Kooi ME, Vink H, Post MJ, van Teeffelen JWGE, Slenter J, Munts C, Cobelens H, Strijkers GJ, Koehn D, van Bilsen M. Early impairment of coronary microvascular perfusion capacity in rats on a high fat diet. Cardiovasc Diabetol 2015; 14:150. [PMID: 26576929 PMCID: PMC4650915 DOI: 10.1186/s12933-015-0312-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/06/2015] [Indexed: 02/05/2023] Open
Abstract
Background It remains to be established if, and to what extent, the coronary microcirculation becomes compromised during the development of obesity and insulin resistance. Recent studies suggest that changes in endothelial glycocalyx properties contribute to microvascular dysfunction under (pre-)diabetic conditions. Accordingly, early effects of diet-induced obesity on myocardial perfusion and function were studied in rats under baseline and hyperaemic conditions. Methods Rats were fed a high fat diet (HFD) for 6 weeks and myocardial microvascular perfusion was determined using first-pass perfusion MRI before and after adenosine infusion. The effect of HFD on microcirculatory properties was also assessed by sidestream darkfield (SDF) imaging of the gastrocnemius muscle. Results HFD-fed rats developed central obesity and insulin sensitivity was reduced as evidenced by the marked reduction in insulin-induced phosphorylation of Akt in both cardiac and gastrocnemius muscle. Early diet-induced obesity did not lead to hypertension or cardiac hypertrophic remodeling. In chow-fed, control rats a robust increase in cardiac microvascular perfusion was observed upon adenosine infusion (+40 %; p < 0.05). In contrast, the adenosine response was abrogated in rats on a HFD (+8 %; N.S.). HFD neither resulted in rarefaction or loss of glycocalyx integrity in skeletal muscle, nor reduced staining intensity of the glycocalyx of cardiac capillaries. Conclusions Alterations in coronary microcirculatory function as assessed by first-pass perfusion MRI represent one of the earliest obesity-related cardiac adaptations that can be assessed non-invasively. In this early stage of insulin resistance, disturbances in glycocalyx barrier properties appeared not to contribute to the observed changes in coronary microvascular function.
Collapse
Affiliation(s)
- Judith van Haare
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - M Eline Kooi
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Hans Vink
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Mark J Post
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Jurgen W G E van Teeffelen
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Jos Slenter
- Department of Radiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Chantal Munts
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Hanneke Cobelens
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Gustav J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, P.O. Box 22700, 1100 DE, Amsterdam, The Netherlands.
| | - Dennis Koehn
- Pie Medical Imaging, P.O. Box 1132, 6201 BC, Maastricht, The Netherlands.
| | - Marc van Bilsen
- Department of Physiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands. .,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
67
|
Sun Y, Jaldin-Fincati J, Liu Z, Bilan PJ, Klip A. A complex of Rab13 with MICAL-L2 and α-actinin-4 is essential for insulin-dependent GLUT4 exocytosis. Mol Biol Cell 2015; 27:75-89. [PMID: 26538022 PMCID: PMC4694764 DOI: 10.1091/mbc.e15-05-0319] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/26/2015] [Indexed: 01/11/2023] Open
Abstract
Rab13 is necessary for insulin-regulated GLUT4-vesicle exocytosis in muscle. Biochemical and imaging analyses provide evidence that activated Rab13 engages a scaffold protein MICAL-L2 to form a complex with Rab13 and α-actinin-4. Through GLUT4 interaction with α-actinin-4, GLUT4 vesicles are recruited to the muscle plasma membrane. Insulin promotes glucose uptake into skeletal muscle through recruitment of glucose transporter 4 (GLUT4) to the plasma membrane. Rab GTPases are molecular switches mobilizing intracellular vesicles, and Rab13 is necessary for insulin-regulated GLUT4–vesicle exocytic translocation in muscle cells. We show that Rab13 engages the scaffold protein MICAL-L2 in this process. RNA interference–mediated knockdown of MICAL-L2 or truncated MICAL-L2 (MICAL-L2-CT) impaired insulin-stimulated GLUT4 translocation. Insulin increased Rab13 binding to MICAL-L2, assessed by pull down and colocalization under confocal fluorescence and structured illumination microscopies. Association was also visualized at the cell periphery using TIRF microscopy. Insulin further increased binding of MICAL-L2 to α-actinin-4 (ACTN4), a protein involved in GLUT4 translocation. Rab13, MICAL-L2, and ACTN4 formed an insulin-dependent complex assessed by pull down and confocal fluorescence imaging. Of note, GLUT4 associated with the complex in response to insulin, requiring the ACTN4-binding domain in MICAL-L2. This was demonstrated by pull down with distinct fragments of MICAL-L2 and confocal and structured illumination microscopies. Finally, expression of MICAL-L2-CT abrogated the insulin-dependent colocalization of Rab13 with ACTN4 or Rab13 with GLUT4. Our findings suggest that MICAL-L2 is an effector of insulin-activated Rab13, which links to GLUT4 through ACTN4, localizing GLUT4 vesicles at the muscle cell periphery to enable their fusion with the membrane.
Collapse
Affiliation(s)
- Yi Sun
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Zhi Liu
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Philip J Bilan
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Amira Klip
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
68
|
Aftab MF, Afridi SK, Ghaffar S, Murtaza M, Khan M, Karim A, Khan KM, Waraich RS. A bis-Schiff base of isatin improves methylglyoxal mediated insulin resistance in skeletal muscle cells. Arch Pharm Res 2015:10.1007/s12272-015-0670-z. [PMID: 26519157 DOI: 10.1007/s12272-015-0670-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/03/2015] [Indexed: 10/22/2022]
Abstract
Methylglyoxal (MGO) is a highly reactive advanced glycation end products (AGEs) precursor and its abnormal accumulation causes damage to various tissues and organs. In our previous study, we synthesized a novel MGO inhibitor, MK-I-81, a bis-Schiff base derivative of isatin. In this study we demonstrate the mechanism of action of MK-I-81, on insulin resistance in skeletal muscle cells. MK-I-81 reduced AGEs formation and restored proximal insulin signaling by modulating IRS-1 phosphorylation. MK-I-81 also alleviated MGO mediated diminished distal insulin signaling by increasing protein kinase B and glycogen synthase kinase 3-beta phosphorylation. We also observed that MK-I-81 prevented reduced glucose uptake and glycogen synthesis induced by MGO in muscle cells. We found that the mechanism of action by which MK-I-81 reduced insulin resistance was suppression of production of MGO mediated ROS production in C2C12 cells. We evaluated deactivation of PKC-α and receptor for advanced glycation end products (RAGE) after treatment of cells with MK-I-81. MK-I-81 also reduced MGO mediated IRS-1, PKC-α and RAGE interaction in muscle cells. MK-I-81 also promoted nuclear factor erythroid 2-related factor-2 phosphorylation, heme oxygenase-1 and glyoxalase expression levels. We conclude that MK-I-81 can be a potential therapeutic target to address AGEs mediated insulin resistance. A novel Advanced Glycation End products (AGEs) inhibitor, MK-I-81 (a bis Schiff base of isatin), restored AGEs mediated down regulation of insulin signaling via modulating key molecules of proximal and distal insulin signaling. MK-I-81 also increased glucose uptake and glycogen synthesis in muscle cells. Novel bis-Schiff base of isatin showed significant antioxidant activity and also reduced receptor for AGEs (RAGE) expression and PKC-alpha activation therefore; MK-I-81 reduces AGEs induced insulin resistance.
