51
|
Lee YH, Hass EP, Campodonico W, Lee YK, Lasda E, Shah J, Rinn J, Hwang T. Massively parallel dissection of RNA in RNA-protein interactions in vivo. Nucleic Acids Res 2024; 52:e48. [PMID: 38726866 PMCID: PMC11162807 DOI: 10.1093/nar/gkae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.
Collapse
Affiliation(s)
- Yu Hsuan Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Evan P Hass
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Will Campodonico
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Erika Lasda
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Jaynish S Shah
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - John L Rinn
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Taeyoung Hwang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
52
|
Luo F, Wu Y, Li Y, Xu H, Wang L, Jiang L, Liu H. PM 2.5 regulates the progression of lung adenocarcinoma through the axis of HCG18, miR-195 and ATG14. Clin Exp Pharmacol Physiol 2024; 51:e13861. [PMID: 38724488 DOI: 10.1111/1440-1681.13861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 06/27/2024]
Abstract
Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.
Collapse
Affiliation(s)
- Feng Luo
- Department of Thoracic Surgery, Shanghai Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinghui Wu
- School of Nursing, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- Department of Disaster and Emergency Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Huaiyang Xu
- Department of Thoracic Surgery, Shanghai Xinhua Hospital Chongming Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongtao Liu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
53
|
Heidarzadehpilehrood R, Pirhoushiaran M. Biomarker potential of competing endogenous RNA networks in Polycystic Ovary Syndrome (PCOS). Noncoding RNA Res 2024; 9:624-640. [PMID: 38571815 PMCID: PMC10988127 DOI: 10.1016/j.ncrna.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 04/05/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common condition affecting women of reproductive age globally. PCOS continues to be the largest contributing factor to female infertility despite significant progress in our knowledge of the molecular underpinnings and treatment of the condition. The fact that PCOS is a very diverse condition makes it one of the key reasons why we haven't been able to overcome it. Non-coding RNAs (ncRNAs) are implicated in the development of PCOS, according to growing evidence. However, it is unclear how the complex regulatory relationships between the many ncRNA types contribute to the growth of this malignancy. Competing endogenous RNA (ceRNA), a recently identified mechanism in the RNA world, suggests regulatory interactions between various RNAs, including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs). Recent studies on PCOS have shown that dysregulation of multiple ceRNA networks (ceRNETs) between these ncRNAs plays crucial roles in developing the defining characteristics of PCOS development. And it is believed that such a finding may open a new door for a deeper comprehension of PCOS's unexplored facets. In addition, it may be able to provide fresh biomarkers and effective therapy targets for PCOS. This review will go over the body of information that exists about the primary roles of ceRNETs before highlighting the developing involvement of several newly found ceRNETs in a number of PCOS characteristics.
Collapse
Affiliation(s)
- Roozbeh Heidarzadehpilehrood
- Department of Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Maryam Pirhoushiaran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| |
Collapse
|
54
|
Zhang Y, Guo W, Wen H, Shi Y, Gao W, Chen X, Wang T, Wang W, Wu W. Analysis of lncRNA-related studies of ivermectin-sensitive and -resistant strains of Haemonchus contortus. Parasitol Res 2024; 123:226. [PMID: 38814484 DOI: 10.1007/s00436-024-08238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
In this study, 858 novel long non-coding RNAs (lncRNAs) were predicted as sensitive and resistant strains of Haemonchus contortus to ivermectin. These lncRNAs underwent bioinformatic analysis. In total, 205 lncRNAs significantly differed using log2 (difference multiplicity) > 1 or log2 (difference multiplicity) < - 1 and FDR < 0.05 as the threshold for significant difference analysis. We selected five lncRNAs based on significant differences in expression, cis-regulation, and their association with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. These expressions of lncRNAs, namely MSTRG.12610.1, MSTRG.8169.1, MSTRG.6355.1, MSTRG.980.1, and MSTRG.9045.1, were significantly downregulated. These findings were consistent with the results of transcriptomic sequencing. We further investigated the relative expression of target gene mRNAs and the regulation of mRNA and miRNA, starting with lncRNA cis-regulation of mRNA, and constructed a lncRNA-mRNA-miRNA network regulation. After a series of statistical analyses, we finally screened out UGT8, Unc-116, Fer-related kinase-1, GGPP synthase 1, and sart3, which may be involved in developing drug resistance under the regulation of their corresponding lncRNAs. The findings of this study provide a novel direction for future studies on drug resistance targets.
Collapse
Affiliation(s)
- Yanmin Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Wenrui Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Haifeng Wen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Yaqin Shi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Wa Gao
- Inner Mongolia Key Laboratory of Tick-Borne Infectious Diseases, Inner Mongolia, China
| | - Xindi Chen
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Tengyu Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China
| | - Wenlong Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, China.
| | - Weijie Wu
- Hinggan League Agricultural and Animal Husbandry Technology Extension Centre, Ulanhot, China.
| |
Collapse
|
55
|
Navandar M, Vennin C, Lutz B, Gerber S. Long non-coding RNAs expression and regulation across different brain regions in primates. Sci Data 2024; 11:545. [PMID: 38806530 PMCID: PMC11133376 DOI: 10.1038/s41597-024-03380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Human and non-human primates have strikingly similar genomes, but they strongly differ in many brain-based processes (e.g., behaviour and cognition). While the functions of protein-coding genes have been extensively studied, rather little is known about the role of non-coding RNAs such as long non-coding RNAs (lncRNAs). Here, we predicted lncRNAs and analysed their expression pattern across different brain regions of human and non-human primates (chimpanzee, gorilla, and gibbon). Our analysis identified shared orthologous and non-orthologous lncRNAs, showing striking differences in the genomic features. Differential expression analysis of the shared orthologous lncRNAs from humans and chimpanzees revealed distinct expression patterns in subcortical regions (striatum, hippocampus) and neocortical areas while retaining a homogeneous expression in the cerebellum. Co-expression analysis of lncRNAs and protein-coding genes revealed massive proportions of co-expressed pairs in neocortical regions of humans compared to chimpanzees. Network analysis of co-expressed pairs revealed the distinctive role of the hub-acting orthologous lncRNAs in a region- and species-specific manner. Overall, our study provides novel insight into lncRNA driven gene regulatory landscape, neural regulation, brain evolution, and constitutes a resource for primate's brain lncRNAs.
Collapse
Affiliation(s)
- Mohit Navandar
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| | - Constance Vennin
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Beat Lutz
- Leibniz Institute for Resilience Research, 55122, Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
56
|
Géli V, Nabet N. Saliva, a molecular reflection of the human body? Implications for diagnosis and treatment. Cell Stress 2024; 8:59-68. [PMID: 38826491 PMCID: PMC11144459 DOI: 10.15698/cst2024.05.297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/04/2024] Open
Abstract
For many diseases, and cancer in particular, early diagnosis allows a wider range of therapies and a better disease management. This has led to improvements in diagnostic procedures, most often based on tissue biopsies or blood samples. Other biological fluids have been used to diagnose disease, and among them saliva offers a number of advantages because it can be collected non-invasively from large populations at relatively low cost. To what extent might saliva content reveal the presence of a tumour located at a distance from the oral cavity and the molecular information obtained from saliva be used to establish a diagnosis are current questions. This review focuses primarily on the content of saliva and shows how it potentially offers a source of diagnosis, possibly at an early stage, for pathologies such as cancers or endometriosis.
Collapse
|
57
|
Zhang B, Zhang C, Zhang J, Lu S, Zhao H, Jiang Y, Ma W. Regulatory roles of long non-coding RNAs in short-term heat stress in adult worker bees. BMC Genomics 2024; 25:506. [PMID: 38778290 PMCID: PMC11110378 DOI: 10.1186/s12864-024-10399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial modulators of post-transcriptional gene expression regulation, cell fate determination, and disease development. However, lncRNA functions during short-term heat stress in adult worker bees are poorly understood. Here, we performed deep sequencing and bioinformatic analyses of honeybee lncRNAs. RNA interference was performed by using siRNA targeting the most highly expressed lncRNA. The silencing effect on lncRNA and the relative expression levels of seven heat shock protein (HSP) genes, were subsequently examined. Overall, 7,842 lncRNAs and 115 differentially expressed lncRNAs (DELs) were identified in adult worker bees following heat stress exposure. Structural analysis revealed that the overall expression abundance, length of transcripts, exon number, and open reading frames of lncRNAs were lower than those of mRNAs. GO analysis revealed that the target genes were mainly involved in "metabolism," "protein folding," "response to stress," and "signal transduction" pathways. KEGG analysis indicated that the "protein processing in endoplasmic reticulum" and "longevity regulating pathway-multiple species" pathways were most enriched. Quantitative real-time polymerase chain reaction (qRT-PCR) detection of the selected DELs confirmed the reliability of the sequencing data. Moreover, the siRNA experiment indicated that feeding siRNA yielded a silencing efficiency of 77.51% for lncRNA MSTRG.9645.5. Upon silencing this lncRNA, the expression levels of three HSP genes were significantly downregulated (p < 0.05), whereas those of three other HSP genes were significantly upregulated (p < 0.05). Our results provide a new perspective for understanding the regulatory mechanisms of lncRNAs in adult worker bees under short-term heat stress.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chaoying Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiangchao Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Surong Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
58
|
Zhao J, Yang X, Gong W, Zhang L, Li C, Han X, Zhang Y, Chu X. LINC00908 attenuates LUAD tumorigenesis through DEAD-box helicase 54. Am J Cancer Res 2024; 14:2371-2389. [PMID: 38859824 PMCID: PMC11162691 DOI: 10.62347/hxzm6394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the leading causes of cancer-related death worldwide. We identified a specific long non-coding RNA (LncRNA), LINC00908, which was downregulated in LUAD tissues and associated with good outcome. LINC00908 inhibited glycolysis by regulating the expression of the DEAD-box helicase 54 (DDX54), which was screened by a nine-gene risk signature, where DDX54 showed a positive correlation with several glycolysis-related genes. Experimental verification confirmed that DDX54 regulated nine key glycolytic enzymes, thereby affecting the level of glycolysis in LUAD. Further, the expression of LINC00908 in LUAD tumorigenesis was modulated by a transcription factor, regulatory factor X2 (RFX2). The RFX2/LINC00908/DDX54 axis regulated LUAD tumor growth, migration, invasion, cell apoptosis and glycolysis both in vitro and in vivo. These results demonstrate that this axis may serve as a novel mediator in LUAD progress and offer a novel therapeutic target for more precise diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
