51
|
Eriksen C, Moll JM, Myers PN, Pinto ARA, Danneskiold-Samsøe NB, Dehli RI, Rosholm LB, Dalgaard MD, Penders J, Jonkers DM, Pan-Hammarström Q, Hammarström L, Kristiansen K, Brix S. IgG and IgM cooperate in coating of intestinal bacteria in IgA deficiency. Nat Commun 2023; 14:8124. [PMID: 38065985 PMCID: PMC10709418 DOI: 10.1038/s41467-023-44007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Immunoglobulin A (IgA) is acknowledged to play a role in the defence of the mucosal barrier by coating microorganisms. Surprisingly, IgA-deficient humans exhibit few infection-related complications, raising the question if the more specific IgG may help IgM in compensating for the lack of IgA. Here we employ a cohort of IgA-deficient humans, each paired with IgA-sufficient household members, to investigate multi-Ig bacterial coating. In IgA-deficient humans, IgM alone, and together with IgG, recapitulate coating of most bacterial families, despite an overall 3.6-fold lower Ig-coating. Bacterial IgG coating is dominated by IgG1 and IgG4. Single-IgG2 bacterial coating is sparse and linked to enhanced Escherichia coli load and TNF-α. Although single-IgG2 coating is 1.6-fold more prevalent in IgA deficiency than in healthy controls, it is 2-fold less prevalent than in inflammatory bowel disease. Altogether we demonstrate that IgG assists IgM in coating of most bacterial families in the absence of IgA and identify single-IgG2 bacterial coating as an inflammatory marker.
Collapse
Affiliation(s)
- Carsten Eriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Janne Marie Moll
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pernille Neve Myers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ana Rosa Almeida Pinto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Rasmus Ibsen Dehli
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lisbeth Buus Rosholm
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - John Penders
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, NUTRIM School for Nutrition and Translational Research in Metabolism & Care and Public Health Research Institute CAPHRI, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daisy Mae Jonkers
- Division Gastroenterology-Hepatology, Department of Internal Medicine, NUTRIM School for Nutrition and Translation Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Karsten Kristiansen
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- BGI-Shenzhen, Shenzhen, China
- Qingdao-Europe Advanced Institute for Life Sciences, Qingdao, Shandong, China
| | - Susanne Brix
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.
- Center for Molecular Prediction of Inflammatory Bowel Disease, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark.
| |
Collapse
|
52
|
Paardekooper LM, Fillié-Grijpma YE, van der Sluijs-Gelling AJ, Zlei M, van Doorn R, Vermeer MH, Paunovic M, Titulaer MJ, van der Maarel SM, van Dongen JJM, Verschuuren JJ, Huijbers MG. Autoantibody subclass predominance is not driven by aberrant class switching or impaired B cell development. Clin Immunol 2023; 257:109817. [PMID: 37925120 DOI: 10.1016/j.clim.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.
Collapse
Affiliation(s)
| | | | | | - Mihaela Zlei
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco van Doorn
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maarten H Vermeer
- Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Manuela Paunovic
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten J Titulaer
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Jacques J M van Dongen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands; Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CIC-IBMCC, USAL-CSIC-FICUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
53
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
54
|
Rispens T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nat Rev Immunol 2023; 23:763-778. [PMID: 37095254 PMCID: PMC10123589 DOI: 10.1038/s41577-023-00871-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
IgG4 is the least abundant subclass of IgG in human serum and has unique functional features. IgG4 is largely unable to activate antibody-dependent immune effector responses and, furthermore, undergoes Fab (fragment antigen binding)-arm exchange, rendering it bispecific for antigen binding and functionally monovalent. These properties of IgG4 have a blocking effect, either on the immune response or on the target protein of IgG4. In this Review, we discuss the unique structural characteristics of IgG4 and how these contribute to its roles in health and disease. We highlight how, depending on the setting, IgG4 responses can be beneficial (for example, in responses to allergens or parasites) or detrimental (for example, in autoimmune diseases, in antitumour responses and in anti-biologic responses). The development of novel models for studying IgG4 (patho)physiology and understanding how IgG4 responses are regulated could offer insights into novel treatment strategies for these IgG4-associated disease settings.
Collapse
Affiliation(s)
- Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
55
|
Kappen J, Diamant Z, Agache I, Bonini M, Bousquet J, Canonica GW, Durham SR, Guibas GV, Hamelmann E, Jutel M, Papadopoulos NG, Roberts G, Shamji MH, Zieglmayer P, Gerth van Wijk R, Pfaar O. Standardization of clinical outcomes used in allergen immunotherapy in allergic asthma: An EAACI position paper. Allergy 2023; 78:2835-2850. [PMID: 37449468 DOI: 10.1111/all.15817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION In allergic asthma patients, one of the more common phenotypes might benefit from allergen immunotherapy (AIT) as add-on intervention to pharmacological treatment. AIT is a treatment with disease-modifying modalities, the evidence for efficacy is based on controlled clinical trials following standardized endpoint measures. However, so far there is a lack of a consensus for asthma endpoints in AIT trials. The aim of a task force (TF) of the European Academy of Allergy and Clinical Immunology (EAACI) is evaluating several outcome measures for AIT in allergic asthma. METHODS The following domains of outcome measures in asthmatic patients have been evaluated for this position paper (PP): (i) exacerbation rate, (ii) lung function, (iii) ICS withdrawal, (iv) symptoms and rescue medication use, (v) questionnaires (PROMS), (vi) bronchial/nasal provocation, (vii) allergen exposure chambers (AEC) and (viii) biomarkers. RESULTS Exacerbation rate can be used as a reliable objective primary outcome; however, there is limited evidence due to different definitions of exacerbation. The time after ICS withdrawal to first exacerbation is considered a primary outcome measure. Besides, the advantages and disadvantages and clinical implications of further domains of asthma endpoints in AIT trials are elaborated in this PP. CONCLUSION This EAACI-PP aims to highlight important aspects of current asthma measures by critically evaluating their applicability for controlled trials of AIT.
Collapse
Affiliation(s)
- Jasper Kappen
- Department of Pulmonology, STZ Centre of Excellence for Asthma, COPD and Respiratory Allergy, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
| | - Zuzana Diamant
- Departmentt of Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine & Allergology, Institute for Clinical Science, Skane University Hospital, Lund University, Lund, Sweden
- Department of Clinical Pharmacy & Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | | | - Matteo Bonini
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- Department of Cardiovascular and Thoracic Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Clinical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Jean Bousquet
- Charite Universitatsmedizin Berlin Campus Berlin Buch, MASK-air, Montpellier, France
| | - G Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic Humanitas University & Research Hospital-IRCCS, Milan, Italy
| | - Stephen R Durham
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - George V Guibas
- Department of Allergy and Clinical Immunology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK
- School of Biological Sciences, Medicine and Health, University of Manchester, Manchester, UK
| | - Eckard Hamelmann
- Children's Center Bethel, University Hospital Bielefeld, University Bielefeld, Bielefeld, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | | | - Graham Roberts
- The David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, UK
- NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Paediatric Allergy and Respiratory Medicine (MP803), Clinical & Experimental Sciences & Human Development in Health Academic Units University of Southampton Faculty of Medicine & University Hospital Southampton, Southampton, UK
| | - Mohamed H Shamji
- Department of National Heart and Lung Institute, Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Imperial College London, London, UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Petra Zieglmayer
- Karl Landsteiner University, Competence Center for Allergology and Immunology, Krems, Austria
| | - Roy Gerth van Wijk
- Section of Allergology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
56
|
Xiang D, Li N, Liu L, Yu H, Li X, Zhao T, Liu D, Gong X. Development and validation of enzyme-linked immunosorbent assays for the measurement of infliximab and anti-drug antibody levels. Heliyon 2023; 9:e21858. [PMID: 38034789 PMCID: PMC10682623 DOI: 10.1016/j.heliyon.2023.e21858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Infliximab and its anti-drug antibody (ADA) serum concentrations exhibit a strong correlation with clinical response and loss of response. The use of therapeutic drug monitoring to measure the concentration of infliximab and ADA can facilitate clinical decision-making, helping patients attain optimal therapeutic effects. However, there are still limitations to the existing infliximab and its ADA detection methods. Therefore, this study aimed to develop and validate enzyme-linked immunosorbent assay (ELISA)-based methods for measuring infliximab and its ADA levels in human plasma according to the general recommendations for immunoassays. Free infliximab is bound by recombinant TNF-α and detected using HRP-labeled anti-human antibody. The ADA is captured by on-plate-coated infliximab and recognized by biotin-labeled infliximab. Two bridging ELISA assays were developed and after assay optimization and validation, these assays have been applied in ten patients with inflammatory bowel disease (IBD). In infliximab detection assay, a standard curve ranging from 0.10 μg/mL to 8.0 μg/mL with great precision and accuracy has been established. Drug tolerance of the ADA assay was that 100 ng/mL ADA could tolerate at least 5.0 μg/mL infliximab in the plasma using a commercially available monoclonal anti-infliximab antibody as the positive control. The ADA screening and confirmatory assays achieved a sensitivity of 36.74 ng/mL and 37.15 ng/mL, respectively. All other assay characteristics met the requirements. The mean concentration of infliximab in eight patients with IBD was 7.88 (1.87-21.1) μg/mL, and the ADA levels were all negative. Moreover, the concentrations of infliximab in the remaining two patients were below the LLOQ and the ADAs were positive. Thus, accurate and sensitive ELISA methods have been developed and validated for the detection of infliximab and its ADA concentrations and have been successfully applied to clinical therapeutic drug monitoring.
Collapse
Affiliation(s)
- Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ninghong Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pharmacy, Nanchang First Hospital, Nanchang, 330008, China
| | - Lu Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hengyi Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiping Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tinghui Zhao
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuepeng Gong
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
57
|
Kadkhoda K. Post-COVID mRNA-vaccine IgG4 shift: worrisome? mSphere 2023; 8:e0008523. [PMID: 37191589 PMCID: PMC10449502 DOI: 10.1128/msphere.00085-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
COVID-19 vaccines play a key role in ending the pandemic. Unraveling the immunological phenomena involved in offering protective immunity is the cornerstone of achieving such success. This perspective evaluates the possible mechanisms and implications of IgG4 production in response to mRNA-based COVID-19 vaccines.
Collapse
Affiliation(s)
- Kamran Kadkhoda
- Immunopathology Laboratory, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
58
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
59
|
Tolmacheva AS, Onvumere MK, Sedykh SE, Timofeeva AM, Nevinsky GA. Catalase Activity of IgGs of Patients Infected with SARS-CoV-2. Int J Mol Sci 2023; 24:10081. [PMID: 37373231 DOI: 10.3390/ijms241210081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease (COVID-19), caused by the SARS-CoV-2 coronavirus, leads to various manifestations of the post-COVID syndrome, including diabetes, heart and kidney disease, thrombosis, neurological and autoimmune diseases and, therefore, remains, so far, a significant public health problem. In addition, SARS-CoV-2 infection can lead to the hyperproduction of reactive oxygen species (ROS), causing adverse effects on oxygen transfer efficiency, iron homeostasis, and erythrocytes deformation, contributing to thrombus formation. In this work, the relative catalase activity of the serum IgGs of patients recovered from COVID-19, healthy volunteers vaccinated with Sputnik V, vaccinated with Sputnik V after recovering from COVID-19, and conditionally healthy donors were analyzed for the first time. Previous reports show that along with canonical antioxidant enzymes, the antibodies of mammals with superoxide dismutase, peroxidase, and catalase activities are involved in controlling reactive oxygen species levels. We here show that the IgGs from patients who recovered from COVID-19 had the highest catalase activity, and this was statistically significantly higher each compared to the healthy donors (1.9-fold), healthy volunteers vaccinated with Sputnik V (1.4-fold), and patients vaccinated after recovering from COVID-19 (2.1-fold). These data indicate that COVID-19 infection may stimulate the production of antibodies that degrade hydrogen peroxide, which is harmful at elevated concentrations.
