51
|
Rahaman MM, Zwart RS, Rupasinghe TWT, Hayden HL, Thompson JP. Metabolomic profiling of wheat genotypes resistant and susceptible to root-lesion nematode Pratylenchus thornei. PLANT MOLECULAR BIOLOGY 2021; 106:381-406. [PMID: 33973100 DOI: 10.1007/s11103-021-01156-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/28/2021] [Indexed: 05/05/2023]
Affiliation(s)
- Md Motiur Rahaman
- University of Southern Queensland, Centre for Crop Health, Toowoomba, QLD, 4350, Australia
| | - Rebecca S Zwart
- University of Southern Queensland, Centre for Crop Health, Toowoomba, QLD, 4350, Australia.
| | | | - Helen L Hayden
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, 3083, Australia
| | - John P Thompson
- University of Southern Queensland, Centre for Crop Health, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
52
|
Chaichompoo W, Rojsitthisak P, Pabuprapap W, Siriwattanasathien Y, Yotmanee P, Haritakun W, Suksamrarn A. Stephapierrines A-H, new tetrahydroprotoberberine and aporphine alkaloids from the tubers of Stephania pierrei Diels and their anti-cholinesterase activities. RSC Adv 2021; 11:21153-21169. [PMID: 35479350 PMCID: PMC9034021 DOI: 10.1039/d1ra03276c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Eight new alkaloids, which are four new tetrahydroprotoberberine alkaloids, stephapierrines A-D (1-4), and four new aporphine alkaloids, stephapierrines E-H (5-8), together with three new naturally occurring alkaloids (9-11) and thirty-four known alkaloids (12-45) were isolated from the tubers of Stephania pierrei Diels. The structures of the new compounds were elucidated by spectroscopic analysis and physical properties. The structures of the known compounds were characterized by comparison of their spectroscopic data with those previously reported. Compound 42 exhibited the strongest acetylcholinesterase (AChE) inhibitory activity, which was more active than galanthamine, the reference drug. Compound 23 showed the highest butyrylcholinesterase (BuChE) inhibitory activity, which was also more active than galanthamine. Molecular docking studies are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Waraluck Chaichompoo
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand +66-2-254-5195 +66-2-218-8310
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand +66-2-254-5195 +66-2-218-8310
- Natural Products for Aging and Chronic Diseases Research Unit, Chulalongkorn University Bangkok 10330 Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Yuttana Siriwattanasathien
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Pathumwadee Yotmanee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| | - Woraphot Haritakun
- Program in Chemical Technology, Faculty of Science and Technology, Suan Dusit University Bangkok 10700 Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University Bangkok 10240 Thailand
| |
Collapse
|
53
|
The phenolic and alkaloid profiles of Solanum erianthum and Solanum torvum modulated their biological properties. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
54
|
Honorio P, Sainimnuan S, Hannongbua S, Saparpakorn P. Binding interaction of protoberberine alkaloids against acetylcholinesterase (AChE) using molecular dynamics simulations and QM/MM calculations. Chem Biol Interact 2021; 344:109523. [PMID: 34033838 DOI: 10.1016/j.cbi.2021.109523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022]
Abstract
Acetylcholinesterase (AChE) plays a vital role in Alzheimer's disease (AD), which is one of the most common causes of dementia. Discovering new effective inhibitors against AChE activity is seen to be one of the effective approaches to reduce the suffering from AD. Protoberberine alkaloids isolated from natural resources have previously been reported as potent AChE inhibitors. In order to gain insights into how these alkaloids could inhibit AChE, berberine, palmatine, and cyclanoline were selected to investigate in terms of binding orientation and their key interactions with AChE using molecular docking and molecular dynamics simulations and quantum chemical calculations. The results revealed that the molecular dynamics structures of palmatine and berberine indicated that their equilibrated structures did not occupy the gorge but they slightly moved away from the catalytic site (CAS). For cyclanoline, the binding mode was quite different from those of donepezil and the other protoberberine alkaloids: it preferred to stay deeper in the CAS site. Interaction energies and residual interaction energies confirmed that the key interactions for palmatine and berberine were π-π interactions with Trp286 and Tyr341 and H-bond interactions with Tyr124. Cyclanoline formed π-π interactions with Trp86 and H-bonds to the amino acids in the CAS site. The results suggested the importance of aromaticity in the core structure and the flexibility of the core structure or the substituents in order to fit into the narrow gorge. The HOMO, LUMO, bioavailability, drug-likeness and pharmacokinetics were also predicted. The results obtained will be useful for further AD drug development.
Collapse
Affiliation(s)
- Phujinn Honorio
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Supawadee Sainimnuan
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand
| | - Patchreenart Saparpakorn
- Department of Chemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand; Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
55
|
Ojo OA, Ojo AB, Okolie C, Nwakama MAC, Iyobhebhe M, Evbuomwan IO, Nwonuma CO, Maimako RF, Adegboyega AE, Taiwo OA, Alsharif KF, Batiha GES. Deciphering the Interactions of Bioactive Compounds in Selected Traditional Medicinal Plants against Alzheimer's Diseases via Pharmacophore Modeling, Auto-QSAR, and Molecular Docking Approaches. Molecules 2021; 26:molecules26071996. [PMID: 33915968 PMCID: PMC8037217 DOI: 10.3390/molecules26071996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases, for example Alzheimer’s, are perceived as driven by hereditary, cellular, and multifaceted biochemical actions. Numerous plant products, for example flavonoids, are documented in studies for having the ability to pass the blood-brain barrier and moderate the development of such illnesses. Computer-aided drug design (CADD) has achieved importance in the drug discovery world; innovative developments in the aspects of structure identification and characterization, bio-computational science, and molecular biology have added to the preparation of new medications towards these ailments. In this study we evaluated nine flavonoid compounds identified from three medicinal plants, namely T. diversifolia, B. sapida, and I. gabonensis for their inhibitory role on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase (MAO) activity, using pharmacophore modeling, auto-QSAR prediction, and molecular studies, in comparison with standard drugs. The results indicated that the pharmacophore models produced from structures of AChE, BChE and MAO could identify the active compounds, with a recuperation rate of the actives found near 100% in the complete ranked decoy database. Moreso, the robustness of the virtual screening method was accessed by well-established methods including enrichment factor (EF), receiver operating characteristic curve (ROC), Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and area under accumulation curve (AUAC). Most notably, the compounds’ pIC50 values were predicted by a machine learning-based model generated by the AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best models achieved for AChE, BChE and MAO were models kpls_radial_17 (R2 = 0.86 and Q2 = 0.73), pls_38 (R2 = 0.77 and Q2 = 0.72), kpls_desc_44 (R2 = 0.81 and Q2 = 0.81) and these externally validated models were utilized to predict the bioactivities of the lead compounds. The binding affinity results of the ligands against the three selected targets revealed that luteolin displayed the highest affinity score of −9.60 kcal/mol, closely followed by apigenin and ellagic acid with docking scores of −9.60 and −9.53 kcal/mol, respectively. The least binding affinity was attained by gallic acid (−6.30 kcal/mol). The docking scores of our standards were −10.40 and −7.93 kcal/mol for donepezil and galanthamine, respectively. The toxicity prediction revealed that none of the flavonoids presented toxicity and they all had good absorption parameters for the analyzed targets. Hence, these compounds can be considered as likely leads for drug improvement against the same.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Medicinal Biochemistry and Biochemical Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran PMB 1001, Nigeria; (M.-A.C.N.); (M.I.); (C.O.N.); (R.F.M.)
- Correspondence: ; Tel.: +234-703-782-4647
| | - Adebola Busola Ojo
- Department of Biochemistry, Faculty of Sciences, Ekiti State University, Ado-Ekiti PMB 5363, Nigeria;
| | - Charles Okolie
- Department of Microbiology, Landmark University, Omu-Aran PMB 1001, Nigeria; (C.O.); (I.O.E.)
| | - Mary-Ann Chinyere Nwakama
- Medicinal Biochemistry and Biochemical Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran PMB 1001, Nigeria; (M.-A.C.N.); (M.I.); (C.O.N.); (R.F.M.)
| | - Matthew Iyobhebhe
- Medicinal Biochemistry and Biochemical Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran PMB 1001, Nigeria; (M.-A.C.N.); (M.I.); (C.O.N.); (R.F.M.)
| | | | - Charles Obiora Nwonuma
- Medicinal Biochemistry and Biochemical Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran PMB 1001, Nigeria; (M.-A.C.N.); (M.I.); (C.O.N.); (R.F.M.)
| | - Rotdelmwa Filibus Maimako
- Medicinal Biochemistry and Biochemical Toxicology Group, Department of Biochemistry, Landmark University, Omu-Aran PMB 1001, Nigeria; (M.-A.C.N.); (M.I.); (C.O.N.); (R.F.M.)
| | | | | | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt;
| |
Collapse
|
56
|
Maříková J, Mamun AA, Shammari LA, Korábečný J, Kučera T, Hulcová D, Kuneš J, Malaník M, Vašková M, Kohelová E, Nováková L, Cahlíková L, Pour M. Structure Elucidation and Cholinesterase Inhibition Activity of Two New Minor Amaryllidaceae Alkaloids. Molecules 2021; 26:molecules26051279. [PMID: 33652925 PMCID: PMC7956344 DOI: 10.3390/molecules26051279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/18/2023] Open
Abstract
Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.
