51
|
Chemical Distance Measurement and System Pharmacology Approach Uncover the Novel Protective Effects of Biotransformed Ginsenoside C-Mc against UVB-Irradiated Photoaging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4691576. [PMID: 35186187 PMCID: PMC8850047 DOI: 10.1155/2022/4691576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/28/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022]
Abstract
Long-term exposure to ultraviolet light induces photoaging and may eventually increase the risk of skin carcinogenesis. Rare minor ginsenosides isolating from traditional medicine Panax (ginseng) have shown biomedical efficacy as antioxidation and antiphotodamage agents. However, due to the difficulty of component extraction and wide variety of ginsenoside, the identification of active antiphotoaging ginsenoside remains a huge challenge. In this study, we proposed a novel in silico approach to identify potential compound against photoaging from 82 ginsenosides. Specifically, we calculated the shortest distance between unknown and known antiphotoaging ginsenoside set in the chemical space and applied chemical structure similarity assessment, drug-likeness screening, and ADMET evaluation for the candidates. We highlighted three rare minor ginsenosides (C-Mc, Mx, and F2) that possess high potential as antiphotoaging agents. Among them, C-Mc deriving from American ginseng (Panax quinquefolius L.) was validated by wet-lab experimental assays and showed significant antioxidant and cytoprotective activity against UVB-induced photodamage in human dermal fibroblasts. Furthermore, system pharmacology analysis was conducted to explore the therapeutic targets and molecular mechanisms through integrating global drug-target network, high quality photoaging-related gene profile from multiomics data, and skin tissue-specific expression protein network. In combination with in vitro assays, we found that C-Mc suppressed MMP production through regulating the MAPK/AP-1/NF-κB pathway and expedited collagen synthesis via the TGF-β/Smad pathway, as well as enhanced the expression of Nrf2/ARE to hold a balance of endogenous oxidation. Overall, this study offers an effective drug discovery framework combining in silico prediction and in vitro validation, uncovering that ginsenoside C-Mc has potential antiphotoaging properties and might be a novel natural agent for use in oral drug, skincare products, or functional food.
Collapse
|
52
|
Fan J, Finazzi L, Jan Buma W. Elucidating the photoprotective properties of natural UV screening agents: ZEKE-PFI spectroscopy of methyl sinapate. Phys Chem Chem Phys 2022; 24:3984-3993. [PMID: 35099484 DOI: 10.1039/d1cp05958k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a prominent derivative of a natural sunscreen, methyl sinapate is an ideal candidate to provide fundamental insight into strategies on how to come to a rational design of artificial sunscreen filters with improved photoprotective properties. Here, static and time-resolved Zero Kinetic Energy-Pulsed Field Ionization (ZEKE-PFI) photoelectron spectroscopy has been used to study the spectroscopy and decay pathways of its electronically excited states. We find that different conformers are subject to distinct structural changes upon electronic excitation, and trace the structural changes that occur upon excitation back to the character of the LUMO. Ionization efficiency spectra in combination with pump-probe ZEKE-PFI spectra are consistent with the conclusion that the long-lived electronically excited state observed in the decay of the lowest excited singlet state is the lowest excited triplet state. Concurrently with providing information on the electronically excited states, the studies allow for a detailed characterization of the spectroscopic properties of the ground state of the radical ion, which is important in the context of the use of cinnamates in nature as antioxidants. Our studies determine the adiabatic ionization energies of the syn/cis, anti/cis and anti/trans conformers as 60 291.1 ± 0.5, 60 366.9 ± 0.5 and 60 503.9 ± 1.0 cm-1, respectively, and provide accurate vibrational fequencies of low-frequency modes of the molecular ion in its electronic ground state. Finally, the studies emphasize the important role of vibrational and electronic autoionization processes that start to dominate the ionization dynamics in non-rigid molecules of the present size.
Collapse
Affiliation(s)
- Jiayun Fan
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Laura Finazzi
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - Wybren Jan Buma
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands. .,Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
53
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
54
|
HPLC-DAD phenolics screening and in vitro investigation of haemostatic, antidiabetic, antioxidant and photoprotective properties of Centaurea tougourensis Boiss. & Reut. HERBA POLONICA 2022. [DOI: 10.2478/hepo-2021-0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Summary
Introduction
Traditional medicine has an important place in human history and this since antiquity. Indeed, during Egyptian and Chinese civilization era, many detailed manuscripts, describing the therapeutic effect of plants, were found which suggest that folk medicine is the basis of the actual medicine.
Objective
To investigate the phytochemical and pharmacological properties of the n-butanol (n-BuOH) and ethyl acetate (EA) extracts of the aerial part of Centaurea tougourensis.
Methods
The phytochemical evaluation was done based on HPLC-DAD approach. The antioxidant activity was determined by DPPH and cupric ion reducing antioxidant capacity (CUPRAC), while the hemostatic effect was performed using plasma recalcification time (PRT) method. The antidiabetic capacity was investigated by alpha-amylase inhibition assay and the photoprotective test was evaluated by the measurement of sun protection factor (SPF).
Results
13 phenolic compounds were identified in both extracts of C. tougourensis. These extracts showed antioxidant, haemostatic, antidiabetic and photoprotective properties with a dose-dependent manner. Amounts of n-BuOH activities were found higher, with a respective IC50 value of 0.72±0.07 μg/ml in DPPH assay, an A0.50 value lower than 3.125 μg/ml in CUPRAC assay besides a shortening rate percentage of coagulation (86.71%) in haemostatic assay, a moderate inhibition effect on alpha amylase activity with an IC50 value of (711.5±0.03 μg/ml) and a maximum sun protection factor of (56.035). These results were mostly found highly significant (p<0.001) when compared to respective standards.
Conclusion
This study demonstrated some pharmacological effects of C. tougourensis which suggests that our plant could be a good candidate to treat some illnesses related to oxidative stress, bleeding or skin cancer.
Collapse
|
55
|
Rajnochová Svobodová A, Ryšavá A, Čížková K, Roubalová L, Ulrichová J, Vrba J, Zálešák B, Vostálová J. Effect of the flavonoids quercetin and taxifolin on UVA-induced damage to human primary skin keratinocytes and fibroblasts. Photochem Photobiol Sci 2021; 21:59-75. [PMID: 34837635 DOI: 10.1007/s43630-021-00140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/10/2021] [Indexed: 01/29/2023]
Abstract
The ultraviolet (UV) part of solar radiation can permanently affect skin tissue. UVA photons represent the most abundant UV component and stimulate the formation of intracellular reactive oxygen species (ROS), leading to oxidative damage to various biomolecules. Several plant-derived polyphenols are known as effective photoprotective agents. This study evaluated the potential of quercetin (QE) and its structurally related flavonoid taxifolin (TA) to reduce UVA-caused damage to human primary dermal fibroblasts (NHDF) and epidermal keratinocytes (NHEK) obtained from identical donors. Cells pre-treated with QE or TA (1 h) were then exposed to UVA light using a solar simulator. Both flavonoids effectively prevented oxidative damage, such as ROS generation, glutathione depletion, single-strand breaks formation and caspase-3 activation in NHDF. These protective effects were accompanied by stimulation of Nrf2 nuclear translocation, found in non-irradiated and irradiated NHDF and NHEK, and expression of antioxidant proteins, such as heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 and catalase. For most parameters, QE was more potent than TA. On the other hand, TA demonstrated protection within the whole concentration range, while QE lost its protective ability at the highest concentration tested (75 μM), suggesting its pro-oxidative potential. In summary, QE and TA demonstrated UVA-protective properties in NHEK and NHDF obtained from identical donors. However, due to the in vitro phototoxic potential of QE, published elsewhere and discussed herein, further studies are needed to evaluate QE safety in dermatological application for humans as well as to confirm our results on human skin ex vivo and in clinical trials.
Collapse
Affiliation(s)
- Alena Rajnochová Svobodová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Alena Ryšavá
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Kateřina Čížková
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77900, Olomouc, Czech Republic
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic
| | - Bohumil Zálešák
- Department of Plastic and Aesthetic Surgery, University Hospital Olomouc, I. P. Pavlova 6, 77900, Olomouc, Czech Republic
| | - Jitka Vostálová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515, Olomouc, Czech Republic.
| |
Collapse
|
56
|
Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. COSMETICS 2021. [DOI: 10.3390/cosmetics8040106] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, interest in the health effects of natural antioxidants has increased due to their safety and applicability in cosmetic formulation. Nevertheless, efficacy of natural antioxidants in vivo is less documented than their prooxidant properties in vivo. Plant extracts rich in vitamins, flavonoids, and phenolic compounds can induce oxidative damage by reacting with various biomolecules while also providing antioxidant properties. Because the biological activities of natural antioxidants differ, their effectiveness for slowing the aging process remains unclear. This review article focuses on the use of natural antioxidants in skincare and the possible mechanisms underlying their desired effect, along with recent applications in skincare formulation and their limitations.
Collapse
|
57
|
Yoshino Y, Marunaka K, Kobayashi M, Matsunaga H, Shu S, Matsunaga T, Ikari A. Protective Effects of Ethanol Extract of Brazilian Green Propolis and Apigenin against Weak Ultraviolet Ray-B-Induced Barrier Dysfunction via Suppressing Nitric Oxide Production and Mislocalization of Claudin-1 in HaCaT Cells. Int J Mol Sci 2021; 22:ijms221910326. [PMID: 34638666 PMCID: PMC8508977 DOI: 10.3390/ijms221910326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Once weak ultraviolet ray-B (UVB) irradiates the skin cells, the generation of reactive nitrogen species (RNS), but not reactive oxygen species (ROS), is stimulated for the mislocalization of claudin-1 (CLDN1), an essential protein for forming tight junctions (TJs). Since our skin is constantly exposed to sunlight throughout our lives, an effective protection strategy is needed to maintain the skin barrier against weak UVB. In the present study, we investigated whether an ethanol extract of Brazilian green propolis (EBGP) and flavonoids had a protective effect against weak UVB irradiation-induced barrier dysfunction in human keratinocyte-derived HaCaT cells. A pretreatment with EBGP suppressed TJ permeability, RNS production, and the nitration level of CLDN1 in the weak UVB-exposed cells. Among the propolis components, apigenin and apigenin-like flavonoids have potent protective effects against NO production and the mislocalization of CLDN1 induced by UVB. The analyses between structures and biological function revealed that the chemically and structurally characteristic flavonoids with a hydroxyl group at the 4′ position on the B-ring might contribute to its protective effect on barrier dysfunction caused by weak UVB irradiation. In conclusion, EBGP and its component apigenin protect HaCaT cells from weak UVB irradiation-induced TJ barrier dysfunction mediated by suppressing NO production.
