51
|
Duarte AC, Fernández L, Jurado A, Campelo AB, Shen Y, Rodríguez A, García P. Synergistic removal of Staphylococcus aureus biofilms by using a combination of phage Kayvirus rodi with the exopolysaccharide depolymerase Dpo7. Front Microbiol 2024; 15:1438022. [PMID: 39171257 PMCID: PMC11335607 DOI: 10.3389/fmicb.2024.1438022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Introduction Bacteriophages have been shown to penetrate biofilms and replicate if they find suitable host cells. Therefore, these viruses appear to be a good option to tackle the biofilm problem and complement or even substitute more conventional antimicrobials. However, in order to successfully remove biofilms, in particular mature biofilms, phages may need to be administered along with other compounds. Phage-derived proteins, such as endolysins or depolymerases, offer a safer alternative to other compounds in the era of antibiotic resistance. Methods This study examined the interactions between phage Kayvirus rodi with a polysaccharide depolymerase (Dpo7) from another phage (Rockefellervirus IPLA7) against biofilms formed by different Staphylococcus aureus strains, as determined by crystal violet staining, viable cell counts and microscopy analysis. Results and discussion Our results demonstrated that there was synergy between the two antimicrobials, with a more significant decreased in biomass and viable cell number with the combination treatment compared to the phage and enzyme alone. This observation was confirmed by microscopy analysis, which also showed that polysaccharide depolymerase treatment reduced, but did not eliminate extracellular matrix polysaccharides. Activity assays on mutant strains did not identify teichoic acids or PNAG/PIA as the exclusive target of Dpo7, suggesting that may be both are degraded by this enzyme. Phage adsorption to S. aureus cells was not significantly altered by incubation with Dpo7, indicating that the mechanism of the observed synergistic interaction is likely through loosening of the biofilm structure. This would allow easier access of the phage particles to their host cells and facilitate infection progression within the bacterial population.
Collapse
Affiliation(s)
- Ana Catarina Duarte
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Lucía Fernández
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Andrea Jurado
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Belén Campelo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
| | - Yang Shen
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | - Ana Rodríguez
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar García
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain
- DairySafe Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
52
|
Ronish LA, Biswas B, Bauer RM, Jacob ME, Piepenbrink KH. The role of extracellular structures in Clostridioides difficile biofilm formation. Anaerobe 2024; 88:102873. [PMID: 38844261 DOI: 10.1016/j.anaerobe.2024.102873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/08/2024]
Abstract
C. difficile infection (CDI) is a costly and increasing burden on the healthcare systems of many developed countries due to the high rates of nosocomial infections. Despite the availability of several antibiotics with high response rates, effective treatment is hampered by recurrent infections. One potential mechanism for recurrence is the existence of C. difficile biofilms in the gut which persist through the course of antibiotics. In this review, we describe current developments in understanding the molecular mechanisms by which C. difficile biofilms form and are stabilized through extracellular biomolecular interactions.
Collapse
Affiliation(s)
- Leslie A Ronish
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Baishakhi Biswas
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Robert M Bauer
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Mallory E Jacob
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Kurt H Piepenbrink
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA; Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
| |
Collapse
|
53
|
Xu Z, Li Y, Xu A, Soteyome T, Yuan L, Ma Q, Seneviratne G, Li X, Liu J. Cell-wall-anchored proteins affect invasive host colonization and biofilm formation in Staphylococcus aureus. Microbiol Res 2024; 285:127782. [PMID: 38833832 DOI: 10.1016/j.micres.2024.127782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
As a major human and animal pathogen, Staphylococcus aureus can attach to medical implants (abiotic surface) or host tissues (biotic surface), and further establish robust biofilms which enhances resistance and persistence to host immune system and antibiotics. Cell-wall-anchored proteins (CWAPs) covalently link to peptidoglycan, and largely facilitate the colonization of S. aureus on various surfaces (including adhesion and biofilm formation) and invasion into host cells (including adhesion, immune evasion, iron acquisition and biofilm formation). During biofilm formation, CWAPs function in adhesion, aggregation, collagen-like fiber network formation, and consortia formation. In this review, we firstly focus on the structural features of CWAPs, including their intracellular function and interactions with host cells, as well as the functions and ligand binding of CWAPs in different stages of S. aureus biofilm formation. Then, the roles of CWAPs in different biofilm processes with regards in development of therapeutic approaches are clarified, followed by the association between CWAPs genes and clonal lineages. By touching upon these aspects, we hope to provide comprehensive knowledge and clearer understanding on the CWAPs of S. aureus and their roles in biofilm formation, which may further aid in prevention and treatment infection and vaccine development.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China; Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Yaqin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Aijuan Xu
- Guangzhou Hybribio Medical Laboratory, Guangzhou 510730, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Qin Ma
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture /Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Gamini Seneviratne
- National Institute of Fundamental Studies, Hantana road, Kandy, Sri Lanka
| | - Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Junyan Liu
- College of Light Industry and Food Science, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
54
|
Wen Z, Chen C, Shang Y, Fan K, Li P, Li C, Zheng J, Deng Q, Yu Z. Baohuoside I inhibits virulence of multidrug-resistant Staphylococcus aureus by targeting the transcription Staphylococcus accessory regulator factor SarZ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155590. [PMID: 38810547 DOI: 10.1016/j.phymed.2024.155590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Staphylococcus aureus is a versatile pathogen that can cause a wide range of infections in humans. Biofilms play a crucial role in the pathogenicity of S. aureus and contribute to its ability to cause persistent and chronic infections. Baohuoside I has garnered increasing recognition as a natural flavonol glycoside with a wide spectrum of health-related activities. PURPOSE The antibacterial and anti-biofilm properties of Baohuoside I have not been extensively investigated. Our study aimed to assess its inhibitory effects and the underlying mechanisms on biofilm formation and hemolytic capacity in S. aureus. STUDY DESIGN/METHODS The impact of Baohuoside I on the biofilm and virulence of S. aureus was evaluated through in vitro experiments and Galleria mellonella as an in vivo infection model. The mechanisms were explored by Drug affinity responsive target stability (DARTS) and validated in genetic knockout strain and through molecular biological experiments using DARTS, molecular docking, electrophoretic mobility shift assay (EMSA), and bio-layer interferometry (BLI). RESULTS Baohuoside I significantly inhibits the formation of S. aureus biofilms and hemolytic activity at 6.25 µM. Proteomics analysis revealed that treatment with Baohuoside I led to a reduction in the expression of quorum-sensing system agr-regulated genes. DARTS analysis identified Staphylococcus accessory regulator factor (SarZ), a key regulator involved in the expression of virulence factors in S. aureus by acting as activator of the agr quorum-sensing system, was the direct target of Baohuoside I. Molecular docking, DARTS, BLI and EMSA assays collectively confirmed the direct binding of Baohuoside I to SarZ, inhibiting its binding to downstream promoters. Furthermore, it is found through site-directed protein mutagenesis that the Tyr27 and Phe117 residues are key for Baohuoside I binding to SarZ. Additionally, the knockout of SarZ significantly diminished the hemolytic ability of S. aureus, underscoring its crucial role as a pivotal regulator of virulence. Lastly, in vivo tests utilizing the G. mellonella infection model demonstrated the efficacy of Baohuoside I. CONCLUSION This study provides valuable insights into the mechanism by which Baohuoside I inhibits the virulence of S. aureus through its interaction with SarZ. These findings highlight the significance of SarZ as an effective target against the virulence of S. aureus.
Collapse
Affiliation(s)
- Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Chengchun Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Yongpeng Shang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Kewei Fan
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Congcong Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| |
Collapse
|
55
|
Park I, Kim YG, Lee JH, Lee J. Antibiofilm and Antivirulence Potentials of 3,2'-Dihydroxyflavone against Staphylococcus aureus. Int J Mol Sci 2024; 25:8059. [PMID: 39125628 PMCID: PMC11311418 DOI: 10.3390/ijms25158059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Staphylococcus aureus, particularly drug-resistant strains, poses significant challenges in healthcare due to its ability to form biofilms, which confer increased resistance to antibiotics and immune responses. Building on previous knowledge that several flavonoids exhibit antibiofilm activity, this study sought to identify a novel flavonoid capable of effectively inhibiting biofilm formation and virulence factor production in S. aureus strains including MRSA. Among the 19 flavonoid-like compounds tested, 3,2'-dihydroxyflavone (3,2'-DHF) was identified for the first time as inhibiting biofilm formation and virulence factors in S. aureus with an MIC 75 µg/mL. The antibiofilm activity was further confirmed by microscopic methods. Notably, 3,2'-DHF at 5 µg/mL was effective in inhibiting both mono- and polymicrobial biofilms involving S. aureus and Candida albicans, a common co-pathogen. 3,2'-DHF reduces hemolytic activity, slime production, and the expression of key virulence factors such as hemolysin gene hla and nuclease gene nuc1 in S. aureus. These findings highlight the potential of 3,2'-DHF as a novel antibiofilm and antivirulence agent against both bacterial and fungal biofilms, offering a promising alternative to traditional antibiotics in the treatment of biofilm-associated infections.
Collapse
Affiliation(s)
| | | | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (I.P.); (Y.-G.K.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (I.P.); (Y.-G.K.)
| |
Collapse
|
56
|
Van Roy Z, Kielian T. Tumor necrosis factor regulates leukocyte recruitment but not bacterial persistence during Staphylococcus aureus craniotomy infection. J Neuroinflammation 2024; 21:179. [PMID: 39044282 PMCID: PMC11264501 DOI: 10.1186/s12974-024-03174-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Craniotomy is a common neurosurgery used to treat intracranial pathologies. Nearly 5% of the 14 million craniotomies performed worldwide each year become infected, most often with Staphylococcus aureus (S. aureus), which forms a biofilm on the surface of the resected bone segment to establish a chronic infection that is recalcitrant to antibiotics and immune-mediated clearance. Tumor necrosis factor (TNF), a prototypical proinflammatory cytokine, has been implicated in generating protective immunity to various infections. Although TNF is elevated during S. aureus craniotomy infection, its functional importance in regulating disease pathogenesis has not been explored. METHODS A mouse model of S. aureus craniotomy infection was used to investigate the functional importance of TNF signaling using TNF, TNFR1, and TNFR2 knockout (KO) mice by quantifying bacterial burden, immune infiltrates, inflammatory mediators, and transcriptional changes by RNA-seq. Complementary experiments examined neutrophil extracellular trap formation, leukocyte apoptosis, phagocytosis, and bactericidal activity. RESULTS TNF transiently regulated neutrophil and granulocytic myeloid-derived suppressor cell recruitment to the brain, subcutaneous galea, and bone flap as evident by significant reductions in both cell types between days 7 to 14 post-infection coinciding with significant decreases in several chemokines, which recovered to wild type levels by day 28. Despite these defects, bacterial burdens were similar in TNF KO and WT mice. RNA-seq revealed enhanced lymphotoxin-α (Lta) expression in TNF KO granulocytes. Since both TNF and LTα signal through TNFR1 and TNFR2, KO mice for each receptor were examined to assess potential redundancy; however, neither strain had any impact on S. aureus burden. In vitro studies revealed that TNF loss selectively altered macrophage responses to S. aureus since TNF KO macrophages displayed significant reductions in phagocytosis, apoptosis, IL-6 production, and bactericidal activity in response to live S. aureus, whereas granulocytes were not affected. CONCLUSION These findings implicate TNF in modulating granulocyte recruitment during acute craniotomy infection via secondary effects on chemokine production and identify macrophages as a key cellular target of TNF action. However, the lack of changes in bacterial burden in TNF KO animals suggests the involvement of additional signals that dictate S. aureus pathogenesis during craniotomy infection.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE, 68198-5900, USA.