Collapse
Affiliation(s)
- Meha Fatima Aftab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shabbir Khan Afridi
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Safina Ghaffar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Munazza Murtaza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Momin Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Aneela Karim
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khalid Mohammed Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rizwana Sanaullah Waraich
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
69
|
Garg N, Bademci G, Foster J, Sıklar Z, Berberoglu M, Tekin M. MORFAN Syndrome: An Infantile Hypoinsulinemic Hypoketotic Hypoglycemia Due to an AKT2 Mutation. J Pediatr 2015; 167:489-91. [PMID: 26003998 DOI: 10.1016/j.jpeds.2015.04.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/20/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
We report a child with hypoinsulinemic hypoglycemia and distinctive facies, with a diagnosis of the previously described MORFAN (Mental retardation, pre- and post-natal Overgrowth, Remarkable Face, and Acanthosis Nigricans) syndrome of unknown etiology. Whole-exome sequencing revealed a de novo AKT2 mutation. Although AKT2 has been implicated in four patients with hypoinsulinemic hypoglycemia, our report expands phenotypic spectrum to include MORFAN syndrome characteristics.
Collapse
Affiliation(s)
- Nisha Garg
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Guney Bademci
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Joseph Foster
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL
| | - Zeynep Sıklar
- Division of Pediatric Endocrinology, Ankara University School of Medicine, Ankara, Turkey
| | - Merih Berberoglu
- Division of Pediatric Endocrinology, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Tekin
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
70
|
Kee AJ, Yang L, Lucas CA, Greenberg MJ, Martel N, Leong GM, Hughes WE, Cooney GJ, James DE, Ostap EM, Han W, Gunning PW, Hardeman EC. An actin filament population defined by the tropomyosin Tpm3.1 regulates glucose uptake. Traffic 2015; 16:691-711. [PMID: 25783006 PMCID: PMC4945106 DOI: 10.1111/tra.12282] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
Actin has an ill-defined role in the trafficking of GLUT4 glucose transporter vesicles to the plasma membrane (PM). We have identified novel actin filaments defined by the tropomyosin Tpm3.1 at glucose uptake sites in white adipose tissue (WAT) and skeletal muscle. In Tpm 3.1-overexpressing mice, insulin-stimulated glucose uptake was increased; while Tpm3.1-null mice they were more sensitive to the impact of high-fat diet on glucose uptake. Inhibition of Tpm3.1 function in 3T3-L1 adipocytes abrogates insulin-stimulated GLUT4 translocation and glucose uptake. In WAT, the amount of filamentous actin is determined by Tpm3.1 levels and is paralleled by changes in exocyst component (sec8) and Myo1c levels. In adipocytes, Tpm3.1 localizes with MyoIIA, but not Myo1c, and it inhibits Myo1c binding to actin. We propose that Tpm3.1 determines the amount of cortical actin that can engage MyoIIA and generate contractile force, and in parallel limits the interaction of Myo1c with actin filaments. The balance between these actin filament populations may determine the efficiency of movement and/or fusion of GLUT4 vesicles with the PM.
Collapse
Affiliation(s)
- Anthony J. Kee
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Lingyan Yang
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Christine A. Lucas
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Michael J. Greenberg
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Nick Martel
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
| | - Gary M. Leong
- Obesity Research Centre, Institute for Molecular BioscienceThe University of QueenslandSt LuciaQLD4072Australia
- Department of Paediatric Endocrinology and DiabetesMater Children's HospitalSouth BrisbaneQLD4010Australia
| | - William E. Hughes
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Gregory J. Cooney
- Diabetes and Obesity ProgramGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - David E. James
- Charles Perkins Centre, School of Molecular BioscienceUniversity of SydneySydneyNSW2006Australia
| | - E. Michael Ostap
- The Pennsylvania Muscle Institute and Department of PhysiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104‐6085USA
| | - Weiping Han
- Singapore Bioimaging ConsortiumAgency for Science, Technology and Research (A*STAR)Singapore138667Singapore
| | - Peter W. Gunning
- Oncology Research UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| | - Edna C. Hardeman
- Cellular and Genetic Medicine UnitSchool of Medical Sciences, UNSW AustraliaSydneyNSW2052Australia
| |
Collapse
|
71
|
Han JH, Zhou W, Li W, Tuan PQ, Khoi NM, Thuong PT, Na M, Myung CS. Pentacyclic Triterpenoids from Astilbe rivularis that Enhance Glucose Uptake via the Activation of Akt and Erk1/2 in C2C12 Myotubes. JOURNAL OF NATURAL PRODUCTS 2015; 78:1005-1014. [PMID: 25894669 DOI: 10.1021/np5009174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Glucose uptake into insulin-sensitive tissues is important for the regulation of blood glucose. This study has investigated whether the pentacyclic triterpenoids substituted with a carboxylic acid at the C-27 position isolated from Astilbe rivularis can enhance glucose uptake and subsequently to also examine their underlying molecular mechanisms. The structure of the new pentacyclic triterpenoid 1 was assigned by spectroscopic data interpretation. To evaluate the activity of compounds 1 and 2, glucose uptake and glucose transporter 4 (GLUT4) translocation were measured in C2C12 myotubes. The C-27-carboxylated triterpenoids 1 and 2 significantly increased basal and insulin-stimulated glucose uptake and GLUT4 translocation to plasma membrane. Both compounds stimulated the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt), and extracellular signal-regulated kinase 1/2 (Erk1/2). Pretreatment with the Akt inhibitor triciribine or the Erk1/2 inhibitor U0126 decreased the ability of both compounds to enhance basal- and insulin-stimulated glucose uptake and stimulate GLUT4 translocation. These results indicate that compounds 1 and 2 activated both the IRS-1/Akt and Erk1/2 pathways and subsequently stimulated GLUT4 translocation, leading to enhanced glucose uptake. Thus, these observations suggest that C-27-carboxylated-pentacyclic triterpenoids may serve as scaffolds for development as agents for the management of blood glucose levels in disease states such as diabetes.