Collapse
Affiliation(s)
- Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.M.); (J.K.)
| | - Abdullah Al Mamun
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Latifah Al Shammari
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, University of Defence, Trenesska 1575, 500 05 Hradec Kralove, Czech Republic; (J.K.); (T.K.)
- Biomedical Research Centre, University Hospital Hradec Králové, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, University of Defence, Trenesska 1575, 500 05 Hradec Kralove, Czech Republic; (J.K.); (T.K.)
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.M.); (J.K.)
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic;
| | - Michaela Vašková
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic;
| | - Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Milan Pour
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.M.); (J.K.)
- Correspondence: ; Tel.: +420-495-067 277
| |
Collapse
|
57
|
López AFF, Martínez OMM, Hernández HFC. Evaluation of Amaryllidaceae alkaloids as inhibitors of human acetylcholinesterase by QSAR analysis and molecular docking. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
58
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
59
|
Tuzimski T, Petruczynik A. Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts. Molecules 2021; 26:molecules26010230. [PMID: 33466254 PMCID: PMC7796366 DOI: 10.3390/molecules26010230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/17/2022] Open
Abstract
Isoquinoline alkaloids may have a wide range of pharmacological activities. Some of them have acetylcholinesterase activity inhibition. Nowadays, neurodegenerative disorders such as Alzheimer’s disease have become a serious public health problem. Searching for new effective compounds with inhibited acetylcholinesterase activity is one of the most significant challenges of modern scientific research. The aim of this study was the in vitro investigation of acetylcholinesterase activity inhibition of extracts obtained from Sanguinaria canadensis collected before, during and after flowering. The acetylcholinesterase activity inhibition of these extracts has not been previously tested. The aim was also to quantify selected alkaloids in the investigated extracts by high performance liquid chromatography (HPLC). The analyses of alkaloid content were performed using HPLC in reversed phase (RP) mode using Polar RP column and mobile phase containing acetonitrile, water and ionic liquid (IL). The acetylcholinesterase activity inhibition of the tested plant extracts and respective alkaloid standards were examined using high performance liquid chromatography with diode-array detector (HPLC-DAD) for the quantification of 5-thio-2-nitro-benzoic acid, which is the product of the reaction between the thiocholine (product of the hydrolysis of acetylthiocholine reaction) with Ellman reagent. The application of the HPLC method allowed for elimination of absorption of interfering components, for example, alkaloids such as sanguinarine and berberine. It is revealed that the HPLC method can be successfully used for the evaluation of the acetylcholinesterase inhibitory activity in samples such as plant extracts, especially those containing colored components adsorbing at wavelength in the range 405–412 nm. The acetylcholinesterase inhibition activity synergy of pairs of alkaloid standards and mixture of all investigated alkaloids was also determined. Most investigated alkaloids and all Sanguinaria canadensis extracts exhibited very high acetylcholinesterase activity inhibition. IC50 values obtained for alkaloid standards were from 0.36 for berberine to 23.13 µg/mL for protopine and from 61.24 to 89.14 µg/mL for Sanguinaria canadensis extracts. Our investigations demonstrated that these plant extracts can be recommended for further in vivo experiments to confirm their acetylcholinesterase activity inhibition.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.); Tel.: +48-664772307 (T.T.); +48-510664914 (A.P.)
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.); Tel.: +48-664772307 (T.T.); +48-510664914 (A.P.)
| |
Collapse
|
60
|
León KA, Inca A, Tallini LR, Osorio EH, Robles J, Bastida J, Oleas NH. Alkaloids of Phaedranassa dubia (Kunth) J.F. Macbr. and Phaedranassa brevifolia Meerow (Amaryllidaceae) from Ecuador and its cholinesterase-inhibitory activity. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2021; 136:91-99. [PMID: 32982003 PMCID: PMC7500283 DOI: 10.1016/j.sajb.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 05/03/2023]
Abstract
Alzheimer's disease is considered the most common cause of dementia and, in an increasingly aging population worldwide, the quest for treatment is a priority. Amaryllidaceae alkaloids are of main interest because of their cholinesterase inhibition potential, which is the main palliative treatment available for this disease. We evaluated the alkaloidal profile and the in vitro inhibitory activity on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) of bulb alkaloid extract of Phaedranassa dubia and Phaedranassa brevifolia collected in Ecuador. Using gas chromatography coupled to mass spectrometry (GC-MS), we identified typical Amaryllidaceae alkaloids in these species, highlighting the presence of lycorine-type alkaloids in P. dubia and haemanthamine/crinine-type in P. brevifolia. The species P. dubia and P. brevifolia showed inhibitory activities against AChE (IC50 values of 25.48 ± 0.39 and 3.45 ± 0.29 μg.mL-1, respectively) and BuChE (IC50 values of 114.96 ± 4.94 and 58.89 ± 0.55 μg.mL-1, respectively). Computational experiments allowed us to understand the interactions of the alkaloids identified in these samples toward the active sites of AChE and BuChE. In silico, some alkaloids detected in these Amaryllidaceae species presented higher estimated binding free energy toward BuChE than galanthamine. This is the first study about the alkaloid profile and biological potential of P. brevifolia species.
Collapse
Key Words
- AChE
- AChE, Acetylcholinesterase
- AE, alkaloid extract
- ATCI, acetylthiocholine iodide
- Alkaloids
- Alzheimer's disease
- Amaryllidaceae
- BTCI, butyrylthiocholine iodide
- BuChE
- BuChE, butyrylcholinesterase
- CD, circular dichroism
- DTNB, (5,5′-dithio-bis-[2-nitrobenzoic acid])
- Et2O, diethyl ether
- EtOAc, ethyl acetate
- GAL, galanthamine
- GC-MS, gas chromatography coupled to mass spectrometry
- IUCN, International Union for Conservation of Nature
- MS, mass spectrometry
- MeOH, methanol
- Molecular docking
- NMR, nuclear magnetic resonance
- Phaedranassa
- UV, ultraviolet
Collapse
Affiliation(s)
- Karen Acosta León
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador
| | - Alexandra Inca
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador
| | - Luciana R Tallini
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre RS 90610-000, Brazil
| | - Edison H Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia
| | - Jessica Robles
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Nora H Oleas
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| |
Collapse
|
61
|
Kohelová E, Maříková J, Korábečný J, Hulcová D, Kučera T, Jun D, Chlebek J, Jenčo J, Šafratová M, Hrabinová M, Ritomská A, Malaník M, Peřinová R, Breiterová K, Kuneš J, Nováková L, Opletal L, Cahlíková L. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer's disease: Isolation, structural elucidation and biological activity. Bioorg Chem 2020; 107:104567. [PMID: 33387730 DOI: 10.1016/j.bioorg.2020.104567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Twenty known Amaryllidaceae alkaloids of various structural types, and one undescribed alkaloid of narcikachnine-type, named narcieliine (3), have been isolated from fresh bulbs of Zephyranthes citrina. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR, and CD spectroscopic techniques, and by comparison with literature data. The absolute configuration of narcieliine (3) has also been determined. Compounds isolated in a sufficient quantity were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8), and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human AChE/BuChE (hAChE/hBuChE) inhibitory activity was demonstrated by the newly described alkaloid narcieliine (3), with IC50 values of 18.7 ± 2.3 µM and 1.34 ± 0.31 µM, respectively. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion. The in vitro data were further supported by in silico studies of 3 in the active site of hAChE/hBuChE.
