51
|
Voigt CC, Kingston T. Zoonotic Viruses and Conservation of Bats. BATS IN THE ANTHROPOCENE: CONSERVATION OF BATS IN A CHANGING WORLD 2015. [PMCID: PMC7122997 DOI: 10.1007/978-3-319-25220-9_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many of the recently emerging highly virulent zoonotic diseases have a likely bat origin, for example Hendra, Nipah, Ebola and diseases caused by coronaviruses. Presumably because of their long history of coevolution, most of these viruses remain subclinical in bats, but have the potential to cause severe illnesses in domestic and wildlife animals and also humans. Spillovers from bats to humans either happen directly (via contact with infected bats) or indirectly (via intermediate hosts such as domestic or wildlife animals, by consuming food items contaminated by saliva, faeces or urine of bats, or via other environmental sources). Increasing numbers of breakouts of zoonotic viral diseases among humans and livestock have mainly been accounted to human encroachment into natural habitat, as well as agricultural intensification, deforestation and bushmeat consumption. Persecution of bats, including the destruction of their roosts and culling of whole colonies, has led not only to declines of protected bat species, but also to an increase in virus prevalence in some of these populations. Educational efforts are needed in order to prevent future spillovers of bat-borne viruses to humans and livestock, and to further protect bats from unnecessary and counterproductive culling.
Collapse
|
52
|
|
53
|
Moussy C, Atterby H, Griffiths AGF, Allnutt TR, Mathews F, Smith GC, Aegerter JN, Bearhop S, Hosken DJ. Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1). Heredity (Edinb) 2015; 115:83-92. [PMID: 25832817 PMCID: PMC4815494 DOI: 10.1038/hdy.2015.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/29/2015] [Accepted: 02/12/2015] [Indexed: 11/09/2022] Open
Abstract
Understanding of the movements of species at multiple scales is essential to appreciate patterns of population connectivity and in some cases, the potential for pathogen transmission. The serotine bat (Eptesicus serotinus) is a common and widely distributed species in Europe where it frequently harbours European bat lyssavirus type 1 (EBLV-1), a virus causing rabies and transmissible to humans. In the United Kingdom, it is rare, with a distribution restricted to south of the country and so far the virus has never been found there. We investigated the genetic structure and gene flow of E. serotinus across the England and continental Europe. Greater genetic structuring was found in England compared with continental Europe. Nuclear data suggest a single population on the continent, although further work with more intensive sampling is required to confirm this, while mitochondrial sequences indicate an east-west substructure. In contrast, three distinct populations were found in England using microsatellite markers, and mitochondrial diversity was very low. Evidence of nuclear admixture indicated strong male-mediated gene flow among populations. Differences in connectivity could contribute to the high viral prevalence on the continent in contrast with the United Kingdom. Although the English Channel was previously thought to restrict gene flow, our data indicate relatively frequent movement from the continent to England highlighting the potential for movement of EBLV-1 into the United Kingdom.
Collapse
Affiliation(s)
- C Moussy
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - H Atterby
- Food and Environment Research Agency, York, UK
| | - A G F Griffiths
- Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Cornwall, UK
| | - T R Allnutt
- Food and Environment Research Agency, York, UK
- CSIRO, Werribee, Victoria, Australia
| | - F Mathews
- Hatherly Laboratories, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - G C Smith
- National Wildlife Management Centre, Animal Health and Veterinary Laboratories Agency (AHVLA), York, UK
| | - J N Aegerter
- National Wildlife Management Centre, Animal Health and Veterinary Laboratories Agency (AHVLA), York, UK
| | - S Bearhop
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| | - D J Hosken
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Cornwall, UK
| |
Collapse
|
54
|
Hamilton PB, Uren Webster TM, Basiewicz M, Kennedy EV, De-Bastos ESR, Mathews F. A rapid PCR-based test for identification of fifteen British bat species. CONSERV GENET RESOUR 2015. [DOI: 10.1007/s12686-015-0470-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
55
|
Affiliation(s)
- Andreas Sing
- Dept. of Infectiology, Bavarian Health and Food Safety Authority, Oberschleißheim, Bayern Germany
| |
Collapse
|
56
|
Antigen detection, rabies virus isolation, and Q-PCR in the quantification of viral load in a natural infection of the North American beaver (Castor canadensis). J Wildl Dis 2014; 51:287-9. [PMID: 25380356 DOI: 10.7589/2014-05-120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All mammals are believed susceptible to rabies virus infection, yet transmission from nonreservoir hosts to humans is uncommon. However, interactions between nonreservoir hosts and humans occur frequently and risk of exposure increases where rabies is enzootic. We describe rabies and apparent pantropism of rabies virus in a beaver (Castor canadensis).