Collapse
Affiliation(s)
- Yuta Yoshino
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Kana Marunaka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Mao Kobayashi
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Haruka Matsunaga
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Shokoku Shu
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 502-8585, Japan;
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Gifu 501-1196, Japan; (Y.Y.); (K.M.); (M.K.); (H.M.); (S.S.)
- Correspondence: ; Tel./Fax: +81-(58)-2308124
| |
Collapse
|
58
|
Nhoek P, Ahn S, Park IG, Pel P, Huh J, Kim HW, Ahn J, Khiev P, Choi YH, Lee K, Noh M, Chin YW. Salicinoyl Quinic Acids and Their Prostaglandin E 2 Production Inhibitory Activities from the Fruits of Casearia grewiifolia. JOURNAL OF NATURAL PRODUCTS 2021; 84:2437-2446. [PMID: 34463498 DOI: 10.1021/acs.jnatprod.1c00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytochemical investigation on the dried fruits of Casearia grewiifolia led to the identification of 10 new salicinoyl quinic acid derivatives (1-10), a new benzoyl quinic acid (11), and two known compounds (12 and 13). The structures of the new compounds were elucidated by interpreting 1D and 2D NMR spectroscopic data including HMBC and EXSIDE along with a chemical method for sugar unit analysis. All isolates were evaluated for their inhibitory activities against prostaglandin E2 (PGE2) production in ultraviolet B (UVB)-irradiated HaCat keratinocytes. Of the isolates tested, compounds 6 and 12 were found to inhibit PGE2 production with IC50 values of 20.5 and 28.8 μM, respectively.
Collapse
Affiliation(s)
- Piseth Nhoek
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - In Guk Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungmoo Huh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongmin Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Piseth Khiev
- Department of Biology, Royal University of Phnom Penh, Russian Federation Boulevard, Khan Toul Kork, Phnom Penh 12156, Cambodia
| | - Young Hee Choi
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
59
|
Gromkowska-Kępka KJ, Markiewicz-Żukowska R, Nowakowski P, Naliwajko SK, Moskwa J, Puścion-Jakubik A, Bielecka J, Grabia M, Mielcarek K, Soroczyńska J, Socha K. Chemical Composition and Protective Effect of Young Barley ( Hordeum vulgare L.) Dietary Supplements Extracts on UV-Treated Human Skin Fibroblasts in In Vitro Studies. Antioxidants (Basel) 2021; 10:antiox10091402. [PMID: 34573034 PMCID: PMC8467029 DOI: 10.3390/antiox10091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Young barley seems to be a promising material for use as nutricosmetic due to the presence of many biologically active compounds. The aim of this study was to evaluate the effect of Hordeum vulgare L. extracts on human skin fibroblasts exposed to ultraviolet radiation B (UVB) radiation. Analysis of the chemical composition showed a predominance of 9,12,15-octadecatrienoic acid. The quality assessment showed that young barley preparations have high total polyphenolic content (TPC) and favourable total antioxidant status (TAS). They also contain antioxidant elements such as zinc, copper, and selenium. Furthermore, the analyzed products were found to be safe in terms of toxic elements (lead, cadmium and mercury) and lack of cytotoxic effect of young barley extracts on cells. In vitro bioactivity assays showed that young barley extract increased the survival rate and accelerated the migration of fibroblasts in research models with UVB radiation. The application of both extracts caused an increase in DNA biosynthesis, and in the number of cells arrested in S phase. Moreover, an inhibitory effect of the tested extracts on the expression of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) was observed. The results indicate that young barley extracts, due to protective as well as restorative effect, could potentially be used in the production of nutricosmetics and skin care products.
Collapse
|
60
|
Gonçalves S, Gaivão I. Natural Ingredients Common in the Trás-os-Montes Region (Portugal) for Use in the Cosmetic Industry: A Review about Chemical Composition and Antigenotoxic Properties. Molecules 2021; 26:5255. [PMID: 34500687 PMCID: PMC8433906 DOI: 10.3390/molecules26175255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
The natural cosmetics market has grown since consumers became aware of the concept of natural-based ingredients. A significant number of cosmetics have an ecological impact on the environment and carry noxious and chemically potent substances. Thus, the use of natural and organic cosmetics becomes increasingly important since it is clear that topical treatment with cosmeceuticals can help improve skin rejuvenation. A substantial investigation into the benefits that fruits and plants can bring to health is required. Studies have shown that antigenotoxic properties are linked to anti-aging properties. Several studies have shown potential antigenotoxicity in natural ingredients such as Almonds (Prunus dulcis), Elderberry (Sambucus nigra), Olives (Olea europaea), and Grapes (Vitis vinifera). This review presents an overview of research conducted on these natural ingredients, the most common in the Northeast of Portugal. This region of Portugal possesses the most organic farmers, and ingredients are easily obtained. The Northeast of Portugal also has climatic, topographic, and pedological differences that contribute to agricultural diversity.
Collapse
Affiliation(s)
| | - Isabel Gaivão
- Department of Genetics and Biotechnology and CECAV, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| |
Collapse
|
61
|
Chen M, Rubin GM, Jiang G, Raad Z, Ding Y. Biosynthesis and Heterologous Production of Mycosporine-Like Amino Acid Palythines. J Org Chem 2021; 86:11160-11168. [PMID: 34006097 DOI: 10.1021/acs.joc.1c00368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycosporine-like amino acids (MAAs) are a family of natural products that are produced by a variety of organisms for protection from ultraviolet damage. In this work, we combined different bioinformatic approaches to assess the distribution of the MAA biosynthesis and identified a putative gene cluster from Nostoc linckia NIES-25 that encodes a short-chain dehydrogenase/reductase and a nonheme iron(II)- and 2-oxoglutarate-dependent oxygenase (MysH) as potential new biosynthetic enzymes. Heterologous expression of refactored gene clusters in E. coli produced two known biosynthetic intermediates, 4-deoxygadusol and mycosporine-glycine, and three disubstituted MAA analogues, porphyra-334, shinorine, and mycosporine-glycine-alanine. Importantly, the disubstituted MAAs were converted into palythines by MysH. Furthermore, biochemical characterization revealed the substrate preference of recombinant MysD, a d-Ala-d-Ala ligase-like enzyme for the formation of disubstituted MAAs. Our study advances the biosynthetic understanding of an important family of natural UV photoprotectants and opens new opportunities to the development of next-generation sunscreens.
Collapse
Affiliation(s)
- Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Garret M Rubin
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Guangde Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Zachary Raad
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
62
|
Phytochemical Study and In Vitro Screening Focusing on the Anti-Aging Features of Various Plants of the Greek Flora. Antioxidants (Basel) 2021; 10:antiox10081206. [PMID: 34439454 PMCID: PMC8389045 DOI: 10.3390/antiox10081206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 01/10/2023] Open
Abstract
Skin health is heavily affected by ultraviolet irradiation from the sun. In addition, senile skin is characterized by major changes in the collagen, elastin and in the hyaluronan content. Natural products (NPs) have been shown to delay cellular senescence or in vivo aging by regulating age-related signaling pathways. Moreover, NPs are a preferable source of photoprotective agents and have been proven to be useful against the undesirable skin hyperpigmentation. Greek flora harvests great plant diversity with approximately 6000 plant species, as it has a wealth of NPs. Here, we report an extensive screening among hundreds of plant species. More than 440 plant species and subspecies were selected and evaluated. The extracts were screened for their antioxidant and anti-melanogenic properties, while the most promising were further subjected to various in vitro and cell-based assays related to skin aging. In parallel, their chemical profile was analyzed with High-Performance Thin-Layer Chromatography (HPTLC) and/or Ultra-Performance Liquid Chromatography High-Resolution Mass Spectrometry (UPLC-HRMS). A variety of extracts were identified that can be of great value for the cosmetic industry, since they combine antioxidant, photoprotective, anti-melanogenic and anti-aging properties. In particular, the methanolic extracts of Sideritis scardica and Rosa damascena could be worthy of further attention, since they showed interesting chemical profiles and promising properties against specific targets involved in skin aging.
Collapse
|
63
|
Mapoung S, Semmarath W, Arjsri P, Umsumarng S, Srisawad K, Thippraphan P, Yodkeeree S, Limtrakul (Dejkriengkraikul) P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. PLANTS (BASEL, SWITZERLAND) 2021; 10:1383. [PMID: 34371586 PMCID: PMC8309239 DOI: 10.3390/plants10071383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022]
Abstract
Recently, the global trend toward the use of natural extracts and antioxidant agents in the cosmetic cream industry to produce whitening effects has been increasing. This has also been a persistent trend in Thailand. In this study, samples of commercial cosmetic creams on the Thai market were assessed for a functional evaluation of their antioxidant activity, tyrosinase inhibitory effects, and phenolic contents. Samples were extracted using hot water and sonication extraction method to obtain the functional cream extracts. Total phenolic contents in all samples were within the range of 0.46-47.92 mg GAE/30 g cream. Antioxidant activities of the cream extracts were within the range of 3.61-43.98 mg Trolox equivalent/30 g cream, while tyrosinase inhibition activities were within the range of 2.58-97.94% of inhibition. With regard to the relationship between the total phenolic content and the antioxidant activity of the cosmetic creams, Pearson's correlation coefficient revealed a moderately positive relationship with an r value of 0.6108. Furthermore, the relationship between the antioxidant activity and the tyrosinase inhibitory activity of the cosmetic creams was highly positive with an r value of 0.7238. Overall, this study demonstrated that the total phenolic contents in the functional cosmetic creams could play a role in antioxidant activity and anti-tyrosinase activities. The findings indicate how the whitening and antioxidant effects of cosmetic creams could be maintained after the products have been formulated, as this concern can affect the consumer's decision when purchasing cosmetic products.