Collapse
Affiliation(s)
| | - Wei Zhou
- §College of Pharmacy, Yanbian University, Yanji 133002, People's Republic of China
| | - Wei Li
- ⊥School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Pham Quoc Tuan
- ∥National Institute of Medicinal Materials, 3B Quang Trung, Hoan Kiem, Hanoi, Vietnam
| | - Nguyen Minh Khoi
- ∥National Institute of Medicinal Materials, 3B Quang Trung, Hoan Kiem, Hanoi, Vietnam
| | - Phuong Thien Thuong
- ∥National Institute of Medicinal Materials, 3B Quang Trung, Hoan Kiem, Hanoi, Vietnam
| | | | | |
Collapse
|
72
|
Chang RCA, Shi L, Huang CCY, Kim AJ, Ko ML, Zhou B, Ko GYP. High-Fat Diet-Induced Retinal Dysfunction. Invest Ophthalmol Vis Sci 2015; 56:2367-2380. [PMID: 25788653 PMCID: PMC4407693 DOI: 10.1167/iovs.14-16143] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/12/2015] [Indexed: 02/03/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the impact of obesity-induced prediabetes/early diabetes on the retina to provide new evidence on the pathogenesis of type 2 diabetes-associated diabetic retinopathy (DR). METHODS A high-fat diet (HFD)-induced obesity mouse model (male C57BL/6J) was used in this study. At the end of the 12-week HFD feeding regimen, mice were evaluated for glucose and insulin tolerance, and retinal light responses were recorded by electroretinogram (ERG). Western immunoblot and immunohistochemical staining were used to determine changes in elements regulating calcium homeostasis between HFD and control retinas, as well as unstained human retinal sections from DR patients and age-appropriate controls. RESULTS Compared to the control, the scotopic and photopic ERGs from HFD mice were decreased. There were significant decreases in molecules related to cell signaling, calcium homeostasis, and glucose metabolism from HFD retinas, including phosphorylated protein kinase B (pAKT), glucose transporter 4, L-type voltage-gated calcium channel (L-VGCC), and plasma membrane calcium ATPase (PMCA). Similar changes for pAKT, PMCA, and L-VGCC were also observed in human retinal sections from DR patients. CONCLUSIONS Obesity-induced hyperglycemic and prediabetic/early diabetic conditions caused detrimental impacts on retinal light sensitivities and health. The decrease of the ERG components in early diabetes reflects the decreased neuronal activity of retinal light responses, which may be caused by a decrease in neuronal calcium signaling. Since PI3K-AKT is important in regulating calcium homeostasis and neural survival, maintaining proper PI3K-AKT signaling in early diabetes or at the prediabetic stage might be a new strategy for DR prevention.
Collapse
Affiliation(s)
- Richard Cheng-An Chang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Andy Jeesu Kim
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, Texas, United States
| |
Collapse
|
73
|
Ren W, Sun Y, Du K. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking. Biochem Biophys Res Commun 2015; 460:709-14. [PMID: 25824042 DOI: 10.1016/j.bbrc.2015.03.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023]
Abstract
Recently, we identified Glut4 as a palmitoylated protein in adipocytes. To understand the role of Glut4 palmitoylation in Glut4 membrane trafficking, a process that is essential for maintenance of whole body glucose homeostasis, we have characterized Glut4 palmitoylation. We found that Glut4 is palmitoylated at Cys223 and Glut4 palmitoylation at Cys223 is essential for insulin dependent Glut4 membrane translocation as substitution of Cys223 with a serine residue in Glut4 (C223S Glut4) diminished Glut4 responsiveness to insulin in membrane translocation in both adipocytes and CHO-IR cells. We have examined C223S Glut4 subcellular localization and observed that it was absence from tubular-vesicle structure, where insulin responsive Glut4 vesicles were presented. Together, our studies uncover a novel mechanism under which Glut4 palmitoylation regulates Glut4 sorting to insulin responsive vesicles, thereby insulin-dependent Glut4 membrane translocation.
Collapse
Affiliation(s)
- Wenying Ren
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Yingmin Sun
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Keyong Du
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
74
|
ALVIM RAFAELO, CHEUHEN MARCELR, MACHADO SILMARAR, SOUSA ANDRÉGUSTAVOP, SANTOS PAULOC. General aspects of muscle glucose uptake. ACTA ACUST UNITED AC 2015; 87:351-68. [PMID: 25761221 DOI: 10.1590/0001-3765201520140225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/06/2014] [Indexed: 12/25/2022]
Abstract
Glucose uptake in peripheral tissues is dependent on the translocation of GLUT4 glucose transporters to the plasma membrane. Studies have shown the existence of two major signaling pathways that lead to the translocation of GLUT4. The first, and widely investigated, is the insulin activated signaling pathway through insulin receptor substrate-1 and phosphatidylinositol 3-kinase. The second is the insulin-independent signaling pathway, which is activated by contractions. Individuals with type 2 diabetes mellitus have reduced insulin-stimulated glucose uptake in skeletal muscle due to the phenomenon of insulin resistance. However, those individuals have normal glucose uptake during exercise. In this context, physical exercise is one of the most important interventions that stimulates glucose uptake by insulin-independent pathways, and the main molecules involved are adenosine monophosphate-activated protein kinase, nitric oxide, bradykinin, AKT, reactive oxygen species and calcium. In this review, our main aims were to highlight the different glucose uptake pathways and to report the effects of physical exercise, diet and drugs on their functioning. Lastly, with the better understanding of these pathways, it would be possible to assess, exactly and molecularly, the importance of physical exercise and diet on glucose homeostasis. Furthermore, it would be possible to assess the action of drugs that might optimize glucose uptake and consequently be an important step in controlling the blood glucose levels in diabetic patients, in addition to being important to clarify some pathways that justify the development of drugs capable of mimicking the contraction pathway.
Collapse
|
75
|
Nellist M, Schot R, Hoogeveen-Westerveld M, Neuteboom RF, van der Louw EJTM, Lequin MH, Bindels-de Heus K, Sibbles BJ, de Coo R, Brooks A, Mancini GMS. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycemia. Mol Genet Metab 2015; 114:467-73. [PMID: 25523067 DOI: 10.1016/j.ymgme.2014.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/28/2014] [Accepted: 11/28/2014] [Indexed: 10/24/2022]
Abstract
Activating germ-line and somatic mutations in AKT3 (OMIM 611223) are associated with megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH; OMIM # 615937) and megalencephaly-capillary malformation (MCAP; OMIM # 602501). Here we report an individual with megalencephaly, polymicrogyria, refractory epilepsy, hypoglycemia and a germline AKT3 mutation. At birth, head circumference was 43 cm (5 standard deviations above the mean). No organomegaly was present, but there was generalized hypotonia, joint and skin laxity, developmental delay and failure to thrive. At 6 months of age the patient developed infantile spasms that were resistant to antiepileptic polytherapy. Recurrent hypoglycemia was noted during treatment with adrenocorticotropic hormone but stabilized upon introduction of continuous, enriched feeding. The infantile spasms responded to the introduction of a ketogenic diet, but the hypoglycemia recurred until the diet was adjusted for increased resting energy expenditure. A novel, de novo AKT3 missense variant (exon 5; c.548T>A, p.(V183D)) was identified and shown to activate AKT3 by in vitro functional testing. We hypothesize that the sustained hypoglycemia in this patient is caused by increased glucose utilization due to activation of AKT3 signaling. This might explain the efficacy of the ketogenic diet in this individual.