Collapse
Affiliation(s)
- Anna S Tolmacheva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Margarita K Onvumere
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Sergey E Sedykh
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Anna M Timofeeva
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- Institute of Chemical Biology and Fundamental Medicine, SB of the RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
60
|
Underwood MI, Alwan F, Thomas MR, Scully MA, Crawley JTB. Autoantibodies enhance ADAMTS-13 clearance in patients with immune thrombotic thrombocytopenic purpura. J Thromb Haemost 2023; 21:1544-1552. [PMID: 36813118 DOI: 10.1016/j.jtha.2023.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Severe deficiency in ADAMTS-13 (<10%) and the loss of von Willebrand factor-cleaving function can precipitate microvascular thrombosis associated with thrombotic thrombocytopenic purpura (TTP). Patients with immune-mediated TTP (iTTP) have anti-ADAMTS-13 immunoglobulin G antibodies that inhibit ADAMTS-13 function and/or increase ADAMTS-13 clearance. Patients with iTTP are treated primarily by plasma exchange (PEX), often in combination with adjunct therapies that target either the von Willebrand factor-dependent microvascular thrombotic processes (caplacizumab) or the autoimmune components (steroids or rituximab) of the disease. OBJECTIVES To investigate the contributions of autoantibody-mediated ADAMTS-13 clearance and inhibition in patients with iTTP at presentation and through the course of the PEX therapy. PATIENTS/METHODS Anti-ADAMTS-13 immunoglobulin G antibodies, ADAMTS-13 antigen, and activity were measured before and after each PEX in 17 patients with iTTP and 20 acute TTP episodes. RESULTS At presentation, 14 out of 15 patients with iTTP had ADAMTS-13 antigen levels of <10%, suggesting a major contribution of ADAMTS-13 clearance to the deficiency state. After the first PEX, both ADAMTS-13 antigen and activity levels increased similarly, and the anti-ADAMTS-13 autoantibody titer decreased in all patients, revealing ADAMTS-13 inhibition to be a modest modifier of the ADAMTS-13 function in iTTP. Analysis of ADAMTS-13 antigen levels between consecutive PEX treatments revealed that the rate of ADAMTS-13 clearance in 9 out of 14 patients analyzed was 4- to 10-fold faster than the estimated normal rate of clearance. CONCLUSION These data reveal, both at presentation and during PEX treatment, that antibody-mediated clearance of ADAMTS-13 is the major pathogenic mechanism that causes ADAMTS-13 deficiency in iTTP. Understanding the kinetics of ADAMTS-13 clearance in iTTP may now enable further optimization of treatment of patients with iTTP.
Collapse
Affiliation(s)
- Mary I Underwood
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Ferras Alwan
- Haemophilia Centre, Imperial College Healthcare Trust, London, United Kingdom; University College Hospital, London, United Kingdom
| | | | | | - James T B Crawley
- Centre for Haematology, Imperial College London, London, United Kingdom.
| |
Collapse
|
61
|
Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2023; 11:vaccines11050991. [PMID: 37243095 DOI: 10.3390/vaccines11050991] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Less than a year after the global emergence of the coronavirus SARS-CoV-2, a novel vaccine platform based on mRNA technology was introduced to the market. Globally, around 13.38 billion COVID-19 vaccine doses of diverse platforms have been administered. To date, 72.3% of the total population has been injected at least once with a COVID-19 vaccine. As the immunity provided by these vaccines rapidly wanes, their ability to prevent hospitalization and severe disease in individuals with comorbidities has recently been questioned, and increasing evidence has shown that, as with many other vaccines, they do not produce sterilizing immunity, allowing people to suffer frequent re-infections. Additionally, recent investigations have found abnormally high levels of IgG4 in people who were administered two or more injections of the mRNA vaccines. HIV, Malaria, and Pertussis vaccines have also been reported to induce higher-than-normal IgG4 synthesis. Overall, there are three critical factors determining the class switch to IgG4 antibodies: excessive antigen concentration, repeated vaccination, and the type of vaccine used. It has been suggested that an increase in IgG4 levels could have a protecting role by preventing immune over-activation, similar to that occurring during successful allergen-specific immunotherapy by inhibiting IgE-induced effects. However, emerging evidence suggests that the reported increase in IgG4 levels detected after repeated vaccination with the mRNA vaccines may not be a protective mechanism; rather, it constitutes an immune tolerance mechanism to the spike protein that could promote unopposed SARS-CoV2 infection and replication by suppressing natural antiviral responses. Increased IgG4 synthesis due to repeated mRNA vaccination with high antigen concentrations may also cause autoimmune diseases, and promote cancer growth and autoimmune myocarditis in susceptible individuals.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - William Makis
- Cross Cancer Institute, Alberta Health Services, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| |
Collapse
|
62
|
Manso T, Kushwaha A, Abdollahi N, Duroux P, Giudicelli V, Kossida S. Mechanisms of action of monoclonal antibodies in oncology integrated in IMGT/mAb-DB. Front Immunol 2023; 14:1129323. [PMID: 37215135 PMCID: PMC10196129 DOI: 10.3389/fimmu.2023.1129323] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
Background Cancer cells activate different immune checkpoint (IC) pathways in order to evade immunosurveillance. Immunotherapies involving ICs either block or stimulate these pathways and enhance the efficiency of the immune system to recognize and attack cancer cells. In this way, the development of monoclonal antibodies (mAbs) targeting ICs has significant success in cancer treatment. Recently, a systematic description of the mechanisms of action (MOA) of the mAbs has been introduced in IMGT/mAb-DB, the IMGT® database dedicated to mAbs for therapeutic applications. The characterization of these antibodies provides a comprehensive understanding of how mAbs work in cancer. Methods In depth biocuration taking advantage of the abundant literature data as well as amino acid sequence analyses from mAbs managed in IMGT/2Dstructure-DB, the IMGT® protein database, allowed to define a standardized and consistent description of the MOA of mAbs targeting immune checkpoints in cancer therapy. Results A fine description and a standardized graphical representation of the MOA of selected mAbs are integrated within IMGT/mAb-DB highlighting two main mechanisms in cancer immunotherapy, either Blocking or Agonist. In both cases, the mAbs enhance cytotoxic T lymphocyte (CTL)-mediated anti-tumor immune response (Immunostimulant effect) against tumor cells. On the one hand, mAbs targeting co-inhibitory receptors may have a functional Fc region to increase anti-tumor activity by effector properties that deplete Treg cells (Fc-effector function effect) or may have limited FcγR binding to prevent Teff cells depletion and reduce adverse events. On the other hand, agonist mAbs targeting co-stimulatory receptors may bind to FcγRs, resulting in antibody crosslinking (FcγR crosslinking effect) and substantial agonism. Conclusion In IMGT/mAb-DB, mAbs for cancer therapy are characterized by their chains, domains and sequence and by several therapeutic metadata, including their MOA. MOAs were recently included as a search criterion to query the database. IMGT® is continuing standardized work to describe the MOA of mAbs targeting additional immune checkpoints and novel molecules in cancer therapy, as well as expanding this study to other clinical domains.
Collapse
|
63
|
Zhang W, Quan Y, Ma X, Zeng L, Li J, Chen S, Su M, Hong L, Li P, Wang H, Xu Q, Zhao C, Zhu X, Geng Y, Yan X, Fang Z, Chen M, Tian D, Su M, Chen X, Gu J. Synergistic effect of glutathione and IgG4 in immune evasion and the implication for cancer immunotherapy. Redox Biol 2023; 60:102608. [PMID: 36681047 PMCID: PMC9868885 DOI: 10.1016/j.redox.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We recently reported a novel IgG4-centered immune evasion mechanism in cancer, and this was achieved mostly through the Fc-Fc reaction of increased IgG4 to cancer-bound IgG in cancer microenvironment. The mechanism was suggested to be related to cancer hyperprogressive disease (HPD) which is a side-effect often associated to IgG4 subtype PD-1 antibody immunotherapy. HPD was reported to occur in cancers with certain mutated genes including KRAS and such mutations are often associated to glutathione (GSH) synthesis. Therefore, we hypothesize that IgG4 and GSH may play a synergistic role in local immunosuppression of cancer. METHODS Quantitatively analyzed the distribution and abundance of GSH and IgG4 in human cancer samples with ELISA and immunohistochemistry. The interactions between GSH and IgG4 were examined with Electrophoresis and Western Blot. The synergistic effects of the two on classic immune responses were investigated in vitro. The combined effects were also tested in a lung cancer model and a skin graft model in mice. RESULTS We detected significant increases of both GSH and IgG4 in the microenvironment of lung cancer, esophageal cancer, and colon cancer tissues. GSH disrupted the disulfide bond of IgG4 heavy chain and enhanced IgG4's ability of Fc-Fc reaction to immobilized IgG subtypes. Combined administration of IgG4 and GSH augmented the inhibitory effect of IgG4 on the classic ADCC, ADCP, and CDC reactions. Local administration of IgG4/GSH achieved the most obvious effect of accelerating cancer growth in the mouse lung cancer model. The same combination prolonged the survival of skin grafts between two different strains of mouse. In both models, immune cells and several cytokines were found to shift to the state of immune tolerance. CONCLUSION Combined application of GSH and IgG4 can promote tumor growth and protect skin graft. The mechanism may be achieved through the effect of the Fc-Fc reaction between IgG4 and other tissue-bound IgG subtypes resulting in local immunosuppression. This reaction was facilitated by increased GSH to dissociate the two heavy chains of IgG4 Fc fragment at its disulfide bonds. Our findings unveiled the interaction between the redox system and the immune systems in cancer microenvironment. It offers a sensible explanation for HPD and provides new possibilities for manipulating this mechanism for cancer immunotherapy.
Collapse
Affiliation(s)
- Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Quan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaonan Ma
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liting Zeng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jirui Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuqi Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Meng Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liangli Hong
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Penghao Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Hui Wang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Xu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chanyuan Zhao
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoqing Zhu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yiqun Geng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaomiao Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Zheng Fang
- Motic China Group Co, Ltd, Xiamen, China
| | | | - Dongping Tian
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Min Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xueling Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China.
| |
Collapse
|
64
|
Abstract
Repeated doses of mRNA vaccines for COVID-19 result in increased proportions of anti-spike antibodies of the IgG4 subclass, which are known to neutralize well and to form mixed immune complexes with IgG1 but, in a pure form, might be less effective than IgG1 or IgG3 antibodies in facilitating opsonization by phagocytes, complement fixation, and NK cell-dependent elimination of infected cells (see related Research Article by Irrgang et al.).
Collapse
Affiliation(s)
- Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
65
|
Taieb G, Jentzer A, Vegezzi E, Lleixà C, Illa I, Querol L, Devaux JJ. Effect of monovalency on anti-contactin-1 IgG4. Front Immunol 2023; 14:1021513. [PMID: 36999029 PMCID: PMC10045471 DOI: 10.3389/fimmu.2023.1021513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/02/2023] [Indexed: 03/15/2023] Open
Abstract
IntroductionAutoimmune nodopathies (AN) have been diagnosed in a subset of patients fulfilling criteria for chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) who display no or poor response to intravenous immunoglobulins. Biomarkers of AN are autoantibodies, mainly IgG4, directed against the ternary paranodal complex composed by neurofascin-155, contactin-1 (CNTN1), and Contactin-associated-protein-1 (CASPR1) or against the nodal isoforms of neurofascin. IgG4 can undergo a Fab-arm exchange (FAE) which results in functionally monovalent antibody. This phenomenon differentially affects the pathogenicity of IgG4 depending on the target of autoantibodies. Here, we have evaluated this issue by examining the impact of valency on anti-CNTN1 IgG4 which induces paranodal destruction through a function blocking activity.MethodsSera were obtained from 20 patients with AN associated with anti-CNTN1 antibodies. The proportion of monospecific/bispecific anti-CNTN1 antibodies was estimated in each patient by ELISA by examining the ability of serum antibodies to cross-link untagged CNTN1 with biotinylated CNTN1. To determine the impact of monovalency, anti-CNTN1 IgG4 were enzymatically digested into monovalent Fab and tested in vitro on cell aggregation assay. Also, intraneural injections were performed to determine whether monovalent Fab and native IgG4 may penetrate paranode, and antibody infiltration was monitored 1- and 3-days post injection.Results and discussionWe found that the percentage of monospecific antibodies were lower than 5% in 14 out of 20 patients (70%), suggesting that IgG4 have undergone extensive FAE in situ. The levels of monospecific antibodies correlated with the titers of anti-CNTN1 antibodies. However, no correlation was found with clinical severity, and patients with low or high percentage of monospecific antibodies similarly showed a severe phenotype. Native anti-CNTN1 IgG4 were shown to inhibit the interaction between cells expressing CNTN1/CASPR1 and cells expressing neurofascin-155 using an in vitro aggregation assay. Similarly, monovalent Fab significantly inhibited the interaction between CNTN1/CASPR1 and neurofascin-155. Intraneural injections of Fab and native anti-CNTN1 IgG4 indicated that both mono- and bivalent anti-CNTN1 IgG4 potently penetrated the paranodal regions and completely invaded this region by day 3. Altogether, these data indicate anti-CNTN1 IgG4 are mostly bispecific in patients, and that functionally monovalent anti-CNTN1 antibodies have the pathogenic potency to alter paranode.