Collapse
Affiliation(s)
- Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jaroslav Jenčo
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marcela Šafratová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinová
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Aneta Ritomská
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic
| | - Rozálie Peřinová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kateřina Breiterová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
62
|
Bingul M, Ercan S, Boga M. The design of novel 4,6-dimethoxyindole based hydrazide-hydrazones: Molecular modeling, synthesis and anticholinesterase activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
63
|
Olasehinde TA, Olaniran AO, Okoh AI. Cholinesterase inhibitory activity, antioxidant properties, and phytochemical composition of Chlorococcum sp. extracts. J Food Biochem 2020; 45:e13395. [PMID: 32720328 DOI: 10.1111/jfbc.13395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/24/2022]
Abstract
In this study, Chlorococcum sp. was investigated for its cholinesterase inhibitory potentials and antioxidant activity. The algal sample was cultivated, harvested, and extracted sequentially using n-hexane, dichloromethane, and ethanol. The extracts were characterized using Fourier transmission infra-red (FTIR) and Gas Chromatography-Mass Spectrometry. The metal chelating, radical scavenging activities, as well as anticholinesterase potentials of the algal extract, was also investigated. FTIR characterization of the microalgal biomass revealed the presence of phenolic compounds, alkaloids, polysaccharides, and fatty acids. The extracts showed the presence of phytol, neophytadiene, butylated hydroxyl toluene, and 3-tert-butyl-4-hydroxyanisole. The ethanol extract showed the highest DPPH (IC50 = 147.40 µg/ml) and OH (IC50 = 493.90 µg/ml) radical scavenging and metal chelating (IC50 = 83.25 µg/ml) activities. Similarly, the ethanol extract (IC50 = 13.83 µg/ml) exhibited the highest acetylcholinesterase inhibitory activity, while the dichloromethane extract showed the highest butyrylcholinesterase inhibitory activity. All the extracts exhibited antioxidant properties and inhibitory effects against butyrylcholinesterase and acetylcholinesterase; however, ethanol extracts showed better activity. PRACTICAL APPLICATIONS: Biomass obtained from some microalgal species is commonly used as dietary supplements and nutraceuticals due to the presence of high-valued products. However, the antioxidant and anticholinesterase activities of biomass from Chlorococcum sp. have not been explored. Chlorococcum sp. extracts contain some antioxidants such as 3-tert-Butyl-4-hydroxyanisole, butylated hydroxytoluene, phytol, and neophytadiene. Characterization of the extracts also revealed the presence of phenolic compounds, polysaccharides, and fatty acids. These compounds may contribute to the observed antioxidant and anticholinesterase activities of Chlorococcum sp. The result of this study suggests that Chlorococcum sp. may contain some nutraceuticals which could be used as antioxidants and cholinesterase inhibitors.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, Lagos, Nigeria.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa.,Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu-Natal, Durban, Kwazulu-Natal, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, Eastern Cape, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, Eastern Cape, South Africa
| |
Collapse
|
64
|
An activity prediction model for steroidal and triterpenoidal inhibitors of Acetylcholinesterase enzyme. J Comput Aided Mol Des 2020; 34:1079-1090. [PMID: 32632601 DOI: 10.1007/s10822-020-00324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/14/2020] [Indexed: 12/31/2022]
Abstract
Nowadays, the importance of computational methods in the design of therapeutic agents in a more efficient way is indisputable. Particularly, these methods have been important in the design of novel acetylcholinesterase enzyme inhibitors related to Alzheimer's disease. In this sense, in this report a computational model of linear prediction of acetylcholinesterase inhibitory activity of steroids and triterpenes is presented. The model is based in a correlation between binding energies obtained from molecular dynamic simulations (after docking studies) and [Formula: see text] values of a training set. This set includes a family of natural and semi-synthetic structurally related alkaloids reported in bibliography. These types of compounds, with some structural complexity, could be used as building blocks for the synthesis of many important biologically active compounds Therefore, the present study proposes an alternative based on the use of conventional and easily accessible tools to make progress on the rational design of molecules with biological activity.
Collapse
|
65
|
Maříková J, Ritomská A, Korábečný J, Peřinová R, Al Mamun A, Kučera T, Kohelová E, Hulcová D, Kobrlová T, Kuneš J, Nováková L, Cahlíková L. Aromatic Esters of the Crinane Amaryllidaceae Alkaloid Ambelline as Selective Inhibitors of Butyrylcholinesterase. JOURNAL OF NATURAL PRODUCTS 2020; 83:1359-1367. [PMID: 32309949 DOI: 10.1021/acs.jnatprod.9b00561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A total of 20 derivatives (1-20) of the crinane-type alkaloid ambelline were synthesized. These semisynthetic derivatives were assessed for their potency to inhibit both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). To predict central nervous system (CNS) availability, logBB was calculated, and the data correlated well with those obtained from the parallel artificial membrane permeability assay (PAMPA). All compounds should be able to permeate the blood-brain barrier (BBB) according to the obtained results. A total of 7 aromatic derivatives (5, 6, 7, 9, 10, 12, and 16) with different substitution patterns showed inhibitory potency against human serum BuChE (IC50 < 5 μM), highlighting the three top-ranked compounds as follows: 11-O-(1-naphthoyl)ambelline (16), 11-O-(2-methylbenzoyl)ambelline (6), and 11-O-(2-methoxybenzoyl)ambelline (9) with IC50 values of 0.10 ± 0.01, 0.28 ± 0.02, and 0.43 ± 0.04 μM, respectively. Notably, derivatives 6, 7, 9, and 16 displayed selective human BuChE (hBuChE) inhibition profiles with a selectivity index > 100. The in vitro results were supported by computational studies predicting plausible binding modes of the compounds in the active sites of hBuChE.
Collapse
Affiliation(s)
| | | | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | | | | | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
| | | | | | - Tereza Kobrlová
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | | | | | | |
Collapse
|
66
|
Moreno R, Tallini LR, Salazar C, Osorio EH, Montero E, Bastida J, Oleas NH, Acosta León K. Chemical Profiling and Cholinesterase Inhibitory Activity of Five Phaedranassa Herb. (Amaryllidaceae) Species from Ecuador. Molecules 2020; 25:E2092. [PMID: 32365796 PMCID: PMC7248819 DOI: 10.3390/molecules25092092] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022] Open
Abstract
It is estimated that 50 million people in the world live with dementia, 60-70% of whom suffer from Alzheimer's disease (AD). Different factors are involved in the development of AD, including a reduction in the cholinergic neurotransmission level. The Amaryllidaceae plant family contains an exclusive, large, and still understudied alkaloid group characterized by a singular skeleton arrangement and a broad spectrum of biological activities. The chemistry and biodiversity of Ecuadorian representatives of the Phaedranassa genus (Amaryllidaceae) have not been widely studied. In this work, five Ecuadorian Phaedranassa species were examined in vitro for their activity towards the enzymes acetyl- (AChE) and butyrylcholinesterase (BuChE), and the alkaloid profile of bulb extracts was analyzed by GC-MS. The species Phaedranassa cuencana and Phaedranassa dubia showed the most AChE and BuChE inhibitory activity, respectively. To obtain insight into the potential role of the identified alkaloids in these inhibitory effects, docking experiments were carried out, and cantabricine showed in silico inhibitory activity against both cholinesterase structures. Our results show that Amaryllidaceae species from Ecuador are a potential source of new drugs for the palliative treatment of AD.
Collapse
Affiliation(s)
- Raúl Moreno
- Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.); (L.R.T.); (J.B.)
| | - Luciana R. Tallini
- Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.); (L.R.T.); (J.B.)
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, Porto Alegre RS 90610-000, Brazil
| | - Cristina Salazar
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (C.S.); (E.M.); (K.A.L.)
| | - Edison H. Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia;
| | - Evelin Montero
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (C.S.); (E.M.); (K.A.L.)
| | - Jaume Bastida
- Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (R.M.); (L.R.T.); (J.B.)
| | - Nora H. Oleas
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| | - Karen Acosta León
- Grupo de Investigación de Productos Naturales y Farmacia, Facultad de Ciencias, Escuela Superior Politécnica del Chimborazo, Panamericana Sur km 1 1/2, Riobamba EC060155, Ecuador; (C.S.); (E.M.); (K.A.L.)
| |
Collapse
|
67
|
Zaki AG, El-Sayed ESR, Abd Elkodous M, El-Sayyad GS. Microbial acetylcholinesterase inhibitors for Alzheimer's therapy: recent trends on extraction, detection, irradiation-assisted production improvement and nano-structured drug delivery. Appl Microbiol Biotechnol 2020; 104:4717-4735. [PMID: 32285176 PMCID: PMC7223626 DOI: 10.1007/s00253-020-10560-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022]
Abstract
Abstract Neurodegenerative disorders especially Alzheimer’s disease (AD) are significantly threatening the public health. Acetylcholinesterase (AChE) inhibitors are compounds of great interest which can be used as effective agents for the symptomatic treatment of AD. Although plants are considered the largest source for these types of inhibitors, the microbial production of AChE inhibitors represents an efficient, easily manipulated, eco-friendly, cost-effective, and alternative approach. This review highlights the recent advances on the microbial production of AChE inhibitors and summarizes all the previously reported successful studies on isolation, screening, extraction, and detecting methodologies of AChE inhibitors from the microbial fermentation, from the earliest trials to the most promising anti-AD drug, huperzine A (HupA). In addition, improvement strategies for maximizing the industrial production of AChE inhibitors by microbes will be discussed. Finally, the promising applications of nano-material-based drug delivery systems for natural AChE inhibitor (HupA) will also be summarized. Key Points • AChE inhibitors are potential therapies for Alzheimer’s disease. • Microorganisms as alternate sources for prospective production of such inhibitors. • Research advances on extraction, detection, and strategies for production improvement. • Nanotechnology-based approaches for an effective drug delivery for Alzheimer’s disease.