| |
Collapse
|
57
|
Uicich FC, Merlo JL, Redersdorff IE, Herrera Seitz MK, Pastore JI, Ballarre J. Optimized Electrophoretic Deposition of Chitosan/Mesoporous Glass Nanoparticles with Gentamicin on Titanium Implants: Enhancing Hemocompatibility and Antibacterial Activity. ACS APPLIED BIO MATERIALS 2024; 7:4642-4653. [PMID: 38967050 DOI: 10.1021/acsabm.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Titanium-based implants have long been studied and used for applications in bone tissue engineering, thanks to their outstanding mechanical properties and appropriate biocompatibility. However, many implants struggle with osseointegration and attachment and can be vulnerable to the development of infections. In this work, we have developed a composite coating via electrophoretic deposition, which is both bioactive and antibacterial. Mesoporous bioactive glass particles with gentamicin were electrophoretically deposited onto a titanium substrate. In order to validate the hypothesis that the quantity of particles in the coatings is sufficiently high and uniform in each deposition process, an easy-to-use image processing algorithm was designed to minimize human dependence and ensure reproducible results. The addition of loaded mesoporous particles did not affect the good adhesion of the coating to the substrate although roughness was clearly enhanced. After 7 days of immersion, the composite coatings were almost dissolved and released, but phosphate-related compounds started to nucleate at the surface. With a simple and low-cost technique like electrophoretic deposition, and optimized stir and suspension times, we were able to synthesize a hemocompatible coating that significantly improves the antibacterial activity when compared to the bare substrate for both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Florencia C Uicich
- Material's Science and Technology Research Institute (INTEMA), UNMdP-CONICET, Av. Colón 10850, 7600 Mar del Plata, Argentina
| | - Julieta L Merlo
- Material's Science and Technology Research Institute (INTEMA), UNMdP-CONICET, Av. Colón 10850, 7600 Mar del Plata, Argentina
| | - Ingrid E Redersdorff
- Biological Investigations Institute (IIB), UNMdP-CONICET, Déan Funes 3240 4° floor, 7600 Mar del Plata, Argentina
| | - María K Herrera Seitz
- Biological Investigations Institute (IIB), UNMdP-CONICET, Déan Funes 3240 4° floor, 7600 Mar del Plata, Argentina
| | - Juan I Pastore
- Scientific and Technological Investigations in Electronics Institute (ICyTE), UNMdP-CONICET, Av. Juan B. Justo 4302, 7600 Mar del Plata, Argentina
| | - Josefina Ballarre
- Material's Science and Technology Research Institute (INTEMA), UNMdP-CONICET, Av. Colón 10850, 7600 Mar del Plata, Argentina
| |
Collapse
|
58
|
Yu J, Han W, Xu Y, Shen L, Zhao H, Zhang J, Xiao Y, Guo Y, Yu F. Biofilm-producing ability of methicillin-resistant Staphylococcus aureus clinically isolated in China. BMC Microbiol 2024; 24:241. [PMID: 38961344 PMCID: PMC11223284 DOI: 10.1186/s12866-024-03380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Staphylococcus aureus, a commensal bacterium, colonizes the skin and mucous membranes of approximately 30% of the human population. Apart from conventional resistance mechanisms, one of the pathogenic features of S. aureus is its ability to survive in a biofilm state on both biotic and abiotic surfaces. Due to this characteristic, S. aureus is a major cause of human infections, with Methicillin-Resistant Staphylococcus aureus (MRSA) being a significant contributor to both community-acquired and hospital-acquired infections. RESULTS Analyzing non-repetitive clinical isolates of MRSA collected from seven provinces and cities in China between 2014 and 2020, it was observed that 53.2% of the MRSA isolates exhibited varying degrees of ability to produce biofilm. The biofilm positivity rate was notably high in MRSA isolates from Guangdong, Jiangxi, and Hubei. The predominant MRSA strains collected in this study were of sequence types ST59, ST5, and ST239, with the biofilm-producing capability mainly distributed among moderate and weak biofilm producers within these ST types. Notably, certain sequence types, such as ST88, exhibited a high prevalence of strong biofilm-producing strains. The study found that SCCmec IV was the predominant type among biofilm-positive MRSA, followed by SCCmec II. Comparing strains with weak and strong biofilm production capabilities, the positive rates of the sdrD and sdrE were higher in strong biofilm producers. The genetic determinants ebp, icaA, icaB, icaC, icaD, icaR, and sdrE were associated with strong biofilm production in MRSA. Additionally, biofilm-negative MRSA isolates showed higher sensitivity rates to cefalotin (94.8%), daptomycin (94.5%), mupirocin (86.5%), teicoplanin (94.5%), fusidic acid (81.0%), and dalbavancin (94.5%) compared to biofilm-positive MRSA isolates. The biofilm positivity rate was consistently above 50% in all collected specimen types. CONCLUSIONS MRSA strains with biofilm production capability warrant increased vigilance.
Collapse
Affiliation(s)
- Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanlei Xu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huilin Zhao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiao Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanghua Xiao
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yinjuan Guo
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
59
|
Mordukhova EA, Kim J, Jin H, No KT, Pan JG. The efficacy of the food-grade antimicrobial xanthorrhizol against Staphylococcus aureus is associated with McsL channel expression. Front Microbiol 2024; 15:1439009. [PMID: 39021623 PMCID: PMC11251944 DOI: 10.3389/fmicb.2024.1439009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background The emergence and spread of multidrug-resistant Staphylococcus aureus strains demonstrates the urgent need for new antimicrobials. Xanthorrhizol, a plant-derived sesquiterpenoid compound, has a rapid killing effect on methicillin-susceptible strains and methicillin-resistant strains of S. aureus achieving the complete killing of staphylococcal cells within 2 min using 64 μg/mL xanthorrhizol. However, the mechanism of its action is not yet fully understood. Methods The S. aureus cells treated with xanthorrhizol were studied using optical diffraction tomography. Activity of xanthorrhizol against the wild-type and mscL null mutant of S. aureus ATCC 29213 strain was evaluated in the time-kill assay. Molecular docking was conducted to predict the binding of xanthorrhizol to the SaMscL protein. Results Xanthorrhizol treatment of S. aureus cells revealed a decrease in cell volume, dry weight, and refractive index (RI), indicating efflux of the cell cytoplasm, which is consistent with the spontaneous activation of the mechanosensitive MscL channel. S. aureus ATCC 29213ΔmscL was significantly more resistant to xanthorrhizol than was the wild-type strain. Xanthorrhizol had an enhanced inhibitory effect on the growth and viability of exponentially growing S. aureus ATCC 29213ΔmscL cells overexpressing the SaMscL protein and led to a noticeable decrease in their viability in the stationary growth phase. The amino acid residues F5, V14, M23, A79, and V84 were predicted to be the residues of the binding pocket for xanthorrhizol. We also showed that xanthorrhizol increased the efflux of solutes such as K+ and glutamate from S. aureus ATCC 29213ΔmscL cells overexpressing SaMscL. Xanthorrhizol enhanced the antibacterial activity of the antibiotic dihydrostreptomycin, which targets the MscL protein. Conclusion Our findings indicate that xanthorrhizol targets the SaMscL protein in S. aureus cells and may have important implications for the development of a safe antimicrobial agent.
Collapse
Affiliation(s)
| | - Jongwan Kim
- Bioinformatics and Molecular Design Research Center (BMDRC), Incheon, Republic of Korea
| | - Haiyan Jin
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, Incheon, Republic of Korea
| | - Kyoung Tai No
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jae-Gu Pan
- GenoFocus Ltd., Daejeon, Republic of Korea
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| |
Collapse
|
60
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
61
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
62
|
Liu X, Xiong Y, Peng R, Zhang Y, Cai S, Deng Q, Yu Z, Wen Z, Chen Z, Hou T. Antibacterial activity and mechanisms of D-3263 against Staphylococcus aureus. BMC Microbiol 2024; 24:224. [PMID: 38926818 PMCID: PMC11201875 DOI: 10.1186/s12866-024-03377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Multi-drug-resistant Staphylococcus aureus infections necessitate novel antibiotic development. D-3263, a transient receptor potential melastatin member 8 (TRPM8) agonist, has potential antineoplastic properties. Here, we reported the antibacterial and antibiofilm activities of D-3263. Minimum inhibitory concentrations (MICs) against S. aureus, Enterococcus faecalis and E. faecium were ≤ 50 µM. D-3263 exhibited bactericidal effects against clinical methicillin-resistant S. aureus (MRSA) and E. faecalis strains at 4× MIC. Subinhibitory D-3263 concentrations effectively inhibited S. aureus and E. faecalis biofilms, with higher concentrations also clearing mature biofilms. Proteomic analysis revealed differential expression of 29 proteins under 1/2 × MIC D-3263, influencing amino acid biosynthesis and carbohydrate metabolism. Additionally, D-3263 enhanced membrane permeability of S. aureus and E. faecalis. Bacterial membrane phospholipids phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) dose-dependently increased D-3263 MICs. Overall, our data suggested that D-3263 exhibited potent antibacterial and antibiofilm activities against S. aureus by targeting the cell membrane.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Yanpeng Xiong
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Renhai Peng
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Yufang Zhang
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St Louis, MO, 63130, USA
| | - Shuyu Cai
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zewen Wen
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China
| | - Zhong Chen
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| | - Tieying Hou
- Department of Infectious Diseases, Shenzhen Key Laboratory for Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
- Department of Infectious Diseases and Shenzhen key Laboratory of Endogenous infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Medical School, No 89, Taoyuan Road, Nanshan District, Shenzhen, 518052, China.
| |
Collapse
|
63
|
Beltrán-Martínez ME, Tapia-Rodríguez MR, Ayala-Zavala JF, Gómez-Álvarez A, Robles-Zepeda RE, Torres-Moreno H, de Rodríguez DJ, López-Romero JC. Antimicrobial and Antibiofilm Potential of Flourensia retinophylla against Staphylococcus aureus. PLANTS (BASEL, SWITZERLAND) 2024; 13:1671. [PMID: 38931103 PMCID: PMC11207523 DOI: 10.3390/plants13121671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Staphylococcus aureus is a Gram-positive bacteria with the greatest impact in the clinical area, due to the high rate of infections and deaths reaching every year. A previous scenario is associated with the bacteria's ability to develop resistance against conventional antibiotic therapies as well as biofilm formation. The above situation exhibits the necessity to reach new effective strategies against this pathogen. Flourensia retinophylla is a medicinal plant commonly used for bacterial infections treatments and has demonstrated antimicrobial effect, although its effect against S. aureus and bacterial biofilms has not been investigated. The purpose of this work was to analyze the antimicrobial and antibiofilm potential of F. retinophylla against S. aureus. The antimicrobial effect was determined using an ethanolic extract of F. retinophylla. The surface charge of the bacterial membrane, the K+ leakage and the effect on motility were determined. The ability to prevent and remove bacterial biofilms was analyzed in terms of bacterial biomass, metabolic activity and viability. The results showed that F. retinophylla presents inhibitory (MIC: 250 µg/mL) and bactericidal (MBC: 500 µg/mL) activity against S. aureus. The MIC extract increased the bacterial surface charge by 1.4 times and the K+ concentration in the extracellular medium by 60%. The MIC extract inhibited the motility process by 100%, 61% and 40% after 24, 48 and 72 h, respectively. The MIC extract prevented the formation of biofilms by more than 80% in terms of biomass production and metabolic activity. An extract at 10 × MIC reduced the metabolic activity by 82% and the viability by ≈50% in preformed biofilms. The results suggest that F. retinophylla affects S. areus membrane and the process of biofilm formation and removal. This effect could set a precedent to use this plant as alternative for antimicrobial and disinfectant therapies to control infections caused by this pathogen. In addition, this shrub could be considered for carrying out a purification process in order to identify the compounds responsible for the antimicrobial and antibiofilm effect.