Collapse
Affiliation(s)
- Mark Nellist
- Department of Clinical Genetics, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Rinze F Neuteboom
- Department of Child Neurology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | - Maarten H Lequin
- Department of Radiology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Karen Bindels-de Heus
- Department of Pediatrics, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Barbara J Sibbles
- Department of Pediatrics, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - René de Coo
- Department of Child Neurology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Alice Brooks
- Department of Clinical Genetics, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
76
|
Gray CW, Coster ACF. A receptor state space model of the insulin signalling system in glucose transport. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2015; 32:457-73. [PMID: 25673317 DOI: 10.1093/imammb/dqv003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/10/2015] [Indexed: 11/13/2022]
Abstract
Insulin is a potent peptide hormone that regulates glucose levels in the blood. Insulin-sensitive cells respond to insulin stimulation with the translocation of glucose transporter 4 (GLUT4) to the plasma membrane (PM), enabling the clearance of glucose from the blood. Defects in this process can give rise to insulin resistance and ultimately diabetes. One widely cited model of insulin signalling leading to glucose transport is that of Sedaghat et al. (2002) Am. J. Physiol. Endocrinol. Metab. 283, E1084-E1101. Consisting of 20 deterministic ordinary differential equations (ODEs), it is the most comprehensive model of insulin signalling to date. However, the model possesses some major limitations, including the non-conservation of key components. In the current work, we detail mathematical and sensitivity analyses of the Sedaghat model. Based on the results of these analyses, we propose a reduced state space model of the insulin receptor subsystem. This reduced model maintains the input-output relation of the original model but is computationally more efficient, analytically tractable and resolves some of the limitations of the Sedaghat model.
Collapse
Affiliation(s)
- Catheryn W Gray
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| | - Adelle C F Coster
- School of Mathematics and Statistics, UNSW Australia, Sydney, New South Wales, Australia
| |
Collapse
|
77
|
Tropomodulin3 is a novel Akt2 effector regulating insulin-stimulated GLUT4 exocytosis through cortical actin remodeling. Nat Commun 2015; 6:5951. [PMID: 25575350 PMCID: PMC4354152 DOI: 10.1038/ncomms6951] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 11/25/2014] [Indexed: 12/19/2022] Open
Abstract
Akt2 and its downstream effectors mediate insulin-stimulated GLUT4-storage vesicle (GSV) translocation and fusion with the plasma membrane (PM). Using mass spectrometry, we identify actin-capping protein Tropomodulin 3 (Tmod3) as an Akt2-interacting partner in 3T3-L1 adipocytes. We demonstrate that Tmod3 is phosphorylated at Ser71 on insulin-stimulated Akt2 activation, and Ser71 phosphorylation is required for insulin-stimulated GLUT4 PM insertion and glucose uptake. Phosphorylated Tmod3 regulates insulin-induced actin remodelling, an essential step for GSV fusion with the PM. Furthermore, the interaction of Tmod3 with its cognate tropomyosin partner, Tm5NM1 is necessary for GSV exocytosis and glucose uptake. Together these results establish Tmod3 as a novel Akt2 effector that mediates insulin-induced cortical actin remodelling and subsequent GLUT4 membrane insertion. Our findings suggest that defects in cytoskeletal remodelling may contribute to impaired GLUT4 exocytosis and glucose uptake.
Collapse
|
78
|
Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia 2015; 58:19-30. [PMID: 25280670 PMCID: PMC4258142 DOI: 10.1007/s00125-014-3395-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
This review focuses on two paralogue Rab GTPase activating proteins known as TBC1D1 Tre-2/BUB2/cdc 1 domain family (TBC1D) 1 and TBC1D4 (also called Akt Substrate of 160 kDa, AS160) and their roles in controlling skeletal muscle glucose transport in response to the independent and combined effects of insulin and exercise. Convincing evidence implicates Akt2-dependent TBC1D4 phosphorylation on T642 as a key part of the mechanism for insulin-stimulated glucose uptake by skeletal muscle. TBC1D1 phosphorylation on several insulin-responsive sites (including T596, a site corresponding to T642 in TBC1D4) does not appear to be essential for in vivo insulin-stimulated glucose uptake by skeletal muscle. In vivo exercise or ex vivo contraction of muscle result in greater TBC1D1 phosphorylation on S237 that is likely to be secondary to increased AMP-activated protein kinase activity and potentially important for contraction-stimulated glucose uptake. Several studies that evaluated both normal and insulin-resistant skeletal muscle stimulated with a physiological insulin concentration after a single exercise session found that greater post-exercise insulin-stimulated glucose uptake was accompanied by greater TBC1D4 phosphorylation on several sites. In contrast, enhanced post-exercise insulin sensitivity was not accompanied by greater insulin-stimulated TBC1D1 phosphorylation. The mechanism for greater TBC1D4 phosphorylation in insulin-stimulated muscles after acute exercise is uncertain, and a causal link between enhanced TBC1D4 phosphorylation and increased post-exercise insulin sensitivity has yet to be established. In summary, TBC1D1 and TBC1D4 have important, but distinct roles in regulating muscle glucose transport in response to insulin and exercise.
Collapse
Affiliation(s)
- Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI, 48109-2214, USA,
| |
Collapse
|
79
|
Sato M, Dehvari N, Oberg AI, Dallner OS, Sandström AL, Olsen JM, Csikasz RI, Summers RJ, Hutchinson DS, Bengtsson T. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes 2014; 63:4115-29. [PMID: 25008179 DOI: 10.2337/db13-1860] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is an increasing worldwide epidemic of type 2 diabetes that poses major health problems. We have identified a novel physiological system that increases glucose uptake in skeletal muscle but not in white adipocytes. Activation of this system improves glucose tolerance in Goto-Kakizaki rats or mice fed a high-fat diet, which are established models for type 2 diabetes. The pathway involves activation of β2-adrenoceptors that increase cAMP levels and activate cAMP-dependent protein kinase, which phosphorylates mammalian target of rapamycin complex 2 (mTORC2) at S2481. The active mTORC2 causes translocation of GLUT4 to the plasma membrane and glucose uptake without the involvement of Akt or AS160. Stimulation of glucose uptake into skeletal muscle after activation of the sympathetic nervous system is likely to be of high physiological relevance because mTORC2 activation was observed at the cellular, tissue, and whole-animal level in rodent and human systems. This signaling pathway provides new opportunities for the treatment of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Diet, High-Fat/adverse effects
- Glucose Tolerance Test
- Glucose Transporter Type 4/metabolism
- Mechanistic Target of Rapamycin Complex 2
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Multiprotein Complexes/metabolism
- Muscle, Skeletal/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-2/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
Collapse
Affiliation(s)
- Masaaki Sato
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Nodi Dehvari
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Anette I Oberg
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Olof S Dallner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden Laboratory of Molecular Genetics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Anna L Sandström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Jessica M Olsen
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Robert I Csikasz
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roger J Summers
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dana S Hutchinson
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
80
|
Bridges D, Saltiel AR. Phosphoinositides: Key modulators of energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:857-66. [PMID: 25463477 DOI: 10.1016/j.bbalip.2014.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P₃levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Dave Bridges
- Departments of Physiology and Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA; Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA.
| | - Alan R Saltiel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
81
|
Ramalingam L, Yoder SM, Oh E, Thurmond DC. Munc18c: a controversial regulator of peripheral insulin action. Trends Endocrinol Metab 2014; 25:601-8. [PMID: 25028245 PMCID: PMC4253632 DOI: 10.1016/j.tem.2014.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/12/2014] [Accepted: 06/20/2014] [Indexed: 12/19/2022]
Abstract
Insulin resistance, a hallmark of impaired glucose tolerance and type 2 diabetes (T2D), arises from dysfunction of insulin action and subsequent glucose uptake by peripheral tissues, predominantly skeletal muscle and fat. Exocytosis of glucose transporter (GLUT4)-containing vesicles facilitated by soluble NSF (N-ethylmaleimide-sensitive factor) attachment receptor (SNARE) protein isoforms, and Munc18c (mammalian homolog of Unc-18c) mediates this glucose uptake. Emerging evidences, including recent human clinical studies, point to pivotal roles for Munc18c in peripheral insulin action in adipose and skeletal muscle. Intriguing new advances are also initiating debates regarding the molecular mechanism(s) controlling Munc18c action. The objective of this review is therefore to present a balanced perspective of new continuities and controversies surrounding the regulation and requirement for Munc18c in the regulation of peripheral insulin action.