Collapse
|
57
|
Müller T, Freuling CM, Wysocki P, Roumiantzeff M, Freney J, Mettenleiter TC, Vos A. Terrestrial rabies control in the European Union: historical achievements and challenges ahead. Vet J 2014; 203:10-7. [PMID: 25466578 DOI: 10.1016/j.tvjl.2014.10.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
Abstract
Due to the implementation of oral rabies vaccination (ORV) programmes, the European Union (EU) is becoming progressively free of red fox (Vulpes vulpes)-mediated rabies. Over the past three decades, the incidence of rabies had decreased substantially and vast areas of Western and Central Europe have been freed from rabies using this method of controlling an infectious disease in wildlife. Since rabies control is a top priority in the EU, the disease is expected to be eliminated from the animal source in the near future. While responsible authorities may consider the mission of eliminating fox rabies from the EU almost accomplished, there are still issues to be dealt with and challenges to be met that have not yet been in the focus of attention, but could jeopardise the ultimate goal. Among them are increasing illegal movements of animals, maintaining funding support for vaccination campaigns, devising alternative vaccine strategies in neighbouring Eastern European countries and the expanding distribution range of several potential rabies reservoir species in Europe.
Collapse
Affiliation(s)
- Thomas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany.
| | - Conrad Martin Freuling
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Patrick Wysocki
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | - Jean Freney
- Laboratoire de Microbiologie, Centre de Biologie et Pathologie Est Groupe de Recherche, Hospices Civils de Lyon & «Bactéries pathogènes opportunistes et environnement», UMR 5557 CNRS-UCBL, ISPB, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Thomas Christoph Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler Institut, WHO Collaborating Centre for Rabies Surveillance and Research, OIE Reference Laboratory for Rabies, 17493 Greifswald-Insel Riems, Germany
| | - Adriaan Vos
- IDT Biologika GmbH, 06861 Dessau-Rosslau, Germany
| |
Collapse
|
58
|
Mackey TK, Liang BA, Cuomo R, Hafen R, Brouwer KC, Lee DE. Emerging and reemerging neglected tropical diseases: a review of key characteristics, risk factors, and the policy and innovation environment. Clin Microbiol Rev 2014; 27:949-79. [PMID: 25278579 PMCID: PMC4187634 DOI: 10.1128/cmr.00045-14] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In global health, critical challenges have arisen from infectious diseases, including the emergence and reemergence of old and new infectious diseases. Emergence and reemergence are accelerated by rapid human development, including numerous changes in demographics, populations, and the environment. This has also led to zoonoses in the changing human-animal ecosystem, which are impacted by a growing globalized society where pathogens do not recognize geopolitical borders. Within this context, neglected tropical infectious diseases have historically lacked adequate attention in international public health efforts, leading to insufficient prevention and treatment options. This subset of 17 infectious tropical diseases disproportionately impacts the world's poorest, represents a significant and underappreciated global disease burden, and is a major barrier to development efforts to alleviate poverty and improve human health. Neglected tropical diseases that are also categorized as emerging or reemerging infectious diseases are an even more serious threat and have not been adequately examined or discussed in terms of their unique risk characteristics. This review sets out to identify emerging and reemerging neglected tropical diseases and explore the policy and innovation environment that could hamper or enable control efforts. Through this examination, we hope to raise awareness and guide potential approaches to addressing this global health concern.
Collapse
Affiliation(s)
- Tim K Mackey
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Division of Global Public Health, University of California, San Diego, Department of Medicine, San Diego, California, USA
| | - Bryan A Liang
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Raphael Cuomo
- Joint Doctoral Program in Global Public Health, University of California, San Diego, and San Diego State University, San Diego, California, USA
| | - Ryan Hafen
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Internal Medicine, University of California, San Diego, School of Medicine, San Diego, California, USA
| | - Kimberly C Brouwer
- Division of Global Public Health, University of California, San Diego, Department of Medicine, San Diego, California, USA
| | - Daniel E Lee
- Department of Anesthesiology, University of California, San Diego, School of Medicine, San Diego, California, USA Pediatrics Department, University of California, San Diego, School of Medicine, San Diego, California, USA
| |
Collapse
|
59
|
López-Roig M, Bourhy H, Lavenir R, Serra-Cobo J. Seroprevalence dynamics of European bat lyssavirus type 1 in a multispecies bat colony. Viruses 2014; 6:3386-99. [PMID: 25192547 PMCID: PMC4189026 DOI: 10.3390/v6093386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/01/2014] [Accepted: 08/15/2014] [Indexed: 12/25/2022] Open
Abstract
We report an active surveillance study of the occurrence of specific antibodies to European Bat Lyssavirus Type 1 (EBLV-1) in bat species, scarcely studied hitherto, that share the same refuge. From 2004 to 2012, 406 sera were obtained from nine bat species. Blood samples were subjected to a modified fluorescent antibody virus neutralization test to determine the antibody titer. EBLV-1-neutralizing antibodies were detected in six of the nine species analyzed (Pipistrellus pipistrellus, P. kuhlii, Hypsugo savii, Plecotus austriacus, Eptesicus serotinus and Tadarida teniotis). Among all bats sampled, female seroprevalence (20.21%, 95% CI: 14.78%-26.57%) was not significantly higher than the seroprevalence in males (15.02%, 95% CI: 10.51%-20.54%). The results showed that the inter-annual variation in the number of seropositive bats in T. teniotis and P. austriacus showed a peak in 2007 (>70% of EBLV-1 prevalence). However, significant differences were observed in the temporal patterns of the seroprevalence modeling of T. teniotis and P. austriacus. The behavioral ecology of these species involved could explain the different annual fluctuations in EBLV-1 seroprevalence.