Collapse
Affiliation(s)
- Minerva Edith Beltrán-Martínez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Melvin Roberto Tapia-Rodríguez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Col. Centro, Ciudad Obregón 85000, Mexico;
| | - Jesús Fernando Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas No. 46, Colonia la Victoria, Hermosillo 83304, Mexico; (M.E.B.-M.); (J.F.A.-Z.)
| | - Agustín Gómez-Álvarez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | | | - Heriberto Torres-Moreno
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| | | | - Julio César López-Romero
- Departamento de Ciencias Químico Biológicas y Agropecuarias, Universidad de Sonora, Caborca 83600, Mexico;
| |
Collapse
|
64
|
Sekar A, Fan Y, Tierney P, McCanne M, Jones P, Malick F, Kannambadi D, Wannomae KK, Inverardi N, Muratoglu O, Oral E. Investigating the translational value of Periprosthetic Joint Infection (PJI) models to determine the risk and severity of Staphylococcal biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591689. [PMID: 38746179 PMCID: PMC11092509 DOI: 10.1101/2024.04.29.591689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
With the advent of antibiotic-eluting polymeric materials for targeting recalcitrant infections, using preclinical models to study biofilm is crucial for improving the treatment efficacy in periprosthetic joint infections. The stratification of risk and severity of infections is needed to develop an effective clinical dosing framework with better outcomes. Here, using in-vivo and in-vitro implant-associated infection models, we demonstrate that methicillin-sensitive and resistant Staphylococcus aureus (MSSA and MRSA) have model-dependent distinct implant and peri-implant tissue colonization patterns. The maturity of biofilms and the location (implant vs tissue) were found to influence the antibiotic susceptibility evolution profiles of MSSA and MRSA and the models could capture the differing host-microbe interactions in vivo. Gene expression studies revealed the molecular heterogeneity of colonizing bacterial populations. The comparison and stratification of the risk and severity of infection across different preclinical models provided in this study can guide clinical dosing to effectively prevent or treat PJI.
Collapse
Affiliation(s)
- Amita Sekar
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Yingfang Fan
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Peyton Tierney
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Madeline McCanne
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Parker Jones
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Fawaz Malick
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Devika Kannambadi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Keith K Wannomae
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
| | - Nicoletta Inverardi
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Orhun Muratoglu
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| | - Ebru Oral
- Harris Orthopaedics laboratory, Massachusetts General Hospital, Boston, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston USA
| |
Collapse
|
65
|
Bowden LC, Finlinson J, Jones B, Berges BK. Beyond the double helix: the multifaceted landscape of extracellular DNA in Staphylococcus aureus biofilms. Front Cell Infect Microbiol 2024; 14:1400648. [PMID: 38903938 PMCID: PMC11188362 DOI: 10.3389/fcimb.2024.1400648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Staphylococcus aureus forms biofilms consisting of cells embedded in a matrix made of proteins, polysaccharides, lipids, and extracellular DNA (eDNA). Biofilm-associated infections are difficult to treat and can promote antibiotic resistance, resulting in negative healthcare outcomes. eDNA within the matrix contributes to the stability, growth, and immune-evasive properties of S. aureus biofilms. eDNA is released by autolysis, which is mediated by murein hydrolases that access the cell wall via membrane pores formed by holin-like proteins. The eDNA content of S. aureus biofilms varies among individual strains and is influenced by environmental conditions, including the presence of antibiotics. eDNA plays an important role in biofilm development and structure by acting as an electrostatic net that facilitates protein-cell and cell-cell interactions. Because of eDNA's structural importance in biofilms and its ubiquitous presence among S. aureus isolates, it is a potential target for therapeutics. Treatment of biofilms with DNase can eradicate or drastically reduce them in size. Additionally, antibodies that target DNABII proteins, which bind to and stabilize eDNA, can also disperse biofilms. This review discusses the recent literature on the release, structure, and function of eDNA in S. aureus biofilms, in addition to a discussion of potential avenues for targeting eDNA for biofilm eradication.
Collapse
Affiliation(s)
| | | | | | - Bradford K. Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
66
|
Dong J, Zhou W, Hu X, Bai J, Zhang S, Zhang X, Yu L, Yang P, Kong L, Liu M, Shang X, Su Z, Geng D, Zhu C. Honeycomb-inspired ZIF-sealed interface enhances osseointegration via anti-infection and osteoimmunomodulation. Biomaterials 2024; 307:122515. [PMID: 38401481 DOI: 10.1016/j.biomaterials.2024.122515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/19/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Implant-associated infections (IAIs) pose a significant threat to orthopedic surgeries. Bacteria colonizing the surface of implants disrupt bone formation-related cells and interfere with the osteoimmune system, resulting in an impaired immune microenvironment and osteogenesis disorders. Inspired by nature, a zeolitic imidazolate framework (ZIF)-sealed smart drug delivery system on Ti substrates (ZSTG) was developed for the "natural-artificial dual-enzyme intervention (NADEI)" strategy to address these challenges. The subtle sealing design of ZIF-8 on the TiO2 nanotubes ensured glucose oxidase (GOx) activity and prevented its premature leakage. In the acidic infection microenvironment, the degradation of ZIF-8 triggered the rapid release of GOx, which converted glucose into H2O2 for disinfection. The Zn2+ released from degraded ZIF-8, as a DNase mimic, can hydrolyze extracellular DNA, which further enhances H2O2-induced disinfection and prevents biofilm formation. Importantly, Zn2+-mediated M2 macrophage polarization significantly improved the impaired osteoimmune microenvironment, accelerating bone repair. Transcriptomics revealed that ZSTG effectively suppressed the inflammatory cascade induced by lipopolysaccharide while promoting cell proliferation, homeostasis maintenance, and bone repair. In vitro and in vivo results confirmed the superior anti-infective, osteoimmunomodulatory, and osteointegrative capacities of the ZSTG-mediated NADEI strategy. Overall, this smart bionic platform has significant potential for future clinical applications to treat IAIs.
Collapse
Affiliation(s)
- Jiale Dong
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianli Hu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiaxiang Bai
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Siming Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xianzuo Zhang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Peng Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China
| | - Lingtong Kong
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai 200433, China
| | - Mingkai Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Xifu Shang
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Zheng Su
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu, China.
| | - Chen Zhu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
67
|
Wilson TK, Zishiri OT, El Zowalaty ME. Molecular detection of virulence genes in Staphylococcus aureus isolated from wild pigeons ( Columba domestica livia) in KwaZulu-Natal in South Africa. One Health 2024; 18:100656. [PMID: 38179313 PMCID: PMC10765103 DOI: 10.1016/j.onehlt.2023.100656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/06/2024] Open
Abstract
The current study aimed to determine virulence determinants among S. aureus isolated from wild pigeons and houseflies around hospital areas in the Greater Durban area, South Africa. Following enrichment and bacterial growth, DNA extraction using the boiling method was performed. Overall, 57 out of 252 samples (22.6%) were positive for S. aureus. Six known virulence genes were tested, where five known virulence determinants were positive and none of the S. aureus isolates were positive to coagulase (coa) gene. The highest prevalence rates were found in the genes encoding haemolysins, with the hla and hld genes having 8 (14%) and 9 (15.8%) positive isolates respectively. The sea, LukS/F-PV, and spa genes had 5 (8.8%), 4 (7%), and 2 (3.5%) positive isolates respectively. These results demonstrated the detection of pathogenic S. aureus from hospital environment in Durban, South Africa which may account for the emergence staphylococcal infections. The findings of the present study highlights the significant role of wild pigeons and houseflies as potenital infectious disease vectors in a One Health context.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Groups, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women's Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| |
Collapse
|
68
|
Grigor'eva AE, Tupitsyna AV, Bardasheva AV, Ryabova ES, Ryabchikova EI. Methods for Fixing Biofilms of Staphylococcus aureus and Salmonella enterica for Microscopic Examination. Bull Exp Biol Med 2024; 177:281-286. [PMID: 39096449 DOI: 10.1007/s10517-024-06174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 08/05/2024]
Abstract
Different methods for fixing biofilms of Staphylococcus aureus and Salmonella enterica for light and electron microscopy were compared. Paraformaldehyde fixation did not preserve biofilm integrity during dehydration; Ito-Karnovsky fixation revealed cell morphology, but did not preserve the matrix. Ruthenium red combined with aldehydes allowed the matrix to be preserved and visualized. An analysis of the ultrastructure of S. aureus and S. enterica cells in biofilms and suspensions at various fixations is presented. The ultrastructure of the biofilm matrix has been described.
Collapse
Affiliation(s)
- A E Grigor'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - A V Tupitsyna
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Bardasheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E S Ryabova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
69
|
Maree M, Ushijima Y, Fernandes PB, Higashide M, Morikawa K. SCC mec transformation requires living donor cells in mixed biofilms. Biofilm 2024; 7:100184. [PMID: 38440091 PMCID: PMC10909703 DOI: 10.1016/j.bioflm.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important human pathogen that has emerged through the horizontal acquisition of the staphylococcal cassette chromosome mec (SCCmec). Previously, we showed that SCCmec from heat-killed donors can be transferred via natural transformation in biofilms at frequencies of 10-8-10-7. Here, we show an improved transformation assay of SCCmec with frequencies up to 10-2 using co-cultured biofilms with living donor cells. The Ccr-attB system played an important role in SCCmec transfer, and the deletion of ccrAB recombinase genes reduced the frequency ∼30-fold. SCCmec could be transferred from either MRSA or methicillin-resistant coagulase-negative staphylococci to some methicillin-sensitive S. aureus recipients. In addition, the transformation of other plasmid or chromosomal genes is enhanced by using living donor cells. This study emphasizes the role of natural transformation as an evolutionary ability of S. aureus and in MRSA emergence.
Collapse
Affiliation(s)
- Mais Maree
- Institute of Medicine, University of Tsukuba, Japan
| | | | | | - Masato Higashide
- Kotobiken Medical Laboratories, Inc., Kamiyokoba, Tsukuba, Japan
| | | |
Collapse
|
70
|
Vestweber PK, Wächter J, Planz V, Jung N, Windbergs M. The interplay of Pseudomonas aeruginosa and Staphylococcus aureus in dual-species biofilms impacts development, antibiotic resistance and virulence of biofilms in in vitro wound infection models. PLoS One 2024; 19:e0304491. [PMID: 38805522 PMCID: PMC11132468 DOI: 10.1371/journal.pone.0304491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
Due to high tolerance to antibiotics and pronounced virulence, bacterial biofilms are considered a key factor and major clinical challenge in persistent wound infections. They are typically composed of multiple species, whose interactions determine the biofilm's structural development, functional properties and thus the progression of wound infections. However, most attempts to study bacterial biofilms in vitro solely rely on mono-species populations, since cultivating multi-species biofilms, especially for prolonged periods of time, poses significant challenges. To address this, the present study examined the influence of bacterial composition on structural biofilm development, morphology and spatial organization, as well as antibiotic tolerance and virulence on human skin cells in the context of persistent wound infections. By creating a wound-mimetic microenvironment, the successful cultivation of dual-species biofilms of two of the most prevalent wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, was realized over a period of 72 h. Combining quantitative analysis with electron microscopy and label-free imaging enabled a comprehensive evaluation of the dynamics of biofilm formation and matrix secretion, revealing a twofold increased maturation of dual-species biofilms. Antibiotic tolerance was comparable for both mono-species cultures, however, dual-species communities showed a 50% increase in tolerance, mediated by a significantly reduced penetration of the applied antibiotic into the biofilm matrix. Further synergistic effects were observed, where dual-species biofilms exacerbated wound healing beyond the effects observed from either Pseudomonas or Staphylococcus. Consequently, predicting biofilm development, antimicrobial tolerance and virulence for multi-species biofilms based solely on the results from mono-species biofilms is unreliable. This study underscores the substantial impact of a multi-species composition on biofilm functional properties and emphasizes the need to tailor future studies reflecting the bacterial composition of the respective in vivo situation, leading to a more comprehensive understanding of microbial communities in the context of basic microbiology and the development of effective treatments.