Collapse
Affiliation(s)
- Guillaume Taieb
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurology, CHU Montpellier, Hôpital Gui de Chauliac, Montpellier, France
| | - Alexandre Jentzer
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- Department of Immunology, CHU Montpellier, Hôpital Saint-Eloi, Montpellier, France
| | - Elisa Vegezzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Luis Querol
- Neuromuscular Diseases Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Jérôme J. Devaux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- *Correspondence: Jérôme J. Devaux,
| |
Collapse
|
66
|
Qin Y, Wu G, Jin J, Wang H, Zhang J, Liu L, Zhao H, Wang J, Yang X. A fully human connective tissue growth factor blocking monoclonal antibody ameliorates experimental rheumatoid arthritis through inhibiting angiogenesis. BMC Biotechnol 2023; 23:6. [PMID: 36869335 PMCID: PMC9985226 DOI: 10.1186/s12896-023-00776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Connective tissue growth factor (CTGF) plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA) by facilitating angiogenesis and is a promising therapeutic target for RA treatment. Herein, we generated a fully human CTGF blocking monoclonal antibody (mAb) through phage display technology. RESULTS A single-chain fragment variable (scFv) with a high affinity to human CTGF was isolated through screening a fully human phage display library. We carried out affinity maturation to elevate its affinity for CTGF and reconstructed it into a full-length IgG1 format for further optimization. Surface plasmon resonance (SPR) data showed that full-length antibody IgG mut-B2 bound to CTGF with a dissociation constant (KD) as low as 0.782 nM. In the collagen-induced arthritis (CIA) mice, IgG mut-B2 alleviated arthritis and decreased the level of pro-inflammatory cytokines in a dose-dependent manner. Furthermore, we confirmed that the TSP-1 domain of CTGF is essential for the interaction. Additionally, the results of Transwell assays, tube formation experiments, and chorioallantoic membrane (CAM) assays showed that IgG mut-B2 could effectively inhibit angiogenesis. CONCLUSION The fully human mAb that antagonizes CTGF could effectively alleviate arthritis in CIA mice, and its mechanism is tightly associated with the TSP-1 domain of CTGF.
Collapse
Affiliation(s)
- Yang Qin
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Gan Wu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayi Jin
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Hao Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jiani Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Li Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Heping Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, 325035, Wenzhou, China. .,Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying, Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China.
| |
Collapse
|
67
|
Chen YR, Yu SC, Wang RC, Lee CL, Song HL, Medeiros LJ, Yue CT, Chang KC. Lymph Nodes With Increased IgG4-positive Plasma Cells and Patterns Suspicious for IgG4-related Disease: Can Lymph Nodes Be the Only Site of Disease? Am J Surg Pathol 2023; 47:387-396. [PMID: 36729678 DOI: 10.1097/pas.0000000000002007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lymphadenopathy with increased immunoglobulin (Ig) G4 + plasma cells can be a nonspecific finding or a manifestation of immunoglobulin G4-related disease (IgG4-RD). It remains unclear whether there are characteristic pathologic features of IgG4-RD involving lymph nodes, or if IgG4-RD lymphadenopathy can occur without other manifestations of IgG4-RD. In this study, we assessed 55 lymph node biopsy specimens (44 men and 11 women with a mean age of 55 y) with increased IgG4 + plasma cells that had 1 of the 6 well-described pathologic patterns. We also correlated these findings with IgG4 serum levels and followed these patients for 7 to 108 months (mean, 34.9 mo) for the occurrence of extranodal IgG4-RD. We further compared lymphadenopathy in patients who developed other manifestations of IgG4-RD (RD + , n=20, 36%) versus those who did not (RD - , n=35, 64%). We found that there were only minor significant differences between 2 groups, including frequency of receiving treatment (RD + , 90% vs. RD - , 60%, P =0.021) and higher serum levels of C-reactive protein (>8 mg/L, RD + , 53% vs. RD - , 13%, P =0.007). Other differences were either borderline or not significant, including mean age (RD + , 59.8 y vs. RD - , 51.9 y, P =0.097), male-to-female ratio (RD + , 16:4 vs. RD - , 28:7, P =1), constitutional symptoms (RD + , 25% vs. RD - , 9%, P =0.096), multiple enlarged lymph nodes (RD + , 45% vs. RD - , 26%, P =0.143), good response to therapy (RD + , 94% vs. RD - , 94%, P =1); higher serum IgG4 levels (>280 mg/dL, RD + , 75% vs. RD - , 51%, P =0.086), anemia (RD + , 45% vs. RD - , 43%, P =0.877), leukopenia (RD + , 0% vs. RD - , 3%, P =0.446), thrombocytopenia (RD + , 10% vs. RD - , 6%, P =0.556), positivity for antinuclear antibody (RD + , 24% vs. RD - , 29%, P =0.688), elevated serum levels of lactate dehydrogenase (>225 U/L, RD + , 0% vs. RD - , 20%, P =0.064), elevated serum IgE level (>100 IU/mL, RD + , 75% vs. RD - , 92%, P =0.238), and hypergammaglobulinemia (RD + , 90% vs. RD - , 86%, P =0.754). There were also no differences in morphologic patterns ( P =0.466), IgG4 + cell location ( P =0.104), eosinophil counts (RD + , 10.3±11.3 vs. RD - , 13.4±17.5, P =0.496), Epstein-Barr virus positivity (RD + , 35% vs. RD - , 60%, P =0.074), and Epstein-Barr virus-positive cell location ( P =0.351). Our findings suggest that there are minimal differences between stringently defined IgG4-RD lymphadenopathy with versus without other manifestations of IgG4-RD. These findings also suggest the existence of IgG4-RD lymphadenopathy as the sole presentation of IgG4-RD.
Collapse
Affiliation(s)
- Ying-Ren Chen
- Department of Pathology, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin
| | - Shan-Chi Yu
- Department of Pathology, National Taiwan University Hospital, College of Medicine, National Taiwan University
| | - Ren-Ching Wang
- Department of Pathology, China Medical University Hospital
| | - Chih-Ling Lee
- Department of Pathology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chung-Tai Yue
- Department of Pathology, Taipei Tzu-Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
- Department of Pathology, College of Medicine, Kaohsiung Medical University
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
68
|
Liu T, Huang Z, Zhu H, An N, Gan H, Xue M, Zheng P, Sun B. Association between urban garbage exposure and allergic diseases among sanitation practitioners: A cross-sectional study. World Allergy Organ J 2023; 16:100754. [PMID: 37588125 PMCID: PMC10426333 DOI: 10.1016/j.waojou.2023.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Background The prevalence of allergic diseases has increased significantly in China over the last few decades, and there have been very few reports of allergic diseases in certain occupational specialties, with almost no reports among sanitation workers. Objective Our objective was to investigate the prevalence of allergic diseases and the prevalence of common allergen sensitization in the population engaged in sanitation, and to try to answer the connection between urban garbage waste exposure and the development of allergic diseases. Methods We conducted a cross-sectional survey of people working in sanitation-related jobs in Liwan District, Guangzhou, China. A total of 893 people completed the questionnaire for this study, and 500 of them were further screened and tested for allergens specific IgE and IgG4. Combining the questionnaire and test results, we investigated the incidence of allergy disorders and patterns of sensitization to allergens in this community, and evaluated the presence of occupational-related risk factors in this particular population. Results Of the 893 sanitation workers, 166 (18.59%) self-reported allergic diseases, predominantly suffering from allergic rhinitis (AR) (n = 98, 10.97%), followed by drug allergy (n = 31, 3.47%), atopic dermatitis (n = 27, 3.02%), food allergy (n = 21, 2.35%), and asthma (n = 9, 1.00%), in that order. In addition to dust mites (32.20%), which had the highest sensitization rate, the subject population had relatively high sensitization rates to ragweed (7.00%) and moulds mixture (8.20%) when compared with the rates of sensitization to moulds and ragweed in the general population; the top 3 sIgG4 positivity rates were egg (50.00%), milk (10.20%), and soybean (9.40%). The prevalence of self-reported AR was higher in office managers (the control group) than in cleaning staff (the exposed group), but there was no difference in sIgE positivity for serum allergens between the 2 groups. The chance of having AR may increase with management positions (crude OR 2.20, 95% CI 1.38-3.50), P = 0.001). Conclusion This is the first study to investigate the prevalence of allergy illnesses in the sanitation workforce in mainland China. We identified a community of real sanitation workers with high ragweed and mycobacterial sensitization rates. Urban cleaning may be protective factor against AR at the symptom level, but the serological results did not show this to be the case.
Collapse
Affiliation(s)
| | | | | | - Nairui An
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hui Gan
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Mingshan Xue
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| |
Collapse
|
69
|
Gon Y, Kandou T, Tsuruyama T, Iwasaki T, Kitagori K, Murakami K, Nakashima R, Akizuki S, Morinobu A, Hikida M, Mimori T, Yoshifuji H. Increased number of T cells and exacerbated inflammatory pathophysiology in a human IgG4 knock-in MRL/lpr mouse model. PLoS One 2023; 18:e0279389. [PMID: 36763580 PMCID: PMC9916631 DOI: 10.1371/journal.pone.0279389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
Immunoglobulin (Ig) G4 is an IgG subclass that can exhibit inhibitory functions under certain conditions because of its capacity to carry out Fab-arm exchange, inability to form immune complexes, and lack of antibody-dependent and complement-dependent cytotoxicity. Although several diseases have been associated with IgG4, its role in the disease pathogeneses remains unclear. Since mice do not express an IgG subclass that is identical to the human IgG4 (hIgG4), we generated hIGHG4 knock-in (KI) mice and analyzed their phenotypes. To preserve the rearrangement of the variable, diversity, and joining regions in the IGH gene, we transfected a constant region of the hIGHG4 gene into C57BL/6NCrSlc mice by using a gene targeting method. Although the mRNA expression of hIGHG4 was detected in the murine spleen, the serum level of the hIgG4 protein was low in C57BL/6-IgG4KI mice. To enhance the production of IgG4, we established an MRL/lpr-IgG4KI mice model by backcrossing. These mice showed a high IgG4 concentration in the sera and increased populations of IgG4-positive plasma cells and CD3+B220+CD138+ T cells in the spleen. Moreover, these mice showed aggravated inflammation in organs, such as the salivary glands and stomach. The MRL/lpr-IgG4KI mouse model established in the present study might be useful for studying IgG4-related disease, IgG4-type antibody-related diseases, and allergic diseases.
Collapse
Affiliation(s)
- Yoshie Gon
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tsugumitsu Kandou
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Iwasaki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Hikida
- Faculty of Engineering Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
70
|
Peptide Mimotope-Enabled Quantification of Natalizumab Arm Exchange During Multiple Sclerosis Treatment. Ther Drug Monit 2023; 45:55-60. [PMID: 36201847 DOI: 10.1097/ftd.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Natalizumab, a therapeutic antibody used to treat multiple sclerosis, undergoes in vivo Fab arm exchange to form a monovalent bispecific antibody. Although highly efficacious, the immunosuppressive activity of natalizumab has been associated with JC polyomavirus-driven progressive multifocal leukoencephalopathy (PML). Development of assays that can distinguish between and quantify bivalent (unexchanged) and monovalent (exchanged) forms of natalizumab in clinical samples may be useful for optimizing extended interval dosing and reducing the risk of PML. METHODS In vitro natalizumab arm exchange was conducted, along with peptide mimotope and anti-idiotype surface capture chemistry, to enable the development of enzyme-linked immunosorbent assays. RESULTS An assay using a unique peptide Veritope TM was developed, which can exclusively bind to bivalent natalizumab. In combination with enzyme-linked immunosorbent assays that quantifies total natalizumab, the assay system allows quantification of both natalizumab forms. CONCLUSIONS In this article, a novel assay for the quantification of unexchanged and exchanged natalizumab variants in clinical samples was developed. This assay will enable investigations into the clinical significance of the relationship of PK/PD with the monovalent-to-bivalent ratio, as it relates to the efficacy of the drug and risk of PML.