Collapse
Affiliation(s)
- Latha Ramalingam
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie M Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eunjin Oh
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Debbie C Thurmond
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
82
|
Abstract
Protein palmitoylation, by modulating the dynamic interaction between protein and cellular membrane, is involved in a wide range of biological processes, including protein trafficking, sorting, sub-membrane partitioning, protein-protein interaction and cell signaling. To explore the role of protein palmitoylation in adipocytes, we have performed proteomic analysis of palmitoylated proteins in adipose tissue and 3T3-L1 adipocytes and identified more than 800 putative palmitoylated proteins. These include various transporters, enzymes required for lipid and glucose metabolism, regulators of protein trafficking and signaling molecules. Of note, key proteins involved in membrane translocation of the glucose-transporter Glut4 including IRAP, Munc18c, AS160 and Glut4, and signaling proteins in the JAK-STAT pathway including JAK1 and 2, STAT1, 3 and 5A and SHP2 in JAK-STAT, were palmitoylated in cultured adipocytes and primary adipose tissue. Further characterization showed that palmitoylation of Glut4 and IRAP was altered in obesity, and palmitoylation of JAK1 played a regulatory role in JAK1 intracellular localization. Overall, our studies provide evidence to suggest a novel and potentially regulatory role for protein palmitoylation in adipocyte function.
Collapse
|
83
|
Antonescu CN, McGraw TE, Klip A. Reciprocal regulation of endocytosis and metabolism. Cold Spring Harb Perspect Biol 2014; 6:a016964. [PMID: 24984778 DOI: 10.1101/cshperspect.a016964] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cellular uptake of many nutrients and micronutrients governs both their cellular availability and their systemic homeostasis. The cellular rate of nutrient or ion uptake (e.g., glucose, Fe(3+), K(+)) or efflux (e.g., Na(+)) is governed by a complement of membrane transporters and receptors that show dynamic localization at both the plasma membrane and defined intracellular membrane compartments. Regulation of the rate and mechanism of endocytosis controls the amounts of these proteins on the cell surface, which in many cases determines nutrient uptake or secretion. Moreover, the metabolic action of diverse hormones is initiated upon binding to surface receptors that then undergo regulated endocytosis and show distinct signaling patterns once internalized. Here, we examine how the endocytosis of nutrient transporters and carriers as well as signaling receptors governs cellular metabolism and thereby systemic (whole-body) metabolite homeostasis.
Collapse
Affiliation(s)
- Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
84
|
Foley KP, Klip A. Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide. Biol Open 2014; 3:314-25. [PMID: 24705014 PMCID: PMC4021353 DOI: 10.1242/bio.20147898] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
GLUT4 constitutively recycles between the plasma membrane and intracellular depots. Insulin shifts this dynamic equilibrium towards the plasma membrane by recruiting GLUT4 to the plasma membrane from insulin-responsive vesicles. Muscle is the primary site for dietary glucose deposition; however, how GLUT4 sorts into insulin-responsive vesicles, and if and how insulin resistance affects this process, is unknown. In L6 myoblasts stably expressing myc-tagged GLUT4, we analyzed the intracellular itinerary of GLUT4 as it internalizes from the cell surface and examined if such sorting is perturbed by C2-ceramide, a lipid metabolite causing insulin resistance. Surface-labeled GLUT4myc that internalized for 30 min accumulated in a Syntaxin-6 (Stx6)- and Stx16-positive perinuclear sub-compartment devoid of furin or internalized transferrin, and displayed insulin-responsive re-exocytosis. C2-ceramide dispersed the Stx6-positive sub-compartment and prevented insulin-responsive re-exocytosis of internalized GLUT4myc, even under conditions not affecting insulin-stimulated signaling towards Akt. Microtubule disruption with nocodazole prevented pre-internalized GLUT4myc from reaching the Stx6-positive perinuclear sub-compartment and from undergoing insulin-responsive exocytosis. Removing nocodazole allowed both parameters to recover, suggesting that the Stx6-positive perinuclear sub-compartment was required for GLUT4 insulin-responsiveness. Accordingly, Stx6 knockdown inhibited by ∼50% the ability of internalized GLUT4myc to undergo insulin-responsive re-exocytosis without altering its overall perinuclear accumulation. We propose that Stx6 defines the insulin-responsive compartment in muscle cells. Our data are consistent with a model where ceramide could cause insulin resistance by altering intracellular GLUT4 sorting.
Collapse
Affiliation(s)
- Kevin P Foley
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
85
|
Xiao ZQ, Wang YL, Gan SR, Chen JC. Polysaccharides from Liriopes Radix ameliorates hyperglycemia via various potential mechanisms in diabetic rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:975-82. [PMID: 23939938 DOI: 10.1002/jsfa.6347] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/05/2013] [Accepted: 08/12/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND Liriopes Radix, which is regarded as both drug and healthy diet, is drunk as tea and used in traditional Chinese medicine to treat diabetes. Based on our previous studies, investigated the hypoglycemic effects and explored the mechanisms of total polysaccharides from Liriope spicata var. prolifera (Liriopes Radix) in a diabetic rat model. RESULTS TLSP reduced hyperglycemia in diabetic rats. The oral glucose tolerance test showed that TLSP could improve the glucose tolerance of diabetic rats. Damage to liver and pancreas tissue was inhibited after treatment with TLSP. Moreover, TLSP increased glycogen content, glucokinase (GK) and glycogen synthetase (GS) activities, and suppressed the elevation of glucose-6-phosphatase (G6Pase) and glycogen phosphorylase (GP) activities in liver. Compared with the diabetic control group, GK and GS mRNA expression were significantly elevated, while G6Pase and GP mRNA expression were decreased in TLSP groups. In addition, TLSP could inhibit glycogen synthase kinase-3β expression and increase insulin receptor, insulin receptor substrate-1, phosphoinositide 3-kinase, protein kinase B and glucose transport protein-4 expression in liver. CONCLUSION TLSP showed hypoglycemic function. Improvement of glucose metabolism and insulin-signaling transduction were possible mechanisms.