Collapse
Affiliation(s)
- Pia Katharina Vestweber
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jana Wächter
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nathalie Jung
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
71
|
Qin L, Yang S, Zhao C, Yang J, Li F, Xu Z, Yang Y, Zhou H, Li K, Xiong C, Huang W, Hu N, Hu X. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res 2024; 12:28. [PMID: 38744863 PMCID: PMC11094017 DOI: 10.1038/s41413-024-00332-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 04/01/2024] [Indexed: 05/16/2024] Open
Abstract
Osteomyelitis is a devastating disease caused by microbial infection in deep bone tissue. Its high recurrence rate and impaired restoration of bone deficiencies are major challenges in treatment. Microbes have evolved numerous mechanisms to effectively evade host intrinsic and adaptive immune attacks to persistently localize in the host, such as drug-resistant bacteria, biofilms, persister cells, intracellular bacteria, and small colony variants (SCVs). Moreover, microbial-mediated dysregulation of the bone immune microenvironment impedes the bone regeneration process, leading to impaired bone defect repair. Despite advances in surgical strategies and drug applications for the treatment of bone infections within the last decade, challenges remain in clinical management. The development and application of tissue engineering materials have provided new strategies for the treatment of bone infections, but a comprehensive review of their research progress is lacking. This review discusses the critical pathogenic mechanisms of microbes in the skeletal system and their immunomodulatory effects on bone regeneration, and highlights the prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. It will inform the development and translation of antimicrobial and bone repair tissue engineering materials for the management of bone infections.
Collapse
Affiliation(s)
- Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Shuhao Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Chen Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jianye Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Feilong Li
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghao Xu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Yaji Yang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Haotian Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China
| | - Chengdong Xiong
- University of Chinese Academy of Sciences, Bei Jing, 101408, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Hu
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, China.
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
72
|
Paramanya S, Lee JH, Lee J. Antibiofilm activity of carotenoid crocetin against Staphylococcal strains. Front Cell Infect Microbiol 2024; 14:1404960. [PMID: 38803574 PMCID: PMC11128560 DOI: 10.3389/fcimb.2024.1404960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis stand as notorious threats to human beings owing to the myriad of infections they cause. The bacteria readily form biofilms that help in withstanding the effects of antibiotics and the immune system. Intending to combat the biofilm formation and reduce the virulence of the pathogens, we investigated the effects of carotenoids, crocetin, and crocin, on four Staphylococcal strains. Crocetin was found to be the most effective as it diminished the biofilm formation of S. aureus ATCC 6538 significantly at 50 µg/mL without exhibiting bactericidal effect (MIC >800 µg/mL) and also inhibited the formation of biofilm by MSSA 25923 and S. epidermidis at a concentration as low as 2 µg/mL, and that by methicillin-resistant S. aureus MW2 at 100 µg/mL. It displayed minimal to no antibiofilm efficacy on the Gram-negative strains Escherichia coli O157:H7 and Pseudomonas aeruginosa as well as a fungal strain of Candida albicans. It could also curb the formation of fibrils, which partly contributes to the biofilm formation in S. epidermidis. Additionally, the ADME analysis of crocetin proclaims how relatively non-toxic the chemical is. Also, crocetin displayed synergistic antibiofilm characteristics in combination with tobramycin. The presence of a polyene chain with carboxylic acid groups at its ends is hypothesized to contribute to the strong antibiofilm characteristics of crocetin. These findings suggest that using apocarotenoids, particularly crocetin might help curb the biofilm formation by S. aureus and S. epidermidis.
Collapse
Affiliation(s)
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
73
|
Bouhrour N, Nibbering PH, Bendali F. Medical Device-Associated Biofilm Infections and Multidrug-Resistant Pathogens. Pathogens 2024; 13:393. [PMID: 38787246 PMCID: PMC11124157 DOI: 10.3390/pathogens13050393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Medical devices such as venous catheters (VCs) and urinary catheters (UCs) are widely used in the hospital setting. However, the implantation of these devices is often accompanied by complications. About 60 to 70% of nosocomial infections (NIs) are linked to biofilms. The main complication is the ability of microorganisms to adhere to surfaces and form biofilms which protect them and help them to persist in the host. Indeed, by crossing the skin barrier, the insertion of VC inevitably allows skin flora or accidental environmental contaminants to access the underlying tissues and cause fatal complications like bloodstream infections (BSIs). In fact, 80,000 central venous catheters-BSIs (CVC-BSIs)-mainly occur in intensive care units (ICUs) with a death rate of 12 to 25%. Similarly, catheter-associated urinary tract infections (CA-UTIs) are the most commonlyhospital-acquired infections (HAIs) worldwide.These infections represent up to 40% of NIs.In this review, we present a summary of biofilm formation steps. We provide an overview of two main and important infections in clinical settings linked to medical devices, namely the catheter-asociated bloodstream infections (CA-BSIs) and catheter-associated urinary tract infections (CA-UTIs), and highlight also the most multidrug resistant bacteria implicated in these infections. Furthermore, we draw attention toseveral useful prevention strategies, and advanced antimicrobial and antifouling approaches developed to reduce bacterial colonization on catheter surfaces and the incidence of the catheter-related infections.
Collapse
Affiliation(s)
- Nesrine Bouhrour
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| |
Collapse
|
74
|
Lai CH, Wong MY, Huang TY, Kao CC, Lin YH, Lu CH, Huang YK. Exploration of agr types, virulence-associated genes, and biofilm formation ability in Staphylococcus aureus isolates from hemodialysis patients with vascular access infections. Front Cell Infect Microbiol 2024; 14:1367016. [PMID: 38681224 PMCID: PMC11045986 DOI: 10.3389/fcimb.2024.1367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Staphylococcus aureus, is a pathogen commonly encountered in both community and hospital settings. Patients receiving hemodialysis treatment face an elevated risk of vascular access infections (VAIs) particularly Staphylococcus aureus, infection. This heightened risk is attributed to the characteristics of Staphylococcus aureus, , enabling it to adhere to suitable surfaces and form biofilms, thereby rendering it resistant to external interventions and complicating treatment efforts. Methods Therefore this study utilized PCR and microtiter dish biofilm formation assay to determine the difference in the virulence genes and biofilm formation among in our study collected of 103 Staphylococcus aureus, isolates from hemodialysis patients utilizing arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs) during November 2013 to December 2021. Results Our findings revealed that both MRSA and MSSA isolates exhibited strong biofilm production capabilities. Additionally, we confirmed the presence of agr types and virulence genes through PCR analysis. The majority of the collected isolates were identified as agr type I. However, agr type II isolates displayed a higher average number of virulence genes, with MRSA isolates exhibiting a variety of virulence genes. Notably, combinations of biofilm-associated genes, such as eno-clfA-clfB-fib-icaA-icaD and eno-clfA-clfB-fib-fnbB-icaA-icaD, were prevalent among Staphylococcus aureus, isolates obtained from vascular access infections. Discussion These insights contribute to a better understanding of the molecular characteristics associated with Staphylococcus aureus, infections in hemodialysis patients and provided more targeted and effective treatment approaches.
Collapse
Affiliation(s)
- Chi-Hsiang Lai
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Min Yi Wong
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chen Kao
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Hui Lin
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chu-Hsueh Lu
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yao-Kuang Huang
- Division of Thoracic and Cardiovascular Surgery, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Cardiovascular Surgery, New Taipei Municipal TuCheng Hospital, New Taipei, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Chiayi Hospital, Ministry of Health and Welfare, Chiayi, Taiwan
| |
Collapse
|
75
|
Aboelnaga N, Elsayed SW, Abdelsalam NA, Salem S, Saif NA, Elsayed M, Ayman S, Nasr M, Elhadidy M. Deciphering the dynamics of methicillin-resistant Staphylococcus aureus biofilm formation: from molecular signaling to nanotherapeutic advances. Cell Commun Signal 2024; 22:188. [PMID: 38519959 PMCID: PMC10958940 DOI: 10.1186/s12964-024-01511-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/01/2024] [Indexed: 03/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) represents a global threat, necessitating the development of effective solutions to combat this emerging superbug. In response to selective pressures within healthcare, community, and livestock settings, MRSA has evolved increased biofilm formation as a multifaceted virulence and defensive mechanism, enabling the bacterium to thrive in harsh conditions. This review discusses the molecular mechanisms contributing to biofilm formation across its developmental stages, hence representing a step forward in developing promising strategies for impeding or eradicating biofilms. During staphylococcal biofilm development, cell wall-anchored proteins attach bacterial cells to biotic or abiotic surfaces; extracellular polymeric substances build scaffolds for biofilm formation; the cidABC operon controls cell lysis within the biofilm, and proteases facilitate dispersal. Beside the three main sequential stages of biofilm formation (attachment, maturation, and dispersal), this review unveils two unique developmental stages in the biofilm formation process for MRSA; multiplication and exodus. We also highlighted the quorum sensing as a cell-to-cell communication process, allowing distant bacterial cells to adapt to the conditions surrounding the bacterial biofilm. In S. aureus, the quorum sensing process is mediated by autoinducing peptides (AIPs) as signaling molecules, with the accessory gene regulator system playing a pivotal role in orchestrating the production of AIPs and various virulence factors. Several quorum inhibitors showed promising anti-virulence and antibiofilm effects that vary in type and function according to the targeted molecule. Disrupting the biofilm architecture and eradicating sessile bacterial cells are crucial steps to prevent colonization on other surfaces or organs. In this context, nanoparticles emerge as efficient carriers for delivering antimicrobial and antibiofilm agents throughout the biofilm architecture. Although metal-based nanoparticles have been previously used in combatting biofilms, its non-degradability and toxicity within the human body presents a real challenge. Therefore, organic nanoparticles in conjunction with quorum inhibitors have been proposed as a promising strategy against biofilms. As nanotherapeutics continue to gain recognition as an antibiofilm strategy, the development of more antibiofilm nanotherapeutics could offer a promising solution to combat biofilm-mediated resistance.
Collapse
Affiliation(s)
- Nirmeen Aboelnaga
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Salma W Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology & Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nehal Adel Abdelsalam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salma Salem
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nehal A Saif
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Manar Elsayed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Shehab Ayman
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed Elhadidy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
76
|
Song M, Tang Q, Ding Y, Tan P, Zhang Y, Wang T, Zhou C, Xu S, Lyu M, Bai Y, Ma X. Staphylococcus aureus and biofilms: transmission, threats, and promising strategies in animal husbandry. J Anim Sci Biotechnol 2024; 15:44. [PMID: 38475886 PMCID: PMC10936095 DOI: 10.1186/s40104-024-01007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/03/2024] [Indexed: 03/14/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a common pathogenic bacterium in animal husbandry that can cause diseases such as mastitis, skin infections, arthritis, and other ailments. The formation of biofilms threatens and exacerbates S. aureus infection by allowing the bacteria to adhere to pathological areas and livestock product surfaces, thus triggering animal health crises and safety issues with livestock products. To solve this problem, in this review, we provide a brief overview of the harm caused by S. aureus and its biofilms on livestock and animal byproducts (meat and dairy products). We also describe the ways in which S. aureus spreads in animals and the threats it poses to the livestock industry. The processes and molecular mechanisms involved in biofilm formation are then explained. Finally, we discuss strategies for the removal and eradication of S. aureus and biofilms in animal husbandry, including the use of antimicrobial peptides, plant extracts, nanoparticles, phages, and antibodies. These strategies to reduce the spread of S. aureus in animal husbandry help maintain livestock health and improve productivity to ensure the ecologically sustainable development of animal husbandry and the safety of livestock products.