Collapse
|
71
|
Buhre JS, Pongracz T, Künsting I, Lixenfeld AS, Wang W, Nouta J, Lehrian S, Schmelter F, Lunding HB, Dühring L, Kern C, Petry J, Martin EL, Föh B, Steinhaus M, von Kopylow V, Sina C, Graf T, Rahmöller J, Wuhrer M, Ehlers M. mRNA vaccines against SARS-CoV-2 induce comparably low long-term IgG Fc galactosylation and sialylation levels but increasing long-term IgG4 responses compared to an adenovirus-based vaccine. Front Immunol 2023; 13:1020844. [PMID: 36713457 PMCID: PMC9877300 DOI: 10.3389/fimmu.2022.1020844] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/09/2022] [Indexed: 01/15/2023] Open
Abstract
Background The new types of mRNA-containing lipid nanoparticle vaccines BNT162b2 and mRNA-1273 and the adenovirus-based vaccine AZD1222 were developed against SARS-CoV-2 and code for its spike (S) protein. Several studies have investigated short-term antibody (Ab) responses after vaccination. Objective However, the impact of these new vaccine formats with unclear effects on the long-term Ab response - including isotype, subclass, and their type of Fc glycosylation - is less explored. Methods Here, we analyzed anti-S Ab responses in blood serum and the saliva of SARS-CoV-2 naïve and non-hospitalized pre-infected subjects upon two vaccinations with different mRNA- and adenovirus-based vaccine combinations up to day 270. Results We show that the initially high mRNA vaccine-induced blood and salivary anti-S IgG levels, particularly IgG1, markedly decrease over time and approach the lower levels induced with the adenovirus-based vaccine. All three vaccines induced, contrary to the short-term anti-S IgG1 response with high sialylation and galactosylation levels, a long-term anti-S IgG1 response that was characterized by low sialylation and galactosylation with the latter being even below the corresponding total IgG1 galactosylation level. Instead, the mRNA, but not the adenovirus-based vaccines induced long-term IgG4 responses - the IgG subclass with inhibitory effector functions. Furthermore, salivary anti-S IgA levels were lower and decreased faster in naïve as compared to pre-infected vaccinees. Predictively, age correlated with lower long-term anti-S IgG titers for the mRNA vaccines. Furthermore, higher total IgG1 galactosylation, sialylation, and bisection levels correlated with higher long-term anti-S IgG1 sialylation, galactosylation, and bisection levels, respectively, for all vaccine combinations. Conclusion In summary, the study suggests a comparable "adjuvant" potential of the newly developed vaccines on the anti-S IgG Fc glycosylation, as reflected in relatively low long-term anti-S IgG1 galactosylation levels generated by the long-lived plasma cell pool, whose induction might be driven by a recently described TH1-driven B cell response for all three vaccines. Instead, repeated immunization of naïve individuals with the mRNA vaccines increased the proportion of the IgG4 subclass over time which might influence the long-term Ab effector functions. Taken together, these data shed light on these novel vaccine formats and might have potential implications for their long-term efficacy.
Collapse
Affiliation(s)
- Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Inga Künsting
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Anne S. Lixenfeld
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Franziska Schmelter
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hanna B. Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Lara Dühring
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Carsten Kern
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Emily L. Martin
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Bandik Föh
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Vera von Kopylow
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Tobias Graf
- Medical Department 2, University Heart Center of Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Manfred Wuhrer, ; Marc Ehlers,
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany,Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany,*Correspondence: Manfred Wuhrer, ; Marc Ehlers,
| |
Collapse
|
72
|
Quinn L, Nguyen B, Menard-Katcher C, Spencer L. IgG4+ cells are increased in the gastrointestinal tissue of pediatric patients with active eosinophilic gastritis and duodenitis and decrease in remission. Dig Liver Dis 2023; 55:53-60. [PMID: 36064648 PMCID: PMC9885790 DOI: 10.1016/j.dld.2022.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recent studies have shown that IgG4 is increased in the esophageal tissue of eosinophilic esophagitis patients, including the presence of IgG4+ plasma cells. AIMS Our aim was to determine whether IgG4 is elevated in the gastric or duodenal tissue of pediatric patients with eosinophilic gastritis or duodenitis (EoG or EoD). METHODS This was a retrospective single center study. Pediatric patients were characterized as having active EoG, EoD, or as controls based on clinical symptoms and histologic features. Immunohistochemistry for IgG4 was performed in gastric and duodenal tissue, and peak IgG4+ cells were compared between groups and after treatment. RESULTS The frequency of IgG4+ cells was significantly higher in patients with EoG and EoD compared to controls in the stomach [EoG 6.5 cells/hpf (3.6-10.9), control 0 cells/hpf (0-0.7), p<0.0001] and duodenum [EoD 7.5 cells/hpf (2.8-37), control 0.5 cells/hpf (0.3-1.3), p<0.001)] respectively, and positively correlated with eosinophil counts (stomach: r 0.74, p<0.0001; duodenum: r 0.57, p<0.0001). The amount of tissue IgG4 was significantly decreased in patients in remission but not in persistently active disease. CONCLUSIONS These data suggest local tissue production of IgG4 may be a universal feature of eosinophilic gastrointestinal disease that tracks with disease activity.
Collapse
Affiliation(s)
- Laura Quinn
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & Nutrition, Gastrointestinal Eosinophilic Diseases Program, and the Digestive Health Institute; Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA.
| | - Brian Nguyen
- Department of Pathology, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO, USA
| | - Calies Menard-Katcher
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & Nutrition, Gastrointestinal Eosinophilic Diseases Program, and the Digestive Health Institute; Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Lisa Spencer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology & Nutrition, Gastrointestinal Eosinophilic Diseases Program, and the Digestive Health Institute; Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
73
|
Oskam N, Damelang T, Streutker M, Ooijevaar-de Heer P, Nouta J, Koeleman C, Van Coillie J, Wuhrer M, Vidarsson G, Rispens T. Factors affecting IgG4-mediated complement activation. Front Immunol 2023; 14:1087532. [PMID: 36776883 PMCID: PMC9910309 DOI: 10.3389/fimmu.2023.1087532] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Of the four human immunoglobulin G (IgG) subclasses, IgG4 is considered the least inflammatory, in part because it poorly activates the complement system. Regardless, in IgG4 related disease (IgG4-RD) and in autoimmune disorders with high levels of IgG4 autoantibodies, the presence of these antibodies has been linked to consumption and deposition of complement components. This apparent paradox suggests that conditions may exist, potentially reminiscent of in vivo deposits, that allow for complement activation by IgG4. Furthermore, it is currently unclear how variable glycosylation and Fab arm exchange may influence the ability of IgG4 to activate complement. Here, we used well-defined, glyco-engineered monoclonal preparations of IgG4 and determined their ability to activate complement in a controlled system. We show that IgG4 can activate complement only at high antigen and antibody concentrations, via the classical pathway. Moreover, elevated or reduced Fc galactosylation enhanced or diminished complement activation, respectively, with no apparent contribution from the lectin pathway. Fab glycans slightly reduced complement activation. Lastly, we show that bispecific, monovalent IgG4 resulting from Fab arm exchange is a less potent activator of complement than monospecific IgG4. Taken together, these results imply that involvement of IgG4-mediated complement activation in pathology is possible but unlikely.
Collapse
Affiliation(s)
- Nienke Oskam
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Center, Amsterdam, Netherlands
| | - Timon Damelang
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Center, Amsterdam, Netherlands.,Department of Immunohematology Experimental, Sanquin Research, Amsterdam, Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Marij Streutker
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Center, Amsterdam, Netherlands
| | - Pleuni Ooijevaar-de Heer
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Center, Amsterdam, Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Carolien Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Julie Van Coillie
- Department of Immunohematology Experimental, Sanquin Research, Amsterdam, Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Gestur Vidarsson
- Department of Immunohematology Experimental, Sanquin Research, Amsterdam, Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Center, Amsterdam, Netherlands
| |
Collapse
|
74
|
Wang H, Su C, Li Z, Ma C, Hong L, Li Z, Ma X, Xu Y, Wei X, Geng Y, Zhang W, Li P, Gu J. Evaluation of multiple immune cells and patient outcomes in esophageal squamous cell carcinoma. Front Immunol 2023; 14:1091098. [PMID: 36891293 PMCID: PMC9986480 DOI: 10.3389/fimmu.2023.1091098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Recent reports indicate that immune cells in solid cancers have significant predictive and therapeutic value. IgG4 is a subclass of IgG and we recently found that it exerted an inhibitory effect in tumor immunity. We aimed to assess the significance of IgG4 and T cell subtypes in tumor prognosis. We investigated the density, distribution and relationship of five immune markers CD4, CD8, Foxp3, IL-10 and IgG4 with multiple immunostaining method in 118 esophageal squamous cell carcinoma (ESCC) together with clinical data. The relationship among different immune cell types and with clinical data were analyzed with Kaplan-Meier survival analysis and Cox proportional hazards model to identify independent risk factors among immune and clinicopathological parameters. Five-year survival rate of these patients treated with surgery reached 61%. Higher number of CD4+ plus CD8+ T cells predicted better prognosis (p=0.01) in tertiary lymphoid structure (TLS) and could add to the value of TNM staging. Density of the newly identified immune inhibitor IgG4+ B lymphocytes was found positively correlated to that of CD4+ cells (p=0.02) and IL-10+ cells (p=0.0005), but number of infiltrating IgG4+ cells by itself was not an independent factor for prognosis. However, increased serum concentration of IgG4 indicated a poor prognosis of ESCC (p=0.03). 5-year survival rate of esophageal cancer after surgery has been significantly improved. Increased T cells in TLS predicted better survival, suggesting that T cells in TLS may actively participate in anti-tumor immunity. Serum IgG4 could be a useful predictor of prognosis.
Collapse
Affiliation(s)
- Hui Wang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chanjuan Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Ziteng Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Changchun Ma
- Department of Radiation Oncology, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Liangli Hong
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhe Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaonan Ma
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yien Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaolong Wei
- Department of Pathology, Affiliated Cancer Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yiqun Geng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Penghao Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China.,Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| | - Jiang Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine, Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China.,Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| |
Collapse
|
75
|
Wilkinson I, Hale G. Systematic analysis of the varied designs of 819 therapeutic antibodies and Fc fusion proteins assigned international nonproprietary names. MAbs 2022; 14:2123299. [PMID: 36109838 PMCID: PMC9481088 DOI: 10.1080/19420862.2022.2123299] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
76
|
Antibody-dependent cellular cytotoxicity-null effector developed using mammalian and plant GlycoDelete platform. Sci Rep 2022; 12:19030. [PMID: 36347901 PMCID: PMC9643331 DOI: 10.1038/s41598-022-23311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022] Open
Abstract
Cancer therapy using immune checkpoint inhibitor antibodies has markedly shifted the paradigm of cancer treatment. However, methods completely eliminating the effector function of these signal-regulating antibodies is urgently required. The heterogeneity of glycan chains in antibodies limits their use as therapeutic agents due to their variability; thus, the development of uniform glycan chains is necessary. Here, we subjected the anti-programmed cell death protein (PD)-1 antibody nivolumab, a representative immune checkpoint inhibitor, to GlycoDelete (GD) engineering to remove the antibody-dependent cellular cytotoxicity (ADCC) of the antibody, leaving only one glycan in the Fc. Glyco-engineered CHO cells were prepared by overexpressing endo-β-N-acetyl-glucosaminidase (Endo T) in CHO cells, in which N-acetyl-glucosaminyl-transferase I was knocked out using Cas9. GD IgG1 nivolumab and GD IgG4 nivolumab were produced using GD CHO cells, and glycan removal was confirmed using mass spectrometry. Target binding and PD-1 inhibition was not altered; however, ADCC decreased. Furthermore, the IgG4 form, determined to be the most suitable form of GD nivolumab, was produced in a plant GD system. The plant GD nivolumab also reduced ADCC without affecting PD-1 inhibitory function. Thus, CHO and plant GD platforms can be used to improve signal-regulating antibodies by reducing their effector function.