- Jiahua Zhao
- Department of Thoracic Surgery, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical SchoolBeijing, China
| | - Xuhui Yang
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical SchoolBeijing, China
| | - Wenwen Gong
- Department of Pharmacy, The Medical Supplies Center of PLA General HospitalBeijing, China
| | - Lin Zhang
- Department of Outpatient Service, 986th Hospital Affilliated to Air Force Medical UniversityXi’an, Shaanxi, China
| | - Chenxi Li
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical SchoolBeijing, China
| | - Xiao Han
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical SchoolBeijing, China
| | - Yang Zhang
- Department of Cardiology, The Second Medical Center, Chinese PLA General HospitalBeijing, China
| | - Xiangyang Chu
- Department of Thoracic Surgery, The First Medical Center, Chinese PLA General Hospital and Chinese PLA Medical SchoolBeijing, China
| |
Collapse
|
59
|
Ciftci YC, Vatansever İE, Akgül B. Unraveling the intriguing interplay: Exploring the role of lncRNAs in caspase-independent cell death. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1862. [PMID: 38837618 DOI: 10.1002/wrna.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell death plays a crucial role in various physiological and pathological processes. Until recently, programmed cell death was mainly attributed to caspase-dependent apoptosis. However, emerging evidence suggests that caspase-independent cell death (CICD) mechanisms also contribute significantly to cellular demise. We and others have reported and functionally characterized numerous long noncoding RNAs (lncRNAs) that modulate caspase-dependent apoptotic pathways potentially in a pathway-dependent manner. However, the interplay between lncRNAs and CICD pathways has not been comprehensively documented. One major reason for this is that most CICD pathways have been recently discovered with some being partially characterized at the molecular level. In this review, we discuss the emerging evidence that implicates specific lncRNAs in the regulation and execution of CICD. We summarize the diverse mechanisms through which lncRNAs modulate different forms of CICD, including ferroptosis, necroptosis, cuproptosis, and others. Furthermore, we highlight the intricate regulatory networks involving lncRNAs, protein-coding genes, and signaling pathways that orchestrate CICD in health and disease. Understanding the molecular mechanisms and functional implications of lncRNAs in CICD may unravel novel therapeutic targets and diagnostic tools for various diseases, paving the way for innovative strategies in disease management and personalized medicine. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Yusuf Cem Ciftci
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - İpek Erdoğan Vatansever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Gülbahçeköyü, Urla, Turkey
| |
Collapse
|
60
|
Ghorbani A, Hosseinie F, Khorshid Sokhangouy S, Islampanah M, Khojasteh-Leylakoohi F, Maftooh M, Nassiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Khazaei M, Nazari E, Avan A. The prognostic, diagnostic, and therapeutic impact of Long noncoding RNAs in gastric cancer. Cancer Genet 2024; 282-283:14-26. [PMID: 38157692 DOI: 10.1016/j.cancergen.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Gastric cancer (GC), ranking as the third deadliest cancer globally, faces challenges of late diagnosis and limited treatment efficacy. Long non-coding RNAs (lncRNAs) emerge as valuable treasured targets for cancer prognosis, diagnosis, and therapy, given their high specificity, convenient non-invasive detection in body fluids, and crucial roles in diverse physiological and pathological processes. Research indicates the significant involvement of lncRNAs in various aspects of GC pathogenesis, including initiation, metastasis, and recurrence, underscoring their potential as novel diagnostic and prognostic biomarkers, as well as therapeutic targets for GC. Despite existing challenges in the clinical application of lncRNAs in GC, the evolving landscape of lncRNA molecular biology holds promise for advancing the survival and treatment outcomes of gastric cancer patients. This review provides insights into recent studies on lncRNAs in gastric cancer, elucidating their molecular mechanisms and exploring the potential clinical applications in GC.
Collapse
Affiliation(s)
- Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Hosseinie
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Saeideh Khorshid Sokhangouy
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
61
|
García-Pérez I, Duran BOS, Dal-Pai-Silva M, Garcia de la serrana D. Exploring the Integrated Role of miRNAs and lncRNAs in Regulating the Transcriptional Response to Amino Acids and Insulin-like Growth Factor 1 in Gilthead Sea Bream ( Sparus aurata) Myoblasts. Int J Mol Sci 2024; 25:3894. [PMID: 38612703 PMCID: PMC11011856 DOI: 10.3390/ijms25073894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, gilthead sea bream (Sparus aurata) fast muscle myoblasts were stimulated with two pro-growth treatments, amino acids (AA) and insulin-like growth factor 1 (Igf-1), to analyze the transcriptional response of mRNAs, microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and to explore their possible regulatory network using bioinformatic approaches. AA had a higher impact on transcription (1795 mRNAs changed) compared to Igf-1 (385 mRNAs changed). Both treatments stimulated the transcription of mRNAs related to muscle differentiation (GO:0042692) and sarcomere (GO:0030017), while AA strongly stimulated DNA replication and cell division (GO:0007049). Both pro-growth treatments altered the transcription of over 100 miRNAs, including muscle-specific miRNAs (myomiRs), such as miR-133a/b, miR-206, miR-499, miR-1, and miR-27a. Among 111 detected lncRNAs (>1 FPKM), only 30 were significantly changed by AA and 11 by Igf-1. Eight lncRNAs exhibited strong negative correlations with several mRNAs, suggesting a possible regulation, while 30 lncRNAs showed strong correlations and interactions with several miRNAs, suggesting a role as sponges. This work is the first step in the identification of the ncRNAs network controlling muscle development and growth in gilthead sea bream, pointing out potential regulatory mechanisms in response to pro-growth signals.
Collapse
Affiliation(s)
- Isabel García-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| | - Bruno Oliveira Silva Duran
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences, Federal University of Goiás (UFG), Goiânia 74690-900, Brazil;
| | - Maeli Dal-Pai-Silva
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil;
| | - Daniel Garcia de la serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain;
| |
Collapse
|
62
|
Liao B, Wang J, Yuan Y, Luo H, Ouyang X. Biological roles of SLC16A1-AS1 lncRNA and its clinical impacts in tumors. Cancer Cell Int 2024; 24:122. [PMID: 38555465 PMCID: PMC10981830 DOI: 10.1186/s12935-024-03285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Recent studies have increasingly highlighted the aberrant expression of SLC16A1-AS1 in a variety of tumor types, where it functions as either an oncogene or a tumor suppressor in the pathogenesis of different cancers. The expression levels of SLC16A1-AS1 have been found to significantly correlate with clinical features and the prognosis of cancer patients. Furthermore, SLC16A1-AS1 modulates a range of cellular functions, including proliferation, migration, and invasion, through its interactions with diverse molecules and signaling pathways. This review examines the latest evidence regarding the role of SLC16A1-AS1 in the progression of various tumors and explores its potential clinical applications as a novel prognostic and diagnostic biomarker. Our comprehensive review aims to deepen the understanding of SLC16A1-AS1's multifaceted role in oncology, underscoring its potential as a significant biomarker and therapeutic target.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Yalin Yuan
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
| | - Xi Ouyang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
63
|
Hall Hickman A, Jenner RG. Apparent RNA bridging between PRC2 and chromatin is an artifact of non-specific chromatin precipitation upon RNA degradation. Cell Rep 2024; 43:113856. [PMID: 38416641 DOI: 10.1016/j.celrep.2024.113856] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024] Open
Abstract
Polycomb repressive complex 2 (PRC2) modifies chromatin to maintain repression of genes specific for other cell lineages. In vitro, RNA inhibits PRC2 activity, but the effect of RNA on PRC2 in cells is less clear, with studies concluding that RNA either antagonizes or promotes PRC2 chromatin association. The addition of RNase A to chromatin immunoprecipitation reactions has been reported to reduce detection of PRC2 target sites, suggesting the existence of RNA bridges connecting PRC2 to chromatin. Here, we show that the apparent loss of PRC2 chromatin association after RNase A treatment is due to non-specific chromatin precipitation. RNA degradation precipitates chromatin out of solution, thereby masking enrichment of specific DNA sequences in chromatin immunoprecipitation reactions. Maintaining chromatin solubility by the addition of poly-L-glutamic acid rescues detection of PRC2 chromatin occupancy upon RNA degradation. These findings undermine support for the model that RNA bridges PRC2 and chromatin in cells.
Collapse
Affiliation(s)
- Alexander Hall Hickman
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; CRUK City of London Centre, University College London, London WC1E 6BT, UK
| | - Richard G Jenner
- UCL Cancer Institute, University College London, London WC1E 6BT, UK; CRUK City of London Centre, University College London, London WC1E 6BT, UK.
| |
Collapse
|
64
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
65
|
An L, Dong K, Chi S, Wei S, Zhang J, Yu Z, Zhang Q, Zhang T, Cheng S, Shi R, Jin Z, Zhou X, Zhao Y, Wang H. lncRNA UCA1 promotes tumor progression by targeting SMARCD3 in cervical cancer. Mol Carcinog 2024; 63:384-399. [PMID: 38116886 DOI: 10.1002/mc.23659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Long noncoding RNA urothelial carcinoma associated 1 (UCA1) has been identified as a key molecule in human cancers. However, its functional implications remain unspecified in the context of cervical cancer (CC). This research aims to identify the regulatory mechanism of UCA1 in CC. UCA1 was identified through microarray and confirmed through a quantitative real-time polymerase chain reaction. Proteins that bind with UCA1 were recognized using RNA pull-down assays along with RNA immunoprecipitation. Ubiquitination assays and coimmunoprecipitation were performed to explore the molecular mechanisms of the SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily d, member 3 (SMARCD3) downregulated in CC. The effects of UCA1 and SMARCD3 on the progression of CC were investigated through gain- and loss-of-function assays and xenograft tumor formation in vivo. In this study, UCA1 was found to be upregulated in CC cells as well as in human plasma exosomes for the first time. Functional studies indicated that UCA1 promotes CC progression. Mechanically, UCA1 downregulated the SMARCD3 protein stabilization by promoting SMARCD3 ubiquitination. Taken together, we revealed that the UCA1/SMARCD3 axis promoted CC progression, which could provide a new therapeutic target for CC.