Collapse
Affiliation(s)
- Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - M Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.,Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza, 16453, Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt. .,Chemical Engineering Department, Egyptian Armed Forces, Military Technical College (MTC), Cairo, Egypt.
| |
Collapse
|
68
|
Xu W, Ying Z, Tao X, Ying X, Yang G. Two new amide alkaloids from Portulaca oleracea L. and their anticholinesterase activities. Nat Prod Res 2020; 35:3794-3800. [DOI: 10.1080/14786419.2020.1739040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Wen Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Zheming Ying
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P.R. China
| | - Xiaojun Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Guanlin Yang
- School of The First Clinic, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, P.R. China
| |
Collapse
|
69
|
Plazas E, Hagenow S, Avila Murillo M, Stark H, Cuca LE. Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and Aβ 1-42 aggregation. Bioorg Chem 2020; 98:103722. [PMID: 32155491 DOI: 10.1016/j.bioorg.2020.103722] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
Abstract
Multifactorial neurodegenerative disorders such as Alzheimer's disease (AD) are considered a growing public health problem due the rising incidence and low effectiveness of current treatments [6]. Since pharmacotherapy based on a single target has been insufficient for drug development in complex diseases, the emerging multi-target approach is a promising strategy for the search of new anti-AD drug candidates. Herein described natural isoquinoline alkaloids were investigated for multi-target activity on key mechanisms associated with the AD's pathogenesis, i.e. cholinergic depletion, beta amyloid (Aβ) aggregation and oxidative stress. Alkaloid isolation from root extract of Zanthoxylum rigidum was carried out using multi-step chromatography and TLC-bioautography against acetylcholinesterase (AChE) giving eight purified isoquinoline alkaloids. Isolated compounds were tested for inhibitory activity against cholinesterase (AChE and BChE), monoamine oxidase (MAO-A and B) and Aβ aggregation. Our study revealed two benzophenanthridine alkaloids, nitidine (5) and avicine (7), as the most potent multi-target candidates. Both showed dual cholinesterase inhibition, being more active against AChE over BChE, with IC50 values in sub-micromolar range in AChE. Kinetic analysis with cholinesterase showed, that both compounds are reversible-mixed inhibitors, where avicine (7) presented highest potency with Ki values of 0.063 µM (EeAChE), 0.511 µM (HrAChE) and 0.123 µM (EqBChE). In addition, these alkaloids presented moderate Aβ1-42 anti-aggregation activity and MAO-A inhibition with IC50 values between 0.5 and 2 µM. Our findings suggest that avicine (7) is a promising natural compound and multifunctional candidate representing a suitable starting point for the development of new therapeutic agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Erika Plazas
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia.
| | - Stefanie Hagenow
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Monica Avila Murillo
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia
| | - Holger Stark
- Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany.
| | - Luis Enrique Cuca
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Cr 30 N°45-03, 111321 Bogotá, Colombia
| |
Collapse
|
70
|
Martins N, Heleno SA, Ferreira ICFR. An Upcoming Approach to Alzheimer's Disease: Ethnopharmacological Potential of Plant Bioactive Molecules. Curr Med Chem 2020; 27:4344-4371. [PMID: 32072889 DOI: 10.2174/0929867327666200219120806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Neurodegenerative disorders have achieved epidemic levels in the last decades; not only the elderly but also adult individuals have been increasingly affected. Among them, Alzheimer's disease is one of the most prevalent and crippling diseases, associated with high rates of multi-morbidities and dependency. Despite the existence of a wide variety of drugs used as the symptomatic treatment, they have some side effects and toxicity, apart from their limited effectiveness. Botanical preparations have a secular use, being widely recommended for a multitude of purposes, such as for the improvement of brain health. OBJECTIVE The aim of the present report is to systematize the knowledge on plant-food derived bioactive molecules with promising in vitro enzymatic inhibitory activities. RESULTS Alkaloids, phenolic compounds and terpenes are the most studied phytochemicals, both derived from natural and commercial sources. In spite of their efficient activity as enzymatic inhibitors, the number of in vivo studies and even clinical trials have confirmed that their real bioactive potential remains scarce. CONCLUSION Thus, it is of the utmost importance to deepen knowledge in this area, once those relevant and informative tools can significantly contribute to the promising advances in the field of Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Natália Martins
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Sandrina A Heleno
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigacao de Montanha (CIMO), Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-253 Braganca, Portugal
| |
Collapse
|
71
|
Cortes N, Posada-Duque R, Cardona-Gómez GP, Bastida J, Osorio E. Amaryllidaceae alkaloids and neuronal cell protection. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00013-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
72
|
Plazas E, Casoti R, Avila Murillo M, Batista Da Costa F, Cuca LE. Metabolomic profiling of Zanthoxylum species: Identification of anti-cholinesterase alkaloids candidates. PHYTOCHEMISTRY 2019; 168:112128. [PMID: 31557705 DOI: 10.1016/j.phytochem.2019.112128] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The isolation of bioactive compounds from natural sources is a key step in drug discovery and development, however, this procedure is usually expensive and difficult due to the complexity and the limited amounts of the metabolites in the extracts. Thus, rational or targeting isolations are becoming more popular to reduce the bottlenecks in bioactive natural products research. In this study, we used a LC-MS-based metabolomic approach and biochemometric statistical tools (PCA and OPLS-DA) to identify potential anti-cholinesterase alkaloids predictors in Zanthoxylum genus (Rutaceae). For this purpose, 41 alkaloid extracts from nine Colombian Zanthoxylum species were screened by UHPLC-UV-HRMS and inhibitory activity against Acetylcholinesterase (AChE) and Butyrylcholinesterase (BChE). Based on the screening results, a multivariate statistical analysis (MVA) and selection of anti-cholinesterase candidates were performed using the S-plot from the OPLS-DA model. The supervised analysis (OPLS-DA) paring the anti-cholinesterase screening and LC-HRMS data showed at least 11 ChE inhibition markers which could have contributed in the differentiation of active and inactive extracts. The predictors were tentatively identified by comparing chromatographic retention times (Rt) and accurate mass and MS2 fragmentation patterns. In general, the inhibition markers correspond to four types of isoquinoline alkaloids: tetrahydroprotoberberines, protoberberines, dihydrobenzophenanthridines and benzophenanthridines. The most active extracts from Z. schreberi and Z. monophylum showed the highest presence of berberine and chelerythrine, previously reported as cholinesterase inhibitors. Thus, to validate the results of the OPLS-DA model, three alkaloids from the bark of Z. schreberi (identified as berberine, chelerythrine and columbamine) were bio-directed isolated, and all of them showed strong inhibition against both enzymes. These findings support our statistical models and contribute to the rational search of anticholinesterase alkaloids. Therefore, LC-MS-based metabolomic approach combined with chemometric statistical analysis are shown as useful tools for the isolation of targeted bioactive natural products, contributing to improve the research and development stages of lead compounds.
Collapse
Affiliation(s)
- Erika Plazas
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia.