Collapse
|
77
|
Buhre JS, Becker M, Ehlers M. IgG subclass and Fc glycosylation shifts are linked to the transition from pre- to inflammatory autoimmune conditions. Front Immunol 2022; 13:1006939. [PMID: 36405742 PMCID: PMC9669588 DOI: 10.3389/fimmu.2022.1006939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
A crucial factor for the development of inflammatory autoimmune diseases is the occurrence of antibodies directed against self-tissues and structures, which leads to damage and inflammation. While little is known about the cause of the development of mis-directed, disease-specific T and B cells and resulting IgG autoantibody responses, there is increasing evidence that their induction can occur years before disease symptoms appear. However, a certain proportion of healthy individuals express specific IgG autoantibodies without disease symptoms and not all subjects who generate autoantibodies may develop disease symptoms. Thus, the development of inflammatory autoimmune diseases seems to involve two steps. Increasing evidence suggests that harmless self-directed T and B cell and resulting IgG autoantibody responses in the pre-autoimmune disease stage might switch to more inflammatory T and B cell and IgG autoantibody responses that trigger the inflammatory autoimmune disease stage. Here, we summarize findings on the transition from the pre-disease to the disease stage and vice versa, e.g. by pregnancy and treatment, with a focus on low-/anti-inflammatory versus pro-inflammatory IgG autoantibody responses, including IgG subclass and Fc glycosylation features. Characterization of biomarkers that identify the transition from the pre-disease to the disease stage might facilitate recognition of the ideal time point of treatment initiation and the development of therapeutic strategies for re-directing inflammatory autoimmune conditions.
Collapse
Affiliation(s)
- Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mareike Becker
- Department of Dermatology, Allergology, and Venereology, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany
- Airway Research Center North, German Center for Lung Research (DZL), University of Lübeck, Lübeck, Germany
- *Correspondence: Marc Ehlers,
| |
Collapse
|
78
|
Comprehensive overview of autoantibody isotype and subclass distribution. J Allergy Clin Immunol 2022; 150:999-1010. [DOI: 10.1016/j.jaci.2022.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/27/2022] [Accepted: 05/13/2022] [Indexed: 11/06/2022]
|
79
|
Rose N, Holdermann S, Callegari I, Kim H, Fruh I, Kappos L, Kuhle J, Müller M, Sanderson NSR, Derfuss T. Receptor clustering and pathogenic complement activation in myasthenia gravis depend on synergy between antibodies with multiple subunit specificities. Acta Neuropathol 2022; 144:1005-1025. [PMID: 36074148 PMCID: PMC9547806 DOI: 10.1007/s00401-022-02493-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 01/26/2023]
Abstract
Myasthenia gravis is an autoimmune disorder defined by muscle weakness and fatigability associated with antibodies against proteins of the neuromuscular junction (NMJ). The most common autoantibody target is the acetylcholine receptor (AChR). Three mechanisms have been postulated by which autoantibodies might interfere with neurotransmission: direct antagonism of the receptor, complement-mediated destruction of the postsynaptic membrane, and enhanced internalization of the receptor. It is very likely that more than one of these mechanisms act in parallel. Dissecting the mechanisms of autoantibody-mediated pathology requires patient-derived, monoclonal antibodies. Using membrane antigen capture activated cell sorting (MACACS), we isolated AChR-specific B cells from patients with myasthenia gravis, and produced six recombinant antibodies. All AChR-specific antibodies were hypermutated, including isotypes IgG1, IgG3, and IgG4, and recognized different subunits of the AChR. Despite clear binding, none of the individual antibodies showed significant antagonism of the AChR measured in an in vitro neuromuscular synapse model, or AChR-dependent complement activation, and they did not induce myasthenic signs in vivo. However, combinations of antibodies induced strong complement activation in vitro, and severe weakness in a passive transfer myasthenia gravis rat model, associated with NMJ destruction and complement activation in muscle. The strongest complement activation was mediated by combinations of antibodies targeting disparate subunits of the AChR, and such combinations also induced the formation of large clusters of AChR on the surface of live cells in vitro. We propose that synergy between antibodies of different epitope specificities is a fundamental feature of this disease, and possibly a general feature of complement-mediated autoimmune diseases. The importance of synergistic interaction between antibodies targeting different subunits of the receptor can explain the well-known discrepancy between serum anti-AChR titers and clinical severity, and has implications for therapeutic strategies currently under investigation.
Collapse
Affiliation(s)
- Natalie Rose
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Holdermann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Ilaria Callegari
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Hyein Kim
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Isabelle Fruh
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Ludwig Kappos
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Matthias Müller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Nicholas S R Sanderson
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland.
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland.
| | - Tobias Derfuss
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic and MS Center, University Hospital Basel, University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
80
|
Gehin JE, Goll GL, Brun MK, Jani M, Bolstad N, Syversen SW. Assessing Immunogenicity of Biologic Drugs in Inflammatory Joint Diseases: Progress Towards Personalized Medicine. BioDrugs 2022; 36:731-748. [PMID: 36315391 PMCID: PMC9649489 DOI: 10.1007/s40259-022-00559-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
Abstract
Biologic drugs have greatly improved treatment outcomes of inflammatory joint diseases, but a substantial proportion of patients either do not respond to treatment or lose response over time. Drug immunogenicity, manifested as the formation of anti-drug antibodies (ADAb), constitute a significant clinical problem. Anti-drug antibodies influence the pharmacokinetics of the drug, are associated with reduced clinical efficacy, and an increased risk of adverse events such as infusion reactions. The prevalence of ADAb differs among drugs and diseases, and the detection of ADAb also depends on the assay format. Most data exist for the tumor necrosis factor-alpha inhibitors infliximab and adalimumab, with a frequency of ADAb that ranges from 10 to 60% across studies. Measurement of ADAb and serum drug concentrations, therapeutic drug monitoring, has been suggested as a strategy to optimize therapy with biologic drugs. Although the recent randomized clinical Norwegian Drug Monitoring (NOR-DRUM) trials show promise towards a personalized medicine prescribing approach by therapeutic drug monitoring, several challenges remain. A plethora of assay formats, with widely differing properties, is currently used for measuring ADAb. Comparing results between different assays and laboratories is difficult, which complicates the development of cut-offs necessary for guidelines and the implementation of ADAb measurements in clinical practice. With the possible exception of infliximab, limited data on clinical relevance and cost effectiveness exist to support therapeutic drug monitoring as a routine clinical strategy to monitor biologic drugs in inflammatory joint diseases. The aim of this review is to provide an overview of the characteristics and prevalence of ADAb, predisposing factors to ADAb formation, commonly used assessment methods, clinical consequences of ADAb, and the potential implications of ADAb assessments for everyday treatment of inflammatory joint diseases.
Collapse
Affiliation(s)
- Johanna Elin Gehin
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, Nydalen, Box 4953, 0424, Oslo, Norway.
| | - Guro Løvik Goll
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Marthe Kirkesæther Brun
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Meghna Jani
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, University of Manchester, Manchester, UK
- Department of Rheumatology, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Bolstad
- Department of Medical Biochemistry, Oslo University Hospital, Radiumhospitalet, Nydalen, Box 4953, 0424, Oslo, Norway
| | - Silje Watterdal Syversen
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
81
|
Qin L, Tang LF, Cheng L, Wang HY. The clinical significance of allergen-specific IgG4 in allergic diseases. Front Immunol 2022; 13:1032909. [PMID: 36389804 PMCID: PMC9648126 DOI: 10.3389/fimmu.2022.1032909] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 09/10/2023] Open
Abstract
IgG4 is a subclass of IgG antibody with a unique molecular feature of (Fragment antigen- binding) Fab-arm exchange, allowing bispecific antigen binding in a mono-valent manner. With low binding affinity to C1q and Fcγreceptors, IgG4 is incapable of forming immune complexes and activating the complement pathway, exhibiting a non-inflammatory feature. IgG4 is produced similarly to IgE and is considered a modified reaction to IgE class-switching response under certain conditions. It could also counteract IgE-activated inflammation. However, the clinical significance of IgG4 in allergic diseases is complex and controversial. Three viewpoints have been suggested to describe the role of IgG4. IgG4 can act as a tolerance-inducer to play a protective role under repeated and rapid incremental dosing of allergen exposure in allergen immunotherapy (AIT), supported by allergies in cat raisers and venom desensitization in beekeepers. Another viewpoint accepted by mainstream specialists and guidelines of Food Allergy and Management in different countries points out that food-specific IgG4 is a bystander in food allergy and should not be used as a diagnostic tool in clinical work. However, eosinophilic esophagitis (EoE) investigation revealed a direct clinical relevance between physiopathology and serum IgG4 in cow milk and wheat. These factors indicate that allergen-specific IgG4 plays a multifaceted role in allergic diseases that is protective or pathogenic depending on different allergens or exposure conditions.
Collapse
Affiliation(s)
- Lu Qin
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan-Fang Tang
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Ying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
82
|
Nista EC, De Lucia SS, Manilla V, Schepis T, Pellegrino A, Ojetti V, Pignataro G, Zileri dal Verme L, Franceschi F, Gasbarrini A, Candelli M. Autoimmune Pancreatitis: From Pathogenesis to Treatment. Int J Mol Sci 2022; 23:12667. [PMID: 36293522 PMCID: PMC9604056 DOI: 10.3390/ijms232012667] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a rare disease. The diagnosis of AIP is difficult and should be made by a comprehensive evaluation of clinical, radiological, serological, and pathological findings. Two different types of AIP have been identified: autoimmune pancreatitis type 1 (AIP-1), which is considered a pancreatic manifestation of multiorgan disease related to IgG4, and autoimmune pancreatitis type 2 (AIP-2), which is considered a pancreas-specific disease not related to IgG4. Although the pathophysiological conditions seem to differ between type 1 and type 2 pancreatitis, both respond well to steroid medications. In this review, we focused on the pathogenesis of the disease to develop a tool that could facilitate diagnosis and lead to the discovery of new therapeutic strategies to combat autoimmune pancreatitis and its relapses. The standard therapy for AIP is oral administration of corticosteroids. Rituximab (RTX) has also been proposed for induction of remission and maintenance therapy in relapsing AIP-1. In selected patients, immunomodulators such as azathioprine are used to maintain remission. The strength of this review, compared with previous studies, is that it focuses on the clear difference between the two types of autoimmune pancreatitis with a clearly delineated and separate pathogenesis. In addition, the review also considers various therapeutic options, including biologic drugs, such as anti-tumor necrosis factor (TNF) therapy, a well-tolerated and effective second-line therapy for AIP type 2 relapses or steroid dependence. Other biologic therapies are also being explored that could provide a useful therapeutic alternative to corticosteroids and immunosuppressants, which are poorly tolerated due to significant side effects.
Collapse
Affiliation(s)
- Enrico Celestino Nista
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Sofia De Lucia
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Vittoria Manilla
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Tommaso Schepis
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Pellegrino
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Veronica Ojetti
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giulia Pignataro
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Lorenzo Zileri dal Verme
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marcello Candelli
- Department of Emergency, Anesthesiological, and Reanimation Sciences, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
83
|
Abstract
In 1995, Yoshida et al. proposed first the concept of "autoimmune pancreatitis" (AIP). Since then, AIP has been accepted as a new pancreatic inflammatory disease and is now divided two subtypes. Type 1 AIP affected immunoglobulin G4 (IgG4) and implicates the pancreatic manifestation of IgG4-related disease, while type 2 is characterized by neutrophil infiltration and granulocytic epithelial lesions (GEL). Recent research has clarified the clinical and pathophysiological aspects of type 1 AIP, which is more than type 2 among the Japanese population. However, many details remain unclear about the pathogenesis and progression of this disease. In this review, we discuss the current knowledge and recent advances relating to type 1 AIP.