Collapse
Affiliation(s)
- Sariya Mapoung
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warathit Semmarath
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Sonthaya Umsumarng
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Veterinary Biosciences and Veterinary Public Health, Division of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornngarm Limtrakul (Dejkriengkraikul)
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (W.S.); (P.A.); (K.S.); (P.T.); (S.Y.)
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
64
|
Protection effects of rice protein hydrolysate on UVB-irradiated photodamage in Hartley guinea pigs skin and human skin fibroblasts. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
65
|
Mehta NK, Nguyen SA, Chang BA, Nathan CA. Trend Analysis of Cutaneous Squamous Cell Carcinoma of the External Lip From 1975 to 2016. JAMA Otolaryngol Head Neck Surg 2021; 147:624-631. [PMID: 33983364 DOI: 10.1001/jamaoto.2021.0760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Cutaneous squamous cell carcinoma (cSCC) is the second most common nonmelanoma skin cancer and commonly affects the head and neck. Increasing regional reports of aggressive cases warrant an analysis of population-based trends of cSCC of the head and neck. Objective To assess demographic, clinical, and survival trends among patients with cSCC of the external lip. Design, Setting, and Participants This was a retrospective, population-based cohort study of 15 171 cases of cSCC of the external lip registered in the Surveillance, Epidemiology, and End Results (SEER) database between 1975 and 2016. Statistical analyses were conducted in October 2020. Main Outcomes and Measures The primary outcome was clinical characteristics (tumor site, stage, and tumor grade). Demographic characteristics, incidence, treatment characteristics, and survival outcomes were also assessed. Results In total, 15 171 cases of cSCC were extracted from the SEER database (80.3% of patients were male, and 97.0% identified as being of White race/ethnicity). Incidence among male patients decreased from 4.4 to 0.8 per 100 000 during the study period, whereas the female patients' share cases increased from 8.4% in 1975 to 1979 to 26.1% by 2016. Cases increased in the US Pacific Coast and eastern regions, and along the 30° to 39° N latitudinal range, while decreasing in the southwestern region. Of 15 171 cases, 51.2% cases presented at stage I, and 96.2% were nonmetastatic. Cases of grade II and grade III tumors increased between 1975 and 2016. Five-year disease-specific survival remained stable at 95.9%; however, patients older than 75 years experienced worse disease-specific survival (93.2%) associated with decreasing survival trends among patients older than 85 years. Conclusion and Relevance This population-based cohort study found that incidence of cSCC of the external lip decreased among men; however, cases increased along US coastal regions and in more northern US latitudes. Tumor grades were increasingly advanced, and patients older than 85 years should be given special prognosis and treatment consideration.
Collapse
Affiliation(s)
- Neil K Mehta
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston
| | - Shaun A Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston
| | - Brent A Chang
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University-Health Shreveport, Shreveport
| | - Cherie-Ann Nathan
- Department of Otolaryngology-Head and Neck Surgery, Louisiana State University-Health Shreveport, Shreveport
| |
Collapse
|
66
|
Formulation of Insect Chitosan Stabilized Silver Nanoparticles with Propolis Extract as Potent Antimicrobial and Wound Healing Composites. INT J POLYM SCI 2021. [DOI: 10.1155/2021/5578032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Skin wounds are frequently influenced with microbial infections and inflammation, which need innovative agents for disputing them. Chitosan (Csn) was extracted from larvae of BSF “black soldier fly, Hermetia illucens” and ethanolic propolis extract (Pro) was employed for synthesizing silver nanoparticles (Ag-NPs), using facile biogenic protocol. The BSF-Csn was acquired with a yield of 1.56%, 91.3% deacetylation degree, and 88.600 Dalton molecular weight. The Ag-NPs were effectually biosynthesized using Pro, with a mean diameter of 8.73 nm and zeta potential of -21.34 mV. The antimicrobial activities assessment of insect Csn, Pro, synthesized Ag-NPs with Pro, and their composite against skin pathogens (Staphylococcus aureus and Candida albicans) revealed the elevated efficiency of the individual agents and the superior action of their composite (Csn/Pro/Ag-NPs), with 26.3 and 23.4 mm inhibition zones and inhibitory concentrations of 35.0 and 45.0 μg/mL from the composite toward S. aureus and C. albicans, respectively, which exceeded the actions of commercial antibiotics. The treatment of rat’s wounds with this composite promisingly led to faster healing of wounds and absence of inflammation and infection signs. The powerful actions of Csn/Pro/Ag-NPs as antimicrobial and wound healing composite strongly advocate their applications for skin protection, disinfection, and regeneration.
Collapse
|
67
|
Teixeira TR, Rangel KC, Tavares RSN, Kawakami CM, Dos Santos GS, Maria-Engler SS, Colepicolo P, Gaspar LR, Debonsi HM. In Vitro Evaluation of the Photoprotective Potential of Quinolinic Alkaloids Isolated from the Antarctic Marine Fungus Penicillium echinulatum for Topical Use. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:357-372. [PMID: 33811268 DOI: 10.1007/s10126-021-10030-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Marine-derived fungi proved to be a rich source of biologically active compounds. The genus Penicillium has been extensively studied regarding their secondary metabolites and biological applications. However, the photoprotective effects of these metabolites remain underexplored. Herein, the photoprotective potential of Penicillium echinulatum, an Antarctic alga-associated fungus, was assessed by UV absorption, photostability study, and protection from UVA-induced ROS generation assay on human immortalized keratinocytes (HaCaT) and reconstructed human skin (RHS). The photosafety was evaluated by the photoreactivity (OECD TG 495) and phototoxicity assays, performed by 3T3 neutral red uptake (3T3 NRU PT, OECD TG 432) and by the RHS model. Through a bio-guided purification approach, four known alkaloids, (-)-cyclopenin (1), dehydrocyclopeptine (2), viridicatin (3), and viridicatol (4), were isolated. Compounds 3 and 4 presented absorption in UVB and UVA-II regions and were considered photostable after UVA irradiation. Despite compounds 3 and 4 showed phototoxic potential in 3T3 NRU PT, no phototoxicity was observed in the RHS model (reduction of cell viability < 30%), which indicates their very low acute photoirritation and high photosafety potential in humans. Viridicatin was considered weakly photoreactive, while viridicatol showed no photoreactivity; both compounds inhibited UVA-induced ROS generation in HaCaT cells, although viridicatol was not able to protect the RHS model against UVA-induced ROS production. Thus, the results highlighted the photoprotective and antioxidant potential of metabolites produced by P. echinulatum which can be considered a new class of molecules for photoprotection, since their photosafety and non-cytotoxicity were predicted using recommended in vitro methods for topical use.
Collapse
Affiliation(s)
- Thaiz Rodrigues Teixeira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Karen Cristina Rangel
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Renata Spagolla Napoleão Tavares
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Martins Kawakami
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gustavo Souza Dos Santos
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Chemistry Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lorena Rigo Gaspar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hosana Maria Debonsi
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
68
|
Romes NB, Abdul Wahab R, Abdul Hamid M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: a review. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1915869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Nissha Bharrathi Romes
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
- Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| | - Mariani Abdul Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM, Johor Bahru, Malaysia
| |
Collapse
|
69
|
Miao L, Daozhou L, Ying C, Qibing M, Siyuan Z. A resveratrol-loaded nanostructured lipid carrier hydrogel to enhance the anti-UV irradiation and anti-oxidant efficacy. Colloids Surf B Biointerfaces 2021; 204:111786. [PMID: 33984613 DOI: 10.1016/j.colsurfb.2021.111786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Exposure to ultraviolet (UV) irradiation leads to the generation of reactive oxygen species (ROS) and DNA damage in skin tissue, which can further result in skin cancers. Using sunscreens is one of the most popular and the most effective method to resist UV irradiation. Resveratrol (RES) shows high absorbance in UV region and significant anti-oxidant effects. However, RES is easily degraded by UV irradiation, resulting in the decrease of bioactivity and the limitation of its application in the pharmaceutical preparations of skin. In this paper, a nanostructured lipid carrier gel loaded with RES (RES-NLC-gel) was prepared to improve the stability of RES and the accumulation of RES in the epidermis. Moreover, RES-NLC-gel could scavenge free radical effectively and protect human keratinocyte from UV irradiation by inhibiting the generation of ROS, decreasing the protein expression of cleaved caspase-3 and Bax and increasing the protein expression of Bcl-2. When mice skin was pretreated with RES-NLC-gel, there were less erythema, wrinkles and scabs on mice skin. The epidermal thickness of mice skins obviously reduced in dose-dependent manner. The activities of catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in mice skin tissue significantly increased. Thus, RES-NLC-gel exhibited an obvious anti-UV irradiation and anti-oxidant activity in vivo. RES-NLC-gel displayed great application potential in protecting skin from UV irradiation.
Collapse
Affiliation(s)
- Liu Miao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Liu Daozhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Cheng Ying
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Mei Qibing
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhou Siyuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
70
|
Souak D, Barreau M, Courtois A, André V, Duclairoir Poc C, Feuilloley MGJ, Gault M. Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage. Microorganisms 2021; 9:microorganisms9050936. [PMID: 33925587 PMCID: PMC8145394 DOI: 10.3390/microorganisms9050936] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022] Open
Abstract
Many studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as “a second barrier” to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products.
Collapse
Affiliation(s)
- Djouhar Souak
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Magalie Barreau
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
| | - Aurélie Courtois
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Valérie André
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
| | - Cécile Duclairoir Poc
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Marc G. J. Feuilloley
- LMSM EA4312, Laboratoire de Microbiologie Signaux et Microenvironnement, Université de Rouen Normandie, 27000 Evreux, France;
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| | - Manon Gault
- BASF Beauty Care Solutions France SAS, 69007 Lyon, France; (D.S.); (A.C.); (V.A.)