| | - Rosana Casoti
- AsterBioChem Research Team, University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Av. Do Café s/n, 140440-903, Ribeirão Petro, SP, Brazil
| | - Monica Avila Murillo
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia
| | - Fernando Batista Da Costa
- AsterBioChem Research Team, University of São Paulo, School of Pharmaceutical Sciences of Ribeirão Preto, Av. Do Café s/n, 140440-903, Ribeirão Petro, SP, Brazil
| | - Luis Enrique Cuca
- National University of Colombia, Chemistry Department, Cr 30 N°45-03, 111321, Bogotá, Colombia
| |
Collapse
|
73
|
Gulbrandsen HS, Serigstad H, Lovell Read M, Joos I, Gundersen LL. Formation of 8-Hydroxyphenanthridines by Microwave-Mediated IMDAF Reactions; Synthesis Directed towards Lycorine Alkaloids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Halvard Serigstad
- Department of Chemistry; University of Oslo; P. O. Box 1033, Blindern 0315 Oslo Norway
| | - Matthew Lovell Read
- Department of Chemistry; University of Oslo; P. O. Box 1033, Blindern 0315 Oslo Norway
| | - Ilah Joos
- Department of Chemistry; University of Oslo; P. O. Box 1033, Blindern 0315 Oslo Norway
| | - Lise-Lotte Gundersen
- Department of Chemistry; University of Oslo; P. O. Box 1033, Blindern 0315 Oslo Norway
| |
Collapse
|
74
|
Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, Marathakam A, Unnikrishnan MK, Carradori S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch Pharm (Weinheim) 2019; 352:e1900177. [PMID: 31478569 DOI: 10.1002/ardp.201900177] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 01/07/2023]
Abstract
No drug has been approved to prevent neuronal cell loss in patients suffering from Parkinson's disease (PD) or Alzheimer's disease (AD); despite increased comprehension of the underlying molecular causes, therapies target cognitive functional improvement and motor fluctuation control. Drug design strategies that adopt the "one protein, one target" philosophy fail to address the multifactorial aetiologies of neurodegenerative disorders such as AD and PD optimally. On the contrary, restoring neurotransmitter levels by combined combinatorial inhibition of cholinesterases, monoamine oxidases, and adenosine A2A A receptors, in conjunction with strategies to counter oxidative stress and beta-amyloid plaque accumulation, would constitute a therapeutically robust, multitarget approach. This extensive review delineates the therapeutic advantages of combining dual-acting molecules that inhibit monoamine oxidases and cholinesterases and/or adenosine A2A A receptors, and describes the structure-activity relationships of compound classes that include, but are not limited to, alkaloids, coumarins, chalcones, donepezil-propargylamine conjugates, homoisoflavonoids, resveratrol analogs, hydrazones, and pyrazolines. In the wake of recent advances in network biology, in silico approaches, and omics, this review emphasizes the need to consider conceptually informed research strategies for drug discovery, in the context of the mounting burden posed by chronic neurodegenerative diseases with complex aetiologies and pathophysiologies involving multiple signalling pathways and numerous drug targets.
Collapse
Affiliation(s)
- Bijo Mathew
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Della G T Parambi
- Department of Pharmaceutical Chemistry, Jouf University, Sakaka, Saudi Arabia
| | - Githa E Mathew
- Department of Pharmacology, Grace College of Pharmacy, Palakkad, India
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Sini T Inasu
- Department of Pharmaceutical Chemistry Research Lab, Division of Drug Design and Medicinal Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Hoon Kim
- Department of Pharmacy and Research, Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, Republic of Korea
| | - Akash Marathakam
- Department of Pharmaceutical Chemistry, National College of Pharmacy, Calicut, India
| | | | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
75
|
Synthesis and biological evaluation of indoloquinoline alkaloid cryptolepine and its bromo-derivative as dual cholinesterase inhibitors. Bioorg Chem 2019; 90:103062. [DOI: 10.1016/j.bioorg.2019.103062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022]
|
76
|
Norwood VM, Huigens RW. Harnessing the Chemistry of the Indole Heterocycle to Drive Discoveries in Biology and Medicine. Chembiochem 2019; 20:2273-2297. [DOI: 10.1002/cbic.201800768] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Verrill M. Norwood
- Department of Medicinal ChemistryCenter for Natural Products Drug Discovery and Development (CNPD3)University of Florida 1345 Center Drive Gainesville FL 32610 USA
| | - Robert W. Huigens
- Department of Medicinal ChemistryCenter for Natural Products Drug Discovery and Development (CNPD3)University of Florida 1345 Center Drive Gainesville FL 32610 USA
| |
Collapse
|
77
|
Chalatsa I, Arvanitis DA, Mikropoulou EV, Giagini A, Papadopoulou-Daifoti Z, Aligiannis N, Halabalaki M, Tsarbopoulos A, Skaltsounis LA, Sanoudou D. Beneficial Effects of Sideritis scardica and Cichorium spinosum against Amyloidogenic Pathway and Tau Misprocessing in Alzheimer's Disease Neuronal Cell Culture Models. J Alzheimers Dis 2019; 64:787-800. [PMID: 29914017 DOI: 10.3233/jad-170862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Natural products are a significantly underutilized source of potential treatments against human disease. Alzheimer's disease (AD) is a prime example of conditions that could be amenable to such treatments as suggested by recent findings. OBJECTIVE Aiming to identify novel potentially therapeutic approaches against AD, we assessed the effects of Cichorium spinosum and Sideritis scardica extracts, both distinct components of the Mediterranean diet. METHODS/RESULTS After the detailed characterization of the extracts' composition using LC-HRMS methods, they were evaluated on two AD neuronal cell culture models, namely the AβPP overexpressing SH-SY5Y-AβPP and the hyperphosphorylated tau expressing PC12-htau. Initially their effect on cell viability of SH-SY5Y and PC12 cells was examined, and subsequently their downstream effects on AβPP and tau processing pathways were investigated in the SH-SY5Y-AβPP and PC12-htau cells. We found that the S. scardica and C. spinosum extracts have similar effects on tau, as they both significantly decrease total tau, the activation of the GSK3β, ERK1 and/or ERK2 kinases of tau, as well as tau hyperphosphorylation. Furthermore, both extracts appear to promote AβPP processing through the alpha, non-amyloidogenic pathway, albeit through partly different mechanisms. CONCLUSIONS These findings suggest that C. spinosum and S. scardica could have a notable potential in the prevention and/or treatment of AD, and merit further investigations at the in vivo level.
Collapse
Affiliation(s)
- Ioanna Chalatsa
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Eleni V Mikropoulou
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina Giagini
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Zeta Papadopoulou-Daifoti
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Anthony Tsarbopoulos
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Department of Bioanalytical, GAIA Research Center, The Goulandris Natural History Museum, Kifissia, Greece
| | - Leandros A Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Sanoudou
- 4th Department of Internal Medicine, Clinical Genomics and Pharmacogenomics Unit, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
78
|
Ma Y, Li X, Zhang W, Ying X, Stien D. A trace alkaloid, oleraisoindole A from Portulaca oleracea L. and its anticholinesterase effect. Nat Prod Res 2019; 35:350-353. [PMID: 31180242 DOI: 10.1080/14786419.2019.1627356] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new trace alkaloid possessing the lignan structure, named oleraisoindole A, was obtained from the extract of the Portulaca oleracea L.. The structure of oleraisoindole A was elucidated by 1D and 2D NMR and high resolution electrospray ionization time-of-flight mass spectroscopic methods. The compound presented an anticholinesterase effect with the IC50 value of 60.4 μM.
Collapse
Affiliation(s)
- Yifei Ma
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Wenjie Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Sorbonne Universités, UPMC Univ Paris 06, CNRS, Paris, France
| |
Collapse
|
79
|
Patil DN, Patil SA, Sistla S, Jadhav JP. Comparative biophysical characterization: A screening tool for acetylcholinesterase inhibitors. PLoS One 2019; 14:e0215291. [PMID: 31150404 PMCID: PMC6544338 DOI: 10.1371/journal.pone.0215291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/30/2019] [Indexed: 02/07/2023] Open
Abstract
Among neurodegenerative diseases, Alzheimer’s disease (AD) is one of the most grievous disease. The oldest cholinergic hypothesis is used to elevate the level of cognitive impairment and acetylcholinesterase (AChE) comprises the major targeted enzyme in AD. Thus, acetylcholinesterase inhibitors (AChEI) constitutes the essential remedy for the treatment of AD. The study aims to evaluate the interactions between natural molecules and AChE by Surface Plasmon Resonance (SPR). The molecules like alkaloids, polyphenols and substrates of AChE have been considered for the study with a major emphasis on affinity and kinetics. To better understand the activity of small molecules, the investigation is supported by both experimental and theoretical approach such as fluorescence, Circular Dichroism (CD) and molecular docking studies. Amongst the screened ones tannic acid showed promising results compared with others. The methodology followed here have highlighted many molecules with a higher affinity towards AChE and these findings may take lead molecules generated in preclinical studies to treat neurodegenerative diseases. Additionally, we suggest a unique signature for the heterogeneous analyte model using competitive experiments for analyzing simultanous interactions of both the analytes.