Collapse
Affiliation(s)
- Zuo-qi Xiao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji School of Pharmaceutical Sciences, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | | | | | | |
Collapse
|
86
|
Howell GE, Meek E, Kilic J, Mohns M, Mulligan C, Chambers JE. Exposure to p,p'-dichlorodiphenyldichloroethylene (DDE) induces fasting hyperglycemia without insulin resistance in male C57BL/6H mice. Toxicology 2014; 320:6-14. [PMID: 24582731 DOI: 10.1016/j.tox.2014.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/30/2014] [Accepted: 02/10/2014] [Indexed: 01/16/2023]
Abstract
Approximately 8.3% of the United States (U.S.) population have either diagnosed or undiagnosed diabetes mellitus. Out of all the cases of diabetes mellitus, approximately 90-95% of these cases are type 2 diabetes mellitus (T2D). Although the exact cause of T2D remains elusive, predisposing factors include age, weight, poor diet, and a sedentary lifestyle. Until recently the association between exposure to environmental contaminants and the occurrence of diabetes had been unexplored. However, recent epidemiological studies have revealed that elevated serum concentrations of certain persistent organic pollutants (POPs), especially organochlorine pesticides, are positively associated with increased prevalence of T2D and insulin resistance. The current study seeks to investigate if this association is causative or coincidental. Male C57BL/6H mice were exposed to DDE (2.0mg/kg or 0.4mg/kg) or vehicle (corn oil; 1mL/kg) for 5 days via oral gavage; fasting blood glucose, glucose tolerance, and insulin challenge tests were performed following a 7 day resting period. Exposure to DDE caused significant hyperglycemia compared to vehicle and this hyperglycemic effect persisted for up to 21 days following cessation of DDE administration. Intraperitoneal glucose tolerance tests and phosphorylation of Akt in the liver, skeletal muscle, and adipose tissue following insulin challenge were comparable between vehicle and DDE treated animals. To determine the direct effect of exposure to DDE on glucose uptake, in vitro glucose uptake assays following DDE exposure were performed in L6 myotubules and 3T3-L1 adipocytes. In summary, subacute exposure to DDE does produce fasting hyperglycemia, but this fasting hyperglycemia does not appear to be mediated by insulin resistance. Thus, the current study reveals that subacute exposure to DDE does alter systemic glucose homeostasis and may be a contributing factor to the development of hyperglycemia associated with diabetes.
Collapse
Affiliation(s)
- George E Howell
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, United States.
| | - Edward Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, United States
| | - Jessica Kilic
- Department of Biological Sciences, Mississippi College, Clinton, MS 39058, United States
| | - Mariel Mohns
- Department of Biological Sciences, Mississippi College, Clinton, MS 39058, United States
| | - Charlee Mulligan
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, United States; Department of Biological Sciences, Mississippi College, Clinton, MS 39058, United States
| | - Janice E Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, Mississippi State, MS 39762, United States
| |
Collapse
|
87
|
Therapeutic properties of VO(dmpp)2 as assessed by in vitro and in vivo studies in type 2 diabetic GK rats. J Inorg Biochem 2014; 131:115-22. [DOI: 10.1016/j.jinorgbio.2013.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 01/28/2023]
|
88
|
van Oort MM, Drost R, Janβen L, Van Doorn JM, Kerver J, Van der Horst DJ, Luiken JJFP, Rodenburg KCW. Each of the four intracellular cysteines of CD36 is essential for insulin- or AMP-activated protein kinase-induced CD36 translocation. Arch Physiol Biochem 2014; 120:40-9. [PMID: 24377880 DOI: 10.3109/13813455.2013.876049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stimulation of cellular fatty acid uptake by induction of insulin signalling or AMP-kinase (AMPK) activation is due to translocation of the fatty acid-transporter CD36 from intracellular stores to the plasma membrane (PM). For investigating the role of the four Cys-residues within CD36's cytoplasmic tails in CD36 translocation, we constructed CHO-cells expressing CD36 mutants in which all four, two, or one of the intracellular Cys were replaced by Ser. Intracellular and PM localization of all mutants was similar to wild-type CD36 (CD36wt). Hence, the four Cys do not regulate sub-cellular CD36 localization. However, in contrast to CD36wt, insulin or AMPK activation failed to induce translocation of any of the mutants, indicating that all four intracellular Cys residues are essential for CD36 translocation. The mechanism of defective translocation of mutant CD36 is unknown, but appears not due to loss of S-palmitoylation of the cytoplasmic tails or to aberrant oligomerization of the mutants.
Collapse
Affiliation(s)
- Masja M van Oort
- Division of Endocrinology and Metabolism, Department of Biology and Institute of Biomembranes, Utrecht University , NL-3584 CH Utrecht , The Netherlands and
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Wyrozumska P, Ashley JW, Ramanadham S, Liu Q, Garvey WT, Sztul E. Novel effects of Brefeldin A (BFA) in signaling through the insulin receptor (IR) pathway and regulating FoxO1-mediated transcription. CELLULAR LOGISTICS 2014; 4:e27732. [PMID: 24843827 PMCID: PMC4022606 DOI: 10.4161/cl.27732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/19/2022]
Abstract
Brefeldin A (BFA) is a fungal metabolite best known for its ability to inhibit activation of ADP-ribosylation factor (Arf) and thereby inhibit secretory traffic. BFA also appears to regulate the trafficking of the GLUT4 glucose transporter by inducing its relocation from intracellular stores to the cell surface. Such redistribution of GLUT4 is normally regulated by insulin-mediated signaling. Hence, we tested whether BFA may intersect with the insulin pathway. We report that BFA causes the activation of the insulin receptor (IR), IRS-1, Akt-2, and AS160 components of the insulin pathway. The response is mediated through phosphoinositol-3-kinase (PI3K) and Akt kinase since the PI3K inhibitor wortmannin and the Akt inhibitors MK2206 and perifosine inhibit the BFA effect. BFA-mediated activation of the insulin pathway results in Akt-mediated phosphorylation of the insulin-responsive transcription factor FoxO1. This leads to nuclear exclusion of FoxO1 and a decrease in transcription of the insulin-responsive gene SIRT-1. Our findings suggest novel effects for BFA in signaling and transcription, and imply that BFA has multiple intracellular targets and can be used to regulate diverse cellular responses that include vesicular trafficking, signaling and transcription.
Collapse
Affiliation(s)
- Paulina Wyrozumska
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Jason W Ashley
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| | - Qinglan Liu
- Department of Nutrition Sciences University of Alabama at Birmingham; Birmingham, AL USA
| | - W Timothy Garvey
- Department of Nutrition Sciences University of Alabama at Birmingham; Birmingham, AL USA
| | - Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology; University of Alabama at Birmingham; Birmingham, AL USA
| |
Collapse
|
90
|
Abstract
Caenorhabditis elegans is widely used as a model for investigation of the relationships between aging, nutrient restriction and signalling via the DAF-2 (abnormal dauer formation 2) receptor for insulin-like peptides and AGE-1 [ageing alteration 1; orthologue of PI3K (phosphoinositide 3-kinase)], but the identity of the glucose transporters that may link these processes is unknown. We unexpectedly find that of the eight putative GLUT (glucose transporter)-like genes only the two splice variants of one gene have a glucose transport function in an oocyte expression system. We have named this gene fgt-1 (facilitated glucose transporter, isoform 1). We show that knockdown of fgt-1 RNA leads to loss of glucose transport and reduced glucose metabolism in wild-type worms. The FGT-1 glucose transporters of C. elegans thus play a key role in glucose energy supply to C. elegans. Importantly, knockdown of fgt-1 leads to an extension of lifespan equivalent, but not additive, to that observed in daf-2 and age-1 mutant worms. The results of the present study are consistent with DAF-2 and AGE-1 signalling stimulating glucose transport in C. elegans and this process being associated with the longevity phenotype in daf-2 and age-1 mutant worms. We propose that fgt-1 constitutes a common axis for the lifespan extending effects of nutrient restriction and reduced insulin-like peptide signalling.