Collapse
Affiliation(s)
- Marc López-Roig
- Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain.
| | - Hervé Bourhy
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, WHO Collaborating Centre for Reference and Research on Rabies, Paris, 75724, France.
| | - Rachel Lavenir
- Institut Pasteur, Unité Dynamique des Lyssavirus et Adaptation à l'Hôte, WHO Collaborating Centre for Reference and Research on Rabies, Paris, 75724, France.
| | - Jordi Serra-Cobo
- IRBIO and Departament de Biologia Animal, Facultat de Biologia, Universitat de Barcelona, Barcelona, 08028, Spain.
| |
Collapse
|
60
|
Annand EJ, Reid PA. Clinical review of two fatal equine cases of infection with the insectivorous bat strain of Australian bat lyssavirus. Aust Vet J 2014; 92:324-32. [DOI: 10.1111/avj.12227] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 12/01/2022]
Affiliation(s)
- EJ Annand
- Randwick Equine Centre; Sydney New South Wales Australia
| | - PA Reid
- Brisbane Queensland Australia
| |
Collapse
|
61
|
Kohl C, Kurth A. European bats as carriers of viruses with zoonotic potential. Viruses 2014; 6:3110-28. [PMID: 25123684 PMCID: PMC4147689 DOI: 10.3390/v6083110] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 12/23/2022] Open
Abstract
Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.
Collapse
Affiliation(s)
- Claudia Kohl
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
62
|
Lyssaviruses and bats: emergence and zoonotic threat. Viruses 2014; 6:2974-90. [PMID: 25093425 PMCID: PMC4147683 DOI: 10.3390/v6082974] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022] Open
Abstract
The continued detection of zoonotic viral infections in bats has led to the microbial fauna of these mammals being studied at a greater level than ever before. Whilst numerous pathogens have been discovered in bat species, infection with lyssaviruses is of particular significance from a zoonotic perspective as, where human infection has been reported, it is invariably fatal. Here we review the detection of lyssaviruses within different bat species and overview what is understood regarding their maintenance and transmission following both experimental and natural infection. We discuss the relevance of these pathogens as zoonotic agents and the threat of newly discovered viruses to human populations.
Collapse
|
63
|
Picard-Meyer E, Robardet E, Arthur L, Larcher G, Harbusch C, Servat A, Cliquet F. Bat rabies in France: a 24-year retrospective epidemiological study. PLoS One 2014; 9:e98622. [PMID: 24892287 PMCID: PMC4044004 DOI: 10.1371/journal.pone.0098622] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Since bat rabies surveillance was first implemented in France in 1989, 48 autochthonous rabies cases without human contamination have been reported using routine diagnosis methods. In this retrospective study, data on bats submitted for rabies testing were analysed in order to better understand the epidemiology of EBLV-1 in bats in France and to investigate some epidemiological trends. Of the 3176 bats submitted for rabies diagnosis from 1989 to 2013, 1.96% (48/2447 analysed) were diagnosed positive. Among the twelve recognised virus species within the Lyssavirus genus, two species were isolated in France. 47 positive bats were morphologically identified as Eptesicus serotinus and were shown to be infected by both the EBLV-1a and the EBLV-1b lineages. Isolation of BBLV in Myotis nattereri was reported once in the north-east of France in 2012. The phylogenetic characterisation of all 47 French EBLV-1 isolates sampled between 1989 and 2013 and the French BBLV sample against 21 referenced partial nucleoprotein sequences confirmed the low genetic diversity of EBLV-1 despite its extensive geographical range. Statistical analysis performed on the serotine bat data collected from 1989 to 2013 showed seasonal variation of rabies occurrence with a significantly higher proportion of positive samples detected during the autumn compared to the spring and the summer period (34% of positive bats detected in autumn, 15% in summer, 13% in spring and 12% in winter). In this study, we have provided the details of the geographical distribution of EBLV-1a in the south-west of France and the north-south division of EBLV-1b with its subdivisions into three phylogenetic groups: group B1 in the north-west, group B2 in the centre and group B3 in the north-east of France.
Collapse
Affiliation(s)
- Evelyne Picard-Meyer
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
- * E-mail:
| | - Emmanuelle Robardet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
| | | | - Gérald Larcher
- SFEPM Chiroptera Group, Museum d'Histoire Naturelle de Bourges, Bourges, France
| | | | - Alexandre Servat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
| | - Florence Cliquet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Nancy Laboratory for Rabies and Wildlife, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology, Malzeville, France
| |
Collapse
|
64
|
Nolden T, Banyard AC, Finke S, Fooks AR, Hanke D, Höper D, Horton DL, Mettenleiter TC, Müller T, Teifke JP, Freuling CM. Comparative studies on the genetic, antigenic and pathogenic characteristics of Bokeloh bat lyssavirus. J Gen Virol 2014; 95:1647-1653. [PMID: 24828330 PMCID: PMC4103065 DOI: 10.1099/vir.0.065953-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bokeloh bat lyssavirus (BBLV), a novel lyssavirus, was isolated from a Natterer’s bat (Myotis nattererii), a chiropteran species with a widespread and abundant distribution across Europe. As a novel lyssavirus, the risks of BBLV to animal and human health are unknown and as such characterization both in vitro and in vivo was required to assess pathogenicity and vaccine protection. Full genome sequence analysis and antigenic cartography demonstrated that the German BBLV isolates are most closely related to European bat lyssavirus type 2 (EBLV-2) and Khujand virus and can be characterized within phylogroup I. In vivo characterization demonstrated that BBLV was pathogenic in mice when inoculated peripherally causing clinical signs typical for rabies encephalitis, with higher pathogenicity observed in juvenile mice. A limited vaccination-challenge experiment in mice was conducted and suggested that current vaccines would afford some protection against BBLV although further studies are warranted to determine a serological cut-off for protection.