Collapse
Affiliation(s)
| | - Sushama A. Patil
- Department of Biotechnology, Shivaji University, Kolhapur, MS, India
| | - Srinivas Sistla
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Jyoti P. Jadhav
- Department of Biotechnology, Shivaji University, Kolhapur, MS, India
- * E-mail:
| |
Collapse
|
80
|
Nuthakki VK, Sharma A, Kumar A, Bharate SB. Identification of embelin, a 3-undecyl-1,4-benzoquinone from Embelia ribes as a multitargeted anti-Alzheimer agent. Drug Dev Res 2019; 80:655-665. [PMID: 31050027 DOI: 10.1002/ddr.21544] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022]
Abstract
Beta-secreatse (BACE-1) and cholinesterases are clinically validated targets of Alzheimer's disease (AD), for which natural products have provided immense contribution. The multifaceted nature of AD signifies the need of multitargeted agents to tackle this disease. In the search of new natural products as dual BACE-1/cholinesterase inhibitors, a library of pure natural products was screened for inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE-1. The screening efforts have identified 1,4-benzoquinone "embelin," a natural product derived from Embelia ribes displaying inhibition of all three enzymes, with IC50 values of 2.5, 5.4, and 2.1 μM, respectively. This screen has also identified isoquinoline alkaloids papaverine and L-tetrahydropalmatine as AChE inhibitors. Kinetic study has shown that embelin inhibits EeAChE and EqBChE with ki values of 4.59 and 0.57 μM, in an uncompetitive and noncompetitive manner, respectively. The interactions of embelin with allosteric peripheral anionic site of cholinesterases, has further supported the results of kinetic study. Embelin has also enhanced the activity of P-gp in LS-180 cells, the efflux pump which is involved in the clearance of amyloid-β from AD brain. Further, the cell viability study in neuronal cell line has indicated the excellent therapeutic window of embelin. These results are indicative of the fact that embelin is a multitargeted agent playing role in stopping the formation of amyloid-β oligomers (via inhibition of BACE-1), improves cholinergic-transmission (via inhibition of AChE/BChE) and increases amyloid-β clearance (via P-gp induction).
Collapse
Affiliation(s)
- Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ankita Sharma
- PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Ajay Kumar
- PK-PD Toxicology & Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
81
|
Adessi TG, Borioni JL, Pigni NB, Bastida J, Cavallaro V, Murray AP, Puiatti M, Oberti JC, Leiva S, Nicotra VE, Garcia ME. Clinanthus microstephium, an Amaryllidaceae Species with Cholinesterase Inhibitor Alkaloids: Structure-Activity Analysis of Haemanthamine Skeleton Derivatives. Chem Biodivers 2019; 16:e1800662. [PMID: 30801949 DOI: 10.1002/cbdv.201800662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
Abstract
Plants of the Amaryllidaceae family are well-known (not only) for their ornamental value but also for the alkaloids that they produce. In this report, the first phytochemical study of Clinanthus genus was carried out. The chemical composition of alkaloid fractions from Clinanthus microstephium was analyzed by GC/MS and NMR. Seven known compounds belonging to three structural types of Amaryllidaceae alkaloids were identified. An epimeric mixture of a haemanthamine-type compound (6-hydroxymaritidine) was tested as an inhibitor against acetyl- and butyrylcholinesterase enzymes (AChE and BChE, respectively), two enzymes relevant in the treatment of Alzheimer's disease, with good results. Structure-activity relationships through molecular docking studies with this alkaloid and other structurally related compounds were discussed.
Collapse
Affiliation(s)
- Tonino G Adessi
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, XUA5000, Argentina.,Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, XUA5000, Argentina
| | - José L Borioni
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, XUA5000, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, M5502JMA, Argentina
| | - Natalia B Pigni
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, XUA5000, Argentina.,Instituto de Ciencia y Tecnología de Alimentos Córdoba, ICYTAC-CONICET, Córdoba, XUA5000, Argentina
| | - Jaume Bastida
- Departamento de Biología, Sanidad y Medio Ambiente, Facultad de Farmacia y Ciencias de la Alimentación, Universidad de Barcelona, 08028, Barcelona, España
| | - Valeria Cavallaro
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, B8000CPB, Argentina
| | - Ana P Murray
- INQUISUR-CONICET, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, B8000CPB, Argentina
| | - Marcelo Puiatti
- Instituto de Investigaciones en Físico-Química de Córdoba, INFIQC-CONICET, Córdoba, XUA5000, Argentina
| | - Juan C Oberti
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, XUA5000, Argentina.,Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, XUA5000, Argentina
| | - Segundo Leiva
- Museo de Historia Natural, Universidad Privada Antenor Orrego de Trujillo, Trujillo, 13006, Perú
| | - Viviana E Nicotra
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, XUA5000, Argentina.,Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, XUA5000, Argentina
| | - Manuela E Garcia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, XUA5000, Argentina.,Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, XUA5000, Argentina
| |
Collapse
|
82
|
Evidence on Integrating Pharmacokinetics to Find Truly Therapeutic Agent for Alzheimer's Disease: Comparative Pharmacokinetics and Disposition Kinetics Profiles of Stereoisomers Isorhynchophylline and Rhynchophylline in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4016323. [PMID: 30854007 PMCID: PMC6377964 DOI: 10.1155/2019/4016323] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 01/19/2023]
Abstract
Isorhynchophylline (IRN) and rhynchophylline (RN), a pair of stereoisomers, are tetracyclic oxindole alkaloids isolated from Uncaria rhynchophylla, a commonly used Chinese medicinal herb. These two compounds have drawn extensive attention due to their potent neuroprotective effects with promising therapeutic potential for the treatment of Alzheimer's disease (AD). However, IRN and RN can interconvert into each other in vivo after oral administration. The present study aimed to elucidate the pharmacokinetic profiles and disposition kinetics of the administered and generated stereoisomers in the brain and cerebrospinal fluid (CSF) after oral administration of equal dose of IRN or RN to rats. Our study demonstrated that after oral administration, RN showed significantly higher systemic exposure (6.5 folds of IRN, p < 0.001) and disposition in the brain (2.5 folds of IRN, p < 0.01) and CSF (3 folds of IRN, p < 0.001) than IRN. The results indicated that interconversion between IRN and RN occurred. Notably, regardless of the orally administered IRN or RN, RN would always be one of the major or predominant forms present in the body. Our results provided sound evidence supporting further development of RN as a potential therapeutic agent for the treatment of AD. Moreover, the present study sets a solid example that integrating pharmacokinetics is crucial to identify the truly therapeutic agent.
Collapse
|
83
|
Min XL, Sun C, He Y. Synthesis of 1-Amino-2H-quinolizin-2-one Scaffolds by Tandem Silver Catalysis. Org Lett 2019; 21:724-728. [DOI: 10.1021/acs.orglett.8b03935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao-Long Min
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Chao Sun
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| |
Collapse
|
84
|
Deshpande P, Gogia N, Singh A. Exploring the efficacy of natural products in alleviating Alzheimer's disease. Neural Regen Res 2019; 14:1321-1329. [PMID: 30964049 PMCID: PMC6524497 DOI: 10.4103/1673-5374.253509] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Alzheimer’s disease (hereafter AD) is a progressive neurodegenerative disorder that affects the central nervous system. There are multiple factors that cause AD, viz., accumulation of extracellular Amyloid-beta 42 plaques, intracellular hyper-phosphorylated Tau tangles, generation of reactive oxygen species due to mitochondrial dysfunction and genetic mutations. The plaques and tau tangles trigger aberrant signaling, which eventually cause cell death of the neurons. As a result, there is shrinkage of brain, cognitive defects, behavioral and psychological problems. To date, there is no direct cure for AD. Thus, scientists have been testing various strategies like screening for the small inhibitor molecule library or natural products that may block or prevent onset of AD. Historically, natural products have been used in many cultures for the treatment of various diseases. The research on natural products have gained importance as the active compounds extracted from them have medicinal values with reduced side effects, and they are bioavailable. The natural products may target the proteins or members of signaling pathways that get altered in specific diseases. Many natural products are being tested in various animal model systems for their role as a potential therapeutic target for AD, and to address questions about how these natural products can rescue AD or other neurodegenerative disorders. Some of these products are in clinical trials and results are promising because of their neuroprotective, anti-inflammatory, antioxidant, anti-amyloidogenic, anticholinesterase activities and easy availability. This review summarizes the use of animal model systems to identify natural products, which may serve as potential therapeutic targets for AD.
Collapse
Affiliation(s)
| | - Neha Gogia
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Amit Singh
- Department of Biology; Premedical Program; Center for Tissue Regeneration and Engineering at Dayton (TREND); The Integrative Science and Engineering Center; Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
85
|
Liu S, Cao XL, Liu GQ, Zhou T, Yang XL, Ma BX. Thein silicoandin vivoevaluation of puerarin against Alzheimer's disease. Food Funct 2019; 10:799-813. [DOI: 10.1039/c8fo01696h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In silicomethods were used to screen the anti-AD effect of puerarin, further mutually verified by anin vivostudy.