Collapse
Affiliation(s)
- Kazushige Uchida
- Department of Gastroenterology and Hepatology, Kochi Medical School, Kochi University, Okocho-Kohasu, Nankoku, Kochi, 783-8505, Japan.
| | - Kazuichi Okazaki
- Kansai Medical University Kouri Hospital, 8-45 Kourihondori, Neyagawa, Osaka, 572-8551, Japan
| |
Collapse
|
84
|
Doykov I, Baldwin T, Spiewak J, Gilmour KC, Gibbons JM, Pade C, Reynolds CJ, Áine McKnight, Noursadeghi M, Maini MK, Manisty C, Treibel T, Captur G, Fontana M, Boyton RJ, Altmann DM, Brooks T, Semper A, Moon JC, Kevin Mills, Heywood WE, Abiodun A, Alfarih M, Alldis Z, Altmann DM, Amin OE, Andiapen M, Artico J, Augusto JB, Baca GL, Bailey SN, Bhuva AN, Boulter A, Bowles R, Boyton RJ, Bracken OV, O’Brien B, Brooks T, Bullock N, Butler DK, Captur G, Carr O, Champion N, Chan C, Chandran A, Coleman T, Couto de Sousa J, Couto-Parada X, Cross E, Cutino-Moguel T, D’Arcangelo S, Davies RH, Douglas B, Di Genova C, Dieobi-Anene K, Diniz MO, Ellis A, Feehan K, Finlay M, Fontana M, Forooghi N, Francis S, Gibbons JM, Gillespie D, Gilroy D, Hamblin M, Harker G, Hemingway G, Hewson J, Heywood W, Hickling LM, Hicks B, Hingorani AD, Howes L, Itua I, Jardim V, Lee WYJ, Jensen M, Jones J, Jones M, Joy G, Kapil V, Kelly C, Kurdi H, Lambourne J, Lin KM, Liu S, Lloyd A, Louth S, Maini MK, Mandadapu V, Manisty C, McKnight Á, Menacho K, Mfuko C, Mills K, Millward S, Mitchelmore O, Moon C, et alDoykov I, Baldwin T, Spiewak J, Gilmour KC, Gibbons JM, Pade C, Reynolds CJ, Áine McKnight, Noursadeghi M, Maini MK, Manisty C, Treibel T, Captur G, Fontana M, Boyton RJ, Altmann DM, Brooks T, Semper A, Moon JC, Kevin Mills, Heywood WE, Abiodun A, Alfarih M, Alldis Z, Altmann DM, Amin OE, Andiapen M, Artico J, Augusto JB, Baca GL, Bailey SN, Bhuva AN, Boulter A, Bowles R, Boyton RJ, Bracken OV, O’Brien B, Brooks T, Bullock N, Butler DK, Captur G, Carr O, Champion N, Chan C, Chandran A, Coleman T, Couto de Sousa J, Couto-Parada X, Cross E, Cutino-Moguel T, D’Arcangelo S, Davies RH, Douglas B, Di Genova C, Dieobi-Anene K, Diniz MO, Ellis A, Feehan K, Finlay M, Fontana M, Forooghi N, Francis S, Gibbons JM, Gillespie D, Gilroy D, Hamblin M, Harker G, Hemingway G, Hewson J, Heywood W, Hickling LM, Hicks B, Hingorani AD, Howes L, Itua I, Jardim V, Lee WYJ, Jensen M, Jones J, Jones M, Joy G, Kapil V, Kelly C, Kurdi H, Lambourne J, Lin KM, Liu S, Lloyd A, Louth S, Maini MK, Mandadapu V, Manisty C, McKnight Á, Menacho K, Mfuko C, Mills K, Millward S, Mitchelmore O, Moon C, Moon J, Sandoval DM, Murray SM, Noursadeghi M, Otter A, Pade C, Palma S, Parker R, Patel K, Pawarova M, Petersen SE, Piniera B, Pieper FP, Rannigan L, Rapala A, Reynolds CJ, Richards A, Robathan M, Rosenheim J, Rowe C, Royds M, West JS, Sambile G, Schmidt NM, Selman H, Semper A, Seraphim A, Simion M, Smit A, Sugimoto M, Swadling L, Taylor S, Temperton N, Thomas S, Thornton GD, Treibel TA, Tucker A, Varghese A, Veerapen J, Vijayakumar M, Warner T, Welch S, White H, Wodehouse T, Wynne L, Zahedi D. Quantitative, multiplexed, targeted proteomics for ascertaining variant specific SARS-CoV-2 antibody response. CELL REPORTS METHODS 2022; 2:100279. [PMID: 35975199 PMCID: PMC9372021 DOI: 10.1016/j.crmeth.2022.100279] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 02/09/2023]
Abstract
Determining the protection an individual has to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VoCs) is crucial for future immune surveillance, vaccine development, and understanding of the changing immune response. We devised an informative assay to current ELISA-based serology using multiplexed, baited, targeted proteomics for direct detection of multiple proteins in the SARS-CoV-2 anti-spike antibody immunocomplex. Serum from individuals collected after infection or first- and second-dose vaccination demonstrates this approach and shows concordance with existing serology and neutralization. Our assays show altered responses of both immunoglobulins and complement to the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.1) VoCs and a reduced response to Omicron (B1.1.1529). We were able to identify individuals who had prior infection, and observed that C1q is closely associated with IgG1 (r > 0.82) and may better reflect neutralization to VoCs. Analyzing additional immunoproteins beyond immunoglobulin (Ig) G, provides important information about our understanding of the response to infection and vaccination.
Collapse
Affiliation(s)
- Ivan Doykov
- Translational Mass Spectrometry Research Group, Genetics & Genomic Medicine Department, UCL Institute of Child Health, London, UK.,Great Ormond Street Biomedical Research Centre, UCL Institute of Child Health London
| | - Tomas Baldwin
- Translational Mass Spectrometry Research Group, Genetics & Genomic Medicine Department, UCL Institute of Child Health, London, UK
| | - Justyna Spiewak
- Translational Mass Spectrometry Research Group, Genetics & Genomic Medicine Department, UCL Institute of Child Health, London, UK
| | - Kimberly C Gilmour
- Great Ormond Street Children's Hospital NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Joseph M Gibbons
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Corinna Pade
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Áine McKnight
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Charlotte Manisty
- St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Thomas Treibel
- St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Gabriella Captur
- Institute of Cardiovascular Science, University College London, London, UK.,Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, UK
| | - Marianna Fontana
- Institute of Cardiovascular Science, University College London, London, UK.,Royal Free London NHS Foundation Trust, Pond Street, London NW3 2QG, UK
| | - Rosemary J Boyton
- Department of Infectious Disease, Imperial College London, London, UK.,Lung Division, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Daniel M Altmann
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Tim Brooks
- UK Health Security Agency, Porton Down, UK
| | | | | | - James C Moon
- St. Bartholomew's Hospital, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, Genetics & Genomic Medicine Department, UCL Institute of Child Health, London, UK.,Great Ormond Street Biomedical Research Centre, UCL Institute of Child Health London
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, Genetics & Genomic Medicine Department, UCL Institute of Child Health, London, UK.,Great Ormond Street Biomedical Research Centre, UCL Institute of Child Health London
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Tonto PB, Nagao M, Suga S, Taniguchi K, Hirayama M, Nakayama T, Kumagai T, Fujisawa T, the Influenza Vaccine Study Group. High prevalence of IgE sensitization to inactivated influenza vaccines, yet robust IgG4 responses, in a healthy pediatric population. Influenza Other Respir Viruses 2022; 17:e13053. [PMID: 36086810 PMCID: PMC9835421 DOI: 10.1111/irv.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/06/2022] [Accepted: 08/25/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Anaphylaxis following influenza vaccination is a rare but serious problem. The underlying immune responses are not well understood. This study elucidated the IgE and IgG antibody responses in healthy children and adolescents following inactivated influenza vaccines (IIVs). METHODS The efficacy and safety of quadrivalent IIV (QIV) and trivalent IIV (TIV) were compared in healthy subjects aged 0-18 years. Serum IIV-specific IgE, IgG, and IgG4 levels (sIgE, sIgG, and sIgG4) were measured with ImmunoCAP. Hemagglutination inhibition (HI) assay was performed for each influenza virus subtype. Sera from earlier patients who developed anaphylaxis to different IIVs were similarly tested. RESULTS A total of 393 subjects were enrolled: 96 were 6 months-2 years old, 100 were 3-5 years old, 100 were 6-12 years old, and 97 were 13-18 years old. No anaphylaxis was observed. Generally, QIV and TIV induced similar antibody responses. IIV-sIgE levels rose significantly after vaccination in the 6 months-2 years old and 3-5 years old groups, did not change in the 6-12 years old group, and decreased in the 13-18 years old group. In contrast, the IIV-sIgG4/sIgE ratio increased significantly after vaccination in all age groups. Sensitized subjects had significantly higher HI titers and IIV-sIgG levels in the youngest age group and higher IIV-sIgG4 levels in all age groups compared with the non-sensitized. The IIV-sIgG4/sIgE ratio in five patients with anaphylaxis was significantly lower than in age-matched healthy subjects. CONCLUSION IIVs induce IgE sensitization in healthy children but also robust IgG4 responses that may protect them from anaphylaxis.
Collapse
Affiliation(s)
- Prince Baffour Tonto
- Allergy Center and Infectious Disease CenterNational Hospital Organization Mie National HospitalTsuJapan,Department of Child Health and DevelopmentMie University Graduate School of MedicineTsuJapan
| | - Mizuho Nagao
- Allergy Center and Infectious Disease CenterNational Hospital Organization Mie National HospitalTsuJapan,Department of Child Health and DevelopmentMie University Graduate School of MedicineTsuJapan
| | - Shigeru Suga
- Allergy Center and Infectious Disease CenterNational Hospital Organization Mie National HospitalTsuJapan,Department of Child Health and DevelopmentMie University Graduate School of MedicineTsuJapan
| | - Kiyosu Taniguchi
- Allergy Center and Infectious Disease CenterNational Hospital Organization Mie National HospitalTsuJapan,Department of Child Health and DevelopmentMie University Graduate School of MedicineTsuJapan
| | - Masahiro Hirayama
- Department of PediatricsMie University Graduate School of MedicineTsuJapan
| | - Tetsuo Nakayama
- Omura Satoshi Memorial InstituteKitasato University Graduate School of Infection Control SciencesTokyoJapan
| | | | - Takao Fujisawa
- Allergy Center and Infectious Disease CenterNational Hospital Organization Mie National HospitalTsuJapan,Department of Child Health and DevelopmentMie University Graduate School of MedicineTsuJapan
| | | |
Collapse
|
86
|
Cerutti A, Filipska M, Fa XM, Tachó-Piñot R. Impact of the mucosal milieu on antibody responses to allergens. J Allergy Clin Immunol 2022; 150:503-512. [PMID: 36075636 DOI: 10.1016/j.jaci.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022]
Abstract
Respiratory and digestive mucosal surfaces are continually exposed to common environmental antigens, which include potential allergens. Although innocuous in healthy individuals, allergens cause allergy in predisposed subjects and do so by triggering a pathologic TH2 cell response that induces IgE class switching and somatic hypermutation in allergen-specific B cells. The ensuing affinity maturation and plasma cell differentiation lead to the abnormal release of high-affinity IgE that binds to powerful FcεRI receptors on basophils and mast cells. When cross-linked by allergen, FcεRI-bound IgE instigates the release of prestored and de novo-induced proinflammatory mediators. Aside from causing type I hypersensitivity reactions underlying allergy, IgE affords protection against nematodes or venoms from insects and snakes, which raises questions as to the fundamental differences between protective and pathogenic IgE responses. In this review, we discuss the impact of the mucosal environment, including the epithelial and mucus barriers, on the induction of protective IgE responses against environmental antigens. We further discuss how perturbations of these barriers may contribute to the induction of pathogenic IgE production.
Collapse
Affiliation(s)
- Andrea Cerutti
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain; Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, New York.
| | - Martyna Filipska
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Xavi Marcos Fa
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Roser Tachó-Piñot
- Lydia Becher Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
87
|
Jentzer A, Attal A, Roué C, Raymond J, Lleixà C, Illa I, Querol L, Taieb G, Devaux J. IgG4 Valency Modulates the Pathogenicity of Anti–Neurofascin-155 IgG4 in Autoimmune Nodopathy. NEUROLOGY - NEUROIMMUNOLOGY NEUROINFLAMMATION 2022; 9:9/5/e200014. [PMID: 35948442 PMCID: PMC9365386 DOI: 10.1212/nxi.0000000000200014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022]
Abstract
Background and Objectives IgG4 autoantibodies to neurofascin-155 (Nfasc155) are associated with a subgroup of patients with chronic inflammatory demyelinating polyneuropathy (CIDP), currently named autoimmune nodopathy. We previously demonstrated that those antibodies alter conduction along myelinated axons by inducing Nfasc155 depletion and paranode destruction. In blood, IgG4 have the potency to exchange their moiety with other unrelated IgG4 through a process called Fab-arm exchange (FAE). This process results in functionally monovalent antibodies and may affect the pathogenicity of autoantibodies. Here, we examined this issue and whether FAE is beneficial or detrimental for Nfasc155 autoimmune nodopathy. Methods The bivalency and monospecificity of anti-Nfasc155 were examined by sandwich ELISA in 10 reactive patients, 10 unreactive CIDP patients, and 10 healthy controls. FAE was induced in vitro using reduced glutathione and unreactive IgG4, and the ratio of the κ:λ light chain was monitored. To determine the pathogenic potential of bivalent anti-Nfasc155 IgG4, autoantibodies derived from patients were enzymatically cleaved into monovalent Fab and bivalent F(ab’)2 or swapped with unreactive IgG4 and then were injected in neonatal animals. Results Monospecific bivalent IgG4 against Nfasc155 were detected in the serum of all reactive patients, indicating that a fraction of IgG4 have not undergone FAE in situ. These IgG4 were, nonetheless, capable of engaging into FAE with unreactive IgG4 in vitro, and this decreased the levels of monospecific antibodies and modulated the ratio of the κ:λ light chain. When injected in animals, monovalent anti-Nfasc155 Fab did not alter the formation of paranodes; by contrast, both native anti-Nfasc155 IgG4 and F(ab’)2 fragments strongly impaired paranode formation. The promotion of FAE with unreactive IgG4 also strongly diminished the pathogenic potential of anti-Nfasc155 IgG4 in animals and decreased IgG4 clustering on Schwann cells. Discussion Our findings demonstrate that monospecific and bivalent anti-Nfasc155 IgG4 are detected in patients and that those autoantibodies are the pathogenic ones. The transformation of anti-Nfasc155 IgG4 into monovalent Fab or functionally monovalent IgG4 through FAE strongly decreases paranodal alterations. Bivalency thus appears crucial for Nfasc155 clustering and paranode destruction.