Collapse
Affiliation(s)
- Tobias Nolden
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald - Insel Riems, Germany
| | - Ashley C Banyard
- Animal Health and Veterinary Laboratories Agency - Weybridge, Wildlife Zoonoses and Vector-borne Diseases Research Group, Woodham Lane, Surrey KT15 3NB, UK
| | - Stefan Finke
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald - Insel Riems, Germany
| | - Anthony R Fooks
- University of Liverpool, Department of Clinical Infection, Microbiology and Immunology, Liverpool L3 5TQ, UK.,Animal Health and Veterinary Laboratories Agency - Weybridge, Wildlife Zoonoses and Vector-borne Diseases Research Group, Woodham Lane, Surrey KT15 3NB, UK
| | - Dennis Hanke
- FLI, Institute of Diagnostic Virology, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Dirk Höper
- FLI, Institute of Diagnostic Virology, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK.,Animal Health and Veterinary Laboratories Agency - Weybridge, Wildlife Zoonoses and Vector-borne Diseases Research Group, Woodham Lane, Surrey KT15 3NB, UK
| | - Thomas C Mettenleiter
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald - Insel Riems, Germany
| | - Thomas Müller
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald - Insel Riems, Germany
| | - Jens P Teifke
- FLI, Department of Animal Husbandry and Biorisk Management, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald - Insel Riems, Germany
| | - Conrad M Freuling
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Molecular Virology and Cell Biology, WHO Collaborating Centre for Rabies Surveillance and Research, Südufer 10, D-17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
65
|
Schatz J, Freuling CM, Auer E, Goharriz H, Harbusch C, Johnson N, Kaipf I, Mettenleiter TC, Mühldorfer K, Mühle RU, Ohlendorf B, Pott-Dörfer B, Prüger J, Ali HS, Stiefel D, Teubner J, Ulrich RG, Wibbelt G, Müller T. Enhanced passive bat rabies surveillance in indigenous bat species from Germany--a retrospective study. PLoS Negl Trop Dis 2014; 8:e2835. [PMID: 24784117 PMCID: PMC4006713 DOI: 10.1371/journal.pntd.0002835] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/16/2014] [Indexed: 11/18/2022] Open
Abstract
In Germany, rabies in bats is a notifiable zoonotic disease, which is caused by European bat lyssaviruses type 1 and 2 (EBLV-1 and 2), and the recently discovered new lyssavirus species Bokeloh bat lyssavirus (BBLV). As the understanding of bat rabies in insectivorous bat species is limited, in addition to routine bat rabies diagnosis, an enhanced passive surveillance study, i.e. the retrospective investigation of dead bats that had not been tested for rabies, was initiated in 1998 to study the distribution, abundance and epidemiology of lyssavirus infections in bats from Germany. A total number of 5478 individuals representing 21 bat species within two families were included in this study. The Noctule bat (Nyctalus noctula) and the Common pipistrelle (Pipistrellus pipistrellus) represented the most specimens submitted. Of all investigated bats, 1.17% tested positive for lyssaviruses using the fluorescent antibody test (FAT). The vast majority of positive cases was identified as EBLV-1, predominately associated with the Serotine bat (Eptesicus serotinus). However, rabies cases in other species, i.e. Nathusius' pipistrelle bat (Pipistrellus nathusii), P. pipistrellus and Brown long-eared bat (Plecotus auritus) were also characterized as EBLV-1. In contrast, EBLV-2 was isolated from three Daubenton's bats (Myotis daubentonii). These three cases contribute significantly to the understanding of EBLV-2 infections in Germany as only one case had been reported prior to this study. This enhanced passive surveillance indicated that besides known reservoir species, further bat species are affected by lyssavirus infections. Given the increasing diversity of lyssaviruses and bats as reservoir host species worldwide, lyssavirus positive specimens, i.e. both bat and virus need to be confirmed by molecular techniques.