Collapse
Affiliation(s)
- Lanfen An
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuqi Chi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangshuang Cheng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhishan Jin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingchao Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
66
|
Taheri M, Shirvani-Farsani Z, Harsij A, Fathi M, Khalilian S, Ghafouri-Fard S, Baniahmad A. A review on the role of KCNQ1OT1 lncRNA in human disorders. Pathol Res Pract 2024; 255:155188. [PMID: 38330620 DOI: 10.1016/j.prp.2024.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
KCNQ1OT1 is an lncRNA located within KCNQ1 gene on chromosome 11p15.5. This lncRNAs participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions. In most types of cancers, KCNQ1OT1 is regarded as an oncogene. In a wide array of cancers, high level of KCNQ1OT1 is associated with lower overall survival time. This lncRNA has been found to adsorb a variety of miRNAs, namely miR-15a, miR-211-5p, hsa-miR-107, miR-145, miR-34a, miR-204-5p, miR-129-5p, miR-372-3p, miR-491-5p, miR-153, miR-185-5p, miR-124-3p, miR-211-5p, miR-149, miR-148a-3p, miR-140-5p, miR-125b-5p, miR-9, miR-329-3p, miR-760, miR-296-5p, miR-3666 and miR-129-5p, thus regulating the downstream targets of these miRNAs. In this manuscript, our attention is on this lncRNA and its biomolecular roles in human cancers and other disorders. KCNQ1OT1 plays significant roles in the tumorigenesis and may function as a prospective target for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Khalilian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
67
|
Aghajani Mir M. Vault RNAs (vtRNAs): Rediscovered non-coding RNAs with diverse physiological and pathological activities. Genes Dis 2024; 11:772-787. [PMID: 37692527 PMCID: PMC10491885 DOI: 10.1016/j.gendis.2023.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/16/2023] [Indexed: 04/05/2023] Open
Abstract
The physicochemical characteristics of RNA admit non-coding RNAs to perform a different range of biological acts through various mechanisms and are involved in regulating a diversity of fundamental processes. Notably, some reports of pathological conditions have proved abnormal expression of many non-coding RNAs guides the ailment. Vault RNAs are a class of non-coding RNAs containing stem regions or loops with well-conserved sequence patterns that play a fundamental role in the function of vault particles through RNA-ligand, RNA-RNA, or RNA-protein interactions. Taken together, vault RNAs have been proposed to be involved in a variety of functions such as cell proliferation, nucleocytoplasmic transport, intracellular detoxification processes, multidrug resistance, apoptosis, and autophagy, and serve as microRNA precursors and signaling pathways. Despite decades of investigations devoted, the biological function of the vault particle or the vault RNAs is not yet completely cleared. In this review, the current scientific assertions of the vital vault RNAs functions were discussed.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Health Research Institute, Babol University of Medical Sciences, Babol 47176-4774, Iran
| |
Collapse
|
68
|
Heidari-Ezzati S, Moeinian P, Ahmadian-Nejad B, Maghbbouli F, Abbasi S, Zahedi M, Afkhami H, Shadab A, Sajedi N. The role of long non-coding RNAs and circular RNAs in cervical cancer: modulating miRNA function. Front Cell Dev Biol 2024; 12:1308730. [PMID: 38434620 PMCID: PMC10906305 DOI: 10.3389/fcell.2024.1308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Cervical cancer (CC) is a primary global health concern, ranking as the fourth leading cause of cancer-related death in women. Despite advancements in prognosis, long-term outcomes remained poor. Beyond HPV, cofactors like dietary deficiencies, immunosuppression, hormonal contraceptives, co-infections, and genetic variations are involved in CC progression. The pathogenesis of various diseases, including cancer, has brought to light the critical regulatory roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The aberrant expression of these miRNAs, lncRNAs, and circRNAs plays a pivotal role in the initiation and progression of CC. This review provides a comprehensive summary of the recent literature regarding the involvement of lncRNAs and circRNAs in modulating miRNA functions in cervical neoplasia and metastasis. Studies have shown that lncRNAs and circRNAs hold great potential as therapeutic agents and innovative biomarkers in CC. However, more clinical research is needed to advance our understanding of the therapeutic benefits of circRNAs and lncRNAs in CC.
Collapse
Affiliation(s)
- Sama Heidari-Ezzati
- School of Nursing and Midwifery, Bonab University of Medical Sciences, Bonab, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Ahmadian-Nejad
- School of Nursing and Midwifery, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Sheida Abbasi
- Department of obstetrics and gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Nayereh Sajedi
- Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
69
|
Huang W, Luo T, Lan M, Zhou W, Zhang M, Wu L, Lu Z, Fan L. Identification and Characterization of a ceRNA Regulatory Network Involving LINC00482 and PRRC2B in Peripheral Blood Mononuclear Cells: Implications for COPD Pathogenesis and Diagnosis. Int J Chron Obstruct Pulmon Dis 2024; 19:419-430. [PMID: 38348310 PMCID: PMC10860591 DOI: 10.2147/copd.s437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, characterized by intense lung infiltrations of immune cells (macrophages and monocytes). While existing studies have highlighted the crucial role of the competitive endogenous RNA (ceRNA) regulatory network in COPD development, the complexity and characteristics of the ceRNA network in monocytes remain unexplored. Methods We downloaded messenger RNA (mRNA), microRNA (miRNA), and long noncoding RNA (lncRNA) microarray data from GSE146560, GSE102915, and GSE71220 in the Gene Expression Omnibus (GEO) database. This data was used to identify differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and lncRNAs (DElncRNAs). Predicted miRNAs that bind to DElncRNAs were intersected with DEmiRNAs, forming a set of intersecting miRNAs. This set was then used to predict potential binding mRNAs, intersected with DEmRNAs, and underwent functional enrichment analysis using R software and the STRING database. The resulting triple regulatory network and hub genes were constructed using Cytoscape. Comparative Toxicomics Database (CTD) was utilized for disease correlation predictions, and ROC curve analysis assessed diagnostic accuracy. Results Our study identified 5 lncRNAs, 4 miRNAs, and 149 mRNAs as differentially expressed. A lncRNA-miRNA-mRNA regulatory network was constructed, and hub genes were selected through hub analysis. Enrichment analysis highlighted terms related to cell movement and gene expression regulation. We established a LINC00482-has-miR-6088-PRRC2B ceRNA network with diagnostic relevance for COPD. ROC analysis demonstrated the diagnostic value of these genes. Moreover, a positive correlation between LINC00482 and PRRC2B expression was observed in COPD PBMCs. The CTD database indicated their involvement in inflammatory responses. Conclusion In summary, our study not only identified pivotal hub genes in peripheral blood mononuclear cells (PBMCs) of COPD but also constructed a ceRNA regulatory network. This contributes to understanding the pathophysiological processes of COPD through bioinformatics analysis, expanding our knowledge of COPD, and providing a foundation for potential diagnostic and therapeutic targets for COPD.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Ting Luo
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Mengqiu Lan
- Clinical Laboratory Science, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, 545007, People’s Republic of China
| | - Wenting Zhou
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Ming Zhang
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| | - Lihong Wu
- Clinical Laboratory Science, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, 545007, People’s Republic of China
| | - Zhenni Lu
- Clinical Laboratory Science, Liuzhou Municipal Liutie Central Hospital, Liuzhou, Guangxi, 545007, People’s Republic of China
| | - Li Fan
- Department of Reproductive Medicine, Guangzhou Women and Children’s Medical Center Liuzhou Hospital, Liuzhou, Guangxi, 545616, People’s Republic of China
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, 545001, People’s Republic of China
| |
Collapse
|
70
|
Nuthikattu S, Milenkovic D, Norman JE, Villablanca AC. Single nuclei transcriptomics in diabetic mice reveals altered brain hippocampal endothelial cell function, permeability, and behavior. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166970. [PMID: 38036105 DOI: 10.1016/j.bbadis.2023.166970] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder with cerebrovascular and cardiovascular sequelae. Yet, a clear pattern of gene dysregulation by T2DM in dementia has yet to be defined. We used single nuclei RNA sequencing technology to profile the transcriptome of endothelial cells (EC) from anatomically defined hippocampus of db/db mice to identify differentially expressed (DE) genes, gene pathways and networks, predicted regulating transcription factors, and targets of DE long noncoding RNAs. We also applied gadolinium (Gd) enhanced magnetic resonance imaging (MRI) to assess blood brain barrier (BBB) permeability, and functionally assessed cognitive behavior. The murine gene expression profiles were then integrated with those of persons with Alzheimer's disease (AD) and vascular dementia (VaD). We reveal that the transcriptome of the diabetic hippocampal murine brain endothelium differs substantially from control wild types with molecular changes characterized by differential RNA coding and noncoding pathways enriched for EC signaling and for endothelial functions for neuroinflammation, endothelial barrier disruption, and neurodegeneration. Gd enhanced structural brain MRI linked endothelial molecular alterations to BBB dysfunction by neuroimaging. Integrated multiomics of hippocampal endothelial gene dysregulation associated with impairments in cognitive adaptive capacity. In addition, the diabetic transcriptome significantly and positively correlated with that of persons with AD and VaD. Taken together, our results from comprehensive, multilevel, integrated, single nuclei transcriptomics support the hypothesis of T2DM-mediated neuroinflammation and endothelial cell and barrier disruption as key mechanisms in cognitive decline in T2DM, thereby suggesting potential endothelial-specific molecular therapeutic targets.
Collapse
Affiliation(s)
- Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA.
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Jennifer E Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| | - Amparo C Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
71
|
Zhang Z, Jin F, Huang J, Mandal SD, Zeng L, Zafar J, Xu X. MicroRNA Targets PAP1 to Mediate Melanization in Plutella xylostella (Linnaeus) Infected by Metarhizium anisopliae. Int J Mol Sci 2024; 25:1140. [PMID: 38256210 PMCID: PMC10816858 DOI: 10.3390/ijms25021140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
MicroRNAs (miRNAs) play a pivotal role in important biological processes by regulating post-transcriptional gene expression and exhibit differential expression patterns during development, immune responses, and stress challenges. The diamondback moth causes significant economic damage to crops worldwide. Despite substantial advancements in understanding the molecular biology of this pest, our knowledge regarding the role of miRNAs in regulating key immunity-related genes remains limited. In this study, we leveraged whole transcriptome resequencing data from Plutella xylostella infected with Metarhizium anisopliae to identify specific miRNAs targeting the prophenoloxidase-activating protease1 (PAP1) gene and regulate phenoloxidase (PO) cascade during melanization. Seven miRNAs (pxy-miR-375-5p, pxy-miR-4448-3p, pxy-miR-279a-3p, pxy-miR-3286-3p, pxy-miR-965-5p, pxy-miR-8799-3p, and pxy-miR-14b-5p) were screened. Luciferase reporter assays confirmed that pxy-miR-279a-3p binds to the open reading frame (ORF) and pxy-miR-965-5p to the 3' untranslated region (3' UTR) of PAP1. Our experiments demonstrated that a pxy-miR-965-5p mimic significantly reduced PAP1 expression in P. xylostella larvae, suppressed PO activity, and increased larval mortality rate. Conversely, the injection of pxy-miR-965-5p inhibitor could increase PAP1 expression and PO activity while decreasing larval mortality rate. Furthermore, we identified four LncRNAs (MSTRG.32910.1, MSTRG.7100.1, MSTRG.6802.1, and MSTRG.22113.1) that potentially interact with pxy-miR-965-5p. Interference assays using antisense oligonucleotides (ASOs) revealed that silencing MSTRG.7100.1 and MSTRG.22113.1 increased the expression of pxy-miR-965-5p. These findings shed light on the potential role of pxy-miR-965-5p in the immune response of P. xylostella to M. anisopliae infection and provide a theoretical basis for biological control strategies targeting the immune system of this pest.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (F.J.); (J.H.); (S.D.M.); (L.Z.); (J.Z.)
| |
Collapse
|
72
|
Du Q, Song K, Wang L, Du L, Du H, Li B, Li H, Yang L, Wang Y, Liu P. Integrated Transcriptomics and Metabolomics Analysis Promotes the Understanding of Adventitious Root Formation in Eucommia ulmoides Oliver. PLANTS (BASEL, SWITZERLAND) 2024; 13:136. [PMID: 38202444 PMCID: PMC10780705 DOI: 10.3390/plants13010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
As a primary approach to nutrient propagation for many woody plants, cutting roots is essential for the breeding and production of Eucommia ulmoides Oliver. In this study, hormone level, transcriptomics, and metabolomics analyses were performed on two E. ulmoides varieties with different adventitious root (AR) formation abilities. The higher JA level on the 0th day and the lower JA level on the 18th day promoted superior AR development. Several hub genes executed crucial roles in the crosstalk regulation of JA and other hormones, including F-box protein (EU012075), SAUR-like protein (EU0125382), LOB protein (EU0124232), AP2/ERF transcription factor (EU0128499), and CYP450 protein (EU0127354). Differentially expressed genes (DEGs) and metabolites of AR formation were enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, and isoflavonoid biosynthesis pathways. The up-regulated expression of PAL, CCR, CAD, DFR, and HIDH genes on the 18th day could contribute to AR formation. The 130 cis-acting lncRNAs had potential regulatory functions on hub genes in the module that significantly correlated with JA and DEGs in three metabolism pathways. These revealed key molecules, and vital pathways provided more comprehensive insight for the AR formation mechanism of E. ulmoides and other plants.