- Correspondence: (C.D.P.); (M.G.J.F.); (M.G.)
| |
Collapse
|
71
|
Saito GP, Matsumoto ACL, Assis RP, Brunetti IL, Cebim MA, Davolos MR. Zn(ferulate)-LSH Systems as Multifunctional Filters. Molecules 2021; 26:molecules26082349. [PMID: 33920742 PMCID: PMC8072700 DOI: 10.3390/molecules26082349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/03/2022] Open
Abstract
Excessive UV solar radiation exposure causes human health risks; therefore, the study of multifunctional filters is important to skin UV protective ability and also to other beneficial activities to the human organism, such as reduction of reactive oxygen species (ROS) responsible for cellular damages. Potential multifunctional filters were obtained by intercalating of ferulate anions into layered simple metal hydroxides (LSH) through anion exchange and precipitation at constant pH methods. Ultrasound treatment was used in order to investigate the structural changes in LSH-ferulate materials. Structural and spectroscopic analyses show the formation of layered materials composed by a mixture of LSH intercalated with ferulate anions, where carboxylate groups of ferulate species interact with LSH layers. UV-VIS absorption spectra and in vitro SPF measurements indicate that LSH-ferulate systems have UV shielding capacity, mainly UVB protection. The results of reactive species assays show the ability of layered compounds in capture DPPH•, ABTS•+, ROO•, and HOCl/OCl− reactive species. LSH-ferulate materials exhibit antioxidant activity and singular optical properties that enable their use as multifunctional filters.
Collapse
Affiliation(s)
- Gustavo Pereira Saito
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-060, São Paulo, Brazil; (G.P.S.); (A.C.L.M.); (M.A.C.)
| | - Ana Carolina Lanfredi Matsumoto
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-060, São Paulo, Brazil; (G.P.S.); (A.C.L.M.); (M.A.C.)
| | - Renata Pires Assis
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, São Paulo, Brazil; (R.P.A.); (I.L.B.)
| | - Iguatemy Lourenço Brunetti
- School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara 14800-903, São Paulo, Brazil; (R.P.A.); (I.L.B.)
| | - Marco Aurélio Cebim
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-060, São Paulo, Brazil; (G.P.S.); (A.C.L.M.); (M.A.C.)
| | - Marian Rosaly Davolos
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-060, São Paulo, Brazil; (G.P.S.); (A.C.L.M.); (M.A.C.)
- Correspondence: ; Tel.: +55-016-33019634
| |
Collapse
|
72
|
Geisler AN, Austin E, Nguyen J, Hamzavi I, Jagdeo J, Lim HW. Visible light. Part II: Photoprotection against visible and ultraviolet light. J Am Acad Dermatol 2021; 84:1233-1244. [PMID: 33640513 DOI: 10.1016/j.jaad.2020.11.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023]
Abstract
Cutaneous photobiology studies have focused primarily on the ultraviolet portion of the solar spectrum. Visible light (VL), which comprises 50% of the electromagnetic radiation that reaches the Earth's surface and, as discussed in Part I of this CME, has cutaneous biologic effects, such as pigment darkening and erythema. Photoprotection against VL includes avoiding the sun, seeking shade, and using photoprotective clothing. The organic and inorganic ultraviolet filters used in sunscreens do not protect against VL, only tinted sunscreens do. In the United States, these filters are regulated by the Food and Drug Administration as an over-the-counter drug and are subject to more stringent regulations than in Europe, Asia, and Australia. There are no established guidelines regarding VL photoprotection. Alternative measures to confer VL photoprotection are being explored. These novel methods include topical, oral, and subcutaneous agents. Further development should focus on better protection in the ultraviolet A1 (340-400 nm) and VL ranges while enhancing the cosmesis of the final products.
Collapse
Affiliation(s)
| | - Evan Austin
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Julie Nguyen
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York
| | - Iltefat Hamzavi
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| | - Jared Jagdeo
- Department of Dermatology, Center for Photomedicine, SUNY Downstate Medical Center, Brooklyn, New York; Dermatology Service, VA New York Harbor Healthcare System, Brooklyn, New York.
| | - Henry W Lim
- Department of Dermatology, Photomedicine and Photobiology Unit, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
73
|
Song J, Chen S, Zhao X, Cheng J, Ma Y, Ren S, Li S. Simple, green, ultrasound-assisted preparation of novel core-shell microcapsules from octyl methoxycinnamate and oligomeric proanthocyanidins for UV-stable sunscreen. RSC Adv 2021; 11:6374-6382. [PMID: 35423144 PMCID: PMC8694810 DOI: 10.1039/d0ra09116b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 12/19/2022] Open
Abstract
Without sunscreens, UV rays in sunlight cause skin damage, ranging from dark spots and premature aging to skin cancer. Present sunscreens, however, are readily photodegraded, producing highly reactive radicals that can damage cells. To address this problem, we have now used ultrasound to prepare core-shell microcapsules, which offer improved protection against UV light and improved UV stability. The composite microcapsules have oligomeric proanthocyanidins (OPCs), which are amphiphilic plant-derived secondary metabolites, as the shell and octyl methoxycinnamate (OMC), which is a UVB absorber, as the core. The polyphenolic flavonoid structure of OPCs improves the UV stability of OMC and thus avoids the skin damage caused by OMC photodegradation products. In the microcapsules, π-π stacking interactions between OPCs and OMC molecules enhance the ability of OMC to absorb UV radiation and extend the absorption range from the UVB region (280-320 nm) to include the UVA and UVC regions (200-400 nm). The composite microcapsules were shown to be stable on storage and to be non-irritant to human skin. The ultrasound-assisted preparation of OMC/OPCs composite microcapsules is simple, efficient and green and provides a feasible strategy for the development of novel, more effective, sunscreens.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| | - Siqi Chen
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| | - Xu Zhao
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| | - Junbo Cheng
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| | - Yanli Ma
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| | - Shixue Ren
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| | - Shujun Li
- Key Laboratory of Bio-Based Material Science & Technology (Northeast Forestry University), Ministry of Education Harbin 150040 China
| |
Collapse
|
74
|
Chen H, Jang J, Kopalli SR, Yum J, Yoon K, Cho JY. Anti-photoaging activities of Sorbaria kirilowii ethanol extract in UVB-damaged cells. Cytotechnology 2021; 73:127-138. [PMID: 33505120 DOI: 10.1007/s10616-020-00449-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
Sorbaria kirilowii (Regel) Maxim, a plant found in China, Korea, Japan, and east of Europe, is a common herb used for traditional medicinal purposes. However, its ability to prevent photoaging has not been studied. In this study, we investigated the anti-photoaging functions of an ethanol extract (Sk-EE) of S. kirilowii (Regel) Maxim using human keratinocytes exposed to UVB. First, we analyzed the cytotoxicity of Sk-EE. Then, we determine the expression of genes related to inflammation, collagen degradation, and moisture retention. We also explored the anti-photoaging mechanism of Sk-EE by determining correlated signaling pathways and target molecules using reporter gene assays and immunoblotting analyses. Sk-EE treatment of cells increased hyaluronic acid synthase (HAS), filaggrin (FLG), and collagen type I alpha 1 (COL1A1) expression. Sk-EE dose-dependently inhibited the UVB-induced expression of matrix metalloproteinases (MMPs) 1, 2, 9 and cyclooxygenase (COX)-2 by blocking the activator protein (AP)-1 signaling pathway, in particular the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular response kinase (ERK). In addition, c-Fos and c-Jun were targeted by Sk-EE. Our results indicate that Sk-EE has anti-inflammatory and skin-protective properties, and could be a candidate to treat signs of photoaging.
Collapse
Affiliation(s)
- Hongxi Chen
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Integrative Bioscience, and Biotechnology, Sejong University, Seoul, 05006 Republic of Korea
| | - Jinwhoa Yum
- Ministry of Environment, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
| | - Keejung Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419 Republic of Korea
| |
Collapse
|
75
|
Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar Drugs 2020; 18:md18120659. [PMID: 33371308 PMCID: PMC7767163 DOI: 10.3390/md18120659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/07/2023] Open
Abstract
In recent years, research on natural products has gained considerable attention, particularly in the cosmetic industry, which is looking for new bio-active and biodegradable molecules. In this study, cosmetic properties of cyanobacteria and red macroalgae were analyzed. The extractions were conducted in different solvents (water, ethanol and two combinations of water:ethanol). The main molecules with antioxidant and photoprotective capacity were mycosporine-like amino acids (MAAs), scytonemin and phenolic compounds. The highest contents of scytonemin (only present in cyanobacteria) were observed in Scytonema sp. (BEA 1603B) and Lyngbya sp. (BEA 1328B). The highest concentrations of MAAs were found in the red macroalgae Porphyra umbilicalis, Gelidium corneum and Osmundea pinnatifida and in the cyanobacterium Lyngbya sp. Scytonema sp. was the unique species that presented an MAA with maximum absorption in the UV-B band, being identified as mycosporine-glutaminol for the first time in this species. The highest content of polyphenols was observed in Scytonema sp. and P. umbilicalis. Water was the best extraction solvent for MAAs and phenols, whereas scytonemin was better extracted in a less polar solvent such as ethanol:dH2O (4:1). Cyanobacterium extracts presented higher antioxidant activity than those of red macroalgae. Positive correlations of antioxidant activity with different molecules, especially polyphenols, biliproteins and MAAs, were observed. Hydroethanolic extracts of some species incorporated in creams showed an increase in the photoprotection capacity in comparison with the base cream. Extracts of these organisms could be used as natural photoprotectors improving the diversity of sunscreens. The combination of different extracts enriched in scytonemin and MAAs could be useful to design broad-band natural UV-screen cosmeceutical products.