Collapse
Affiliation(s)
- Alexandre Jentzer
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Arthur Attal
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Clémence Roué
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Julie Raymond
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Cinta Lleixà
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Isabel Illa
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Luis Querol
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Guillaume Taieb
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain
| | - Jérôme Devaux
- From the Institute for Neurosciences of Montpellier (A.J., A.A., G.T., J.D.), INSERM U1051, Montpellier University, Hôpital Saint Eloi, France; Department of Immunology (A.J.), CHU Montpellier, France ; Department of Neurology (A.A., G.T.), CHU Montpellier, Hôpital Gui de Chauliac, France; Institut de Génomique Fonctionnelle (C.R., J.R., G.T., J.D.), CNRS UMR5203, France; and Neuromuscular Diseases Unit (C.L., I.I., L.Q.), Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Spain.
| |
Collapse
|
88
|
Singh AA, Pillay P, Naicker P, Alexandre K, Malatji K, Mach L, Steinkellner H, Vorster J, Chikwamba R, Tsekoa TL. Transient proteolysis reduction of Nicotiana benthamiana-produced CAP256 broadly neutralizing antibodies using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2022; 13:953654. [PMID: 36061808 PMCID: PMC9433777 DOI: 10.3389/fpls.2022.953654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The hypersensitive response is elicited by Agrobacterium infiltration of Nicotiana benthamiana, including the induction and accumulation of pathogenesis-related proteins, such as proteases. This includes the induction of the expression of several cysteine proteases from the C1 (papain-like cysteine protease) and C13 (legumain-like cysteine protease) families. This study demonstrates the role of cysteine proteases: NbVPE-1a, NbVPE-1b, and NbCysP6 in the proteolytic degradation of Nicotiana benthamiana (glycosylation mutant ΔXTFT)-produced anti-human immunodeficiency virus broadly neutralizing antibody, CAP256-VRC26.25. Three putative cysteine protease cleavage sites were identified in the fragment crystallizable region. We further demonstrate the transient coexpression of CAP256-VRC26.25 with CRISPR/Cas9-mediated genome editing vectors targeting the NbVPE-1a, NbVPE-1b, and NbCysP6 genes which resulted in a decrease in CAP256-VRC26.25 degradation. No differences in structural features were observed between the human embryonic kidney 293 (HEK293)-produced and ΔXTFT broadly neutralizing antibodies produced with and without the coexpression of genome-editing vectors. Furthermore, despite the presence of proteolytically degraded fragments of plant-produced CAP256-VRC26.25 without the coexpression of genome editing vectors, no influence on the in vitro functional activity was detected. Collectively, we demonstrate an innovative in planta strategy for improving the quality of the CAP256 antibodies through the transient expression of the CRISPR/Cas9 vectors.
Collapse
Affiliation(s)
- Advaita Acarya Singh
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Previn Naicker
- NextGen Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Kabamba Alexandre
- NextGen Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Kanyane Malatji
- NextGen Health Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Juan Vorster
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Rachel Chikwamba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| |
Collapse
|
89
|
Bi Y, Su J, Zhou S, Zhao Y, Zhang Y, Zhang H, Liu M, Zhou A, Xu J, Pan M, Zhao Y, Li F. Distinct impact of IgG subclass on autoantibody pathogenicity in different IgG4-mediated diseases. eLife 2022; 11:76223. [PMID: 35920621 PMCID: PMC9385207 DOI: 10.7554/elife.76223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
IgG4 is the least potent human IgG subclass for the FcγR-mediated antibody effector function. Paradoxically, IgG4 is also the dominant IgG subclass of pathogenic autoantibodies in IgG4-mediated diseases. Here, we show that the IgG subclass and Fc-FcγR interaction have a distinct impact on the pathogenic function of autoantibodies in different IgG4-mediated diseases in mouse models. While IgG4 and its weak Fc-FcγR interaction have an ameliorative role in the pathogenicity of anti-ADAMTS13 autoantibodies isolated from thrombotic thrombocytopenic purpura (TTP) patients, they have an unexpected exacerbating effect on anti-Dsg1 autoantibody pathogenicity in pemphigus foliaceus (PF) models. Strikingly, a non-pathogenic anti-Dsg1 antibody variant optimized for FcγR-mediated effector function can attenuate the skin lesions induced by pathogenic anti-Dsg1 antibodies by promoting the clearance of dead keratinocytes. These studies suggest that IgG effector function contributes to the clearance of autoantibody-Ag complexes, which is harmful in TTP, but beneficial in PF and may provide new therapeutic opportunity.
Collapse
Affiliation(s)
- Yanxia Bi
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Su
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengru Zhou
- Department of Dermatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingdong Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Pan
- Department of Dermatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fubin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
90
|
Gattinger P, Kratzer B, Tulaeva I, Niespodziana K, Ohradanova‐Repic A, Gebetsberger L, Borochova K, Garner‐Spitzer E, Trapin D, Hofer G, Keller W, Baumgartner I, Tancevski I, Khaitov M, Karaulov A, Stockinger H, Wiedermann U, Pickl W, Valenta R. Vaccine based on folded receptor binding domain-PreS fusion protein with potential to induce sterilizing immunity to SARS-CoV-2 variants. Allergy 2022; 77:2431-2445. [PMID: 35357709 PMCID: PMC9111473 DOI: 10.1111/all.15305] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the ongoing global COVID-19 pandemic. One possibility to control the pandemic is to induce sterilizing immunity through the induction and maintenance of neutralizing antibodies preventing SARS-CoV-2 from entering human cells to replicate in. METHODS We report the construction and in vitro and in vivo characterization of a SARS-CoV-2 subunit vaccine (PreS-RBD) based on a structurally folded recombinant fusion protein consisting of two SARS-CoV-2 Spike protein receptor-binding domains (RBD) fused to the N- and C-terminus of hepatitis B virus (HBV) surface antigen PreS to enable the two unrelated proteins serving as immunologic carriers for each other. RESULTS PreS-RBD, but not RBD alone, induced a robust and uniform RBD-specific IgG response in rabbits. Currently available genetic SARS-CoV-2 vaccines induce mainly transient IgG1 responses in vaccinated subjects whereas the PreS-RBD vaccine induced RBD-specific IgG antibodies consisting of an early IgG1 and sustained IgG4 antibody response in a SARS-CoV-2 naive subject. PreS-RBD-specific IgG antibodies were detected in serum and mucosal secretions, reacted with SARS-CoV-2 variants, including the omicron variant of concern and the HBV receptor-binding sites on PreS of currently known HBV genotypes. PreS-RBD-specific antibodies of the immunized subject more potently inhibited the interaction of RBD with its human receptor ACE2 and their virus-neutralizing titers (VNTs) were higher than median VNTs in a random sample of healthy subjects fully immunized with registered SARS-CoV-2 vaccines or in COVID-19 convalescent subjects. CONCLUSION The PreS-RBD vaccine has the potential to serve as a combination vaccine for inducing sterilizing immunity against SARS-CoV-2 and HBV by stopping viral replication through the inhibition of cellular virus entry.
Collapse
Affiliation(s)
- Pia Gattinger
- Department of Pathophysiology and Allergy ResearchDivision of ImmunopathologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Bernhard Kratzer
- Center for Pathophysiology, Infectiology and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Inna Tulaeva
- Department of Pathophysiology and Allergy ResearchDivision of ImmunopathologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Laboratory for ImmunopathologyDepartment of Clinical Immunology and AllergologySechenov First Moscow State Medical UniversityMoscowRussia
| | - Katarzyna Niespodziana
- Department of Pathophysiology and Allergy ResearchDivision of ImmunopathologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Anna Ohradanova‐Repic
- Center for Pathophysiology, Infectiology and ImmunologyInstitute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Laura Gebetsberger
- Center for Pathophysiology, Infectiology and ImmunologyInstitute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Kristina Borochova
- Department of Pathophysiology and Allergy ResearchDivision of ImmunopathologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - Erika Garner‐Spitzer
- Institute of Specific Prophylaxis and Tropical MedicineMedical University of ViennaViennaAustria
| | - Doris Trapin
- Center for Pathophysiology, Infectiology and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
| | - Gerhard Hofer
- Department of Materials and Environmental ChemistryUniversity of StockholmStockholmSweden
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed GrazUniversity of GrazGrazAustria
| | | | - Ivan Tancevski
- Department of Internal Medicine IIMedical University of InnsbruckInnsbruckAustria
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
- Pirogov Russian National Research Medical UniversityMoscowRussia
| | - Alexander Karaulov
- Laboratory for ImmunopathologyDepartment of Clinical Immunology and AllergologySechenov First Moscow State Medical UniversityMoscowRussia
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology and ImmunologyInstitute for Hygiene and Applied ImmunologyMedical University of ViennaViennaAustria
| | - Ursula Wiedermann
- Institute of Specific Prophylaxis and Tropical MedicineMedical University of ViennaViennaAustria
| | - Winfried F. Pickl
- Center for Pathophysiology, Infectiology and ImmunologyInstitute of ImmunologyMedical University of ViennaViennaAustria
- Karl Landsteiner University of Health SciencesKremsAustria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy ResearchDivision of ImmunopathologyCenter for Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
- Laboratory for ImmunopathologyDepartment of Clinical Immunology and AllergologySechenov First Moscow State Medical UniversityMoscowRussia
- Karl Landsteiner University of Health SciencesKremsAustria
- NRC Institute of Immunology FMBA of RussiaMoscowRussia
| |
Collapse
|
91
|
Segués A, Huang S, Sijts A, Berraondo P, Zaiss DM. Opportunities and challenges of bi-specific antibodies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:45-70. [PMID: 35777864 DOI: 10.1016/bs.ircmb.2022.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The recent clinical approval of different Bi-specific antibodies (BsAbs) has revealed the great therapeutic potential of this novel class of biologicals. For example, the bispecific T-cell engager (BiTE), Blinatumomab, demonstrated the unique capacity of BsAbs to link T-cells with tumor cells, inducing targeted tumor cell removal. Additionally, Amivantamab, recognizing the EGFR and cMet in cis, revealed a substantial improvement of therapeutic efficacy by concomitantly targeting two tumor antigens. Cis-targeting BsAbs furthermore allow discerning cell populations which concurrently express two antigens, for which each antigen expression pattern in itself might not be selective. In this way, BsAbs harbor the great prospect of being more specific and showing fewer side effects than monoclonal antibodies. Nevertheless, BsAbs have also faced major obstacles, for instance, in ensuring reliable assembly and clinical-grade purification. In this review, we summarize the different available antibody platforms currently used for the generation of IgG-like and non-IgG-like BsAbs and explain which approaches have been used to assemble those BsAbs which are currently approved for clinical application. By focusing on the example of regulatory T-cells (Tregs) and the different, ongoing approaches to develop BsAbs specifically targeting Tregs within the tumor microenvironment, our review highlights the huge potential as well as the pitfalls BsAb face in order to emerge as one of the most effective therapeutic biologicals targeting desired cell populations in a highly selective way. Such BsAb may improve treatment efficacy and reduce side effects, thereby opening novel treatment opportunities for a range of different diseases, such as cancer or autoimmune diseases.