Collapse
Affiliation(s)
- Song Liu
- Department of Pharmacy
- School of Medicine
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control
- Wuhan University of Science and Technology
- Wuhan
| | - Xiao-Lu Cao
- Department of Pharmacy
- School of Medicine
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control
- Wuhan University of Science and Technology
- Wuhan
| | - Guang-Qi Liu
- Department of Pharmacy
- School of Medicine
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control
- Wuhan University of Science and Technology
- Wuhan
| | - Tong Zhou
- Department of Pharmacy
- School of Medicine
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control
- Wuhan University of Science and Technology
- Wuhan
| | - Xi-Liang Yang
- Department of Pharmacy
- School of Medicine
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control
- Wuhan University of Science and Technology
- Wuhan
| | - Bing-Xin Ma
- Reproductive Medicine Center
- Tongji Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan, 430030
| |
Collapse
|
86
|
Lima JA, Hamerski L. Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer's Disease. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64183-0.00008-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
87
|
Rapid HPLC-ESI-MS/MS Analysis of Neurotransmitters in the Brain Tissue of Alzheimer's Disease Rats before and after Oral Administration of Xanthoceras sorbifolia Bunge. Molecules 2018; 23:molecules23123111. [PMID: 30486507 PMCID: PMC6321314 DOI: 10.3390/molecules23123111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/30/2022] Open
Abstract
In order to explore the potential therapeutic effect of Xanthoceras sorbifolia Bunge. against Alzheimer’s disease, an HPLC-MS/MS method has been developed and validated for simultaneous determination in rat brain of eight neurotransmitters, including dopamine, norepinephrine, 5-hydroxy-tryptamine, acetylcholine, l-tryptophan, γ-aminobutyric acid, glutamic acid and aspartic acid with a simple protein precipitation method for sample pre-treatment. The brain samples were separated on a polar functional group embedded column, then detected on a 4000 QTrap HPLC-MS/MS system equipped with a turbo ion spray source in positive ion and multiple reaction monitoring mode. The method was fully validated to be precise and accurate within the linearity range of the assay, and successfully applied to compare the neurotransmitters in the rat brain from four groups of normal, Alzheimer’s disease, and the oral administration group of X. sorbifolia extract and huperzine. The results indicated that brain levels of dopamine, norepinephrine and acetyl choline all decreased in the AD rats, while l-tryptophan showed an opposite trend. After administration of the Xanthoceras sorbifolia extract and huperzine, the level of acetyl choline and tryptophan returned to normal. Combination of the metabolic analysis, the results indicated that acetyl choline and l-tryptophan could be employed as therapy biomarkers for AD, and the results shown that the crude extract of the husks from Xanthoceras sorbifolia might ameliorate the impairment of learning and memory in the Alzheimer’s disease animal model with similar function of AchEI as huperzine. The established method would provide an innovative and effective way for the discovery of novel drug against Alzheimer’s disease, and stimulate a theoretical basis for the design and development of new drugs.
Collapse
|
88
|
Pope CN, Brimijoin S. Cholinesterases and the fine line between poison and remedy. Biochem Pharmacol 2018; 153:205-216. [PMID: 29409903 PMCID: PMC5959757 DOI: 10.1016/j.bcp.2018.01.044] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
Acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) are related enzymes found across the animal kingdom. The critical role of acetylcholinesterase in neurotransmission has been known for almost a century, but a physiological role for butyrylcholinesterase is just now emerging. The cholinesterases have been deliberately targeted for both therapy and toxicity, with cholinesterase inhibitors being used in the clinic for a variety of disorders and conversely for their toxic potential as pesticides and chemical weapons. Non-catalytic functions of the cholinesterases (ChEs) participate in both neurodevelopment and disease. Manipulating either the catalytic activities or the structure of these enzymes can potentially shift the balance between beneficial and adverse effect in a wide number of physiological processes.
Collapse
Affiliation(s)
- Carey N Pope
- Department of Physiological Sciences, Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
89
|
Acetylcholinesterase Inhibition and Antioxidant Activity of N- trans-Caffeoyldopamine and N- trans-Feruloyldopamine. Sci Pharm 2018; 86:scipharm86020011. [PMID: 29617286 PMCID: PMC6027674 DOI: 10.3390/scipharm86020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/07/2018] [Accepted: 03/24/2018] [Indexed: 11/16/2022] Open
Abstract
Phenolic acids and their derivatives found in nature are well-known for their potential biological activity. In this study, two amides derived from trans-caffeic/ferulic acid and dopamine were synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR), mass spectrometry, proton and carbon-13 nuclear magnetic resonance spectroscopy. The compounds were tested for the inhibition of acetylcholinesterase (AChE) from Electrophorus electricus and for antioxidant activity by scavenging 2,2-diphenyl-1-pycrylhydrazyl free radical (DPPH•) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTS•+), reducing ferric ions, and ferrous ions chelation. N-trans-Feruloyldopamine displayed the highest inhibitory effect on AChE with half-maximal inhibitory concentration (IC50) values of 8.52 μM. In addition, an in silico study was done to determine the most favorable AChE cluster with the synthesized compounds. Further, these clusters were investigated for binding positions at the lowest free binding energy. Both synthesized hydroxycinnamates were found to be better antioxidants than the parent acids in in vitro tests applied. N-trans-Caffeoyldopamine showed the best antioxidant activity in the three tested methods—against non-biological stable free radicals IC50 5.95 μM for DPPH•, 0.24 μM for the ABTS•+ method, and for reducing power (ascorbic acid equivalent (AAE) 822.45 μmol/mmol)—while for chelation activity against Fe2+ ions N-trans-feruloyldopamine had slightly better antioxidant activity (IC50 3.17 mM).
Collapse
|
90
|
Uysal S, Parlar S, Tarikogullari AH, Aydin Kose F, Alptuzun V, Soyer Z. Synthesis, biological evaluation, and docking studies of some 5-chloro-2(3 H)-benzoxazolone Mannich bases derivatives as cholinesterase inhibitors. Arch Pharm (Weinheim) 2018. [DOI: 10.1002/ardp.201700273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sirin Uysal
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Ege University; Izmir Turkey
| | - Sulunay Parlar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Ege University; Izmir Turkey
| | - Ayse H. Tarikogullari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Ege University; Izmir Turkey
| | - Fadime Aydin Kose
- Faculty of Pharmacy, Department of Biochemistry; Ege University; Izmir Turkey
| | - Vildan Alptuzun
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Ege University; Izmir Turkey
| | - Zeynep Soyer
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Ege University; Izmir Turkey
| |
Collapse
|
91
|
Hussain G, Rasul A, Anwar H, Aziz N, Razzaq A, Wei W, Ali M, Li J, Li X. Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders. Int J Biol Sci 2018; 14:341-357. [PMID: 29559851 PMCID: PMC5859479 DOI: 10.7150/ijbs.23247] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are conventionally demarcated as disorders with selective loss of neurons. Conventional as well as newer molecules have been tested but they offer just symptomatic advantages along with abundant side effects. The discovery of more compelling molecules that can halt the pathology of these diseases will be considered as a miracle of present time. Several synthetic compounds are available but they may cause several other health issues. Therefore, natural molecules from the plants and other sources are being discovered to replace available medicines. In conventional medicational therapies, several plants have been reported to bestow remedial effects. Phytochemicals from medicinal plants can provide a better and safer alternative to synthetic molecules. Many phytochemicals have been identified that cure the human body from a number of diseases. The present article reviews the potential efficacy of plant-derived alkaloids, which possess potential therapeutic effects against several NDDs including Alzheimer's disease (AD), Huntington disease (HD), Parkinson's disease (PD), Epilepsy, Schizophrenia, and stroke. Alkaloids include isoquinoline, indole, pyrroloindole, oxindole, piperidine, pyridine, aporphine, vinca, β-carboline, methylxanthene, lycopodium, and erythrine byproducts. Alkaloids constitute positive roles in ameliorating pathophysiology of these illnesses by functioning as muscarinic and adenosine receptors agonists, anti-oxidant, anti-amyloid and MAO inhibitors, acetylcholinestrase and butyrylcholinesterase inhibitor, inhibitor of α-synuclein aggregation, dopaminergic and nicotine agonist, and NMDA antagonist.