Collapse
Affiliation(s)
- Qingxin Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kangkang Song
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Mountain Tai Forest Ecosystem Research Station of State Forestry and Grassland Administration, College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Lu Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Lanying Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Hongyan Du
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Bin Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Haozhen Li
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China; (K.S.); (B.L.)
| | - Yan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| | - Panfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Q.D.); (L.W.); (L.D.); (H.D.)
| |
Collapse
|
73
|
Shah M, Sarkar D. HCC-Related lncRNAs: Roles and Mechanisms. Int J Mol Sci 2024; 25:597. [PMID: 38203767 PMCID: PMC10779127 DOI: 10.3390/ijms25010597] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health threat, particularly in regions endemic to hepatitis B and C viruses, and because of the ongoing pandemic of obesity causing metabolic-dysfunction-related fatty liver disease (MAFLD), a precursor to HCC. The molecular intricacies of HCC, genetic and epigenetic alterations, and dysregulated signaling pathways facilitate personalized treatment strategies based on molecular profiling. Epigenetic regulation, encompassing DNA methyltion, histone modifications, and noncoding RNAs, functions as a critical layer influencing HCC development. Long noncoding RNAs (lncRNAs) are spotlighted for their diverse roles in gene regulation and their potential as diagnostic and therapeutic tools in cancer. In this review, we explore the pivotal role of lncRNAs in HCC, including MAFLD and viral hepatitis, the most prevalent risk factors for hepatocarcinogenesis. The dysregulation of lncRNAs is implicated in HCC progression by modulating chromatin regulation and transcription, sponging miRNAs, and influencing structural functions. The ongoing studies on lncRNAs contribute to a deeper comprehension of HCC pathogenesis and offer promising routes for precision medicine, highlighting the utility of lncRNAs as early biomarkers, prognostic indicators, and therapeutic targets.
Collapse
Affiliation(s)
- Mimansha Shah
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Comprehensive Cancer Center, and VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
74
|
Wang R, Yuan Q, Wen Y, Zhang Y, Hu Y, Wang S, Yuan C. ANRIL: A Long Noncoding RNA in Age-related Diseases. Mini Rev Med Chem 2024; 24:1930-1939. [PMID: 38716553 DOI: 10.2174/0113895575295976240415045602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 10/16/2024]
Abstract
The intensification of the aging population is often accompanied by an increase in agerelated diseases, which impair the quality of life of the elderly. The characteristic feature of aging is progressive physiological decline, which is the largest cause of human pathology and death worldwide. However, natural aging interacts in exceptionally complex ways within and between organs, but its underlying mechanisms are still poorly understood. Long non-coding RNA (lncRNA) is a type of noncoding RNA that exceeds 200 nucleotides in length and does not possess protein-coding ability. It plays a crucial role in the occurrence and development of diseases. ANRIL, also known as CDKN2B-AS1, is an antisense ncRNA located at the INK4 site. It can play a crucial role in agerelated disease progression by regulating single nucleotide polymorphism, histone modifications, or post-transcriptional modifications (such as RNA stability and microRNA), such as cardiovascular disease, diabetes, tumor, arthritis, and osteoporosis. Therefore, a deeper understanding of the molecular mechanisms of lncRNA ANRIL in age-related diseases will help provide new diagnostic and therapeutic targets for clinical practice.
Collapse
Affiliation(s)
- Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Qi Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yuan Wen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
75
|
Shafaf T, Kazeminejad SR, Hoveizi E. Evaluation of lncRNA Expression During the Differentiation of Mesenchymal Stem Cells to Insulin-Secreting Progenitors. Mol Neurobiol 2024; 61:372-384. [PMID: 37610615 DOI: 10.1007/s12035-023-03571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Diabetes mellitus is a metabolic disease caused by a defect in insulin secretion, insulin function, or both that destroys pancreatic islet beta cells. There is ample evidence that long non-coding RNAs (lncRNAs) play a vital role in cell formation and differentiation. The present study aims to investigate the expression pattern of specific lncRNAs in mesenchymal stem cell (MSC) differentiation into insulin-producing beta cell (IPCs) progenitors for cell therapy purposes. MSCs were extracted from human umbilical cord Wharton jelly (hWJ-MSCs) using the explant method and cultured in two-dimensional (2D) and three-dimensional (3D) media on polylactic acid/Wax (PLA/Wax) nanofibrous scaffold using a three-step protocol containing CHIR99021 small molecules and Indolactam V. At the end of each differentiation step, immunocytochemistry and qRT-PCR were used to confirm the differentiation at the protein and RNA levels and the expression changes of six selective lncRNAs were evaluated by qRT-PCR. The results indicated that the expression of the selected lncRNAs was significantly altered during the differentiation process into beta progenitor cells, indicating their potential role in regulating the IPC differentiation process. More specifically, all of the desired lncRNAs demonstrated a significant increase during the beta cell differentiation, with HI-LNC71 and HI-LNA12 experiencing the highest expression in the produced Beta cell progenitors respectively (p<0.0001). These results can be valuable in tissue engineering and treatment studies by replacing beta precursor cells to control diabetic patients.
Collapse
Affiliation(s)
- Tina Shafaf
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sayed Reza Kazeminejad
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
76
|
Tang M, Wu H, Zhang H, Xu X, Jiang B, Chen Q, Wei Y, Qian H, Han L. Actin filament-associated protein 1-antisense RNA1 promotes the development and invasion of tongue squamous cell carcinoma via the AFAP1-AS1/miR-133a-5p/ZIC2 axis. J Gene Med 2024; 26:e3654. [PMID: 38282153 DOI: 10.1002/jgm.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND The present study aimed to explore the biological role and underlying mechanism of the long non-coding RNA actin filament-associated protein 1-antisense RNA1 (lncRNA AFAP1-AS1) in the progression of tongue squamous cell carcinoma (TSCC). METHODS A quantitative reverse transcriptase-PCR (RT-qPCR) was conducted to assess relative levels of the miR-133a-5p, lncRNAs AFAP1-AS1 and zinc finger family member 2 (ZIC2) in TSCC cell lines and specimens, whereas ZIC2 protein levels were measured using western blotting. After modifying the levels of expression of lncRNA AFP1-AS1, miR-133a-5p and ZIC2 using lentivirus or plasmid transfection, we examined AKT/epithelial-mesenchymal transition signaling pathway alterations, in vivo carcinogenesis of TSCC in nude mice and in vitro malignant phenotypes. A dual-luciferase reporter assay was conducted to confirm the targeting relationship between ZIC2 and miR-133a-5p, as well as between miR-133a-5p and lncRNA AFAP1-AS1. Based on The Cancer Genome Atlas (TCGA) database, we additionally validated AFP1-AS1. The potential biological pathway for AFP1-AS1 was investigated using gene set enrichment analysis (GSEA). We also evaluated the clinical diagnostic capacities of AFP1-AS1 and clustered the most potential biomarkers with the Mfuzz expression pattern. Finally, we also made relevant drug predictions for AFP1-AS1. RESULTS In TSCC cell lines and specimens, lncRNA AFAP1-AS1 was upregulated. ZIC2 was upregulated in TSCC cells as a result of lncRNA AFAP1-AS1 overexpression, which also promoted TSCC cell migration, invasion, viability, and proliferation. Via the microRNA sponge effect, it was found that lncRNA AFAP1-AS1 could upregulate ZIC2 by competitively inhibiting miR-133a-5p. Interestingly, knockdown of ZIC2 reversed the biological roles of lncRNA AFAP1-AS1 with respect to inducing malignant phenotypes in TSCC cells. In addition, in vivo overexpression of lncRNA AFAP1-AS1 triggered subcutaneous tumor growth in nude mice implanted with TSCC cells and upregulated ZIC2 in the tumors. The TCGA database findings revealed that AFAP1-AS1 was significantly upregulated in TSCC specimens and had good clinical diagnostic value. The results of GSEA showed that peroxisome proliferator-activated receptor signaling pathway was significantly correlated with low expression of AFP1-AS1. Finally, the results of drug prediction indicated that the group with high AFAP1-AS1 expression was more sensitive to docetaxel, AZD4547, AZD7762 and nilotinib. CONCLUSIONS The upregulation of lncRNA AFAP1-AS1, which increases TSCC cell viability, migration, proliferation and invasion via the AFAP1-AS1/miR-133a-5p/ZIC2 axis, aids in the progression of TSCC.
Collapse
Affiliation(s)
- Mingming Tang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huaiqin Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Rugao People's Hospital, Rugao, Jiangsu, China
| | - Xinjiang Xu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Bin Jiang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Qingwen Chen
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Yingze Wei
- Department of Clinical Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hongyan Qian
- Central Laboratory of Cancer Research Institute, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, China
| | - Liang Han
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University/Nantong Tumor Hospital, Nantong, Jiangsu, China
| |
Collapse
|
77
|
Ye L, Qin T, Xiong L. Validation of the Interaction Between Stress-Responsive LncRNAs and RNA-Binding Proteins In Vitro. Methods Mol Biol 2024; 2832:133-144. [PMID: 38869792 DOI: 10.1007/978-1-0716-3973-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Plant long non-coding RNAs (lncRNAs) have been implicated in many biological processes, including responses to abiotic stresses, yet their detailed functions and especially their modes of action are still underexplored. lncRNAs often interact with proteins to participate in multiple levels of gene regulation. Therefore, identifying the RNA-binding proteins and validating their interaction with lncRNAs will be instrumental in revealing the functions of lncRNAs. Here, we describe two major methods to determine the interaction between lncRNA and proteins in vitro, RNA pull-down, and RNA EMSA.