Collapse
Affiliation(s)
- Mengda Song
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qi Tang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yakun Ding
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yucheng Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Tao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chenlong Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shenrui Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mengwei Lyu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yueyu Bai
- Key Laboratory of Innovative Utilization of Local Cattle and Sheep Germplasm Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
77
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
78
|
Lenchenko E, Sachivkina N, Petrukhina O, Petukhov N, Zharov A, Zhabo N, Avdonina M. Anatomical, pathological, and histological features of experimental respiratory infection of birds by biofilm-forming bacteria Staphylococcus aureus. Vet World 2024; 17:612-619. [PMID: 38680142 PMCID: PMC11045526 DOI: 10.14202/vetworld.2024.612-619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/20/2024] [Indexed: 05/01/2024] Open
Abstract
Background and Aim The pathogenesis of staphylococcal infections is mediated by virulence factors, such as enzymes, toxins, and biofilms, which increase the resistance of microorganisms to host immune system evasion. Testing and searching for standardized multi-level algorithms for the indication and differentiation of biofilms at the early stages of diagnosis will contribute to the development of preventive measures to control the critical points of technology and manage dangerous risk factors for the spread of infectious diseases. This research aimed to study the main stages of Staphylococcus aureus biofilm formation in in vitro experiments and to analyze the dynamics of respiratory syndrome development in chickens infected with these bacteria. Materials and Methods Experimental reproduction of the infectious process was performed using laboratory models: 10-day-old White Leghorn chickens (n = 20). Before the experiments, the birds were divided into two groups according to the principle of analogs: Group I (control, n = 10): the birds were intranasally inoculated with 0.5 cm3 of 0.9% NaCl solution; Group II (experiment, n = 10): the birds were intranasally inoculated with a suspension of S. aureus bacteria, 0.5 cm3, concentration 1 billion/cm3. Results Colonization of individual areas of the substrate under study in vitro occurred gradually from the sedimentation and adhesion of single motile planktonic cells to the attachment stage of microcolony development. Staining preparations with gentian violet due to the "metachromosia" property of this dye are a quick and fairly simple way to differentiate cells and the intercellular matrix of biofilms. Fixation with vapors of glutaraldehyde and osmium tetroxide preserves the natural architecture of biofilms under optical and scanning electron microscopy. Pure cultures of S. aureus microorganisms were isolated from the blood, lungs, small intestine, liver, kidneys, and spleen after 5-10 days during experimental infection of chickens. Clinical signs of respiratory syndrome developed within 5-6 days after infection. Acute and subacute serous-fibrinous airsacculitis, characterized by edema and thickening of the membranes of the air sacs and the presence of turbid, watery, foamy contents in the cavity, was the most characteristic pathomorphological sign. The signs of acute congestive hyperemia and one-sided serous-fibrinous pneumonia developed with significant thickening of fibrinous deposits. In Garder's gland, there was an increase in the number of secretory sections, indicating hypersecretion of the glands. In the lymphoid follicles of Meckel's diverticulum, leukocytes, usually lymphocytes, and pseudoeosinophils were detected. Conclusions Hydration and heteromorphism of the internal environment of biofilms determine the localization of differentiated cells in a three-dimensional matrix for protection against adverse factors. The most characteristic pathomorphological sign was the development of acute and subacute serous-fibrinous airsacculitis when reproducing the infectious process in susceptible models. There was a significant thickening of fibrinous deposits and signs of acute congestive hyperemia and one or two serous-fibrinous pneumonia developed.
Collapse
Affiliation(s)
- Ekaterina Lenchenko
- Department of Veterinary Medicine, Russian Biotechnological University (BIOTECH University), 125080, Moscow, Russia
| | - Nadezhda Sachivkina
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Olesya Petrukhina
- Department of Veterinary Medicine, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Nikolay Petukhov
- Department of Technosphere Security, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Andrey Zharov
- Department of Technosphere Security, Agrarian Technological Institute, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Natallia Zhabo
- Department of Foreign Languages, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Marina Avdonina
- Department of Linguistics and Intercultural Communication of the Faculty of Distance Learning and Part-Time Education of Moscow State Linguistic University, 119034 Moscow, Russia
| |
Collapse
|
79
|
Yamazaki Y, Ito T, Tamai M, Nakagawa S, Nakamura Y. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm Regen 2024; 44:9. [PMID: 38429810 PMCID: PMC10905890 DOI: 10.1186/s41232-024-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of human bacterial infections worldwide. It is the most common causative agent of skin and soft tissue infections, and can also cause various other infections, including pneumonia, osteomyelitis, as well as life-threatening infections, such as sepsis and infective endocarditis. The pathogen can also asymptomatically colonize human skin, nasal cavity, and the intestine. S. aureus colonizes approximately 20-30% of human nostrils, being an opportunistic pathogen for subsequent infection. Its strong ability to silently spread via human contact makes it difficult to eradicate S. aureus. A major concern with S. aureus is its capacity to develop antibiotic resistance and adapt to diverse environmental conditions. The variability in the accessory gene regulator (Agr) region of the genome contributes to a spectrum of phenotypes within the bacterial population, enhancing the likelihood of survival in different environments. Agr functions as a central quorum sensing (QS) system in S. aureus, allowing bacteria to adjust gene expression in response to population density. Depending on Agr expression, S. aureus secretes various toxins, contributing to virulence in infectious diseases. Paradoxically, expressing Agr may be disadvantageous in certain situations, such as in hospitals, causing S. aureus to generate Agr mutants responsible for infections in healthcare settings. MAIN BODY This review aims to demonstrate the molecular mechanisms governing the diverse phenotypes of S. aureus, ranging from a harmless colonizer to an organism capable of infecting various human organs. Emphasis will be placed on QS and its role in orchestrating S. aureus behavior across different contexts. SHORT CONCLUSION The pathophysiology of S. aureus infection is substantially influenced by phenotypic changes resulting from factors beyond Agr. Future studies are expected to give the comprehensive understanding of S. aureus overall profile in various settings.
Collapse
Affiliation(s)
- Yuriko Yamazaki
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan.
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
80
|
Solar Venero EC, Galeano MB, Luqman A, Ricardi MM, Serral F, Fernandez Do Porto D, Robaldi SA, Ashari BAZ, Munif TH, Egoburo DE, Nemirovsky S, Escalante J, Nishimura B, Ramirez MS, Götz F, Tribelli PM. Fever-like temperature impacts on Staphylococcus aureus and Pseudomonas aeruginosa interaction, physiology, and virulence both in vitro and in vivo. BMC Biol 2024; 22:27. [PMID: 38317219 PMCID: PMC10845740 DOI: 10.1186/s12915-024-01830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) cause a wide variety of bacterial infections and coinfections, showing a complex interaction that involves the production of different metabolites and metabolic changes. Temperature is a key factor for bacterial survival and virulence and within the host, bacteria could be exposed to an increment in temperature during fever development. We analyzed the previously unexplored effect of fever-like temperatures (39 °C) on S. aureus USA300 and P. aeruginosa PAO1 microaerobic mono- and co-cultures compared with 37 °C, by using RNAseq and physiological assays including in vivo experiments. RESULTS In general terms both temperature and co-culturing had a strong impact on both PA and SA with the exception of the temperature response of monocultured PA. We studied metabolic and virulence changes in both species. Altered metabolic features at 39 °C included arginine biosynthesis and the periplasmic glucose oxidation in S. aureus and P. aeruginosa monocultures respectively. When PA co-cultures were exposed at 39 °C, they upregulated ethanol oxidation-related genes along with an increment in organic acid accumulation. Regarding virulence factors, monocultured SA showed an increase in the mRNA expression of the agr operon and hld, pmsα, and pmsβ genes at 39 °C. Supported by mRNA data, we performed physiological experiments and detected and increment in hemolysis, staphyloxantin production, and a decrease in biofilm formation at 39 °C. On the side of PA monocultures, we observed an increase in extracellular lipase and protease and biofilm formation at 39 °C along with a decrease in the motility in correlation with changes observed at mRNA abundance. Additionally, we assessed host-pathogen interaction both in vitro and in vivo. S. aureus monocultured at 39οC showed a decrease in cellular invasion and an increase in IL-8-but not in IL-6-production by A549 cell line. PA also decreased its cellular invasion when monocultured at 39 °C and did not induce any change in IL-8 or IL-6 production. PA strongly increased cellular invasion when co-cultured at 37 and 39 °C. Finally, we observed increased lethality in mice intranasally inoculated with S. aureus monocultures pre-incubated at 39 °C and even higher levels when inoculated with co-cultures. The bacterial burden for P. aeruginosa was higher in liver when the mice were infected with co-cultures previously incubated at 39 °C comparing with 37 °C. CONCLUSIONS Our results highlight a relevant change in the virulence of bacterial opportunistic pathogens exposed to fever-like temperatures in presence of competitors, opening new questions related to bacteria-bacteria and host-pathogen interactions and coevolution.
Collapse
Affiliation(s)
- E C Solar Venero
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
- Present addressDepartment of BiochemistrySchool of Medicine, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols (Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - M B Galeano
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - A Luqman
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - M M Ricardi
- IFIBYNE (UBA-CONICET), FBMC, FCEyN-UBA, Buenos Aires, Argentina
| | - F Serral
- Instituto del Calculo-UBA-CONICET, Buenos Aires, Argentina
| | | | - S A Robaldi
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - B A Z Ashari
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - T H Munif
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - D E Egoburo
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina
| | - S Nemirovsky
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina
| | - J Escalante
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - B Nishimura
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - M S Ramirez
- Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - F Götz
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - P M Tribelli
- Instituto De Química Biológica de La Facultad de Ciencias Exactas y Naturales-CONICET, Buenos Aires, Argentina.
- Departamento de Química Biológica, FCEyN-UBA, Buenos Aires, Argentina.
| |
Collapse
|
81
|
Behera M, Singh G, Vats A, Parmanand, Roshan M, Gautam D, Rana C, Kesharwani RK, De S, Ghorai SM. Expression and characterization of novel chimeric endolysin CHAPk-SH3bk against biofilm-forming methicillin-resistant Staphylococcus aureus. Int J Biol Macromol 2024; 254:127969. [PMID: 37944719 DOI: 10.1016/j.ijbiomac.2023.127969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The continuous evolution of antibiotic resistance in methicillin-resistant Staphylococcus aureus (MRSA) due to the misuse of antibiotics lays out the need for the development of new antimicrobials with higher activity and lower resistance. In this study, we have expressed novel chimeric endolysin CHAPk-SH3bk derived from LysK to investigate its antibacterial activity against planktonic and biofilm-forming MRSA. The molecular docking and MD simulation results identified critical amino acids (ASP47, ASP56, ARG71, and Gly74) of CHAPk domain responsible for its catalytic activity. Chimeric endolysin CHAPk-SH3bk showed an effective binding to peptidoglycan fragment using 14 hydrogen bonds. The in-vitro antibacterial assays displayed higher activity of CHAPk against planktonic MRSA with 2-log10 reduction in 2 h. Both CHAPk and CHAPk-SH3bk displayed bactericidal activity against MRSA with ∼4log10 and ∼3.5log10 reduction in 24 h. Biofilm reduction activity displayed CHAPk-SH3bk reduced 33 % and 60 % of hospital-associated ATCC®BAA-44™ and bovine origin SA1 respectively. The CHAPk treatment reduced 47 % of the preformed biofilm formed by bovine-origin MRSA SA1. This study indicates an effective reduction of preformed MRSA biofilms of human and animal origin using novel chimeric construct CHAPk-SH3bk. Stating that the combination and shuffling of different domains of phage endolysin potentially increase its bacteriolytic effectiveness against MRSA.
Collapse
Affiliation(s)
- Manisha Behera
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India; National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Gagandeep Singh
- Section of Microbiology, Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, India; Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Ashutosh Vats
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Parmanand
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Mayank Roshan
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Chanchal Rana
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Rajesh Kumar Kesharwani
- Department of Computer Application, Nehru Gram Bharati (Deemed to be University), Prayagraj, India
| | - Sachinandan De
- National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India.
| | - Soma M Ghorai
- Department of Zoology, Hindu College, University of Delhi, Delhi 110007, India.
| |
Collapse
|
82
|
Bavaro DF, Belati A, Bussini L, Cento V, Diella L, Gatti M, Saracino A, Pea F, Viale P, Bartoletti M. Safety and effectiveness of fifth generation cephalosporins for the treatment of methicillin-resistant staphylococcus aureus bloodstream infections: a narrative review exploring past, present, and future. Expert Opin Drug Saf 2024; 23:9-36. [PMID: 38145925 DOI: 10.1080/14740338.2023.2299377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infection (BSI) is a major issue in healthcare, since it is often associated with endocarditis or deep site foci. Relevant morbidity and mortality associated with MRSA-BSIs forced the development of new antibiotic strategies; in particular, this review will focus the attention on fifth-generation cephalosporins (ceftaroline/ceftobiprole), that are the only ß-lactams active against MRSA. AREAS COVERED The review discusses the available randomized controlled trials and real-world observational studies conducted on safety and effectiveness of ceftaroline/ceftobiprole for the treatment of MRSA-BSIs. Finally, a proposal of MRSA-BSI treatment flowchart, based on fifth-generation cephalosporins, is described. EXPERT OPINION The use of anti-MRSA cephalosporins is an acceptable choice either in monotherapy or combination therapy for the treatment of MRSA-BSIs due to their relevant effectiveness and safety. Particularly, their use may be advisable in combination therapy in case of severe infections (including endocarditis or persistent bacteriemia) or in monotherapy in subjects at higher risk of drugs-induced toxicity with older regimens. On the contrary, caution should be taken in case of suspected/ascertained central nervous system infections due to inconsistent data regarding penetration of these drugs in cerebrospinal fluid and brain tissues.