Collapse
Affiliation(s)
- Juliane Schatz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald - Insel Riems, Germany
| | - Conrad Martin Freuling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald - Insel Riems, Germany
| | - Ernst Auer
- Arbeitskreis Fledermäuse Bodensee-Oberschwaben, Naturschutzbund Deutschland e.V., Überlingen, Germany
| | - Hooman Goharriz
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, Surrey, United Kingdom
| | - Christine Harbusch
- Naturschutzbund Saarland e.V., Arbeitsgemeinschaft Fledermausschutz, Perl-Kesslingen, Germany
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency (AHVLA), Weybridge, Surrey, United Kingdom
| | - Ingrid Kaipf
- Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Thomas Christoph Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald - Insel Riems, Germany
| | | | - Ralf-Udo Mühle
- University of Potsdam, Department of Animal Ecology, Potsdam, Germany
| | - Bernd Ohlendorf
- Biosphärenreservat Karstlandschaft Südharz, Landesreferenzstelle für Fledermausschutz Sachsen-Anhalt, Roβla, Germany
| | - Bärbel Pott-Dörfer
- Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Hannover, Germany
| | - Julia Prüger
- Interessengemeinschaft für Fledermausschutz und -forschung in Thüringen e.V., Schweina, Germany
| | - Hanan Sheikh Ali
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Dagmar Stiefel
- Staatliche Vogelschutzwarte für Hessen, Rheinland-Pfalz und Saarland, Frankfurt am Main, Germany
| | - Jens Teubner
- Landesamt für Umwelt, Gesundheit und Verbraucherschutz Land Brandenburg, Naturschutzstation Zippelsförde, Zippelsförde, Germany
| | - Rainer Günter Ulrich
- Friedrich-Loeffler-Institut, Institute for Novel and Emerging Infectious Diseases, Greifswald - Insel Riems, Germany
| | - Gudrun Wibbelt
- Leibniz-Institute for Zoo- und Wildlife Research, Berlin, Germany
| | - Thomas Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, WHO Collaborating Centre for Rabies Surveillance and Research, Greifswald - Insel Riems, Germany
| |
Collapse
|
66
|
Anti-lyssaviral activity of interferons κ and ω from the serotine bat, Eptesicus serotinus. J Virol 2014; 88:5444-54. [PMID: 24574413 DOI: 10.1128/jvi.03403-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Interferons (IFNs) are cytokines produced by host cells in response to the infection with pathogens. By binding to the corresponding receptors, IFNs trigger different pathways to block intracellular replication and growth of pathogens and to impede the infection of surrounding cells. Due to their key role in host defense against viral infections, as well as for clinical therapies, the IFN responses and regulation mechanisms are well studied. However, studies of type I IFNs have mainly focused on alpha interferon (IFN-α) and IFN-β subtypes. Knowledge of IFN-κ and IFN-ω is limited. Moreover, most studies are performed in humans or mouse models but not in the original host of zoonotic pathogens. Bats are important reservoirs and transmitters of zoonotic viruses such as lyssaviruses. A few studies have shown an antiviral activity of IFNs in fruit bats. However, the function of type I IFNs against lyssaviruses in bats has not been studied yet. Here, IFN-κ and IFN-ω genes from the European serotine bat, Eptesicus serotinus, were cloned and functionally characterized. E. serotinus IFN-κ and IFN-ω genes are intronless and well conserved between microchiropteran species. The promoter regions of both genes contain essential regulatory elements for transcription factors. In vitro studies indicated a strong activation of IFN signaling by recombinant IFN-ω, whereas IFN-κ displayed weaker activation. Noticeably, both IFNs inhibit to different extents the replication of different lyssaviruses in susceptible bat cell lines. The present study provides functional data on the innate host defense against lyssaviruses in endangered European bats. IMPORTANCE We describe here for the first time the molecular and functional characterization of two type I interferons (IFN-κ and -ω) from European serotine bat (Eptesicus serotinus). The importance of this study is mainly based on the fact that very limited information about the early innate immune response against bat lyssaviruses in their natural host serotine bats is yet available. Generally, whereas the antiviral activity of other type I interferons is well studied, the functional involvement of IFN-κ and -ω has not yet been investigated.
Collapse
|
67
|
O’Shea TJ, Bowen RA, Stanley TR, Shankar V, Rupprecht CE. Variability in seroprevalence of rabies virus neutralizing antibodies and associated factors in a Colorado population of big brown bats (Eptesicus fuscus). PLoS One 2014; 9:e86261. [PMID: 24465996 PMCID: PMC3899234 DOI: 10.1371/journal.pone.0086261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022] Open
Abstract
In 2001–2005 we sampled permanently marked big brown bats (Eptesicus fuscus) at summer roosts in buildings at Fort Collins, Colorado, for rabies virus neutralizing antibodies (RVNA). Seroprevalence was higher in adult females (17.9%, n = 2,332) than males (9.4%, n = 128; P = 0.007) or volant juveniles (10.2%, n = 738; P<0.0001). Seroprevalence was lowest in a drought year with local insecticide use and highest in the year with normal conditions, suggesting that environmental stress may suppress RVNA production in big brown bats. Seroprevalence also increased with age of bat, and varied from 6.2 to 26.7% among adult females at five roosts sampled each year for five years. Seroprevalence of adult females at 17 other roosts sampled for 1 to 4 years ranged from 0.0 to 47.1%. Using logistic regression, the only ranking model in our candidate set of explanatory variables for serological status at first sampling included year, day of season, and a year by day of season interaction that varied with relative drought conditions. The presence or absence of antibodies in individual bats showed temporal variability. Year alone provided the best model to explain the likelihood of adult female bats showing a transition to seronegative from a previously seropositive state. Day of the season was the only competitive model to explain the likelihood of a transition from seronegative to seropositive, which increased as the season progressed. We found no rabies viral RNA in oropharyngeal secretions of 261 seropositive bats or in organs of 13 euthanized seropositive bats. Survival of seropositive and seronegative bats did not differ. The presence of RVNA in serum of bats should not be interpreted as evidence for ongoing rabies infection.