Collapse
Affiliation(s)
- Liaoliao Ye
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Tao Qin
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
78
|
Nie X, Xie R, Fan J, Wang DW. LncRNA MIR217HG aggravates pressure-overload induced cardiac remodeling by activating miR-138/THBS1 pathway. Life Sci 2024; 336:122290. [PMID: 38013141 DOI: 10.1016/j.lfs.2023.122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
AIM Cardiac hypertrophy and fibrosis are associated with cardiac remodeling and heart failure. We have previously shown that miRNA-217, embedded within the third intron of MIR217HG, aggravates pressure overload-induced cardiac hypertrophy by targeting phosphatase and tensin homolog. However, whether the MIR217HG transcript itself plays a role in cardiac remodeling remains unknown. METHODS Real-time PCR assays and RNA in situ hybridization were performed to detect MIR217HG expression. Lentiviruses and adeno-associated viruses with a cardiac-specific promoter (cTnT) were used to control MIR217HG expression in vitro and in vivo. Transverse aortic constriction (TAC) surgery was performed to develop cardiac remodeling models. Cardiac structure and function were analyzed using echocardiography and invasive pressure-volume analysis. KEY FINDINGS MIR217HG expression was increased in patients with heart failure. MIR217HG overexpression aggravated pressure-overload-induced myocyte hypertrophy and fibrosis both in vivo and in vitro, whereas MIR217HG knockdown reversed these phenotypes. Mechanistically, MIR217HG increased THBS1 expression by sponging miR-138. MiR-138 recognized the 3'UTR of THBS1 and repressed THBS1 expression in the absence of MIR217HG. Silencing THBS1 expression reversed MIR217HG-induced cardiac hypertrophy and remodeling. CONCLUSION MIR217HG acts as a potent inducer of cardiac remodeling that may contribute to heart failure by activating the miR-138/THBS1 pathway.
Collapse
Affiliation(s)
- Xiang Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Rong Xie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
79
|
Tripathi S, Sengar S, Shree B, Mohapatra S, Basu A, Sharma V. An RBM10 and NF-κB interacting host lncRNA promotes JEV replication and neuronal cell death. J Virol 2023; 97:e0118323. [PMID: 37991381 PMCID: PMC10734533 DOI: 10.1128/jvi.01183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Central nervous system infection by flaviviruses such as Japanese encephalitis virus, Dengue virus, and West Nile virus results in neuroinflammation and neuronal damage. However, little is known about the role of long non-coding RNAs (lncRNAs) in flavivirus-induced neuroinflammation and neuronal cell death. Here, we characterized the role of a flavivirus-induced lncRNA named JINR1 during the infection of neuronal cells. Depletion of JINR1 during virus infection reduces viral replication and cell death. An increase in GRP78 expression by JINR1 is responsible for promoting virus replication. Flavivirus infection induces the expression of a cellular protein RBM10, which interacts with JINR1. RBM10 and JINR1 promote the proinflammatory transcription factor NF-κB activity, which is detrimental to cell survival.
Collapse
Affiliation(s)
- Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Suryansh Sengar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| |
Collapse
|
80
|
Zhang S, Wang R, Zhu X, Zhang L, Liu X, Sun L. Characteristics and expression of lncRNA and transposable elements in Drosophila aneuploidy. iScience 2023; 26:108494. [PMID: 38125016 PMCID: PMC10730892 DOI: 10.1016/j.isci.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/28/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Aneuploidy can globally affect the expression of the whole genome, which is detrimental to organisms. Dosage-sensitive regulators usually have multiple intermolecular interactions, and changes in their stoichiometry are responsible for the dysregulation of the regulatory network. Currently, studies on noncoding genes in aneuploidy are relatively rare. We studied the characteristics and expression profiles of long noncoding RNAs (lncRNAs) and transposable elements (TEs) in aneuploid Drosophila. It is found that lncRNAs and TEs are affected by genomic imbalance and appear to be more sensitive to an inverse dosage effect than mRNAs. Several dosage-sensitive lncRNAs and TEs were detected for their expression patterns during embryogenesis, and their biological functions in the ovary and testes were investigated using tissue-specific RNAi. This study advances our understanding of the noncoding sequences in imbalanced genomes and provides a novel perspective for the study of aneuploidy-related human diseases such as cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ruixue Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilin Zhu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Ludan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xinyu Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
81
|
Nylund P, Garrido-Zabala B, Kalushkova A, Wiklund HJ. The complex nature of lncRNA-mediated chromatin dynamics in multiple myeloma. Front Oncol 2023; 13:1303677. [PMID: 38148842 PMCID: PMC10750364 DOI: 10.3389/fonc.2023.1303677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Extensive genome-wide sequencing efforts have unveiled the intricate regulatory potential of long non-protein coding RNAs (lncRNAs) within the domain of haematological malignancies. Notably, lncRNAs have been found to directly modulate chromatin architecture, thereby impacting gene expression and disease progression by interacting with DNA, RNA, and proteins in a tissue- or condition-specific manner. Furthermore, recent studies have highlighted the intricate epigenetic control of lncRNAs in cancer. Consequently, this provides a rationale to explore the possibility of therapeutically targeting lncRNAs themselves or the epigenetic mechanisms that govern their activity. Within the scope of this review, we will assess the current state of knowledge regarding the epigenetic regulation of lncRNAs and how, in turn, lncRNAs contribute to chromatin remodelling in the context of multiple myeloma.
Collapse
Affiliation(s)
| | | | | | - Helena Jernberg Wiklund
- Science for Life Laboratory, Department of Immunology, Genetic and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
82
|
Xie W, Wang W, Meng S, Wu X, Liu X, Liu Y, Kang X, Su Y, Lv X, Guo L, Wang C. A novel hypoxia-stimulated lncRNA HIF1A-AS3 binds with YBX1 to promote ovarian cancer tumorigenesis by suppressing p21 and AJAP1 transcription. Mol Carcinog 2023; 62:1860-1876. [PMID: 37589417 DOI: 10.1002/mc.23620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Hypoxia is characteristic of the ovarian tumor (OC) microenvironment and profoundly affects tumorigenesis and therapeutic response. Long noncoding RNAs (lncRNAs) play various roles in tumor progression; however, the characteristics of lncRNAs in pathological responses of the OC microenvironment are not entirely understood. Through high-throughput sequencing, lncRNA expression in hypoxia (1% O2 ) and normoxia (21% O2 ) SKOV3 cells was explored and analyzed. The 5'- and 3'-rapid amplification of complementary DNA ends was used to detect the full length of the novel HIF1A-AS3 transcript. Real-time quantitative polymerase chain reaction was used to assess HIF1A-AS3 expression in OC cells and tissues. In vitro and in vivo evaluations of the biological functions of hypoxic HIF1A-AS3 were conducted. To clarify the underlying mechanisms of HIF1A-AS3 in hypoxic OC, a dual-luciferase assay, chromatin immunoprecipitation, RNA pull-down, RNA immunoprecipitation, and RNA-sequencing were used. We used high-throughput sequencing to investigate a novel lncRNA, HIF1A-AS3, as a hypoxic candidate significantly elevated in OC cells/tissues. HIF1A-AS3 was predominantly localized in the nucleus and promoted in vitro and in vivo OC growth and tumorigenesis. Hypoxia-inducible factor 1α bound to hypoxia response elements in the HIF1A-AS3 promoter region and stimulated its expression in hypoxia. Under hypoxia, HIF1A-AS3 directly integrated with Y-Box binding protein 1 and inhibited its ability to bind to the promoters of p21 and AJAP1 to repress their transcriptional activity, thereby promoting hypoxic OC progression. Our results revealed the crucial role and mechanism of the novel hypoxic HIF1A-AS3 in the oncogenesis of OC. The novel HIF1A-AS3 could be a crucial biomarker and therapeutic target for future OC treatments.
Collapse
Affiliation(s)
- Wan Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiao Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Silu Meng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Wu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhuan Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Kang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Su
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
83
|
Yang W, Cui J, Chen Y, Wang C, Yin Y, Zhang W, Liu S, Sun C, Li H, Duan Y, Song F, Cai W, Hines HM, Tian L. Genetic Modification of a Hox Locus Drives Mimetic Color Pattern Variation in a Highly Polymorphic Bumble Bee. Mol Biol Evol 2023; 40:msad261. [PMID: 38039153 PMCID: PMC10724181 DOI: 10.1093/molbev/msad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Müllerian mimicry provides natural replicates ideal for exploring mechanisms underlying adaptive phenotypic divergence and convergence, yet the genetic mechanisms underlying mimetic variation remain largely unknown. The current study investigates the genetic basis of mimetic color pattern variation in a highly polymorphic bumble bee, Bombus breviceps (Hymenoptera, Apidae). In South Asia, this species and multiple comimetic species converge onto local Müllerian mimicry patterns by shifting the abdominal setal color from orange to black. Genetic crossing between the orange and black phenotypes suggested the color dimorphism being controlled by a single Mendelian locus, with the orange allele being dominant over black. Genome-wide association suggests that a locus at the intergenic region between 2 abdominal fate-determining Hox genes, abd-A and Abd-B, is associated with the color change. This locus is therefore in the same intergenic region but not the same exact locus as found to drive red black midabdominal variation in a distantly related bumble bee species, Bombus melanopygus. Gene expression analysis and RNA interferences suggest that differential expression of an intergenic long noncoding RNA between abd-A and Abd-B at the onset setal color differentiation may drive the orange black color variation by causing a homeotic shift late in development. Analysis of this same color locus in comimetic species reveals no sequence association with the same color shift, suggesting that mimetic convergence is achieved through distinct genetic routes. Our study establishes Hox regions as genomic hotspots for color pattern evolution in bumble bees and demonstrates how pleiotropic developmental loci can drive adaptive radiations in nature.