Collapse
Affiliation(s)
- Davide Fiore Bavaro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandra Belati
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Linda Bussini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Microbiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lucia Diella
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Annalisa Saracino
- Department of Biomedical Sciences and Human Oncology, Clinic of Infectious Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pierluigi Viale
- Clinical Pharmacology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Infectious Disease Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
83
|
Morris SD, Kumar VA, Biswas R, Mohan CG. Identification of a Staphylococcus aureus amidase catalytic domain inhibitor to prevent biofilm formation by sequential virtual screening, molecular dynamics simulation and biological evaluation. Int J Biol Macromol 2024; 254:127842. [PMID: 37924909 DOI: 10.1016/j.ijbiomac.2023.127842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Staphylococcus aureus (S. aureus) is one of the common causes of implant associated biofilm infections and their biofilms are resistant to antibiotics. S. aureus amidase (AM) protein, a cell wall hydrolase that cleaves the amide bond between N-acetylmuramic acid and L-alanine residue of the stem peptide, is several fold over-expressed under biofilm conditions. Previous studies demonstrated an autolysin mutant in S. aureus that lacks the AM protein, is highly impaired in biofilm development. We carried out a structure-based small molecule design using the crystal structure of AM protein catalytic domain to identify inhibitors that can block amidase activity and therefore inhibits S. aureus biofilm formation. Sequential virtual screening followed by pharmacokinetic analysis and bioassay studies filtered 25 small molecules from different databases. Two compounds from the SPECS database, SPECS-1 and SPECS-2, were selected based on the best docking score and minimum biofilm inhibitory concentration towards S. aureus biofilms. SPECS-1 and SPECS-2 were further tested for their structural/energetic stability in complex with the AM protein using molecular dynamics simulation and MM-GBSA techniques. In vitro, biofilm inhibition studies on different surfaces confirmed that treatment with SPECS-1 and SPECS-2 at a concentration of 250 μg/ml exhibited significant prevention and disruption of S. aureus biofilms. Finally, the in vitro anti-biofilm activities of these two compounds were validated against Methicillin-resistant S. aureus clinical isolates. We concluded that the discovered compounds SPECS-1 and SPECS-2 are safe and exhibit biofilm preventive and disruption activity for inhibiting the S. aureus biofilms and hence can be used to treat implant-associated biofilm infections.
Collapse
Affiliation(s)
- Sharon D Morris
- Bioinformatics and Computational Biology Lab, Amrita School of Nanosciences and Molecular Medicine, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala State, India
| | - Raja Biswas
- Bioinformatics and Computational Biology Lab, Amrita School of Nanosciences and Molecular Medicine, India.
| | - C Gopi Mohan
- Bioinformatics and Computational Biology Lab, Amrita School of Nanosciences and Molecular Medicine, India.
| |
Collapse
|
84
|
Guo Q, Zhan Y, Zhang W, Wang J, Yan Y, Wang W, Lin M. Development and Regulation of the Extreme Biofilm Formation of Deinococcus radiodurans R1 under Extreme Environmental Conditions. Int J Mol Sci 2023; 25:421. [PMID: 38203592 PMCID: PMC10778927 DOI: 10.3390/ijms25010421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
To grow in various harsh environments, extremophiles have developed extraordinary strategies such as biofilm formation, which is an extremely complex and progressive process. However, the genetic elements and exact mechanisms underlying extreme biofilm formation remain enigmatic. Here, we characterized the biofilm-forming ability of Deinococcus radiodurans in vitro under extreme environmental conditions and found that extremely high concentrations of NaCl or sorbitol could induce biofilm formation. Meantime, the survival ability of biofilm cells was superior to that of planktonic cells in different extreme conditions, such as hydrogen peroxide stress, sorbitol stress, and high UV radiation. Transcriptome profiles of D. radiodurans in four different biofilm development stages further revealed that only 13 matched genes, which are involved in environmental information processing, carbohydrate metabolism, or stress responses, share sequence homology with genes related to the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Overall, 64% of the differentially expressed genes are functionally unknown, indicating the specificity of the regulatory network of D. radiodurans. The mutation of the drRRA gene encoding a response regulator strongly impaired biofilm formation ability, implying that DrRRA is an essential component of the biofilm formation of D. radiodurans. Furthermore, transcripts from both the wild type and the drRRA mutant were compared, showing that the expression of drBON1 (Deinococcus radioduransBON domain-containing protein 1) significantly decreased in the drRRA mutant during biofilm development. Further analysis revealed that the drBON1 mutant lacked the ability to form biofilm and DrRRA, and as a facilitator of biofilm formation, could directly stimulate the transcription of the biofilm-related gene drBON1. Overall, our work highlights a molecular mechanism mediated by the response regulator DrRRA for controlling extreme biofilm formation and thus provides guidance for future studies to investigate novel mechanisms that are used by D. radiodurans to adapt to extreme environments.
Collapse
Affiliation(s)
- Qiannan Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhua Zhan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
85
|
She P, Yang Y, Li L, Li Y, Liu S, Li Z, Zhou L, Wu Y. Repurposing of the antimalarial agent tafenoquine to combat MRSA. mSystems 2023; 8:e0102623. [PMID: 38047647 PMCID: PMC10734505 DOI: 10.1128/msystems.01026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| |
Collapse
|
86
|
Lao RCC, Yabes AM, Tobias-Altura M, Panganiban LCR, Makalinao IR. In Vitro Antibacterial and Antibiofilm Activities of Piper betle L. Ethanolic Leaf Extract on Staphylococcus aureus ATCC 29213. ACTA MEDICA PHILIPPINA 2023; 57:53-60. [PMID: 39429760 PMCID: PMC11484527 DOI: 10.47895/amp.vi0.6412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Background and Objective Staphylococcus aureus is the leading cause of skin and soft tissue infections such as abscesses, furuncles, and cellulitis. Biofilm forming strains of S. aureus have higher incidence of antimicrobial resistance to at least three or more antibiotics and are considered as multidrug resistant. Since S. aureus biofilm-producing strains have higher rates of multidrug and methicillin resistance compared to non-biofilm-producing strains, the need for alternative therapeutic option is important. Furthermore, rates of methicillin-resistant Staphylococcus aureus (MRSA) in Asia remain high. Results of the study may provide support for the clinical uses of P. betle as a topical antibacterial and antiseptic in the treatment and prevention of infections involving the skin, mouth, throat, and indwelling medical devices. Thus, this study aimed to evaluate the in vitro antibacterial and antibiofilm activities of Piper betle L. ethanolic leaf extract (PBE) against a biofilm-forming methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA). Methods The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PBE against MSSA were determined using the agar dilution assay. The biofilm inhibition and eradication assays using crystal violet were done to quantify the antibiofilm activities of PBE on MSSA biofilm. Results PBE showed activity against MSSA in agar dilution assay with MIC and MBC values of 2500 μg/mL and 5000 μg/mL, respectively. At subinhibitory concentrations, PBE showed biofilm inhibition activity at 1250 μg/mL but a lower percent eradication of biofilms as compared to oxacillin was noted. Conclusion PBE showed antibacterial activities including biofilm inhibition against methicillin-sensitive Staphylococcus aureus ATCC 29213 (MSSA).
Collapse
Affiliation(s)
- Ryan Christopher C. Lao
- Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila
| | - Ailyn M. Yabes
- Department of Pharmacology and Toxicology, College of Medicine, University of the Philippines Manila
| | - Marohren Tobias-Altura
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila
| | | | - Irma R. Makalinao
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila
| |
Collapse
|
87
|
Karimzadeh Barenji E, Beglari S, Tahghighi A, Azerang P, Rohani M. Evaluation of Anti-Bacterial and Anti-Biofilm Activity of Native Probiotic Strains of Lactobacillus Extracts. IRANIAN BIOMEDICAL JOURNAL 2023; 28:102-12. [PMID: 38850020 PMCID: PMC11186614 DOI: 10.61186/ibj.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 06/09/2024]
Abstract
Background Lactic acid bacteria produce various beneficial metabolites, including antimicrobial agents. Owing to the fast-rising antibiotic resistance among pathogenic microbes, scientists are exploring antimicrobials beyond antibiotics. In this study, we examined four Lactobacillus strains, namely L. plantarum 42, L. brevis 205, L. rhamnosus 239, and L. delbrueckii 263, isolated from healthy human microbiota, to evaluate their antibacterial and antifungal activity. Methods Lactobacillus strains were cultivated, and the conditioned media were obtained. The supernatant was then used to treat pathogenic bacteria and applied to the growth media containing fungal and bacterial strains. Additionally, the supernatant was separated to achieve the organic and aqueous phases. The two phases were then examined in terms of bacterial and fungal growth rates. Disk diffusion and MIC tests were conducted to determine strains with the most growth inhibition potential. Finally, the potent strains identified through the MIC test were tested on the pathogenic microorganisms to assess their effects on the formation of pathogenic biofilms. Results The organic phase of L. rhamnosus 239 extracts exhibited the highest antibacterial and antibiofilm effects, while that of L. brevis 205 demonstrated the most effective antifungal impact, with a MIC of 125 µg/mL against Saccharomyces cerevisiae. Conclusion This study confirms the significant antimicrobial impacts of the lactic acid bacteria strains on pathogenic bacteria and fungi; hence, they could serve as a reliable alternative to antibiotics for a safe and natural protection against pathogenic microorganisms.
Collapse
Affiliation(s)
- Elmira Karimzadeh Barenji
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shokufeh Beglari
- Department of Biology, Science and Research branch, Islamic Azad University, Tehran, Iran
| | - Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
88
|
Vanderpool EJ, Rumbaugh KP. Host-microbe interactions in chronic rhinosinusitis biofilms and models for investigation. Biofilm 2023; 6:100160. [PMID: 37928619 PMCID: PMC10622848 DOI: 10.1016/j.bioflm.2023.100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023] Open
Abstract
Chronic rhinosinusitis (CRS) is a debilitating condition characterized by long-lasting inflammation of the paranasal sinuses. It affects a significant portion of the population, causing a considerable burden on individuals and healthcare systems. The pathogenesis of CRS is multifactorial, with bacterial infections playing a crucial role in CRS development and persistence. In recent years, the presence of biofilms has emerged as a key contributor to the chronicity of sinusitis, further complicating treatment and exacerbating symptoms. This review aims to explore the role of biofilms in CRS, focusing on the involvement of the bacterial species Staphylococcus aureus and Pseudomonas aeruginosa, their interactions in chronic infections, and model systems for studying biofilms in CRS. These species serve as an example of how microbial interplay can influence disease progression and exemplify the need for continued investigation and innovation in CRS research.