Collapse
Affiliation(s)
- Ghulam Hussain
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science. 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Nimra Aziz
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Aroona Razzaq
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Wei Wei
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Muhammad Ali
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan
| | - Jiang Li
- Dental Hospital, Jilin University, Changchun 130021, China
| | - Xiaomeng Li
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
92
|
Nwanna EE, Adebayo AA, Oboh G, Ogunsuyi OB, Ademosun AO. Modulatory Effects of Alkaloid Extract from Gongronema latifolium (Utazi) and Lasianthera africana (Editan) on Activities of Enzymes Relevant to Neurodegeneration. J Diet Suppl 2018; 16:27-39. [PMID: 29451813 DOI: 10.1080/19390211.2018.1426075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Most alkaloids are produced by plants as a defense mechanism against herbivores. Since alkaloids are known to possess pharmacological effects, this study sought to investigate the in vitro modulatory effect of alkaloid obtained from two commonly consumed vegetables in southern Nigeria, Lasianthera africana (editan) and Gongronema latifolium (utazi), on some enzyme activities relevant to neurodegeneration. Effects of the alkaloids on cholinesterases (acetylcholinesterase [AChE] and butyrylcholinesterase [BChE]) and monoamine oxidase (MAO) activities were determined in vitro. In addition, Fe2+ chelating ability as well as radical-scavenging abilities were determined. Alkaloid profile was also determined using gas chromatography coupled with flame ionization detector (GC-FID). The results revealed that the alkaloids inhibited AChE, BChE, and MAO activities in a concentration-dependent manner, such that the alkaloid from G. latifolium showed higher enzyme inhibition (AChE [IC50 = 87.39 µg/ml], BChE [IC50 = 118.65 µg/ml], and MAO [IC50 = 61.37 µg/ml]) than L. africana (AChE = 115.60 µg/ml; BChE = 169.48 µg/ml; MAO = 73.72 µg/ml). In addition, GC-FID analysis revealed abundance of choline in both extracts. Gongronema latifolium and Lasianthera africana alkaloid extracts inhibit enzymes (acetylcholinesterase, butyrylcholinesterase, and monoamine oxidase) implicated in neurodegenerative diseases. Hence, these vegetables could offer dietary supplement in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Esther E Nwanna
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Adeniyi A Adebayo
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Ganiyu Oboh
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Opeyemi B Ogunsuyi
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| | - Ayokunle O Ademosun
- a Functional Foods and Nutraceutical Unit, Department of Biochemistry , Federal University of Technology , Akure , Akure , Nigeria
| |
Collapse
|
93
|
Plazas EA, Avila MC, Delgado WA, Patino OJ, Cuca LE. In vitro Antioxidant and Anticholinesterase Activities of Colombian Plants as Potential Neuroprotective Agents. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/rjmp.2018.9.18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
94
|
In Silico Studies Applied to Natural Products with Potential Activity Against Alzheimer’s Disease. NEUROMETHODS 2018. [DOI: 10.1007/978-1-4939-7404-7_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
95
|
Wei JC, Wei B, Yang W, He CW, Su HX, Wan JB, Li P, Wang YT. Trace determination of carbamate pesticides in medicinal plants by a fluorescent technique. Food Chem Toxicol 2017; 119:430-437. [PMID: 29269059 DOI: 10.1016/j.fct.2017.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
The safety issue of using carbamate pesticides in medicinal plants (MPs) has been a global concern and hence attracted attention of many researchers to develop analytical tools for trace pesticides detection. Derived from the fluorescence-based techniques, a rapid, convenient and efficient method for the detection of three carbamate pesticides, including carbofuran, aldicarb and methomyl has been developed by using core-shell QDs. By optimizing experimental parameters, the system demonstrated high detection sensitivities for the investigated carbamates, with the lowest detectable concentrations less than 0.05 μM. The molecular docking study indicated that the selected carbamate pesticides bound to the catalytic active site of acetylcholinesterase via π-π or H-π interactions, which also revealed the potential mechanism of the differences in inhibition strength among the three pesticides on AChE. Moreover, in order to investigate the applicability and reliability of the proposed method for the pesticide analysis in real sample with complex matrix, the matrix effects of eight common MPs have been systematically explored. These findings suggested that this technique was a simple, sensitive and reliable method for rapid determination of carbamate pesticides in real samples, especially those with complex matrices like MPs, vegetables, fruits, and other agricultural crops.
Collapse
Affiliation(s)
- Jin-Chao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Wu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Cheng-Wei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Huan-Xing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
96
|
Tallini LR, Osorio EH, Santos VDD, Borges WDS, Kaiser M, Viladomat F, Zuanazzi JAS, Bastida J. Hippeastrum reticulatum (Amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking. Molecules 2017; 22:molecules22122191. [PMID: 29232852 PMCID: PMC6149799 DOI: 10.3390/molecules22122191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/16/2022] Open
Abstract
The Amaryllidaceae family has proven to be a rich source of active compounds, which are characterized by unique skeleton arrangements and a broad spectrum of biological activities. The aim of this work was to perform the first detailed study of the alkaloid constituents of Hippeastrum reticulatum (Amaryllidaceae) and to determine the anti-parasitological and cholinesterase (AChE and BuChE) inhibitory activities of the epimers (6α-hydroxymaritidine and 6β-hydroxymaritidine). Twelve alkaloids were identified in H. reticulatum: eight known alkaloids by GC-MS and four unknown (6α-hydroxymaritidine, 6β-hydroxymaritidine, reticulinine and isoreticulinine) by NMR. The epimer mixture (6α-hydroxymaritidine and 6β-hydroxymaritidine) showed low activity against all protozoan parasites tested and weak AChE-inhibitory activity. Finally, a molecular docking analysis of AChE and BuChE proteins showed that isoreticulinine may be classified as a potential inhibitory molecule since it can be stabilized in the active site through hydrogen bonds, π-π stacking and hydrophobic interactions.
Collapse
Affiliation(s)
- Luciana R Tallini
- Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028-Barcelona, Spain.
| | - Edison H Osorio
- Department of Basic Sciences, Catholic University Luis Amigó, SISCO, Transversal 51 A No. 67B-90, Medellín, Colombia.
| | - Vanessa Dias Dos Santos
- Department of Chemistry, Federal University of Espírito Santo, Av. Fernando Ferrari 514, 29075-915 Vitória ES, Brazil.
| | - Warley de Souza Borges
- Department of Chemistry, Federal University of Espírito Santo, Av. Fernando Ferrari 514, 29075-915 Vitória ES, Brazil.
| | - Marcel Kaiser
- Medicinal Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, 4051 Basel, Switzerland.
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland.
| | - Francesc Viladomat
- Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028-Barcelona, Spain.
| | - José Angelo S Zuanazzi
- Faculty of Pharmacy, Federal University of Rio Grande do Sul, Av. Ipiranga 2752, 90610-000 Porto Alegre RS, Brazil.
| | - Jaume Bastida
- Group of Natural Products, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 27-31, 08028-Barcelona, Spain.
| |
Collapse
|
97
|
Soyer Z, Uysal S, Parlar S, Tarikogullari Dogan AH, Alptuzun V. Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2017; 32:13-19. [PMID: 27766908 PMCID: PMC6009942 DOI: 10.1080/14756366.2016.1226298] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/16/2016] [Accepted: 08/16/2016] [Indexed: 12/03/2022] Open
Abstract
A series of 4-phthalimidobenzenesulfonamide derivatives were designed, synthesized and evaluated for the inhibitory activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Structures of the title compounds were confirmed by spectral and elemental analyses. The cholinesterase (ChE) inhibitory activity studies were carried out using Ellman's colorimetric method. The biological activity results revealed that all of the title compounds (except for compound 8) displayed high selectivity against AChE. Among the tested compounds, compound 7 was found to be the most potent against AChE (IC50= 1.35 ± 0.08 μM), while compound 3 exhibited the highest inhibition against BuChE (IC50= 13.41 ± 0.62 μM). Molecular docking studies of the most active compound 7 in AChE showed that this compound can interact with both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE.
Collapse
Affiliation(s)
- Zeynep Soyer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Sirin Uysal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Sulunay Parlar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | | | - Vildan Alptuzun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
98
|
Traditional Chinese medicinal herbs as potential AChE inhibitors for anti-Alzheimer’s disease: A review. Bioorg Chem 2017; 75:50-61. [DOI: 10.1016/j.bioorg.2017.09.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/29/2022]
|
99
|
Castillo-Ordóñez WO, Tamarozzi ER, da Silva GM, Aristizabal-Pachón AF, Sakamoto-Hojo ET, Takahashi CS, Giuliatti S. Exploration of the Acetylcholinesterase Inhibitory Activity of Some Alkaloids from Amaryllidaceae Family by Molecular Docking In Silico. Neurochem Res 2017; 42:2826-2830. [DOI: 10.1007/s11064-017-2295-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/27/2017] [Accepted: 05/06/2017] [Indexed: 01/24/2023]
|
100
|
Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer’s disease. Future Med Chem 2017; 9:811-832. [DOI: 10.4155/fmc-2017-0036] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates a solid relationship between several enzymes and Alzheimer’s disease. Cholinesterases and monoamine oxidases are closely associated with the disease symptomatology and progression and have been tackled simultaneously using several multifunctional ligands. This design strategy offers great chances to alter the course of Alzheimer’s disease, in addition to alleviation of the symptoms. More than 15 years of research has led to the identification of various dual cholinesterase/monoamine oxidase inhibitors, while some showing positive outcomes in clinical trials, thus giving rise to additional research efforts in the field. The aim of this review is to provide an update on the novel dual inhibitors identified recently and to shed light on their therapeutic potential.
Collapse
|