Collapse
Affiliation(s)
- Wanhu Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jixiang Cui
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuxin Chen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Chao Wang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuanzhi Yin
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Heather M Hines
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
84
|
Zhang L, Sun H, Chen X. Characterization of the long noncoding RNA transcriptome in human preimplantation embryo development. J Assist Reprod Genet 2023; 40:2913-2923. [PMID: 37770818 PMCID: PMC10656396 DOI: 10.1007/s10815-023-02951-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
PURPOSE Infertility remains a human health burden globally. Only a fraction of embryos produced via assisted reproductive technologies (ARTs) develop to the blastocyst stage in vitro. lncRNA abundance changes significantly during human early embryonic development, indicating vital regulatory roles of lncRNAs in this process. The aim of this study is to obtain insights into the transcriptional basis of developmental events. METHODS scRNA-seq data and SUPeR-seq data were used to investigate the lncRNA profiles of human preimplantation embryos. The top 50 highly expressed unique and shared lncRNAs in each stage of preimplantation development were identified. Comparative analysis of the two datasets was used to verify the consistent expression patterns of the lncRNAs. Differentially expressed lncRNAs were identified and subjected to functional enrichment analysis. RESULTS The lncRNA profiles of human preimplantation embryos in the E-MTAB-3929 dataset were similar to those in the GSE71318 dataset. The ratios of overlap among the top 50 highly expressed lncRNAs between two pairs of stages (2-cell stage vs. 4-cell stage and 8-cell stage vs. morula) were aberrantly low compared with those between other stages. Each stage of preimplantation development exhibited unique and shared lncRNAs among the top 50 highly expressed lncRNAs. Among the between-group comparisons, the 2-cell stage vs. 4-cell stage showed the highest number of differentially expressed lncRNAs. Functional enrichment analysis revealed that differentially expressed lncRNAs and their associated super enhancers and RNA binding proteins (RBPs) are closely involved in regulating embryonic development. These lncRNAs could function as important cell markers for distinguishing fetal germ cells. CONCLUSIONS Our study paves the way for understanding the regulation of developmental events, which might be beneficial for improved reproductive outcomes.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Hailong Sun
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
85
|
Shen J, Su X, Pan M, Wang Z, Ke Y, Wang Q, Dong J, Duan S. Current insights into the oncogenic roles of lncRNA LINC00355. CANCER INNOVATION 2023; 2:448-462. [PMID: 38125763 PMCID: PMC10730005 DOI: 10.1002/cai2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 12/23/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding transcripts that are longer than 200 nucleotides. LINC00355 is a lncRNA located on chromosome 13q21.31 and is consistently upregulated in various cancers. It regulates the expression of downstream genes at both transcriptional and posttranscriptional levels, including eight microRNAs (miR-15a-5p, miR-34b-5p, miR-424-5p, miR-1225, miR-217-5p, miR-6777-3p, miR-195, and miR-466) and three protein-coding genes (ITGA2, RAD18, and UBE3C). LINC00355 plays a role in regulating various biological processes such as cell cycle progression, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and metastasis of cancer cells. It is involved in the regulation of the Wnt/β-catenin signaling pathway and p53 signaling pathway. Upregulation of LINC00355 has been identified as a high-risk factor in cancer patients and its increased expression is associated with poorer overall survival, recurrence-free survival, and disease-free survival. LINC00355 upregulation has been linked to several unfavorable clinical characteristics, including advanced tumor node metastasis and World Health Organization stages, reduced Karnofsky Performance Scale scores, increased tumor size, greater depth of invasion, and more extensive lymph node metastasis. LINC00355 induces chemotherapy resistance in cancer cells by regulating five downstream genes, namely HMGA2, ABCB1, ITGA2, WNT10B, and CCNE1 genes. In summary, LINC00355 is a potential oncogene with great potential as a diagnostic marker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Ming Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yufei Ke
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
86
|
Mai Z, Liu J, Jiang X, Gu W, Wang W, Li S, Schmalz G, Xiao H, Zhao J. Long noncoding RNA KCNMA1-AS1 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells by activating the SMAD9 signaling pathway. Biol Direct 2023; 18:81. [PMID: 38017487 PMCID: PMC10685465 DOI: 10.1186/s13062-023-00425-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
The human bone marrow mesenchymal stem cells (hBMSCs) undergo intense osteogenic differentiation, a crucial bone formation mechanism. Evidence from prior studies suggested an association between long noncoding RNAs (lncRNAs) and the osteogenic differentiation of hBMSCs. However, precise roles and molecular mechanisms are still largely unknown. In this work, we report for the first time that lncRNA KCNMA1 antisense RNA 1 (KCNMA1-AS1) plays a vital role in regulating hBMSCs' osteogenic differentiation. Here, it was observed that the KCNMA1-AS1 expression levels were significantly upregulated during osteogenic differentiation. In addition, KCNMA1-AS1 overexpression enhanced in vitro osteogenic differentiation of hBMSCs and in vivo bone formation, whereas knockdown of KCNMA1-AS1 resulted in the opposite result. Additionally, the interaction between KCNMA1-AS1 and mothers against decapentaplegic homolog 9 (SMAD9) was confirmed by an RNA pull-down experiment, mass spectrometry, and RIP assay. This interaction regulated the activation of the SMAD9 signaling pathway. Moreover, rescue assays demonstrated that the inhibitor of the SMAD9 signaling pathway reversed the stimulative effects on osteogenic differentiation of hBMSCs by KCNMA1-AS1 overexpression. Altogether, our results stipulate that KCNMA1-AS1 promotes osteogenic differentiation of hBMSCs via activating the SMAD9 signaling pathway and can serve as a biomarker and therapeutic target in treating bone defects.
Collapse
Affiliation(s)
- Zhaoyi Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingpeng Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Jiang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wenli Gu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Simin Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, 04103, Leipzig, Germany
| | - Hui Xiao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China.
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
87
|
Rizavi HS, Gavin HE, Krishnan HR, Gavin DP, Sharma RP. Ethanol- and PARP-Mediated Regulation of Ribosome-Associated Long Non-Coding RNA (lncRNA) in Pyramidal Neurons. Noncoding RNA 2023; 9:72. [PMID: 37987368 PMCID: PMC10661276 DOI: 10.3390/ncrna9060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023] Open
Abstract
Although, by definition, long noncoding RNAs (lncRNAs) are not translated, they are sometimes associated with ribosomes. In fact, some estimates suggest the existence of more than 50 K lncRNA molecules that could encode for small peptides. We examined the effects of an ethanol and Poly-ADP Ribose Polymerase (PARP) inhibitor (ABT-888) on ribosome-bound lncRNAs. Mice were administered via intraperitoneal injection (i.p.) either normal saline (CTL) or ethanol (EtOH) twice a day for four consecutive days. On the fourth day, a sub-group of mice administered with ethanol also received ABT-888 (EtOH+ABT). Ribosome-bound lncRNAs in CaMKIIα-expressing pyramidal neurons were measured using the Translating Ribosome Affinity Purification (TRAP) technique. Our findings show that EtOH altered the attachment of 107 lncRNA transcripts, while EtOH+ABT altered 60 lncRNAs. Among these 60 lncRNAs, 49 were altered by both conditions, while EtOH+ABT uniquely altered the attachment of 11 lncRNA transcripts that EtOH alone did not affect. To validate these results, we selected eight lncRNAs (Mir124-2hg, 5430416N02Rik, Snhg17, Snhg12, Snhg1, Mir9-3hg, Gas5, and 1110038B12Rik) for qRT-PCR analysis. The current study demonstrates that ethanol-induced changes in lncRNA attachment to ribosomes can be mitigated by the addition of the PARP inhibitor ABT-888.
Collapse
Affiliation(s)
- Hooriyah S. Rizavi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Hannah E. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
| | - Harish R. Krishnan
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - David P. Gavin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
| | - Rajiv P. Sharma
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.S.R.); (H.E.G.)
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
88
|
Peng PH, Chen JL, Wu HH, Yang WH, Lin LJ, Lai JCY, Chang JS, Syu JL, Wu HT, Hsu FT, Cheng WC, Hsu KW. Interplay between lncRNA RP11-367G18.1 variant 2 and YY1 plays a vital role in hypoxia-mediated gene expression and tumorigenesis. Cancer Cell Int 2023; 23:266. [PMID: 37941005 PMCID: PMC10634066 DOI: 10.1186/s12935-023-03067-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/15/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The hypoxia-responsive long non-coding RNA, RP11-367G18.1, has recently been reported to induce histone 4 lysine 16 acetylation (H4K16Ac) through its variant 2; however, the underlying molecular mechanism remains poorly understood. METHODS RNA pull-down assay and liquid chromatography-tandem mass spectrometry were performed to identify RP11-367G18.1 variant 2-binding partner. The molecular events were examined utilizing western blot analysis, real-time PCR, luciferase reporter assay, chromatin immunoprecipitation, and chromatin isolation by RNA purification assays. The migration, invasion, soft agar colony formation, and in vivo xenograft experiments were conducted to evaluate the impact of RP11-367G18.1 variant 2-YY1 complex on tumor progression. RESULTS In this study, RNA sequencing data revealed that hypoxia and RP11-367G18.1 variant 2 co-regulated genes were enriched in tumor-related pathways. YY1 was identified as an RP11-367G18.1 variant 2-binding partner that activates the H4K16Ac mark. YY1 was upregulated under hypoxic conditions and served as a target gene for hypoxia-inducible factor-1α. RP11-367G18.1 variant 2 colocalized with YY1 and H4K16Ac in the nucleus under hypoxic conditions. Head and neck cancer tissues had higher levels of RP11-367G18.1 and YY1 which were associated with poor patient outcomes. RP11-367G18.1 variant 2-YY1 complex contributes to hypoxia-induced epithelial-mesenchymal transition, cell migration, invasion, and tumorigenicity. YY1 regulated hypoxia-induced genes dependent on RP11-367G18.1 variant 2. CONCLUSIONS RP11-367G18.1 variant 2-YY1 complex mediates the tumor-promoting effects of hypoxia, suggesting that this complex can be targeted as a novel therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih- Pai Road, Taipei, 112, Taiwan
| | - Heng-Hsiung Wu
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 40402, Taiwan
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan
| | - Li-Jie Lin
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, 40402, Taiwan
| | - Joseph Chieh-Yu Lai
- Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan
| | - Jeng-Shou Chang
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, 333, Taiwan
| | - Jia-Ling Syu
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan
| | - Han-Tsang Wu
- Cancer Research Center, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Wei-Chung Cheng
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 40402, Taiwan.
- The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, 40402, Taiwan.
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, China Medical University, Taichung, 40402, Taiwan.