Collapse
|
91
|
Shi L, Ko ML, Huang CCY, Park SY, Hong MP, Wu C, Ko GYP. Chicken embryos as a potential new model for early onset type I diabetes. J Diabetes Res 2014; 2014:354094. [PMID: 25133191 PMCID: PMC4122024 DOI: 10.1155/2014/354094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness among the American working population. The purpose of this study is to establish a new diabetic animal model using a cone-dominant avian species to address the distorted color vision and altered cone pathway responses in prediabetic and early diabetic patients. Chicken embryos were injected with either streptozotocin (STZ), high concentration of glucose (high-glucose), or vehicle at embryonic day 11. Cataracts occurred in varying degrees in both STZ- and high glucose-induced diabetic chick embryos at E18. Streptozotocin-diabetic chicken embryos had decreased levels of blood insulin, glucose transporter 4 (Glut4), and phosphorylated protein kinase B (pAKT). In STZ-injected E20 embryos, the ERG amplitudes of both a- and b-waves were significantly decreased, the implicit time of the a-wave was delayed, while that of the b-wave was significantly increased. Photoreceptors cultured from STZ-injected E18 embryos had a significant decrease in L-type voltage-gated calcium channel (L-VGCC) currents, which was reflected in the decreased level of L-VGCCα1D subunit in the STZ-diabetic retinas. Through these independent lines of evidence, STZ-injection was able to induce pathological conditions in the chicken embryonic retina, and it is promising to use chickens as a potential new animal model for type I diabetes.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Cathy Chia-Yu Huang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - So-Young Park
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Min-Pyo Hong
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX 77843-4458, USA
| | - Gladys Y.-P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4458 TAMU, College Station, TX 77843-4458, USA
- Texas A&M Institute of Neuroscience, Texas A&M University, College Station, TX 77843-445, USA
- *Gladys Y.-P. Ko:
| |
Collapse
|
92
|
Cura AJ, Carruthers A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr Physiol 2013; 2:863-914. [PMID: 22943001 DOI: 10.1002/cphy.c110024] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The facilitated diffusion of glucose, galactose, fructose, urate, myoinositol, and dehydroascorbicacid in mammals is catalyzed by a family of 14 monosaccharide transport proteins called GLUTs. These transporters may be divided into three classes according to sequence similarity and function/substrate specificity. GLUT1 appears to be highly expressed in glycolytically active cells and has been coopted in vitamin C auxotrophs to maintain the redox state of the blood through transport of dehydroascorbate. Several GLUTs are definitive glucose/galactose transporters, GLUT2 and GLUT5 are physiologically important fructose transporters, GLUT9 appears to be a urate transporter while GLUT13 is a proton/myoinositol cotransporter. The physiologic substrates of some GLUTs remain to be established. The GLUTs are expressed in a tissue specific manner where affinity, specificity, and capacity for substrate transport are paramount for tissue function. Although great strides have been made in characterizing GLUT-catalyzed monosaccharide transport and mapping GLUT membrane topography and determinants of substrate specificity, a unifying model for GLUT structure and function remains elusive. The GLUTs play a major role in carbohydrate homeostasis and the redistribution of sugar-derived carbons among the various organ systems. This is accomplished through a multiplicity of GLUT-dependent glucose sensing and effector mechanisms that regulate monosaccharide ingestion, absorption,distribution, cellular transport and metabolism, and recovery/retention. Glucose transport and metabolism have coevolved in mammals to support cerebral glucose utilization.
Collapse
Affiliation(s)
- Anthony J Cura
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
93
|
García-Ruiz C, Baulies A, Mari M, García-Rovés PM, Fernandez-Checa JC. Mitochondrial dysfunction in non-alcoholic fatty liver disease and insulin resistance: Cause or consequence? Free Radic Res 2013; 47:854-68. [DOI: 10.3109/10715762.2013.830717] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
94
|
Comparative studies of Munc18c and Munc18-1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 2013; 110:E3271-80. [PMID: 23918365 DOI: 10.1073/pnas.1311232110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sec1/Munc18 (SM) family proteins are essential for every vesicle fusion pathway. The best-characterized SM protein is the synaptic factor Munc18-1, but it remains unclear whether its functions represent conserved mechanisms of SM proteins or specialized activities in neurotransmitter release. To address this question, we dissected Munc18c, a functionally distinct SM protein involved in nonsynaptic exocytic pathways. We discovered that Munc18c binds to the trans-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex and strongly accelerates the fusion rate. Further analysis suggests that Munc18c recognizes both vesicle-rooted SNARE and target membrane-associated SNAREs, and promotes trans-SNARE zippering at the postdocking stage of the fusion reaction. The stimulation of fusion by Munc18c is specific to its cognate SNARE isoforms. Because Munc18-1 regulates fusion in a similar manner, we conclude that one conserved function of SM proteins is to bind their cognate trans-SNARE complexes and accelerate fusion kinetics. Munc18c also binds syntaxin-4 monomer but does not block target membrane-associated SNARE assembly, in agreement with our observation that six- to eightfold increases in Munc18c expression do not inhibit insulin-stimulated glucose uptake in adipocytes. Thus, the inhibitory "closed" syntaxin binding mode demonstrated for Munc18-1 is not conserved in Munc18c. Unexpectedly, we found that Munc18c recognizes the N-terminal region of the vesicle-rooted SNARE, whereas Munc18-1 requires the C-terminal sequences, suggesting that the architecture of the SNARE/SM complex likely differs across fusion pathways. Together, these comparative studies of two distinct SM proteins reveal conserved as well as divergent mechanisms of SM family proteins in intracellular vesicle fusion.