Collapse
|
76
|
Rojczyk E, Klama-Baryła A, Łabuś W, Wilemska-Kucharzewska K, Kucharzewski M. Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113159. [PMID: 32736052 DOI: 10.1016/j.jep.2020.113159] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The history of medical application of propolis (also known as bee glue) dates back to the times of ancient Greeks, Romans, Persians and Egyptians. Honey and other bee products, including propolis, occupy an important place in Polish folk medicine. Scientific research on propolis in Poland began in the early 1960s in Zabrze and continues until now. AIM OF THE REVIEW The aim of this review is to provide an overview of information on Polish research on propolis and its medical application with particular emphasis on studies concerning wound healing. Consequently, our goal is also to shed a new light on therapeutic potential of Polish propolis in order to support future research in the field. MATERIALS AND METHODS A systematic review of scientific literature on propolis and its medical application was performed by using the literature databases (PubMed, Web of Science, Google Scholar). We paid special attention to papers describing the effect of propolis on skin wound healing as well as to Polish contribution to research on propolis. RESULTS Professor Stan Scheller was the first Polish scientist dealing with propolis and its medical potential. His legacy was continued by several research teams that studied the topic in various aspects. They analyzed propolis composition, its antioxidant, anti-inflammatory, antimicrobial, antiapoptotic and anticancer properties as well as its application in dentistry and wound treatment. Burn wound healing physiology after propolis administration was thoroughly studied on pig model, whereas research on patients proved the efficacy of propolis in chronic venous leg ulcer treatment. CONCLUSION Polish scientists have made a significant contribution to the research on propolis, its biological properties and influence on wound healing. Propolis ointments can effectively accelerate the healing process and improve healing physiology, so they can be recommended as a promising topical medication for wound treatment in the future clinical and preclinical trials.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland.
| | - Agnieszka Klama-Baryła
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Wojciech Łabuś
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Katarzyna Wilemska-Kucharzewska
- Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia, 7 Żeromskiego Street, 41-902, Bytom, Poland.
| | - Marek Kucharzewski
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland; The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| |
Collapse
|
77
|
Umar SA, Tasduq SA. Integrating DNA damage response and autophagy signalling axis in ultraviolet-B induced skin photo-damage: a positive association in protecting cells against genotoxic stress. RSC Adv 2020; 10:36317-36336. [PMID: 35517978 PMCID: PMC9057019 DOI: 10.1039/d0ra05819j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/13/2020] [Indexed: 01/27/2023] Open
Abstract
The skin acts as both physical as well as an immunological barrier against hazardous agents from the outside environment and protects the internal organs against damage. Skin ageing is a dynamic process caused by the influence of various external factors, including damage from ultraviolet (UV-B) radiation, which is known as photo-ageing, and due to internal chronological mechanisms. A normal ageing process requires several orchestrated defense mechanisms to diverse types of stress responses, the concomitant renewal of cellular characteristics, and the homeostasis of different cell types that directly or indirectly protect the integrity of skin. Cumulative oxidative and endoplasmic reticulum (ER) stress responses and their adverse impact on biological systems in the skin are a common mechanism of the ageing process, negatively impacting DNA by causing mutations that lead to many physiological, functional, and aesthetic changes in the skin, culminating in the development of many diseases, including photo-damage and photo-carcinogenesis. Exposure of the skin to ultraviolet-(B) elicits the activation of signal transduction pathways, including DNA damage response, autophagy, and checkpoint signal adaptations associated with clearing radiation-induced DNA damage. Recent experimental reports suggest that autophagy is involved in maintaining skin homeostasis upon encountering different stresses, notably genotoxic stress. It has also been revealed that autophagy positively regulates the recognition of DNA damage by nucleotide excision repair and that skin ageing is associated with defects in the autophagy process. Moreover, autophagy is constitutively active in the skin epithelium, imparting protection to skin cells against a diverse range of outside insults, thus increasing resistance to environmental stressors. It has also been found that the stress-induced suppression of the autophagy response in experimental settings leads to enhanced apoptosis during photo-ageing upon UV-B exposure and that the maintenance of homeostasis depends on cellular autophagy levels. More recent reports in this domain claim that relieving the oxidative-stress-mediated induction of the ER stress response upon UV-B irradiation protects skin cells from photo-damage effects. The integration of autophagy and the DNA damage response under genotoxic stress is being considered as a meaningful partnership for finding novel molecular targets and devising suitable therapeutic strategies against photo-ageing disorders. Here, we summarize and review the current understanding of the mechanisms governing the intricate interplay between autophagy and the DNA damage response and its regulation by UV-B, the roles of autophagy in regulating the cellular response to UV-B-induced photodamage, and the implications of the modulation of autophagy as a meaningful partnership in the treatment and prevention of photoaging disorders.
Collapse
Affiliation(s)
- Sheikh Ahmad Umar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| | - Sheikh Abdullah Tasduq
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Pharmacokinetics-Pharmacodynamics and Toxicology Division, CSIR-Indian Institute of Integrative Medicine Jammu Tawi Jammu and Kashmir India +91-1912569000-10 ext.332
| |
Collapse
|
78
|
Rangel KC, Villela LZ, Pereira KDC, Colepicolo P, Debonsi HM, Gaspar LR. Assessment of the photoprotective potential and toxicity of Antarctic red macroalgae extracts from Curdiea racovitzae and Iridaea cordata for cosmetic use. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
79
|
Horbury MD, Turner MAP, Peters JS, Mention M, Flourat AL, Hine NDM, Allais F, Stavros VG. Exploring the Photochemistry of an Ethyl Sinapate Dimer: An Attempt Toward a Better Ultraviolet Filter. Front Chem 2020; 8:633. [PMID: 32850651 PMCID: PMC7399488 DOI: 10.3389/fchem.2020.00633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
The photochemistry and photostability of a potential ultraviolet (UV) radiation filter, dehydrodiethylsinapate, with a broad absorption in the UVA region, is explored utilizing a combination of femtosecond time-resolved spectroscopy and steady-state irradiation studies. The time-resolved measurements show that this UV filter candidate undergoes excited state relaxation after UV absorption on a timescale of ~10 picoseconds, suggesting efficient relaxation. However, steady-state irradiation measurements show degradation under prolonged UV exposure. From a photochemical standpoint, this highlights the importance of considering both the ultrafast and “ultraslow” timescales when designing new potential UV filters.
Collapse
Affiliation(s)
- Michael D Horbury
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Matthew A P Turner
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Jack S Peters
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | | | - Nicholas D M Hine
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | | | - Vasilios G Stavros
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
80
|
Abiola TT, Whittock AL, Stavros VG. Unravelling the Photoprotective Mechanisms of Nature-Inspired Ultraviolet Filters Using Ultrafast Spectroscopy. Molecules 2020; 25:E3945. [PMID: 32872380 PMCID: PMC7504748 DOI: 10.3390/molecules25173945] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
There are several drawbacks with the current commercially available ultraviolet (UV) filters used in sunscreen formulations, namely deleterious human and ecotoxic effects. As a result of the drawbacks, a current research interest is in identifying and designing new UV filters. One approach that has been explored in recent years is to use nature as inspiration, which is the focus of this review. Both plants and microorganisms have adapted to synthesize their own photoprotective molecules to guard their DNA from potentially harmful UV radiation. The relaxation mechanism of a molecule after it has been photoexcited can be unravelled by several techniques, the ones of most interest for this review being ultrafast spectroscopy and computational methods. Within the literature, both techniques have been implemented on plant-, and microbial-inspired UV filters to better understand their photoprotective roles in nature. This review aims to explore these findings for both families of nature-inspired UV filters in the hope of guiding the future design of sunscreens.
Collapse
Affiliation(s)
- Temitope T. Abiola
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; (T.T.A.); (A.L.W.)
| | - Abigail L. Whittock
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; (T.T.A.); (A.L.W.)
- AS CDT, Senate House, University of Warwick, Coventry CV4 7AL, UK
| | - Vasilios G. Stavros
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK; (T.T.A.); (A.L.W.)
| |
Collapse
|
81
|
Lycium barbarum polysaccharide fraction associated with photobiomodulation protects from epithelium thickness and collagen fragmentation in a model of cutaneous photodamage. Lasers Med Sci 2020; 36:863-870. [PMID: 32827076 DOI: 10.1007/s10103-020-03132-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Ultraviolet radiation (UVR) is the major etiologic agent of cutaneous photoaging, and different strategies are used to prevent and treat this condition. The polysaccharide fraction (LBPF) isolated from Lycium Barbarum fruits (goji berry) contains several active ingredients with antioxidant, immune system modulation, and antitumor effects. In addition, the photobiomodulation (PBM) is widely applied in photoaging treatment. This study investigated the effects of LBPF and PBM against the UVR-induced photodamage in the skin of hairless mice. The mice were photoaged for 6 weeks in a chronic and cumulative exposure regimen using a 300-W incandescent lamp that simulates the UVR effects. From the third to the sixth week of photoaging induction, the animals received topical applications of LBPF and PBM, singly or combined, in different orders (first LBPF and then PBM and inversely), three times per week after each session of photoaging. After completion of experiments, the dorsal region skin was collected for the analysis of thickness, collagen content, and metalloproteinases (MMP) levels. A photoprotective potential against the increase of the epithelium thickness and the fragmentation of the collagen fibers was achieved in the skin of mice treated with LBPF or PBM singly, as well as their combination. All treatments maintained the skin collagen composition, except when PBM was applied after the LBPF. However, no treatment protected against the UVR-induced MMP increase. Taken together, we have shown that the LBPF and PBM promote a photoprotective effect in hairless mice skin against epidermal thickening and low collagen density. Both strategies, singly and combined, can be used to reduce the UVR-induced cutaneous photoaging.
Collapse
|
82
|
Merten JW, Roberts KJ, King JL, McKenzie LB. Pinterest Homemade Sunscreens: A Recipe for Sunburn. HEALTH COMMUNICATION 2020; 35:1123-1128. [PMID: 31111735 DOI: 10.1080/10410236.2019.1616442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Social media, specifically Pinterest with more than 175 million users, has changed the way people seek and share health information. Recent consumer interest in natural products has led to an increase of shared recipes for homemade products including sunscreen. Homemade sunscreen products are risky because they are not regulated or tested for efficacy like commercial sunscreens. With rising skin cancer rates, the use of effective broadband sunscreen is critical to reduce incidence of skin cancer. This study used directed content analysis to examine how homemade sunscreens were portrayed on Pinterest. Using the search terms, homemade sunscreen and natural sunscreen, researchers sampled every fifth pin to collect 189 relevant pins. A codebook was developed, pilot tested, and used to code pins. Two researchers coded pins and interrater reliability was established at 90%. Of the 189 pins, the majority of pins (95.2%) positively portrayed the effectiveness of homemade sunscreens and 68.3% recommended recipes for homemade sunscreens that offered insufficient UV radiation protection. Sun Protection Factor (SPF) claims were made in 33.3% of pins with a range of SPF 2 to SPF 50. In this sample of pins, 41.8% of pins had been saved by other users ranging from one to more than 21,000 times. Social media is a powerful source of health information. However, this study revealed widespread interest and acceptance of insufficient sun protection information. Pinterest and the interest in homemade recipes for sunscreen present an opportunity for public health professionals to proactively engage on social media. Abbreviations: US: United States; SPF: sun protection factor; USFDA: United states food and drug administration; UV: ultraviolet.