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 40402, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
89
|
Dong H, Yang C, Chen X, Sun H, He X, Wang W. Breast cancer-derived exosomal lncRNA SNHG14 induces normal fibroblast activation to cancer-associated fibroblasts via the EBF1/FAM171A1 axis. Breast Cancer 2023; 30:1028-1040. [PMID: 37653187 DOI: 10.1007/s12282-023-01496-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Exosomes released from cancer cells can activate normal fibroblasts (NFs) into cancer-associated fibroblasts (CAFs), which promotes cancer development. Our study aims to explore the role and potential mechanisms of breast cancer exosomes-delivered long non-coding RNA (lncRNA) SNHG14 in regulating CAFs transformation. METHODS Adjacent normal tissues, cancerous and serum specimens were gathered in breast cancer patients. Exosomes and NFs were separated from breast cancer cells (SKBR-3) and normal tissues of patients, respectively. Cell viability and migration were measured with CCK-8 and Transwell assays. CAFs markers, fibroblast activation protein (FAP) and a-smooth muscle actin (α-SMA) were detected for assessing CAFs activation. The interactions between molecules were evaluated using dual luciferase reporter assay, RNA immunoprecipitation and chromatin immunoprecipitation. RESULTS SNHG14 and FAM171A1 were upregulated in breast cancer. Exosomes secreted by SKBR-3 cells induced NFs activation in CAFs, as indicated by upregulating CAFs marker levels and facilitated cell viability and migration. Exosomal SNHG14 silencing in SKBR-3 cells inhibited CAFs activation. SNHG14 positively regulated FAM171A1 expression through EBF1. FAM171A1 overexpression eliminated the inhibition effect of exosomal SNHG14 silencing in CAFs transformation. CONCLUSION Breast cancer-derived exosomal SNHG14 contributed to NFs transformation into CAFs by the EBF1/FAM171A1 axis.
Collapse
Affiliation(s)
- Huaying Dong
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Changcheng Yang
- Department of Oncology, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan Province, People's Republic of China
| | - Xiang Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Hening Sun
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Xionghui He
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China
| | - Wei Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, No 19, Xiuhua Road, Xiuying District, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
90
|
Zheng W, Chen Y, Wang Y, Chen S, Xu XW. Genome-Wide Identification and Involvement in Response to Biotic and Abiotic Stresses of lncRNAs in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:15870. [PMID: 37958851 PMCID: PMC10648414 DOI: 10.3390/ijms242115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the genome-wide level of turbot for the first time using 24 RNA-seq datasets. Sequence characteristic analyses of transcripts showed that lncRNA transcripts were shorter in average length, lower in average GC content and in average expression level as compared to the coding genes. Expression pattern analyses of lncRNAs in 12 distinct tissues showed that lncRNAs, especially lincRNA, exhibited stronger tissue-specific expression than coding genes. Moreover, 612, 1351, 1060, 875, 420 and 1689 differentially expressed (DE) lncRNAs under Vibrio anguillarum, Enteromyxum scophthalmi, and Megalocytivirus infection and heat, oxygen, and salinity stress conditions were identified, respectively. Among them, 151 and 62 lncRNAs showed differential expression under various abiotic and biotic stresses, respectively, and 11 lncRNAs differentially expressed under both abiotic and biotic stresses were selected as comprehensive stress-responsive lncRNA candidates. Furthermore, expression pattern analysis and qPCR validation both verified the comprehensive stress-responsive functions of these 11 lncRNAs. In addition, 497 significantly co-expressed target genes (correlation coefficient (R) > 0.7 and q-value < 0.05) for these 11 comprehensive stress-responsive lncRNA candidates were identified. Finally, GO and KEGG enrichment analyses indicated that these target genes were enriched mainly in molecular function, such as cytokine activity and active transmembrane transporter activity, in biological processes, such as response to stimulus and immune response, and in pathways, such as protein families: signaling and cellular processes, transporters and metabolism. These findings not only provide valuable reference resources for further research on the molecular basis and function of lncRNAs in turbot but also help to accelerate the progress of molecularly selective breeding of stress-resistant turbot strains or varieties.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
| | - Yadong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Yaning Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xi-wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
91
|
Li Y, Sun W, Li J, Du R, Xing W, Yuan X, Zhong G, Zhao D, Liu Z, Jin X, Pan J, Li Y, Li Q, Kan G, Han X, Ling S, Sun X, Li Y. HuR-mediated nucleocytoplasmic translocation of HOTAIR relieves its inhibition of osteogenic differentiation and promotes bone formation. Bone Res 2023; 11:53. [PMID: 37872163 PMCID: PMC10593784 DOI: 10.1038/s41413-023-00289-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 10/25/2023] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.
Collapse
Affiliation(s)
- Yuheng Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- The Center of Space Bio-Medicine, Beijing Institute of Technology, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Wenjuan Xing
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xinxin Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Junjie Pan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Qi Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guanghan Kan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xuan Han
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Xiqing Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.
| |
Collapse
|
92
|
Sun M, Li K, Li X, Wang H, Li L, Zheng G. lncRNA TUG1 regulates Smac/DIABLO expression by competitively inhibiting miR-29b and modulates the apoptosis of lens epithelial cells in age-related cataracts. Chin Med J (Engl) 2023; 136:2340-2350. [PMID: 37185343 PMCID: PMC10538928 DOI: 10.1097/cm9.0000000000002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND As one of the early discovered long non-coding RNAs (lncRNA), taurine upregulation gene 1 ( TUG1 ) has been widely expressed in a variety of tumors. Moreover, it promotes cell proliferation, differentiation, apoptosis, and migration. However, our understanding of its importance in the pathogenesis of cataracts remains limited. This study aimed to explore the mechanism by which lncRNA TUG1 mediates lens epithelial cell apoptosis in age-related cataracts (ARC) by regulating the microRNAs (miR-29b)/second mitochondria-derived activator of caspases axis, and to identify more non-surgical strategies for cataract treatment. METHODS The messenger RNA expression levels of TUG1 , miR-29b, and Smac were detected using quantitative real-time polymerase chain reaction in vivo and in vitro . The expression of the Smac protein was analyzed by Western blotting and immunofluorescence. Flow cytometry and cell counting kit-8 assays were used to detect the cell apoptosis and proliferation rates, respectively. The targeted regulatory relationship between lncRNA TUG1 , miR-29b, and Smac was verified by viral vector construction, co-transfection, nuclear and cytoplasmic separation, luciferase reporter assays, and RNA immunoprecipitation. RESULTS TUG1 and Smac were expressed at high levels in ARC and HLE-B3 cells treated with 200 μmol/L H 2 O 2 , whereas miR-29b expression was decreased. In vitro cell experiments confirmed that down-regulation of TUG1 could inhibit the apoptosis of lens epithelial cells. Mechanistically, Smac expression was negatively regulated by miR-29b. TUG1 competitively inhibited miR-29b expression and caused greater release of Smac. In addition, miR-29b partially reversed the effects of TUG1 on human lens epithelial cell line cells. CONCLUSIONS lncRNA TUG1 increases Smac expression and promotes apoptosis of lens epithelial cells in ARC by competitively inhibiting miR-29b. This mechanism is the cytological basis for ARC formation. Based on these results, the lncRNA TUG1/miR29b/Smac axis may be a new molecular pathway that regulates ARC development.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
- Department of Ophthalmology, Luohe City Central Hospital, Luohe, Henan 462000, China
| | - Ke Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiao Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Huajun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Li Li
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| |
Collapse
|
93
|
Trewin AJ, Weeks KL, Wadley GD, Lamon S. Regulation of mitochondrial calcium uniporter expression and calcium-dependent cell signaling by lncRNA Tug1 in cardiomyocytes. Am J Physiol Cell Physiol 2023; 325:C1097-C1105. [PMID: 37721002 DOI: 10.1152/ajpcell.00339.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Cardiomyocyte calcium homeostasis is a tightly regulated process. The mitochondrial calcium uniporter (MCU) complex can buffer elevated cytosolic Ca2+ levels and consists of pore-forming proteins including MCU, and various regulatory proteins such as mitochondrial calcium uptake proteins 1 and 2 (MICU1/2). The stoichiometry of these proteins influences the sensitivity to Ca2+ and the activity of the complex. However, the factors that regulate their gene expression remain incompletely understood. Long noncoding RNAs (lncRNAs) regulate gene expression through various mechanisms, and we recently found that the lncRNA Tug1 increased the expression of Mcu and associated genes. To further explore this, we performed antisense LNA knockdown of Tug1 (Tug1 KD) in H9c2 rat cardiomyocytes. Tug1 KD increased MCU protein expression, yet pyruvate dehydrogenase dephosphorylation, which is indicative of mitochondrial Ca2+ uptake, was not enhanced. However, RNA-seq revealed that Tug1 KD increased Mcu along with differential expression of >1,000 genes including many related to Ca2+ regulation pathways in the heart. To understand the effect of this on Ca2+ signaling, we measured phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its downstream target cAMP Response Element-Binding protein (CREB), a transcription factor known to drive Mcu gene expression. In response to a Ca2+ stimulus, the increase in CaMKII and CREB phosphorylation was attenuated by Tug1 KD. Inhibition of CaMKII, but not CREB, partially prevented the Tug1 KD-mediated increase in Mcu. Together, these data suggest that Tug1 modulates MCU expression via a mechanism involving CaMKII and regulates cardiomyocyte Ca2+ signaling, which could have important implications for cardiac function.NEW & NOTEWORTHY Calcium is essential for signaling, excitation contraction, and energy homeostasis in the heart. Despite this, molecular regulators of these processes are not completely understood. We report that knockdown of lncRNA Tug1 alters the calcium handling transcriptome and increases mitochondrial calcium uniporter expression via a mechanism involving CaMKII. As overexpression of MCU is known to be protective against pathological cardiac remodeling, targeting Tug1 may be a potential strategy for treating cardiovascular disease.