Collapse
Affiliation(s)
- Emily J. Vanderpool
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kendra P. Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
89
|
Wang J, Liang S, Lu X, Xu Q, Zhu Y, Yu S, Zhang W, Liu S, Xie F. Bacteriophage endolysin Ply113 as a potent antibacterial agent against polymicrobial biofilms formed by enterococci and Staphylococcus aureus. Front Microbiol 2023; 14:1304932. [PMID: 38152375 PMCID: PMC10751913 DOI: 10.3389/fmicb.2023.1304932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Antibiotic resistance in Enterococcus faecium, Enterococcus faecalis, and Staphylococcus aureus remains a major public health concern worldwide. Furthermore, these microbes frequently co-exist in biofilm-associated infections, largely nullifying antibiotic-based therapy. Therefore, it is imperative to develop an efficient therapeutic strategy for combating infections caused by polymicrobial biofilms. In this study, we investigated the antibacterial and antibiofilm activity of the bacteriophage endolysin Ply113 in vitro. Ply113 exhibited high and rapid lytic activity against E. faecium, E. faecalis, and S. aureus, including vancomycin-resistant Enterococcus and methicillin-resistant S. aureus isolates. Transmission electron microscopy revealed that Ply113 treatment led to the detachment of bacterial cell walls and considerable cell lysis. Ply113 maintained stable lytic activity over a temperature range of 4-45°C, over a pH range of 5.0-8.0, and in the presence of 0-400 mM NaCl. Ply113 treatment effectively eliminated the mono-species biofilms formed by E. faecium, E. faecalis, and S. aureus in a dose-dependent manner. Ply113 was also able to eliminate the dual-species biofilms of E. faecium-S. aureus and E. faecalis-S. aureus. Additionally, Ply113 exerted potent antibacterial efficacy in vivo, distinctly decreasing the bacterial loads in a murine peritoneal septicemia model. Our findings suggest that the bacteriophage endolysin Ply113 is a promising antimicrobial agent for the treatment of polymicrobial infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Siguo Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fang Xie
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
90
|
Rahman S, Das AK. Staphylococcal superantigen-like protein 10 enhances the amyloidogenic biofilm formation in Staphylococcus aureus. BMC Microbiol 2023; 23:390. [PMID: 38062361 PMCID: PMC10701973 DOI: 10.1186/s12866-023-03134-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Staphylococcus aureus is a highly infectious pathogen that represents a significant burden on the current healthcare system. Bacterial attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in chronic diseases such as endocarditis, osteomyelitis and wound infections. These biofilms decrease bacterial susceptibility to antibiotics and immune defences, making the infections challenging to treatment. S. aureus produces numerous exotoxins that contribute to the pathogenesis of the bacteria. In this study, we have identified a novel function of staphylococcal superantigen-like protein 10 (SSL10) in enhancing the formation of staphylococcal biofilms. Biofilm biomass is significantly increased when SSL10 is added exogenously to bacterial cultures, whereas SSL2 and SSL12 are found to be less active. Exogenously added SSL10 mask the surface charge of the bacterial cells and lowers their zeta potential, leading to the aggregation of the cells. Moreover, the biofilm formation by SSL10 is governed by amyloid aggregation, as evident from spectroscopic and microscopic studies. These findings thereby give the first overview of the SSL-mediated amyloid-based biofilm formation and further drive the future research in identifying potential molecules for developing new antibacterial therapies against Staphylococcus aureus.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India.
| |
Collapse
|
91
|
Lee JI, Kim SS, Kang DH. Characteristics of Staphylococcus aureus biofilm matured in tryptic soy broth, low-fat milk, or whole milk samples along with inactivation by 405 nm light combined with folic acid. Food Microbiol 2023; 116:104350. [PMID: 37689424 DOI: 10.1016/j.fm.2023.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 09/11/2023]
Abstract
In the present study, the characteristics of Staphylococcus aureus biofilms matured in tryptic soy broth (TSB), low-fat milk, or whole milk samples were identified along with their resistance to 405 nm light with or without folic acid. Phenotypic properties of carbohydrate and protein contents in extracellular polymeric substance (EPS) of S. aureus biofilms matured in different conditions were identified. The carbohydrate content was higher in the biofilm matured in low-fat milk (1.27) than the samples matured in whole milk (0.58) and TSB (0.10). Protein content in the EPS of biofilm was higher in the sample matured in whole milk (6.59) than the samples matured in low-fat milk (3.24) and TSB (2.08). Moreover, the maturation condition had a significant effect on the membrane lipid composition of the biofilm, producing more unsaturated fatty acids in biofilm matured in milk samples. These changes in biofilm matured in milk samples increased the resistance of S. aureus to 405 nm light in the presence of folic acid (LFA). Additionally, transcriptomic analysis was conducted to identify the response of S. aureus biofilm to LFA treatment. Several genes related to DNA and protein protection from oxidative stress along with biofilm accumulation were overexpressed in the LFA-treated biofilms. These results indicate the maturation of S. aureus biofilm in various samples and the biofilms responses to bactericidal treatments.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Sang-Soon Kim
- Department of Food Engineering, Dankook University, Cheonan, Chungnam, 31116, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
92
|
Sun MC, Li DD, Chen YX, Fan XJ, Gao Y, Ye H, Zhang T, Zhao C. Insights into the Mechanisms of Reuterin against Staphylococcus aureus Based on Membrane Damage and Untargeted Metabolomics. Foods 2023; 12:4208. [PMID: 38231661 DOI: 10.3390/foods12234208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Reuterin is a dynamic small-molecule complex produced through glycerol fermentation by Limosilactobacillus reuteri and has potential as a food biopreservative. Despite its broad-spectrum antimicrobial activity, the underlying mechanism of action of reuterin is still elusive. The present paper aimed to explore the antibacterial mechanism of reuterin and its effects on membrane damage and the intracellular metabolome of S. aureus. Our results showed that reuterin has a minimum inhibitory concentration of 18.25 mM against S. aureus, based on the 3-hydroxypropionaldehyde level. Key indicators such as extracellular electrical conductivity, membrane potential and permeability were significantly increased, while intracellular pH, ATP and DNA were markedly decreased, implying that reuterin causes a disruption to the structure of the cell membrane. The morphological damage to the cells was confirmed by scanning electron microscopy. Subsequent metabolomic analysis identified significant alterations in metabolites primarily involved in lipid, amino acid, carbohydrate metabolism and phosphotransferase system, which is crucial for cell membrane regulation and energy supply. Consequently, these findings indicated that the antibacterial mechanism of reuterin initially targets lipid and amino acid metabolism, leading to cell membrane damage, which subsequently results in energy metabolism disorder and, ultimately, cell death. This paper offers innovative perspectives on the antibacterial mechanism of reuterin, contributing to its potential application as a food preservative.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xiu-Juan Fan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Gao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
93
|
Okkeh M, De Vita L, Bruni G, Doveri L, Minzioni P, Restivo E, Patrini M, Pallavicini P, Visai L. Photodynamic toluidine blue-gold nanoconjugates as a novel therapeutic for Staphylococcal biofilms. RSC Adv 2023; 13:33887-33904. [PMID: 38019993 PMCID: PMC10658660 DOI: 10.1039/d3ra04398c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Staphylococci are among the most frequent bacteria known to cause biofilm-related infections. Pathogenic biofilms represent a global healthcare challenge due to their high tolerance to antimicrobials. In this study, water soluble polyethylene glycol (PEG)-coated gold nanospheres (28 ppm) and nanostars (15 ppm) with electrostatically adsorbed photosensitizer (PS) Toluidine Blue O (TBO) ∼4 μM were successfully synthesized and characterized as PEG-GNPs@TBO and PEG-GNSs@TBO. Both nanoconjugates and the TBO 4 μM solution showed remarkable, if similar, antimicrobial photodynamic inactivation (aPDI) effects at 638 nm, inhibiting the formation of biofilms by two Staphylococcal strains: a clinical methicillin-resistant Staphylococcus aureus (MRSA) isolate and Staphylococcus epidermidis (S. epidermidis) RP62A. Alternatively in biofilm eradication treatments, the aPDI effects of PEG-GNSs@TBO were more effective and yielded a 75% and 50% reduction in viable count of MRSA and S. epidermidis RP62A preformed biofilms, respectively and when compared with untreated samples. This reduction in viable count was even greater than that obtained through aPDI treatment using a 40 μM TBO solution. Confocal laser microscopy (CLSM) and scanning electron microscope (SEM) images of PEG-GNSs@TBO's aPDI treatments revealed significant changes in the integrity and morphology of biofilms, with fewer colony masses. The generation of reactive oxygen species (ROS) upon PEG-GNSs@TBO's aPDI treatment was detected by CLSM using a specific ROS fluorescent probe, demonstrating bright fluorescence red spots across the surfaces of the treated biofilms. Our findings shine a light on the potential synergism between gold nanoparticles (AuNPs) and photosensitizers in developing novel nanoplatforms to target Staphylococcal biofilm related infections.
Collapse
Affiliation(s)
- Mohammad Okkeh
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
| | - Lorenzo De Vita
- Department of Chemistry, University of Pavia 27100 Pavia Italy
| | - Giovanna Bruni
- Department of Chemistry, Physical Chemistry Section, Center for Colloid and Surfaces Science, University of Pavia 27100 Pavia Italy
| | - Lavinia Doveri
- Department of Chemistry, University of Pavia 27100 Pavia Italy
| | - Paolo Minzioni
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia 27100 Pavia Italy
| | - Elisa Restivo
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| | | | | | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), INSTM UdR of Pavia, University of Pavia 27100 Pavia Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS 27100 Pavia Italy
| |
Collapse
|
94
|
Hackemann VCJ, Hagel S, Jandt KD, Rödel J, Löffler B, Tuchscherr L. The Controversial Effect of Antibiotics on Methicillin-Sensitive S. aureus: A Comparative In Vitro Study. Int J Mol Sci 2023; 24:16308. [PMID: 38003500 PMCID: PMC10671744 DOI: 10.3390/ijms242216308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Methicillin-sensitive Staphylococcus (S.) aureus (MSSA) bacteremia remains a global challenge, despite the availability of antibiotics. Primary treatments include β-lactam agents such as cefazolin and flucloxacillin. Ongoing discussions have focused on the potential synergistic effects of combining these agents with rifampicin or fosfomycin to combat infections associated with biofilm formation. Managing staphylococcal infections is challenging due to antibacterial resistance, biofilms, and S. aureus's ability to invade and replicate within host cells. Intracellular invasion shields the bacteria from antibacterial agents and the immune system, often leading to incomplete bacterial clearance and chronic infections. Additionally, S. aureus can assume a dormant phenotype, known as the small colony variant (SCV), further complicating eradication and promoting persistence. This study investigated the impact of antibiotic combinations on the persistence of S. aureus 6850 and its stable small colony variant (SCV strain JB1) focusing on intracellular survival and biofilm formation. The results from the wild-type strain 6850 demonstrate that β-lactams combined with RIF effectively eliminated biofilms and intracellular bacteria but tend to select for SCVs in planktonic culture and host cells. Higher antibiotic concentrations were associated with an increase in the zeta potential of S. aureus, suggesting reduced membrane permeability to antimicrobials. When using the stable SCV mutant strain JB1, antibiotic combinations with rifampicin successfully cleared planktonic bacteria and biofilms but failed to eradicate intracellular bacteria. Given these findings, it is reasonable to report that β-lactams combined with rifampicin represent the optimal treatment for MSSA bacteremia. However, caution is warranted when employing this treatment over an extended period, as it may elevate the risk of selecting for small colony variants (SCVs) and, consequently, promoting bacterial persistence.
Collapse
Affiliation(s)
| | - Stefan Hagel
- Institute of Infectious Diseases and Infection Control, Jena University Hospital, 07747 Jena, Germany
| | - Klaus D Jandt
- Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), 07743 Jena, Germany
| | - Jürgen Rödel
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Bettina Löffler
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Lorena Tuchscherr
- Institute for Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| |
Collapse
|
95
|
Bowden LC, Evans JGW, Miller KM, Bowden AE, Jensen BD, Hope S, Berges BK. Carbon-infiltrated carbon nanotubes inhibit the development of Staphylococcus aureus biofilms. Sci Rep 2023; 13:19398. [PMID: 37938619 PMCID: PMC10632507 DOI: 10.1038/s41598-023-46748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Staphylococcus aureus forms biofilms that cause considerable morbidity and mortality in patients who receive implanted devices such as prosthetics or fixator pins. An ideal surface for such medical devices would inhibit biofilm growth. Recently, it was reported that surface modification of stainless steel materials with carbon-infiltrated carbon nanotubes (CICNT) inhibits the growth of S. aureus biofilms. The purpose of this study was to investigate this antimicrobial effect on titanium materials with CICNT coated surfaces in a variety of surface morphologies and across a broader spectrum of S. aureus isolates. Study samples of CICNT-coated titanium, and control samples of bare titanium, a common implant material, were exposed to S. aureus. Viable bacteria were removed from adhered biofilms and quantified as colony forming units. Scanning electron microscopy was used to qualitatively analyze biofilms both before and after removal of cells. The CICNT surface was found to have significantly fewer adherent bacteria than bare titanium control surfaces, both via colony forming unit and microscopic analyses. This effect was most pronounced on CICNT surfaces with an average nanotube diameter of 150 nm, showing a 2.5-fold reduction in adherent bacteria. Since S. aureus forms different biofilm structures by isolate and by growth conditions, we tested 7 total isolates and found a significant reduction in the biofilm load in six out of seven S. aureus isolates tested. To examine whether the anti-biofilm effect was due to the structure of the nanotubes, we generated an unstructured carbon surface. Significantly more bacteria adhered to a nonstructured carbon surface than to the 150 nm CICNT surface, suggesting that the topography of the nanotube structure itself has anti-biofilm properties. The CICNT surface possesses anti-biofilm properties that result in fewer adherent S. aureus bacteria. These anti-biofilm properties are consistent across multiple isolates of S. aureus and are affected by nanotube diameter. The experiments performed in this study suggest that this effect is due to the nanostructure of the CICNT surface.