Collapse
Affiliation(s)
| | - Kristi J Roberts
- Center for Injury Research and Policy, Research Institute at Nationwide Children's Hospital
| | - Jessica L King
- Department of Social Science and Health Policy, Wake Forest School of Medicine
| | - Lara B McKenzie
- Center for Injury Research and Policy, Research Institute at Nationwide Children's Hospital
| |
Collapse
|
83
|
Park KY, Kim J. Synthesis and Biological Evaluation of the Anti-Melanogenesis Effect of Coumaric and Caffeic Acid-Conjugated Peptides in Human Melanocytes. Front Pharmacol 2020; 11:922. [PMID: 32625101 PMCID: PMC7311773 DOI: 10.3389/fphar.2020.00922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Excessive pigmentation and reduced elasticity are the major skin problems that dermatologists and cosmetologists address. Compounds that inhibit melanin production might contribute to improving skin problems. In this study, we investigated whether coumaric acid- and caffeic acid-conjugated peptides might affect alpha-melanocyte stimulating hormone-induced melanin production, tyrosinase activity, and melanin synthesis-related gene expression in SK-MEL-2 human melanoma cells. Coumaric acid and caffeic acid showed no significant cytotoxicity, and they inhibited melanin production. In addition, coumaric acid- and caffeic acid-conjugated peptides suppressed tyrosinase activity more than arbutin, a known tyrosinase inhibitor. Quantitative real-time PCR (qRT-PCR) results also showed that both peptides inhibited the expression of melanin synthesis-related genes, TYR, TYRP1, TYRP2, and MITF. In particular, among the nine conjugated peptides tested, caffeic acid linked to a Gly-Gly-Gly linker and conjugated to the tripeptide, ARP, showed the greatest inhibition of gene expression in the qRT-PCR analysis. These results suggested that the inhibition of melanin exerted by coumaric acid- and caffeic acid-conjugated peptides might provide important information for the development of pigmentation-related skin diseases and cosmetic products.
Collapse
Affiliation(s)
- Kyeong-Yong Park
- Department of Integrated Material's Development, CHA Meditech Co., Ltd, Daejeon, South Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
84
|
Protective Effects of Salicornia europaea on UVB-Induced Misoriented Cell Divisions in Skin Epithelium. COSMETICS 2020. [DOI: 10.3390/cosmetics7020044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Correct orientation of cell division is extremely important in the maintenance, regeneration, and repair of continuously proliferating tissues, such as the epidermis. Regulation of the axis of division of epidermal cells prevents the apoptosis-induced compensatory proliferation, and eventually the cancer. Thus, the orientation of cell division is critical for maintaining the tissue architecture. In this study, we investigated the effects of S. europaea extract on the texture of human skin and the behavior of these cells during skin morphogenesis. In sun-exposed skin, S. europaea improved the texture. A multilayered, highly differentiated in vitro skin model indicated that, S. europaea extract suppressed the UVB-induced changes in the morphology of basal keratinocytes. Orientation of cell division was determined by measuring the axis of mitosis in the vertical sections of our experimental model. Analyses of the digital images revealed that S. europaea preserved the axis of division of basal keratinocytes from UVB-induced perturbations. Our findings uncover a new mechanism by which S. europaea responds to the spindle misorientation induced by UVB.
Collapse
|
85
|
Di Caprio R, Monfrecola G, Gasparri F, Micillo R, Balato A, Lembo S. Milk thistle and olive extract: old substances with a new mission against sun-induced skin damage. GIORN ITAL DERMAT V 2020; 155:286-293. [PMID: 29192469 DOI: 10.23736/s0392-0488.17.05726-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Natural antioxidants represent an effective option in the prevention and/or improvement of ultraviolet radiations (UVR)-induced/aggravated skin conditions. UVR cause DNA damage in keratinocytes, directly, in the form of cyclobutane pyrimidine dimers (CPDs), or indirectly, through oxidative stress production. Failure of the repair system can result in genetic mutations primarily responsible for the initiation of NMSCs. The aim of our study was to evaluate the in vitro protective effect of milk thistle and olive purified extracts on cultured keratinocytes after solar simulator irradiations (SSR). METHODS Immortalized keratinocytes were pre-incubated with different concentrations of milk thistle and olive purified extracts, and irradiated with increasing doses of SSR. Thereafter, CPDs and p53 expression were evaluated to assess DNA damage, whereas cellular antioxidants consumption and lipid membranes peroxidation were measured to analyze oxidative stress. RESULTS The study substances were well tolerated by cells and displayed good cytoprotective and antioxidant activities, being milk thistle dry extract more effective in limiting the direct DNA damage, and olive extract particularly able to reduce lipid membrane peroxidation and to increase cellular antioxidants. CONCLUSIONS Both study substances can be defined as safe compounds, showing differential cytoprotective and antioxidant activities and might represent interesting options for NMSCs chemoprevention.
Collapse
Affiliation(s)
- Roberta Di Caprio
- Section of Dermatology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy -
| | - Giuseppe Monfrecola
- Section of Dermatology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Franco Gasparri
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | - Raffaella Micillo
- Section of Dermatology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| |
Collapse
|
86
|
Pavlačková J, Egner P, Slavík R, Mokrejš P, Gál R. Hydration and Barrier Potential of Cosmetic Matrices with Bee Products. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25112510. [PMID: 32481539 PMCID: PMC7321148 DOI: 10.3390/molecules25112510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/16/2022]
Abstract
Honey, honey extracts, and bee products belong to traditionally used bioactive molecules in many areas. The aim of the study was primarily to evaluate the effect of cosmetic matrices containing honey and bee products on the skin. The study is complemented by a questionnaire survey on the knowledge and awareness of the effects and potential uses of bee products. The effect of bee molecules at various concentrations was observed by applying 12 formulations to the skin of the volar side of the forearm by non-invasive bioengineering methods on a set of 24 volunteers for 48 h. Very good moisturizing properties have been found in matrices with the glycerin extract of honey. Matrices containing forest honey had better moisturizing effects than those containing flower honey. Barrier properties were enhanced by gradual absorption, especially in formulations with both glycerin and aqueous honey extract. The observed organoleptic properties of the matrices assessed by sensory analysis through 12 evaluators did not show statistically significant differences except for color and spreadability. There are differences in the ability to hydrate the skin, reduce the loss of epidermal water, and affect the pH of the skin surface, including the organoleptic properties between honey and bee product matrices according to their type and concentration.
Collapse
Affiliation(s)
- Jana Pavlačková
- Department of Lipids, Detergents and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic; (J.P.); (P.E.)
| | - Pavlína Egner
- Department of Lipids, Detergents and Cosmetics Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic; (J.P.); (P.E.)
| | - Roman Slavík
- Prodejní místa, Alveare, Ltd., Štěpnická 1137, 68606 Uherské Hradiště, Czech Republic;
| | - Pavel Mokrejš
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic
- Correspondence: ; Tel.: +420-576-031-230
| | - Robert Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001 Zlín, Czech Republic;
| |
Collapse
|
87
|
Lu YS, Jiang Y, Yuan JP, Jiang SB, Yang Y, Zhu PY, Sun YZ, Qi RQ, Liu T, Wang HX, Wu Y, Gao XH, Chen HD. UVA Induced Oxidative Stress Was Inhibited by Paeoniflorin/Nrf2 Signaling or PLIN2. Front Pharmacol 2020; 11:736. [PMID: 32499710 PMCID: PMC7243259 DOI: 10.3389/fphar.2020.00736] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Photodamages caused by UVA radiation induced oxidative injuries are closely related to photoaging and skin cancer. Paeoniflorin (PF), extracted from the root of Paeonia lactiflora, has been reported to be an effective antioxidant. PLIN2, known as adipose differentiation-related protein, has been previously involved in the regulation of oxidative stress. In this study, we were sought to investigate the photo-protective property of PF and PLIN2 in UVA-radiated human dermal fibroblasts (HDFs). HDFs were pre-treated with PF (800 μM) followed by UVA radiation (22.5 J/cm2). MTS activity, cell apoptosis, ROS, MDA, and SOD were detected, respectively. The expressions of Nrf2, HO-1, NQ-O1, and PLIN2 were determined using RT-qPCR or western blot. Nrf2 was silenced by siRNA, and PLIN2 was overexpressed via lentiviral transduction. Comparing to the UVA radiation, PF pre-treatment could prominently increase the MTS activity, decrease cell apoptosis, reduce the generations of ROS and MDA, increase the activity of SOD and increase the expression of Nrf2 and its target genes HO-1 and NQ-O1. When Nrf2 was knocked down, PF lost above protective properties. In addition, UVA induced oxidative stress led to upregulation of PLIN2 and the latter could be decreased by PF. Overexpression of PLIN2 improved MTS activity and reduced MDA level in HDFs. The combination of PLIN2 overexpression and PF pre-treatment corporately inhibited UVA-induced injury. Besides, we also found that PF and PLIN2 had a compensatory protection against UVA induced oxidative stress. In conclusion, our study demonstrated that UVA induced photodamages could be inhibited by PF via Nrf2/HO-1/NQ-O1 signaling pathway or by PLIN2, and the combination of PLIN2 overexpression and PF played additive effects against UVA-related oxidative stress.