Collapse
Affiliation(s)
- Adam J Trewin
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Glenn D Wadley
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| | - Séverine Lamon
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
94
|
Shankar P, Villeneuve DL. AOP Report: Aryl Hydrocarbon Receptor Activation Leads to Early-Life Stage Mortality via Sox9 Repression-Induced Craniofacial and Cardiac Malformations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2063-2077. [PMID: 37341548 PMCID: PMC10772968 DOI: 10.1002/etc.5699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
The aryl hydrocarbon receptors (Ahrs) are evolutionarily conserved ligand-dependent transcription factors that are activated by structurally diverse endogenous compounds as well as environmental chemicals such as polycyclic aromatic hydrocarbons and halogenated aromatic hydrocarbons. Activation of the Ahr leads to several transcriptional changes that can cause developmental toxicity resulting in mortality. Evidence was assembled and evaluated for two novel adverse outcome pathways (AOPs) which describe how Ahr activation (molecular initiating event) can lead to early-life stage mortality (adverse outcome), via either SOX9-mediated craniofacial malformations (AOP 455) or cardiovascular toxicity (AOP 456). Using a key event relationship (KER)-by-KER approach, we collected evidence using both a narrative search and a systematic review based on detailed search terms. Weight of evidence for each KER was assessed to inform overall confidence of the AOPs. The AOPs link to previous descriptions of Ahr activation and connect them to two novel key events (KEs), increase in slincR expression, a newly characterized long noncoding RNA with regulatory functions, and suppression of SOX9, a critical transcription factor implicated in chondrogenesis and cardiac development. In general, confidence levels for KERs ranged between medium and strong, with few inconsistencies, as well as several opportunities for future research identified. While the majority of KEs have only been demonstrated in zebrafish with 2,3,7,8-tetrachlorodibenzo-p-dioxin as an Ahr activator, evidence suggests that the two AOPs likely apply to most vertebrates and many Ahr-activating chemicals. Addition of the AOPs into the AOP-Wiki (https://aopwiki.org/) helps expand the growing Ahr-related AOP network to 19 individual AOPs, of which six are endorsed or in progress and the remaining 13 relatively underdeveloped. Environ Toxicol Chem 2023;42:2063-2077. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Prarthana Shankar
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
- University of Wisconsin Madison Sea Grant Fellow at Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L. Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
95
|
Patlar B, Fulham L, Civetta A. A predominant role of genotypic variation in both expression of sperm competition genes and paternity success in Drosophila melanogaster. Proc Biol Sci 2023; 290:20231715. [PMID: 37727083 PMCID: PMC10509582 DOI: 10.1098/rspb.2023.1715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Sperm competition is a crucial aspect of male reproductive success in many species, including Drosophila melanogaster, and seminal fluid proteins (Sfps) can influence sperm competitiveness. However, the combined effect of environmental and genotypic variation on sperm competition gene expression remains poorly understood. Here, we used Drosophila Genetic Reference Panel (DGRP) inbred lines and manipulated developmental population density (i.e. larval density) to test the effects of genotype, environment and genotype-by-environment interactions (GEI) on the expression of the known sperm competition genes Sex Peptide, Acp36DE and CG9997. High larval density resulted in reduced adult body size, but expression of sperm competition genes remained unaffected. Furthermore, we found no significant GEI but genotypic effects in the expression of SP and Acp36DE. Our results also revealed GEI for relative competitive paternity success (second male paternity; P2), with genes' expression positively correlated with P2. Given the effect of genotype on the expression of genes, we conducted a genome-wide association study (GWAS) and identified polymorphisms in putative cis-regulatory elements as predominant factors regulating the expression of SP and Acp36DE. The association of genotypic variation with sperm competition outcomes, and the resilience of sperm competition genes' expression against environmental challenges, demonstrates the importance of genome variation background in reproductive fitness.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Lauren Fulham
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9
| |
Collapse
|
96
|
Song J, Gooding AR, Hemphill WO, Love BD, Robertson A, Yao L, Zon LI, North TE, Kasinath V, Cech TR. Structural basis for inactivation of PRC2 by G-quadruplex RNA. Science 2023; 381:1331-1337. [PMID: 37733873 PMCID: PMC11191771 DOI: 10.1126/science.adh0059] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Polycomb repressive complex 2 (PRC2) silences genes through trimethylation of histone H3K27. PRC2 associates with numerous precursor messenger RNAs (pre-mRNAs) and long noncoding RNAs (lncRNAs) with a binding preference for G-quadruplex RNA. In this work, we present a 3.3-Å-resolution cryo-electron microscopy structure of PRC2 bound to a G-quadruplex RNA. Notably, RNA mediates the dimerization of PRC2 by binding both protomers and inducing a protein interface composed of two copies of the catalytic subunit EZH2, thereby blocking nucleosome DNA interaction and histone H3 tail accessibility. Furthermore, an RNA-binding loop of EZH2 facilitates the handoff between RNA and DNA, another activity implicated in PRC2 regulation by RNA. We identified a gain-of-function mutation in this loop that activates PRC2 in zebrafish. Our results reveal mechanisms for RNA-mediated regulation of a chromatin-modifying enzyme.
Collapse
Affiliation(s)
- Jiarui Song
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Anne R. Gooding
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Wayne O. Hemphill
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Brittney D. Love
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Anne Robertson
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Liqi Yao
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Leonard I. Zon
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Trista E. North
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA 02138, USA
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Vignesh Kasinath
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Thomas R. Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
97
|
Wang B, Ma L, Guo X, Du S, Feng X, Liang Y, Govindarajalu G, Wu S, Liu T, Li H, Patel S, Bekker A, Hu H, Tao YX. A sensory neuron-specific long non-coding RNA reduces neuropathic pain by rescuing KCNN1 expression. Brain 2023; 146:3866-3884. [PMID: 37012681 PMCID: PMC10473565 DOI: 10.1093/brain/awad110] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Nerve injury to peripheral somatosensory system causes refractory neuropathic pain. Maladaptive changes of gene expression in primary sensory neurons are considered molecular basis of this disorder. Long non-coding RNAs (lncRNAs) are key regulators of gene transcription; however, their significance in neuropathic pain remains largely elusive.Here, we reported a novel lncRNA, named sensory neuron-specific lncRNA (SS-lncRNA), for its expression exclusively in dorsal root ganglion (DRG) and trigeminal ganglion. SS-lncRNA was predominantly expressed in small DRG neurons and significantly downregulated due to a reduction of early B cell transcription factor 1 in injured DRG after nerve injury. Rescuing this downregulation reversed a decrease of the calcium-activated potassium channel subfamily N member 1 (KCNN1) in injured DRG and alleviated nerve injury-induced nociceptive hypersensitivity. Conversely, DRG downregulation of SS-lncRNA reduced the expression of KCNN1, decreased total potassium currents and afterhyperpolarization currents and increased excitability in DRG neurons and produced neuropathic pain symptoms.Mechanistically, downregulated SS-lncRNA resulted in the reductions of its binding to Kcnn1 promoter and heterogeneous nuclear ribonucleoprotein M (hnRNPM), consequent recruitment of less hnRNPM to the Kcnn1 promoter and silence of Kcnn1 gene transcription in injured DRG.These findings indicate that SS-lncRNA may relieve neuropathic pain through hnRNPM-mediated KCNN1 rescue in injured DRG and offer a novel therapeutic strategy specific for this disorder.
Collapse
Affiliation(s)
- Bing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Longfei Ma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xinying Guo
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yingping Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Gokulapriya Govindarajalu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Tong Liu
- Center for Advanced Proteomics Research, Departments of Biochemistry, Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Hong Li
- Center for Advanced Proteomics Research, Departments of Biochemistry, Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shivam Patel
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Huijuan Hu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Physiology, Pharmacology and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
98
|
Hamilton DJ, Hein AE, Wuttke DS, Batey RT. The DNA binding high mobility group box protein family functionally binds RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1778. [PMID: 36646476 PMCID: PMC10349909 DOI: 10.1002/wrna.1778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Nucleic acid binding proteins regulate transcription, splicing, RNA stability, RNA localization, and translation, together tailoring gene expression in response to stimuli. Upon discovery, these proteins are typically classified as either DNA or RNA binding as defined by their in vivo functions; however, recent evidence suggests dual DNA and RNA binding by many of these proteins. High mobility group box (HMGB) proteins have a DNA binding HMGB domain, act as transcription factors and chromatin remodeling proteins, and are increasingly understood to interact with RNA as means to regulate gene expression. Herein, multiple layers of evidence that the HMGB family are dual DNA and RNA binding proteins is comprehensively reviewed. For example, HMGB proteins directly interact with RNA in vitro and in vivo, are localized to RNP granules involved in RNA processing, and their protein interactors are enriched in RNA binding proteins involved in RNA metabolism. Importantly, in cell-based systems, HMGB-RNA interactions facilitate protein-protein interactions, impact splicing outcomes, and modify HMGB protein genomic or cellular localization. Misregulation of these HMGB-RNA interactions are also likely involved in human disease. This review brings to light that as a family, HMGB proteins are likely to bind RNA which is essential to HMGB protein biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
|
99
|
Peng Y, Zhang Y, Liu Y, Dong Z, Wang T, Peng F, Di W, Zong D, Du M, Zhou H, He X. LINC01376 promotes nasopharyngeal carcinoma tumorigenesis by competitively binding to the SP1/miR-4757/IGF1 axis. IUBMB Life 2023; 75:702-716. [PMID: 36973940 DOI: 10.1002/iub.2721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 03/29/2023]
Abstract
The long non-coding RNA (lncRNA)-microRNA (miRNA) interaction network plays a crucial part in the pathogenesis of nasopharyngeal carcinoma (NPC). Here, we discovered a relationship between LINC01376 and miR-4757 in NPC tumor development. First, LINC01376 was abnormally overexpressed in NPC tissues and cells, and its elevated expression was associated with advanced clinical stage and shorter distant metastasis-free survival time. Moreover, biological experiments showed that LINC01376 facilitated the proliferative, invasive, and migratory abilities of NPC cells in vitro and in vivo. Mechanistically, bioinformatics and RT-qPCR assays revealed that LINC01376 knockdown upregulated the expression level of downstream miR-4757, including miR-4757 primary transcript (pri-miR-4757) and mature miR-4757. Furthermore, LINC01376 competitively sponged the transcription factor SP1 and reduced its enrichment in the upstream promoter region of miR-4757 to repress miR-4757 expression. Finally, insulin-like growth factor 1(IGF1) was identified as the target of miR-4757. Rescue experiments indicated that LINC01376 accelerated NPC cell proliferation, migration, and invasion through the miR-4757-5p/IGF1 axis. In conclusion, the SP1/miR-4757/IGF1 axis, which is regulated by LINC01376 in NPC deterioration and metastasis, is expected to provide new insights into the molecular mechanism of NPC carcinogenesis.
Collapse
Affiliation(s)
- Yi Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yujie Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yatian Liu
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhen Dong
- Department of Radiotherapy, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Wang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Wenyi Di
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Dan Zong
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hongping Zhou
- Department of Radiotherapy, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
100
|
Al-Hawary SIS, Kashikova K, Ioffe EM, Izbasarova A, Hjazi A, Tayyib NA, Alsalamy A, Hussien BM, Hameed M, Abdalkareem MJ. Pathological role of LncRNAs in immune-related disease via regulation of T regulatory cells. Pathol Res Pract 2023; 249:154709. [PMID: 37586216 DOI: 10.1016/j.prp.2023.154709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Human regulatory T cells (Tregs) are essential in pathogenesis of several diseases such as autoimmune diseases and cancers, and their imbalances may be promoting factor in these disorders. The development of the proinflammatory T cell subset TH17 and its balance with the generation of regulatory T cells (Treg) is linked to autoimmune disease and cancers. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in a variety of diseases and can regulate the expression of significant genes at multiple levels through epigenetic regulation and by modulating transcription, post-transcriptional processes, translation, and protein modification. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structural makeup. LncRNAs are implicated in a range of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. In this regard, a prominent example is lncRNA NEAT1 which several studies have performed to determine its role in the differentiation of immune cells. Many other lncRNAs have been linked to Treg cell differentiation in the context of immune cell differentiation. In this study, we review recent research on the various roles of lncRNAs in differentiation of Treg cell and regulation of the Th17/Treg balance in autoimmune diseases and tumors in which T regs play an important role.
Collapse
Affiliation(s)
| | - Khadisha Kashikova
- Caspian University, International School of Medicine, Almaty, Kazakhstan
| | - Elena M Ioffe
- Department of Military Clinical Hospital, Ministry of Defence, Almaty, Kazakhstan.
| | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mohamood Hameed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|