Collapse
Affiliation(s)
- Thomas J. O’Shea
- United States Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
- * E-mail:
| | - Richard A. Bowen
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Thomas R. Stanley
- United States Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, United States of America
| | - Vidya Shankar
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Charles E. Rupprecht
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts, West Indies
- The Global Alliance for Rabies Control, Manhattan, Kansas, United States of America
| |
Collapse
|
68
|
Servat A, Herr J, Picard-Meyer E, Schley L, Harbusch C, Michaux C, Pir J, Robardet E, Engel E, Cliquet F. First isolation of a rabid bat infected with European bat lyssavirus in Luxembourg. Zoonoses Public Health 2013; 62:7-10. [PMID: 24373212 DOI: 10.1111/zph.12095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Indexed: 11/27/2022]
Abstract
Rabid bats are regularly reported in Europe, especially in countries that have implemented a bat surveillance network. In May 2013, bat rabies was evidenced for the first time in Luxembourg (southern city of Differdange). The rabies virus, an EBLV-1b strain, was diagnosed in a serotine bat that bit a 29-year-old male person while he was asleep. The man received rapidly a post-exposure RABV treatment and was put under strict medical supervision.
Collapse
Affiliation(s)
- A Servat
- French Agency for Food, Environmental and Occupational Health Safety (Anses), Nancy Laboratory for Rabies and Wildlife, WHO Collaborating Centre for Research and Management in Zoonoses Control, OIE Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies, European Union Reference Laboratory for Rabies Serology. Technopôle Agricole et Vétérinaire, Malzéville, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Banyard AC, Healy DM, Brookes SM, Voller K, Hicks DJ, Núñez A, Fooks AR. Lyssavirus infection: 'low dose, multiple exposure' in the mouse model. Virus Res 2013; 181:35-42. [PMID: 24380842 DOI: 10.1016/j.virusres.2013.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022]
Abstract
The European bat lyssaviruses (EBLV-1 and EBLV-2) are zoonotic pathogens present within bat populations across Europe. The maintenance and transmission of lyssaviruses within bat colonies is poorly understood. Cases of repeated isolation of lyssaviruses from bat roosts have raised questions regarding the maintenance and intraspecies transmissibility of these viruses within colonies. Furthermore, the significance of seropositive bats in colonies remains unclear. Due to the protected nature of European bat species, and hence restrictions to working with the natural host for lyssaviruses, this study analysed the outcome following repeat inoculation of low doses of lyssaviruses in a murine model. A standardized dose of virus, EBLV-1, EBLV-2 or a 'street strain' of rabies (RABV), was administered via a peripheral route to attempt to mimic what is hypothesized as natural infection. Each mouse (n=10/virus/group/dilution) received four inoculations, two doses in each footpad over a period of four months, alternating footpad with each inoculation. Mice were tail bled between inoculations to evaluate antibody responses to infection. Mice succumbed to infection after each inoculation with 26.6% of mice developing clinical disease following the initial exposure across all dilutions (RABV, 32.5% (n=13/40); EBLV-1, 35% (n=13/40); EBLV-2, 12.5% (n=5/40)). Interestingly, the lowest dose caused clinical disease in some mice upon first exposure ((RABV, 20% (n=2/10) after first inoculation; RABV, 12.5% (n=1/8) after second inoculation; EBLV-2, 10% (n=1/10) after primary inoculation). Furthermore, five mice developed clinical disease following the second exposure to live virus (RABV, n=1; EBLV-1, n=1; EBLV-2, n=3) although histopathological examination indicated that the primary inoculation was the most probably cause of death due to levels of inflammation and virus antigen distribution observed. All the remaining mice (RABV, n=26; EBLV-1, n=26; EBLV-2, n=29) survived the tertiary and quaternary inoculations although the serological response did not necessarily reflect the repeated exposure. We conclude that despite repeated exposure, neither clinical disease nor serological response can be predicted and that further studies are required to understand the mechanisms behind survival following multiple exposures to lyssaviruses.
Collapse
Affiliation(s)
- Ashley C Banyard
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom.
| | - Derek M Healy
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Sharon M Brookes
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Katja Voller
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Daniel J Hicks
- Pathology Unit, Department of Specialist Scientific Support, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Alejandro Núñez
- Pathology Unit, Department of Specialist Scientific Support, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector Borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, Woodham Lane, New Haw, Surrey KT15 3NB, United Kingdom; Department of Clinical Infections, University of Liverpool, Microbiology and Immunology, United Kingdom
| |
Collapse
|
70
|
Schatz J, Teifke JP, Mettenleiter TC, Aue A, Stiefel D, Müller T, Freuling CM. Lyssavirus distribution in naturally infected bats from Germany. Vet Microbiol 2013; 169:33-41. [PMID: 24440375 DOI: 10.1016/j.vetmic.2013.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/24/2022]
Abstract
In Germany, to date three different lyssavirus species are responsible for bat rabies in indigenous bats: the European Bat Lyssaviruses type 1 and 2 (EBLV-1, EBLV-2) and the Bokeloh Bat Lyssavirus (BBLV) for which Eptesicus serotinus, Myotis daubentonii and Myotis nattereri, respectively, are primary hosts. Lyssavirus maintenance, evolution, and epidemiology are still insufficiently explored. Moreover, the small number of bats infected, the nocturnal habits of bats and the limited experimental data still hamper attempts to understand the distribution, prevalence, and in particular transmission of the virus. In an experimental study in E. serotinus a heterogeneous dissemination of EBLV-1 in tissues was detected. However, it is not clear whether the EBLV-1 distribution is similar in naturally infected animals. In an attempt to further analyze virus dissemination and viral loads within naturally infected hosts we investigated tissues of 57 EBLV-1 positive individuals of E. serotinus from Germany by RT-qPCR and compared the results with those obtained experimentally. Additionally, tissue samples were investigated with immunohistochemistry to detect lyssavirus antigen in defined structures. While in individual animals virus RNA was present only in the brain, in the majority of E. serotinus viral RNA was found in various tissues with highest relative viral loads detected in the brain. Interestingly, viral antigen was confirmed in various tissues in the tongue including deep intralingual glands, nerves, muscle cells and lingual papillae. So, the tongue appears to be a prominent site for virus replication and possibly shedding.