Collapse
Affiliation(s)
- Lucy C Bowden
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Jocelyn G W Evans
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Katelyn M Miller
- Department of Statistics, Brigham Young University, Provo, UT, 84602, USA
| | - Anton E Bowden
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Bradford K Berges
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA.
| |
Collapse
|
96
|
Shaghayegh G, Cooksley C, Bouras G, Houtak G, Nepal R, Psaltis AJ, Wormald PJ, Vreugde S. S. aureus biofilm metabolic activity correlates positively with patients' eosinophil frequencies and disease severity in chronic rhinosinusitis. Microbes Infect 2023; 25:105213. [PMID: 37652259 DOI: 10.1016/j.micinf.2023.105213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammation of the sinus mucosa. Recalcitrant CRS patients are unresponsive to medical and surgical interventions and often present with nasal polyps, tissue eosinophilia, and Staphylococcus aureus dominant mucosal biofilms. However, S. aureus sinonasal mucosal colonisation occurs in the absence of inflammation, questioning the role of S. aureus in CRS pathogenesis. Here, we aimed to investigate the relationship between S. aureus biofilm metabolic activity and virulence genes, innate immune cells, and disease severity in CRS. Biospecimens, including sinonasal tissue and nasal swabs, and clinical datasets, including disease severity scores, were obtained from CRS patients and non-CRS controls. S. aureus isolates were grown into biofilms in vitro, characterised, and sequenced. The patients' innate immune response was evaluated using flow cytometry. S. aureus was isolated in 6/19 (31.58%) controls and 23/53 (43.40%) CRS patients of 72 recruited patients. We found increased S. aureus biofilm metabolic activity in relation to increased eosinophil cell frequencies and disease severity in recalcitrant CRS cases. Mast cell frequencies were higher in tissue samples of patients carrying S. aureus harbouring lukF.PV, sea, and fnbB genes. Patients with S. aureus harbouring lukF.PV and sdrE genes had more severe disease. This offers insights into the pathophysiology of CRS and could lead to the development of more targeted therapies.
Collapse
Affiliation(s)
- Gohar Shaghayegh
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Clare Cooksley
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - George Bouras
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Ghais Houtak
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Roshan Nepal
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Alkis James Psaltis
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Peter-John Wormald
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia
| | - Sarah Vreugde
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia; The Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide and the Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, South Australia, Australia.
| |
Collapse
|
97
|
Valtin J, Behrens S, Ruland A, Schmieder F, Sonntag F, Renner LD, Maitz MF, Werner C. A New In Vitro Blood Flow Model for the Realistic Evaluation of Antimicrobial Surfaces. Adv Healthc Mater 2023; 12:e2301300. [PMID: 37498721 DOI: 10.1002/adhm.202301300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Indexed: 07/29/2023]
Abstract
Device-associated bloodstream infections can cause serious medical problems and cost-intensive postinfection management, defining a need for more effective antimicrobial coatings. Newly developed coatings often show reduced bacterial colonization and high hemocompatibility in established in vitro tests, but fail in animal studies or clinical trials. The poor predictive power of these models is attributed to inadequate representation of in vivo conditions. Herein, a new single-pass blood flow model, with simultaneous incubation of the test surface with bacteria and freshly-drawn human blood, is presented. The flow model is validated by comparative analysis of a recently developed set of antiadhesive and contact-killing polymer coatings, and the corresponding uncoated polycarbonate surfaces. The results confirm the model's ability to differentiate the antimicrobial activities of the studied surfaces. Blood activation data correlate with bacterial surface coverage: low bacterial adhesion is associated with low inflammation and hemostasis. Shear stress correlates inversely with bacterial colonization, especially on antiadhesive surfaces. The introduced model is concluded to enable the evaluation of novel antimicrobial materials under in vivo-like conditions, capturing interactions between bacteria and biomaterials surfaces in the presence of key components of the ex vivo host response.
Collapse
Affiliation(s)
- Juliane Valtin
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Stephan Behrens
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - André Ruland
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Florian Schmieder
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, 01277, Dresden, Germany
| | - Lars D Renner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Institute of Biofunctional Polymer Materials, Hohe Strasse 6, 01069, Dresden, Germany
- Technische Universität Dresden, Cluster of Excellence Physics of Life, Center for Regenerative Therapies Dresden and Faculty of Chemistry and Food Chemistry, 01307, Dresden, Germany
| |
Collapse
|
98
|
Yue Y, Chen K, Sun C, Ahmed S, Ojha SC. Antimicrobial peptidase lysostaphin at subinhibitory concentrations modulates staphylococcal adherence, biofilm formation, and toxin production. BMC Microbiol 2023; 23:311. [PMID: 37884887 PMCID: PMC10601153 DOI: 10.1186/s12866-023-03052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The ability of antimicrobial agents to affect microbial adherence to eukaryotic cell surfaces is a promising antivirulence strategy for combating the global threat of antimicrobial resistance. Inadequate use of antimicrobials has led to widespread instances of suboptimal antibiotic concentrations around infection sites. Therefore, we aimed to examine the varying effect of an antimicrobial peptidase lysostaphin (APLss) on staphylococcal adherence to host cells, biofilm biomass formation, and toxin production as a probable method for mitigating staphylococcal virulence. RESULTS Initially, soluble expression in E. coli and subsequent purification by immobilized-Ni2+ affinity chromatography (IMAC) enabled us to successfully produce a large quantity of highly pure ~ 28-kDa His-tagged mature APLss. The purified protein exhibited potent inhibitory effects against both methicillin-sensitive and methicillin-resistant staphylococcal strains, with minimal inhibitory concentrations (MICs) ranging from 1 to 2 µg/mL, and ultrastructural analysis revealed that APLss-induced concentration-specific changes in the morphological architecture of staphylococcal surface membranes. Furthermore, spectrophotometric and fluorescence microscopy revealed that incubating staphylococcal strains with sub-MIC and MIC of APLss significantly inhibited staphylococcal adherence to human vaginal epithelial cells and biofilm biomass formation. Ultimately, transcriptional investigations revealed that APLss inhibited the expression of agrA (quorum sensing effector) and other virulence genes related to toxin synthesis. CONCLUSIONS Overall, APLss dose-dependently inhibited adhesion to host cell surfaces and staphylococcal-associated virulence factors, warranting further investigation as a potential anti-staphylococcal agent with an antiadhesive mechanism of action using in vivo models of staphylococcal toxic shock syndrome.
Collapse
Affiliation(s)
- Yuan Yue
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, China
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China
| | - Sarfraz Ahmed
- Wellman Centre for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114, USA
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Southwest Medical University, Jiangyang District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
99
|
Isaac P, Bohl LP, Romero CM, Rodríguez Berdini L, Breser ML, De Lillo MF, Orellano MS, Calvinho LF, Porporatto C. Teat-apex colonizer Bacillus from healthy cows antagonizes mastitis-causing Staphylococcus aureus biofilms. Res Vet Sci 2023; 163:104968. [PMID: 37573647 DOI: 10.1016/j.rvsc.2023.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Staphylococcus aureus is the most frequent causal agent of bovine mastitis, which is largely responsible for milk production losses worldwide. The pathogen's ability to form stable biofilms facilitates intramammary colonization and may explain disease persistence. This virulence factor is also highly influential in the development of chronic intramammary infections refractory to antimicrobial therapy, which is why novel therapies that can tackle multiple targets are necessary. Since udder microbiota have important implications in mastitis pathogenesis, they offer opportunities to develop alternative prophylactic and therapeutic strategies. Here, we observed that a Bacillus strain from the teat apex of lactating cows was associated to reduce colonization by S. aureus. The strain, identified as Bacillus sp. H21, was able to antagonize in-formation or mature S. aureus biofilms associated to intramammary infections without affecting cell viability. When exploring the metabolite responsible for this activity, we found that a widespread class of Bacillus exopolysaccharide, levan, eliminated the pathogenic biofilm under evaluated conditions. Moreover, levan had no cytotoxic effects on bovine cellular lines at the biologically active concentration range, which demonstrates its potential for pathogen control. Our results indicate that commensal Bacillus may counteract S. aureus-induced mastitis, and could therefore be used in novel biotechnological strategies to prevent and/or treat this disease.
Collapse
Affiliation(s)
- Paula Isaac
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), CONICET-UNVM, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas de la Universidad Nacional de Villa María (IAPCByA-UNVM), Villa María, Córdoba, Argentina.
| | - Luciana Paola Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), CONICET-UNVM, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas de la Universidad Nacional de Villa María (IAPCByA-UNVM), Villa María, Córdoba, Argentina
| | - Cintia Mariana Romero
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), San Miguel de Tucumán, Tucumán, Argentina; Facultad de Bioquímica y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Lucía Rodríguez Berdini
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), CONICET-UNVM, Villa María, Córdoba, Argentina
| | - María Laura Breser
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), CONICET-UNVM, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas de la Universidad Nacional de Villa María (IAPCByA-UNVM), Villa María, Córdoba, Argentina
| | - María Florencia De Lillo
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), CONICET-UNVM, Villa María, Córdoba, Argentina
| | - María Soledad Orellano
- Facultad de Química, Universidad del País Vasco (UPV-EHU), Donostia, San Sebastián, Gipuzkoa, Spain; POLYMAT, Donostia, San Sebastián, Gipuzkoa, Spain
| | - Luis Fernando Calvinho
- Departamento de Clínicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral (UNL), Esperanza, Santa Fe, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), CONICET-UNVM, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas de la Universidad Nacional de Villa María (IAPCByA-UNVM), Villa María, Córdoba, Argentina.
| |
Collapse
|
100
|
Liu T, Zhai Y, Jeong KC. Advancing understanding of microbial biofilms through machine learning-powered studies. Food Sci Biotechnol 2023; 32:1653-1664. [PMID: 37780593 PMCID: PMC10533454 DOI: 10.1007/s10068-023-01415-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023] Open
Abstract
Microbial biofilms are prevalent in various environments and pose significant challenges to food safety and public health. The biofilms formed by pathogens can cause food spoilage, foodborne illness, and infectious diseases, which are difficult to treat due to their enhanced antimicrobial resistance. While the composition and development of biofilms have been widely studied, their profound impact on food, the food industry, and public health has not been sufficiently recapitulated. This review aims to provide a comprehensive overview of microbial biofilms in the food industry and their implication on public health. It highlights the existence of biofilms along the food-producing chains and the underlying mechanisms of biofilm-associated diseases. Furthermore, this review thoroughly summarizes the enhanced understanding of microbial biofilms achieved through machine learning approaches in biofilm research. By consolidating existing knowledge, this review intends to facilitate developing effective strategies to combat biofilm-associated infections in both the food industry and public health.
Collapse
Affiliation(s)
- Ting Liu
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| | - Kwangcheol Casey Jeong
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL 32610 USA
- Department of Animal Sciences, University of Florida, 2250 Shealy Dr, Gainesville, FL 32608 USA
| |
Collapse
|