Collapse
Affiliation(s)
- Yan-Song Lu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Jiang
- Department of Internal Medicine, School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin-Ping Yuan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Shi-Bin Jiang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Pei-Yao Zhu
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Yu-Zhe Sun
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Rui-Qun Qi
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Urinary Surgery, the First Hospital of China Medical University, Shenyang, China
| | - He-Xiao Wang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
88
|
Abstract
Several topical products have been developed to avoid the harmful effects from ultraviolet (UV) radiation, such as sunscreens. Research for actives from natural sources is increasing due to the fact that chemical filters could induce adverse events. The microalgae Botryococcus braunii has potential interest in cosmetic applications. Specialized literature reported that B. braunii aqueous extract induced a reduction in skin dehydration and collagen production and promoted antioxidant activity. This research aimed to produce B. braunii biomass and to investigate its contribution regarding photoprotection. Formulations containing B. braunii dry biomass, with or without UV filters into vehicles composed of an emulsifying polymer or a self-emulsifying base, were evaluated in vitro by means of photoprotective activity and photostability. B. braunii dry biomass did not provide adequate photoprotection efficacy; however, it was observed that the self-emulsifying base promoted better sun protection factor (SPF) in comparison with the emulsifying polymer.
Collapse
|
89
|
Dao DQ, Phan TTT, Nguyen TLA, Trinh PTH, Tran TTV, Lee JS, Shin HJ, Choi BK. Insight into Antioxidant and Photoprotective Properties of Natural Compounds from Marine Fungus. J Chem Inf Model 2020; 60:1329-1351. [DOI: 10.1021/acs.jcim.9b00964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Duy Quang Dao
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Thi Thu Trang Phan
- Faculty of Pharmacy, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam
| | - Phan Thi Hoai Trinh
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 02 Hung Vuong, Nha Trang 650000, Vietnam
| | - Thi Thanh Van Tran
- Nha Trang Institute of Technology Research and Application, Vietnam Academy of Science and Technology (VAST), 02 Hung Vuong, Nha Trang 650000, Vietnam
| | - Jong Seok Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| | - Hee Jae Shin
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| | - Byeoung-Kyu Choi
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, Korea
| |
Collapse
|
90
|
Kurek-Górecka A, Górecki M, Rzepecka-Stojko A, Balwierz R, Stojko J. Bee Products in Dermatology and Skin Care. Molecules 2020; 25:molecules25030556. [PMID: 32012913 PMCID: PMC7036894 DOI: 10.3390/molecules25030556] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 12/31/2022] Open
Abstract
Honey, propolis, bee pollen, bee bread, royal jelly, beeswax and bee venom are natural products which have been used in medicine since ancient times. Nowadays, studies indicate that natural bee products can be used for skin treatment and care. Biological properties of these products are related to flavonoids they contain like: chrysin, apigenin, kaempferol, quercetin, galangin, pinocembrin or naringenin. Several pharmacological activities of phenolic acids and flavonoids, and also 10-hydroxy-trans-2-decenoic acid, which is present in royal jelly, have been reported. Royal jelly has multitude of pharmacological activities: antibiotic, antiinflammatory, antiallergenic, tonic and antiaging. Honey, propolis and pollen are used to heal burn wounds, and they possess numerous functional properties such as: antibacterial, anti-inflammatory, antioxidant, disinfectant, antifungal and antiviral. Beeswax is used for production of cosmetics and ointments in pharmacy. Due to a large number of biological activities, bee products could be considered as important ingredients in medicines and cosmetics applied to skin.
Collapse
Affiliation(s)
- Anna Kurek-Górecka
- Silesian Academy of Medical Sciences in Katowice, Mickiewicza 29, 40-085 Katowice, Poland;
- Correspondence:
| | - Michał Górecki
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (A.R.-S.)
| | - Anna Rzepecka-Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (M.G.); (A.R.-S.)
| | - Radosław Balwierz
- Silesian Academy of Medical Sciences in Katowice, Mickiewicza 29, 40-085 Katowice, Poland;
| | - Jerzy Stojko
- Department of Toxycology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Ostrogórska 30, 41-200 Sosnowiec, Poland;
| |
Collapse
|
91
|
Woo YK, Park J, Ryu JH, Cho HJ. The anti-inflammatory and anti-apoptotic effects of advanced anti-inflammation composition (AAIC) in heat shock-induced human HaCaT keratinocytes. J Cosmet Dermatol 2019; 19:2114-2124. [PMID: 31868297 DOI: 10.1111/jocd.13257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/03/2019] [Accepted: 11/27/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND The development of natural cosmetic materials without side effects to protect skin from heat shock is necessary. We recently reported that advanced cooling composition (ACC) has anti-inflammatory effect in RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and strong anti-microbial effect against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA (Methicillin-resistant Staphylococcus aureus), Candida albicans, and Streptococcus mutans. AIMS To further investigate whether advanced anti-inflammation composition (AAIC), newly developed from existing ACC has beneficial effects in heat shock-induced immortalized human keratinocytes (HaCaT cells), HaCaT cells were pretreated with AAIC before heat shock treatment. METHODS Cell viability for heat shock treatment and different concentrations of AAIC in HaCaT cells were assessed by MTT assay. Anti-oxidative activity of AAIC was measured using the DPPH assay. The protein expression in heat shock-induced HaCaT cells treated with AAIC was evaluated by immunofluorescence staining and western blot analysis. RESULTS AAIC, which is effective at 100 µg/mL concentration, was nontoxic in HaCaT cells and had an anti-oxidative effect demonstrated by scavenging DPPH free radicals. AAIC treatment significantly attenuated the aberrant levels of pro-inflammatory and pro-apoptotic signaling molecules in heat shock-induced HaCaT cells compared with control cells. CONCLUSION AAIC potentially includes effective anti-oxidative activity, anti-inflammatory, and anti-apoptotic properties against heat shock-induced keratinocytes, suggesting that it can be provided as a raw material for imparting skin health.
Collapse
Affiliation(s)
| | | | | | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
| |
Collapse
|
92
|
Prasanth MI, Gayathri S, Bhaskar JP, Krishnan V, Balamurugan K. Analyzing the Synergistic Effects of Antioxidants in Combating Photoaging Using Model Nematode, Caenorhabditis elegans. Photochem Photobiol 2019; 96:139-147. [PMID: 31556119 DOI: 10.1111/php.13167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
Aging, a universal and unique process, occurs both intrinsically (chronological) and extrinsically (photoaging). Ultraviolet-A (UV-A)-mediated stress is a growing health hazard to mankind as it is the major cause of photoaging, which could lead to much damage of skin cells and tissues ranging from tan, burn, or even cancer. The present study focuses on the role of antioxidants and other natural compounds which have been widely used in oral/topical applications to combat and delay the effects of photoaging using model nematode Caenorhabditis elegans. Compounds like green tea extract, naringenin, and naringin, which are known for their antioxidant properties, were able to extend life span and healthspan of the nematode in normal as well as under UV-A-mediated stress conditions. Regulation of both the stress-responsive genes (skn-1 and sir-2.1) and the aging-regulating genes (daf-2 and age-1) was attributable for these conditions. Interestingly, it was observed that these compounds when combined in equal ratios by weight worked synergistically to combat the aging process. Pronounced synergistic effects were observed during UV-A-mediated stress conditions, suggesting that these could be used as potential antiphotoaging compounds which will be of greater significance for health-based research.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
93
|
Huang J, Tu T, Wang W, Zhou G, Zhang W, Wu X, Liu W. Asiatic Acid Glucosamine Salt Alleviates Ultraviolet B-induced Photoaging of Human Dermal Fibroblasts and Nude Mouse Skin. Photochem Photobiol 2019; 96:124-138. [PMID: 31483870 DOI: 10.1111/php.13160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Herbal extracts including asiatic acid (AA) have become popular candidates of anti-photoaging agents due to their anti-inflammatory and antioxidant properties and minimal side effect. Nevertheless, low bioavailability due to poor solubility limits their practical application. In this study, a highly bioavailable form of AA called AAGS (compounded by asiatic acid and glucosamine) was investigated for its anti-photoaging effect using both in vitro and in vivo models along with UVB irradiation. The results showed that AAGS alleviated UVB-induced cell proliferation inhibition by reducing G2 phase arrest and cell apoptosis rate as well as the gene expressions of P53, BAX, CASPASE 3 and CASPASE 9, but enhancing BCL-2 expression. It also reduced the production of reactive oxygen species along with increased gene expression of GPX-1 and downregulated the gene expression of IL-1β, IL-6, IL-8, IL-17 and TNF-α compared to nontreated cells. In vivo results demonstrated the antiphotodamaging effects by restoring skin thickness, collagen content and reducing MMPs expression, which are also supported by reduced MMPs gene expression and enhanced collagen I and TGF-β1 gene expression in vitro. Thus, AAGS may become a potential anti-photoaging agent for topical use due to its capability of self-assembling into a water gel.
Collapse
Affiliation(s)
- Jia Huang
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Tu
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbo Wang
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoli Wu
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Shanghai Key Laboratory of Tissue Engineering Research, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
94
|
Holt EL, Stavros VG. Applications of ultrafast spectroscopy to sunscreen development, from first principles to complex mixtures. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1663062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily L. Holt
- Molecular Analytical Science Centre for Doctoral Training, Senate House, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | | |
Collapse
|
95
|
Aquino-Martins VGDQ, Melo LFMD, Silva LMP, Targino de Lima TR, Fernandes Queiroz M, Viana RLS, Zucolotto SM, Andrade VS, Rocha HAO, Scortecci KC. In Vitro Antioxidant, Anti-Biofilm, and Solar Protection Activities of Melocactus zehntneri (Britton & Rose) Pulp Extract. Antioxidants (Basel) 2019; 8:antiox8100439. [PMID: 31581486 PMCID: PMC6826963 DOI: 10.3390/antiox8100439] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Cactaceae plants are important due to their nutritional and therapeutic values. This study aimed to identify the phytochemical profile and biological activities of six Melocactus zehntneri pulp extracts: hexane extract (HE), chloroform extract (CE), ethanol extract (EE), methanol extract (ME), final water extract (FWE), and water extract (WE). Sugar, phenolic compounds, and protein content of the extracts were determined. Then thin layer chromatography (TLC) was performed to detect the presence of terpenes (ursolic and oleanolic acids), saponins, sugars, and glycoproteins. These extracts were analyzed for antioxidant activity via in vitro assay. HE showed 75% ferric chelating activity. All extracts showed 80-100% superoxide and hydroxyl radical-scavenging activities, respectively. Further, all extracts at 25 µg/mL showed 60% activity against DPPH. Moreover, in the 3T3 cells lines, no cytotoxicity was observed; however, therapeutic activity against the effects of the H2O2 treatment was exhibited. Finally, the polar extracts (EE, ME, FWE, and WE), particularly WE, elicited activity against the biofilms of Staphylococcus epidermidis, and HE and CE expressed a capacity for solar protection.