Collapse
Affiliation(s)
- J Schatz
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, WHO Collaborating Centre for Rabies Surveillance and Research, 17493 Greifswald, Insel Riems, Germany
| | - J P Teifke
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, 17493 Greifswald, Insel Riems, Germany
| | - T C Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, WHO Collaborating Centre for Rabies Surveillance and Research, 17493 Greifswald, Insel Riems, Germany
| | - A Aue
- Landeslabor-Berlin-Brandenburg, Fachbereich Infektionsdiagnostik, 10557 Berlin, Germany
| | - D Stiefel
- Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, 30453 Hannover, Germany
| | - T Müller
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, WHO Collaborating Centre for Rabies Surveillance and Research, 17493 Greifswald, Insel Riems, Germany
| | - C M Freuling
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Molecular Biology, WHO Collaborating Centre for Rabies Surveillance and Research, 17493 Greifswald, Insel Riems, Germany.
| |
Collapse
|
71
|
Escobar LE, Peterson AT, Favi M, Yung V, Pons DJ, Medina-Vogel G. Ecology and geography of transmission of two bat-borne rabies lineages in Chile. PLoS Negl Trop Dis 2013; 7:e2577. [PMID: 24349592 PMCID: PMC3861194 DOI: 10.1371/journal.pntd.0002577] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/25/2013] [Indexed: 11/12/2022] Open
Abstract
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985–2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances. The situation of rabies in America has been changing: rabies in dogs has decreased considerably, but bats are increasingly documented as natural reservoirs of other rabies variants. A significant gap exists in understanding of bat-borne rabies in Latin America. We identified bat species known to be connected with enzootic rabies with different antigenic variants in Chile, and compiled large-scale data sets by which to test for ecological niche differences among virus lineages and bat hosts. Our results begin to characterize important ecological factors affecting rabies distribution; modeling rabies in Chile allows comparisons across different latitudes and diverse landscapes. We found that rabies virus strains are found in similar environments, regardless of the bat host involved. This research improves understanding of bat-borne rabies dynamics, and important step towards preventing and controlling this and other emergent diseases linked to bats.
Collapse
Affiliation(s)
- Luis E. Escobar
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | - A. Townsend Peterson
- Biodiversity Institute, University of Kansas, Lawrence, Kansas, United States of America
| | - Myriam Favi
- Sección Rabia, Subdepartamento Virología, Instituto de Salud Pública de Chile, Ñuñoa, Santiago, Chile
| | - Verónica Yung
- Sección Rabia, Subdepartamento Virología, Instituto de Salud Pública de Chile, Ñuñoa, Santiago, Chile
| | - Daniel J. Pons
- Departamento de Matemática, Universidad Andres Bello, Santiago, Chile
| | - Gonzalo Medina-Vogel
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
72
|
Aréchiga Ceballos N, Vázquez Morón S, Berciano JM, Nicolás O, Aznar López C, Juste J, Rodríguez Nevado C, Aguilar Setién A, Echevarría JE. Novel lyssavirus in bat, Spain. Emerg Infect Dis 2013; 19:793-5. [PMID: 23648051 PMCID: PMC3647500 DOI: 10.3201/eid1905.121071] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A new tentative lyssavirus, Lleida bat lyssavirus, was found in a bent-winged bat (Miniopterus schreibersii) in Spain. It does not belong to phylogroups I or II, and it seems to be more closely related to the West Causasian bat virus, and especially to the Ikoma lyssavirus.