Collapse
|
95
|
Ikonomov OC, Sbrissa D, Delvecchio K, Feng HZ, Cartee GD, Jin JP, Shisheva A. Muscle-specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not muscle fiber-type switching. Am J Physiol Endocrinol Metab 2013; 305:E119-31. [PMID: 23673157 PMCID: PMC3725567 DOI: 10.1152/ajpendo.00030.2013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolutionarily conserved kinase PIKfyve that synthesizes PtdIns5P and PtdIns(3,5)P₂ has been implicated in insulin-regulated GLUT4 translocation/glucose entry in 3T3-L1 adipocytes. To decipher PIKfyve's role in muscle and systemic glucose metabolism, here we have developed a novel mouse model with Pikfyve gene disruption in striated muscle (MPIfKO). These mice exhibited systemic glucose intolerance and insulin resistance at an early age but had unaltered muscle mass or proportion of slow/fast-twitch muscle fibers. Insulin stimulation of in vivo or ex vivo glucose uptake and GLUT4 surface translocation was severely blunted in skeletal muscle. These changes were associated with premature attenuation of Akt phosphorylation in response to in vivo insulin, as tested in young mice. Starting at 10-11 wk of age, MPIfKO mice progressively accumulated greater body weight and fat mass. Despite increased adiposity, serum free fatty acid and triglyceride levels were normal until adulthood. Together with the undetectable lipid accumulation in liver, these data suggest that lipotoxicity and muscle fiber switching do not contribute to muscle insulin resistance in MPIfKO mice. Furthermore, the 80% increase in total fat mass resulted from increased fat cell size rather than altered fat cell number. The observed profound hyperinsulinemia combined with the documented increases in constitutive Akt activation, in vivo glucose uptake, and gene expression of key enzymes for fatty acid biosynthesis in MPIfKO fat tissue suggest that the latter is being sensitized for de novo lipid anabolism. Our data provide the first in vivo evidence that PIKfyve is essential for systemic glucose homeostasis and insulin-regulated glucose uptake/GLUT4 translocation in skeletal muscle.
Collapse
Affiliation(s)
- Ognian C Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Hutt DM, Balch WE. Expanding proteostasis by membrane trafficking networks. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a013383. [PMID: 23426524 DOI: 10.1101/cshperspect.a013383] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The folding biology common to all three kingdoms of life (Archaea, Bacteria, and Eukarya) is proteostasis. The proteostasis network (PN) functions as a "cloud" to generate, protect, and degrade the proteome. Whereas microbes (Bacteria, Archaea) have a single compartment, Eukarya have numerous subcellular compartments. We examine evidence that Eukarya compartments use coat, tether, and fusion (CTF) membrane trafficking components to form an evolutionarily advanced arm of the PN that we refer to as the "trafficking PN" (TPN). We suggest that the TPN builds compartments by generating a mosaic of integrated cargo-specific trafficking signatures (TRaCKS). TRaCKS control the temporal and spatial features of protein-folding biology based on the Anfinsen principle that the local environment plays a critical role in managing protein structure. TPN-generated endomembrane compartments apply a "quinary" level of structural control to modify the secondary, tertiary, and quaternary structures defined by the primary polypeptide-chain sequence. The development of Anfinsen compartments provides a unifying foundation for understanding the purpose of endomembrane biology and its capacity to drive extant Eukarya function and diversity.
Collapse
Affiliation(s)
- Darren M Hutt
- Department of Cell Biology and Department of Chemical Physiology, The Skaggs Institute for Chemical Biology and the Dorris Institute for Neurological Diseases, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
97
|
Chen Y, Lippincott-Schwartz J. Rab10 delivers GLUT4 storage vesicles to the plasma membrane. Commun Integr Biol 2013; 6:e23779. [PMID: 23713133 PMCID: PMC3656013 DOI: 10.4161/cib.23779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/25/2022] Open
Abstract
The glucose transporter, GLUT4, redistributes to the plasma membrane (PM) upon insulin stimulation, but also recycles through endosomal compartments. Different Rab proteins control these transport itineraries of GLUT4. However, the specific roles played by different Rab proteins in GLUT4 trafficking has been difficult to assess, primarily due to the complexity of endomembrane organization and trafficking. To address this problem, we recently performed advanced live cell imaging using total internal reflection fluorescence (TIRF) microscopy, which images objects ~150 nm from the PM, directly visualizing GLUT4 trafficking in response to insulin stimulation. Using IRAP-pHluorin to selectively label GSVs undergoing PM fusion in response to insulin, we identified Rab10 as the only Rab protein that binds this compartment. Rab14 was found to label transferrin-positive, endosomal compartments containing GLUT4. These also could fuse with the PM in response to insulin, albeit more slowly. Several other Rab proteins, including Rab4A, 4B and 8A, were found to mediate GLUT4 intra-endosomal recycling, serving to internalize surface-bound GLUT4 into endosomal compartments for ultimate delivery to GSVs. Thus, multiple Rab proteins regulate the circulation of GLUT4 molecules within the endomembrane system, maintaining optimal insulin responsiveness within cells.
Collapse
Affiliation(s)
- Yu Chen
- The Eugene Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | | |
Collapse
|
98
|
Yu H, Rathore SS, Shen J. Synip arrests soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding inhibitor. J Biol Chem 2013; 288:18885-93. [PMID: 23665562 DOI: 10.1074/jbc.m113.465450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
99
|
Tonks KT, Ng Y, Miller S, Coster ACF, Samocha-Bonet D, Iseli TJ, Xu A, Patrick E, Yang JYH, Junutula JR, Modrusan Z, Kolumam G, Stöckli J, Chisholm DJ, James DE, Greenfield JR. Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects. Diabetologia 2013; 56:875-85. [PMID: 23344726 DOI: 10.1007/s00125-012-2811-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/29/2012] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Muscle insulin resistance, one of the earliest defects associated with type 2 diabetes, involves changes in the phosphoinositide 3-kinase/Akt network. The relative contribution of obesity vs insulin resistance to perturbations in this pathway is poorly understood. METHODS We used phosphospecific antibodies against targets in the Akt signalling network to study insulin action in muscle from lean, overweight/obese and type 2 diabetic individuals before and during a hyperinsulinaemic-euglycaemic clamp. RESULTS Insulin-stimulated Akt phosphorylation at Thr309 and Ser474 was highly correlated with whole-body insulin sensitivity. In contrast, impaired phosphorylation of Akt substrate of 160 kDa (AS160; also known as TBC1D4) was associated with adiposity, but not insulin sensitivity. Neither insulin sensitivity nor obesity was associated with defective insulin-dependent phosphorylation of forkhead box O (FOXO) transcription factor. In view of the resultant basal hyperinsulinaemia, we predicted that this selective response within the Akt pathway might lead to hyperactivation of those processes that were spared. Indeed, the expression of genes targeted by FOXO was downregulated in insulin-resistant individuals. CONCLUSIONS/INTERPRETATION These results highlight non-linearity in Akt signalling and suggest that: (1) the pathway from Akt to glucose transport is complex; and (2) pathways, particularly FOXO, that are not insulin-resistant, are likely to be hyperactivated in response to hyperinsulinaemia. This facet of Akt signalling may contribute to multiple features of the metabolic syndrome.
Collapse
Affiliation(s)
- K T Tonks
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, 2010 NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 2013; 24:1176-84. [PMID: 23427263 PMCID: PMC3623638 DOI: 10.1091/mbc.e12-11-0810] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reconstitution of GLUT4 vesicle fusion in a defined fusion system shows that the C2-domain factor Doc2b activates the SNARE-dependent fusion reaction by a calcium- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic release. The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca2+. The stimulatory activity of Doc2b requires intact Ca2+-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca2+- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca2+ sensors may possess divergent mechanisms in regulating vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|