Collapse
Affiliation(s)
- Verônica Giuliani de Queiroz Aquino-Martins
- Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Transformação de Planta e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| | - Luciana Fentanes Moura de Melo
- Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Transformação de Planta e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| | - Larissa Marina Pereira Silva
- Laboratório de Produtos Naturais e Bioativos (PNBio), Departamento de Farmácia, UFRN, Natal, CEP 59078-970, Brazil.
| | - Thales Rodrigo Targino de Lima
- Laboratório de Ensaios Antimicrobianos e de Citotoxicidades (LEAC), Departamento Microbiologia e Parasitologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| | - Moacir Fernandes Queiroz
- Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| | - Rony Lucas Silva Viana
- Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| | - Silvana Maria Zucolotto
- Laboratório de Produtos Naturais e Bioativos (PNBio), Departamento de Farmácia, UFRN, Natal, CEP 59078-970, Brazil.
| | - Vania Sousa Andrade
- Laboratório de Ensaios Antimicrobianos e de Citotoxicidades (LEAC), Departamento Microbiologia e Parasitologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| | - Hugo Alexandre Oliveira Rocha
- Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| | - Katia Castanho Scortecci
- Pós-Graduação em Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
- Laboratório de Transformação de Planta e Análise em Microscopia (LTPAM), Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, CEP 59078-970, Brazil.
| |
Collapse
|
96
|
UVA Photoprotective Activity of Brown Macroalgae Sargassum cristafolium. Biomedicines 2019; 7:biomedicines7040077. [PMID: 31569807 PMCID: PMC6966596 DOI: 10.3390/biomedicines7040077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Sunscreens today contain several synthetic UV (Ultraviolet) filter molecules to protect the skin epidermis from UV radiation damage. However, these molecules may create several negative effects on human skin. Due to this condition, there is an increase in the development of natural products to replace uses of these synthetic chemicals. Brown macroalgae Sargassum has been recently studied for its photoprotective activities. The purpose of this study is to investigate photoprotective activity of one of most abundant Sargassum species in Lombok coast; Sargassum cristaefolium. Spectrophotometry analysis with UV-VIS revealed the UV spectra absorbing capability of Sargassum cristaefolium (SC) in the UVA spectrum range (314–400 nm). Furthermore, spectrometry analyses with LC-MS revealed the existence of UV absorbing compound MAA-palythene. In correlation, SC ethanol extracts also demonstrate that it could protect DNA from UVA irradiation as analyzed in vitro in HeLa cell model. The effects of SC on UVA exposed-dorsal mice skin have also shown interesting results, as mice pretreated with SC before UVA exposure showed protective activity on the epidermal integrity similar as positive control. Whereas, UV exposed mice without SC or commercial products resulted in increased epidermal thickness, which is the common parameter of skin photoaging. In addition, pretreated mice with SC also show protective effects in the formation of collagen connective tissues. Overall, current results show promising photoprotective activity of SC against UV radiation. More advanced investigations of SC as a potential photoprotective agent would be reasonable for development of macroalgae-based natural skin protection products.
Collapse
|
97
|
Xiong L, Zhao M, Fan Y, Wang S, Yang Y, Li X, Zhao D, Zhang F. Manganese Oxide Nanoclusters for Skin Photoprotection. ACS APPLIED BIO MATERIALS 2019; 2:3974-3982. [PMID: 35021330 DOI: 10.1021/acsabm.9b00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An ultraviolet (UV) filter is the core component of sunscreen and protects skin from various photo damages. Current UV filters are hampered by skin penetration, poor photostability, photocatalytic generation of harmful reactive oxygen species (ROS), and potential environmental risks. In this work, manganese dioxide nanoclusters were developed as an eco-friendly UV filter by a facile two-step synthesis, using colloid silica as support under ambient conditions. These nanoclusters show a better UV-shielding profile than commercial titanium dioxide nanoparticles and capability to scavenge various ROS. They can be easily incorporated by a sunscreen formula and demonstrate an excellent skin photoprotection performance both in vitro and in vivo.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Yanling Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Xiaomin Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
98
|
Freitas KM, Silva ACAE, Veloso ES, Ferreira Ê, Barcelos LS, Caliari MV, Salas CE, Lopes MTP. P1G10, the Proteolytic Fraction from Vasconcellea cundinamarcensis, Stimulates Tissue Repair after Acute Exposure to Ultraviolet B Radiation. Int J Mol Sci 2019; 20:E4373. [PMID: 31489890 PMCID: PMC6770601 DOI: 10.3390/ijms20184373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND P1G10 is a cysteine proteolytic fraction from Vasconcellea cundinamarcensis latex, obtained by chromatographic separation on Sephadex-G10 and ultrafiltration. This fraction enhances healing in different models of skin lesions, and displays a protective/healing effect against gastric ulcers, where it was suggested an antioxidant role. METHODS We evaluated here the effect of topical treatment with P1G10, in mice lesions induced by UVB. RESULTS After single exposure to 2.4 J cm-2 UVB, P1G10 reduced erythema, increased cellularity of hypodermis, enhanced MPO activity and IL1β, and inhibited COX2 levels. These results point to an anti-inflammatory effect by P1G10. This fraction displayed antioxidant activity by reversing the depletion of glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and reducing the catalase activity increased by UVB. These changes may be related to a reduction in MDA observed in groups treated with P1G10. P1G10 also inhibited MMP-9, caspase-3 and pkat while increasing p53 levels.
Collapse
Affiliation(s)
- Kátia M Freitas
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Ana C Araújo E Silva
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rua do Cruzeiro, nº 01, Bairro Jardim São Paulo, Teófilo Otoni 39803-371, MG, Brazil.
| | - Emerson S Veloso
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Ênio Ferreira
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Lucíola S Barcelos
- Departamento Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Marcelo V Caliari
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Carlos E Salas
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| | - Miriam T P Lopes
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
| |
Collapse
|
99
|
Alves GDAD, Fernandes da Silva D, Venteu Teixeira T, de Souza RO, Rogez H, Fonseca MJV. Obtainment of an enriched fraction of Inga edulis: identification using UPLC-DAD-MS/MS and photochemopreventive screening. Prep Biochem Biotechnol 2019; 50:28-36. [PMID: 31453734 DOI: 10.1080/10826068.2019.1658118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Inga edulis is a fruit tree native from Central and South America. Different species of Inga have demonstrated high polyphenolic content and high antioxidant capacity. The oxidative stress significantly contributes to the development of several chronicle diseases, particularly age-related diseases. Therefore, photochemoprevention is an emerging interest in the use of naturally occurring antioxidants for their therapeutic use. A partial purification of the extract was carried out onto macroporous resin and the main components of I. edulis leaf extract and fraction were identified using UPLC-DAD-MS/MS as epicatechin, apigenin C-di-hexoside, myricetin-O-hexose-deoxyhexose, myricetin-O-deoxyhexose and vicenin-2, which was identified for the first time in I. edulis. Both extract and fraction presented high antioxidant capacity, the fraction exhibiting higher polyphenol and flavonoid contents and higher content of vicenin-2, suggesting that the fractioning process effectively resulted in the partial purification of the extract. The cytotoxicity and photostability were assessed in L929 fibroblast cells to evaluate whether I. edulis extract and fraction were suitable for topical application. The UVA and UVB irradiated extract and fraction did not decrease the antioxidant capacity and cell viability of L929 fibroblasts, demonstrating the photostability of the samples. The fractioning process successfully purified and enriched I. edulis extract, and both the extract and fraction are potential candidates to be safely incorporated in topical photochemopreventive formulations.
Collapse
Affiliation(s)
- Georgia de Assis Dias Alves
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniele Fernandes da Silva
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rebeca Oliveira de Souza
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará, Belém, Pará, Brazil
| | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
100
|
Oh JH, Karadeniz F, Lee JI, Seo Y, Kong CS. Protective effect of 3,5‑dicaffeoyl‑epi‑quinic acid against UVB‑induced photoaging in human HaCaT keratinocytes. Mol Med Rep 2019; 20:763-770. [PMID: 31115540 DOI: 10.3892/mmr.2019.10258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 03/28/2019] [Indexed: 11/05/2022] Open
Abstract
Derivatives of caffeoylquinic acid (CQA) have been studied and reported as potent bioactive molecules possessing various health benefits including antioxidant and anti‑inflammatory activities. In the present study, the protective effect of 3,5‑dicaffeoyl‑epi‑quinic acid (DCEQA) isolated from Atriplex gmelinii on UVB‑induced damages was investigated in human HaCaT keratinocytes. The effect of DCEQA against UVB‑induced oxidative stress‑mediated damages was determined measuring its ability to alleviate UVB‑induced elevation of oxidative stress, proinflammatory response and antioxidant enzyme suppression through nuclear factor‑like 2 (Nrf2). Treatment with DCEQA hindered the generation of intracellular reactive oxygen species. Increased levels of proinflammatory cytokines TNF‑α, COX‑2, IL‑6 and IL‑1β following UVB exposure were suppressed by the introduction of DCEQA. Additionally, DCEQA upregulated the mRNA and protein expression of antioxidant enzymes superoxide dismutase‑1 and heme oxygenase‑1 which were inhibited under UVB irradiation. Antioxidant enzyme regulation transcription factor Nrf2 was also upregulated in the presence of DCEQA. These results suggest that DCEQA prevents photoaging via protection of keratinocytes from UVB irradiation by ameliorating the oxidative stress and pro‑inflammatory response.
Collapse
Affiliation(s)
- Jung Hwan Oh
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Fatih Karadeniz
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Jung Im Lee
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Youngwan Seo
- Division of Marine Bioscience, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Suk Kong
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| |
Collapse
|