Collapse
|
73
|
Nokireki T, Huovilainen A, Lilley T, Kyheröinen EM, Ek-Kommonen C, Sihvonen L, Jakava-Viljanen M. Bat rabies surveillance in Finland. BMC Vet Res 2013; 9:174. [PMID: 24011337 PMCID: PMC3846527 DOI: 10.1186/1746-6148-9-174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
Background In 1985, a bat researcher in Finland died of rabies encephalitis caused by European bat lyssavirus type 2 (EBLV-2), but an epidemiological study in 1986 did not reveal EBLV-infected bats. In 2009, an EBLV-2-positive Daubenton’s bat was detected. The EBLV-2 isolate from the human case in 1985 and the isolate from the bat in 2009 were genetically closely related. In order to assess the prevalence of EBLVs in Finnish bat populations and to gain a better understanding of the public health risk that EBLV-infected bats pose, a targeted active surveillance project was initiated. Results Altogether, 1156 bats of seven species were examined for lyssaviruses in Finland during a 28–year period (1985–2012), 898 in active surveillance and 258 in passive surveillance, with only one positive finding of EBLV-2 in a Daubenton’s bat in 2009. In 2010–2011, saliva samples from 774 bats of seven species were analyzed for EBLV viral RNA, and sera from 423 bats were analyzed for the presence of bat lyssavirus antibodies. Antibodies were detected in Daubenton’s bats in samples collected from two locations in 2010 and from one location in 2011. All seropositive locations are in close proximity to the place where the EBLV-2 positive Daubenton’s bat was found in 2009. In active surveillance, no EBLV viral RNA was detected. Conclusions These data suggest that EBLV-2 may circulate in Finland, even though the seroprevalence is low. Our results indicate that passive surveillance of dead or sick bats is a relevant means examine the occurrence of lyssavirus infection, but the number of bats submitted for laboratory analysis should be higher in order to obtain reliable information on the lyssavirus situation in the country.
Collapse
Affiliation(s)
- Tiina Nokireki
- Finnish Food Safety Authority Evira, Mustialankatu 3, Helsinki FI-00790, Finland.
| | | | | | | | | | | | | |
Collapse
|
74
|
Twenty years of active bat rabies surveillance in Germany: a detailed analysis and future perspectives. Epidemiol Infect 2013; 142:1155-66. [DOI: 10.1017/s0950268813002185] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARYIn Germany, active bat rabies surveillance was conducted between 1993 and 2012. A total of 4546 oropharyngeal swab samples from 18 bat species were screened for the presence of EBLV-1- , EBLV-2- and BBLV-specific RNA. Overall, 0·15% of oropharyngeal swab samples tested EBLV-1 positive, with the majority originating from Eptesicus serotinus. Interestingly, out of seven RT–PCR-positive oropharyngeal swabs subjected to virus isolation, viable virus was isolated from a single serotine bat (E. serotinus). Additionally, about 1226 blood samples were tested serologically, and varying virus neutralizing antibody titres were found in at least eight different bat species. The detection of viral RNA and seroconversion in repeatedly sampled serotine bats indicates long-term circulation of the virus in a particular bat colony. The limitations of random-based active bat rabies surveillance over passive bat rabies surveillance and its possible application of targeted approaches for future research activities on bat lyssavirus dynamics and maintenance are discussed.
Collapse
|
75
|
Molecular diagnostics for the detection of Bokeloh bat lyssavirus in a bat from Bavaria, Germany. Virus Res 2013; 177:201-4. [PMID: 23932899 DOI: 10.1016/j.virusres.2013.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 11/22/2022]
Abstract
A brain sample of a Natterer's bat tested positive for rabies with classical virological techniques. Molecular techniques confirmed the presence of Bokeloh bat lyssavirus (BBLV) in Germany for the second time. Sequence analysis revealed a close genetic relationship to the initial German BBLV case. Using a TaqMan RT-PCR specific for BBLV viral RNA was detected in various other organs albeit with differences in the relative viral load.
Collapse
|
76
|
Picard-Meyer E, Servat A, Robardet E, Moinet M, Borel C, Cliquet F. Isolation of Bokeloh bat lyssavirus in Myotis nattereri in France. Arch Virol 2013; 158:2333-40. [PMID: 23760600 DOI: 10.1007/s00705-013-1747-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
Bokeloh bat lyssavirus (BBLV) was found in Myotis nattereri for the first time in northeastern France in July 2012. The complete genome sequence of the virus from the infected Natterer's bat was determined by whole-genome sequencing and compared to that of the first BBLV strain isolated in 2010 in Germany and with those of all currently identified lyssaviruses. The French isolate [KC169985] showed 98.7 % nucleotide sequence identity to the German BBLV strain [JF311903]. Several organs of the infected French bat were examined by classical rabies diagnostic methods: fluorescent antibody test, cell culture inoculation test and RT-qPCR. Antigen, infectious virus and high viral RNA levels were found in both the brain and salivary glands. Traces of genomic RNA were detected in the bladder, kidney and lung tissue. The results of an investigation of the distribution of lyssaviruses with the detection of infectious virus in the salivary glands suggest a possible mode of transmission of the virus.
Collapse
Affiliation(s)
- Evelyne Picard-Meyer
- Anses, Laboratory for Rabies and Wildlife, European Union Reference Laboratory for rabies, European Union Reference Laboratory for rabies serology, OIE Reference Laboratory for rabies, WHO Collaborating centre for research and management in zoonoses control, Technopole agricole et veterinaire, BP 40009, 54 220, Malzéville Cedex, France,
| | | | | | | | | | | |
Collapse
|
77
|
Bogdanowicz W, Lesiński G, Sadkowska-Todys M, Gajewska M, Rutkowski R. Population Genetics and Bat Rabies: A Case Study ofEptesicus serotinusin Poland. ACTA CHIROPTEROLOGICA 2013. [DOI: 10.3161/150811013x667849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|