Collapse
Affiliation(s)
- Aina Segués
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Shuyu Huang
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Alice Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Dietmar M Zaiss
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Department of Immune Medicine, University Regensburg, Regensburg, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany; Institute of Pathology, University Regensburg, Regensburg, Germany.
| |
Collapse
|
92
|
Manral P, Caza TN, Storey AJ, Beck LH, Borza DB. The Alternative Pathway Is Necessary and Sufficient for Complement Activation by Anti-THSD7A Autoantibodies, Which Are Predominantly IgG4 in Membranous Nephropathy. Front Immunol 2022; 13:952235. [PMID: 35874690 PMCID: PMC9301376 DOI: 10.3389/fimmu.2022.952235] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Membranous nephropathy (MN) is an immune kidney disease characterized by glomerular subepithelial immune complexes (ICs) containing antigen, IgG, and products of complement activation. Whereas proteinuria is caused by complement-mediated podocyte injury, the pathways of complement activation remain controversial due to the predominance of IgG4 in ICs, an IgG subclass considered unable to activate complement. THSD7A, a transmembrane protein expressed on podocytes, is the target autoantigen in ~3% of cases of primary MN. In this study, we analyzed sera from 16 patients with THSD7A-associated MN with regard to the anti-THSD7A IgG subclasses and their ability to fix complement in vitro. The serum concentration of anti-THSD7A IgG varied over two orders of magnitude (1.3-243 μg/mL). As a relative proportion of all IgG anti-THSD7A, IgG4 was by far the most abundant subclass (median 79%), followed by IgG1 (median 11%). IgG4 was the dominant subclass of anti-THSD7A antibodies in 14 sera, while IgG1 was dominant in one and co-dominant in another. One quarter of MN sera additionally contained low levels of anti-THSD7A IgA1. ICs formed by predominantly IgG4 anti-THSD7A autoantibodies with immobilized THSD7A were relatively weak activators of complement in vitro, compared to human IgG1 and IgG3 mAbs used as positive control. Complement deposition on THSD7A ICs was dose-dependent and occurred to a significant extent only at relatively high concentration of anti-THSD7A IgG. C3b fixation by THSD7A ICs was completely abolished in factor B-depleted sera, partially inhibited in C4-depleted sera, unchanged in C1q-depleted sera, and also occurred in Mg-EGTA buffer. These results imply that THSD7A ICs predominantly containing IgG4 activate complement at high IgG4 density, which strictly requires a functional alternative pathway, whereas the classical and lectin pathways are dispensable. These findings advance our understanding of how IgG4 antibodies activate complement.
Collapse
Affiliation(s)
- Pallavi Manral
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
| | | | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Laurence H. Beck
- Department of Medicine (Nephrology), Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Dorin-Bogdan Borza
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN, United States
- *Correspondence: Dorin-Bogdan Borza,
| |
Collapse
|
93
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
94
|
Dugic A, Verdejo Gil C, Mellenthin C, Vujasinovic M, Löhr JM, Mühldorfer S. The Clinical Utility of Soluble Serum Biomarkers in Autoimmune Pancreatitis: A Systematic Review. Biomedicines 2022; 10:1511. [PMID: 35884816 PMCID: PMC9312496 DOI: 10.3390/biomedicines10071511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Autoimmune pancreatitis (AIP) is a rare etiological type of chronic pancreatitis. The clinical and radiological presentation of AIP often resembles that of pancreatic cancer. Identifying non-invasive markers for their early distinction is of utmost importance to avoid unnecessary surgery or a delay in steroid therapy. Thus, this systematic review was conducted to revisit all current evidence on the clinical utility of different serum biomarkers in diagnosing AIP, distinguishing AIP from pancreatic cancer, and predicting disease course, steroid therapy response, and relapse. A systematic review was performed for articles published up to August 2021 by searching electronic databases such as MEDLINE, Web of Science, and EMBASE. Among 5123 identified records, 92 studies were included in the qualitative synthesis. Apart from immunoglobulin (Ig) G4, which was by far the most studied biomarker, we identified autoantibodies against the following: lactoferrin, carboanhydrase II, plasminogen-binding protein, amylase-α2A, cationic (PRSS1) and anionic (PRSS2) trypsinogens, pancreatic secretory trypsin inhibitor (PSTI/SPINK1), and type IV collagen. The identified novel autoantigens were laminin 511, annexin A11, HSP-10, and prohibitin. Other biomarkers included cytokines, decreased complement levels, circulating immune complexes, N-glycan profile changes, aberrant miRNAs expression, decreased IgA and IgM levels, increased IgE levels and/or peripheral eosinophil count, and changes in apolipoprotein isoforms levels. To our knowledge, this is the first systematic review that addresses biomarkers in AIP. Evolving research has recognized numerous biomarkers that could help elucidate the pathophysiological mechanisms of AIP, bringing us closer to AIP diagnosis and its preoperative distinction from pancreatic cancer.
Collapse
Affiliation(s)
- Ana Dugic
- Department of Gastroenterology, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Medizincampus Oberfranken, 95445 Bayreuth, Germany;
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schloßplatz 4, 91054 Erlangen, Germany
| | - Cristina Verdejo Gil
- Department of Gastroenterology, Hospital Universitario Fundación de Alcorcón, 28922 Madrid, Spain;
| | | | - Miroslav Vujasinovic
- Department of Upper Abdominal Diseases, Karolinska University Hospital, 14186 Stockholm, Sweden;
- Department of Medicine, Huddinge, Karolinska Institutet, 14186 Stockholm, Sweden;
| | - J.-Matthias Löhr
- Department of Medicine, Huddinge, Karolinska Institutet, 14186 Stockholm, Sweden;
- Department of Clinical Science, Intervention, and Technology (CLINTEC), Karolinska Institutet, 14186 Stockholm, Sweden
| | - Steffen Mühldorfer
- Department of Gastroenterology, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Medizincampus Oberfranken, 95445 Bayreuth, Germany;
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schloßplatz 4, 91054 Erlangen, Germany
| |
Collapse
|
95
|
Komatsu M, Yamamoto H, Uehara T, Kobayashi Y, Hozumi H, Fujisawa T, Miyamoto A, Kishaba T, Kunishima F, Okamoto M, Kitamura H, Iwasawa T, Matsushita S, Terasaki Y, Kunugi S, Ushiki A, Yasuo M, Suda T, Hanaoka M. Prognostic implication of IgG4 and IgG1-positive cell infiltration in the lung in patients with idiopathic interstitial pneumonia. Sci Rep 2022; 12:9303. [PMID: 35661786 PMCID: PMC9166741 DOI: 10.1038/s41598-022-13333-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Immunoglobulin (Ig) G4-positive cells are rarely observed in the lungs of patients with idiopathic interstitial pneumonias (IIPs). IgG1 may be more pathogenic than IgG4, with IgG4 having both pathogenic and protective roles in IgG4-related disease (IgG4-RD). However, the role of both IgG1 and IgG4 in IIPs remains unclear. We hypothesized that patients with IgG4-positive interstitial pneumonia manifest different clinical characteristics than patients with IgG4-RD. Herein, we identified the correlation of the degree of infiltration of IgG1- and IgG4-positive cells with IIP prognosis, using a Japanese nationwide cloud-based database. We included eighty-eight patients diagnosed with IIPs after multidisciplinary discussion, from April 2009 to March 2014. IgG4-positive cell infiltration was identified in 12/88 patients with IIPs and 8/41 patients with idiopathic pulmonary fibrosis (IPF). Additionally, 31/88 patients with IIPs and 19/41 patients with IPF were diagnosed as having IgG1-positive cell infiltration. IgG4-positive IIPs tended to have a better prognosis. Conversely, overall survival in cases with IgG1-positive IPF was significantly worse. IIPs were prevalent with IgG1- or IgG4-positive cell infiltration. IgG1-positive cell infiltration in IPF significantly correlated with a worse prognosis. Overall, evaluating the degree of IgG1-positive cell infiltration may be prognostically useful in cases of IPF.
Collapse
Affiliation(s)
- Masamichi Komatsu
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroshi Yamamoto
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukihiro Kobayashi
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hironao Hozumi
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyuki Fujisawa
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsushi Miyamoto
- Department of Respiratory Medicine, Respiratory Center, Toranomon Hospital, Tokyo, Japan
| | - Tomoo Kishaba
- Department of Respiratory Medicine, Okinawa Prefectural Chubu Hospital, Uruma, Japan
| | | | - Masaki Okamoto
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hideya Kitamura
- Division of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | - Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.,Division of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Atsuhito Ushiki
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masanori Yasuo
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan.,Department of Clinical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
96
|
Panhuber A, Lamorte G, Bruno V, Cetin H, Bauer W, Höftberger R, Erber AC, Frommlet F, Koneczny I. A systematic review and meta-analysis of HLA class II associations in patients with IgG4 autoimmunity. Sci Rep 2022; 12:9229. [PMID: 35654912 PMCID: PMC9163138 DOI: 10.1038/s41598-022-13042-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Autoimmune diseases caused by pathogenic IgG4 subclass autoantibodies (IgG4-AID) include diseases like MuSK myasthenia gravis, pemphigus vulgaris or thrombotic thrombocytopenic purpura. Their etiology is still unknown. Polymorphisms in the human leukocyte antigen (HLA) gene locus, particularly in HLA-DRB1, are known genetic susceptibility factors for autoimmune diseases. We hypothesized a similar role for HLA polymorphisms in IgG4-AID and conducted a systematic review and meta-analysis with case-control studies on IgG4-AID based on MOOSE/ HuGENet guidelines. Genotype (G) and allele (A) frequencies of HLA-DQB1*05 (G: OR 3.8; 95% CI 2.44-5.9; p < 0.00001; A: OR 2.54; 95% CI 1.82-3.55; p < 0.00001) and HLA-DRB1*14 (G: OR 4.31; 95% CI 2.82-6.59; p < 0.00001; A: OR 4.78; 95% CI 3.52-6.49; p < 0.00001) and the HLA-DRB1*14-DQB1*05 haplotype (OR 6.3; 95% CI 3.28-12.09; p < 0.00001/OR 4.98; 95% CI 3.8-6.53; p < 0.00001) were increased while HLA-DRB1*13 (G: OR 0.48; 95% CI 0.34-0.68; p < 0.0001; A: OR 0.46; 95% CI 0.34-0.62; p < 0.00001) was decreased in IgG4-AID patients. In conclusion, the HLA-DQB1*05, HLA-DRB1*14 alleles and the HLA-DQB1*05-DRB1*14 haplotype could be genetic risk factors that predispose for the production of pathogenic IgG4 autoantibodies and the HLA-DRB1*13 allele may protect from IgG4 autoimmunity.
Collapse
Affiliation(s)
- Anja Panhuber
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Giovanni Lamorte
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Veronica Bruno
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hakan Cetin
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Astrid C Erber
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, Vienna, Austria
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Florian Frommlet
- Center for Medical Statistics Informatics and Intelligent Systems, Section for Medical Statistics, Medical University of Vienna, Vienna, Austria
| | - Inga Koneczny
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
97
|
Jiang X, Lan L, Zhou Q, Wang H, Wang H, Chen J, Han F. Characteristics and renal survival of patients with lupus nephritis with glomerular immunoglobulin G 4 deposition: a single-centre retrospective analysis. Lupus Sci Med 2022; 9:9/1/e000690. [PMID: 35710146 PMCID: PMC9204402 DOI: 10.1136/lupus-2022-000690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE Renal injury is common in SLE. Immune complex deposition plays an important role in the development of lupus nephritis (LN), while little is known about glomerular IgG4 deposition in patients with LN. This study aimed to investigate the characteristics and renal outcome of patients with LN with glomerular IgG4 deposition. METHODS This is a single-centre retrospective study enrolling 89 patients with biopsy-proven LN. Clinicopathological features, treatment responses and renal outcomes were collected and compared between patients with and without glomerular IgG4 deposition. Renal outcome events include progression of renal dysfunction and end-stage renal disease. RESULTS Thirty (33.7%) patients had glomerular IgG4 deposition. Patients with glomerular IgG4 deposition had lower serum albumin level (25.06±8.61 g/L vs 28.29±6.31 g/L, p=0.05), more class V LN (60.0% vs 35.6%, p=0.03), more positive phospholipase A2 receptor (PLA2R) staining (43.3% vs 18.6%, p=0.01), more IgG1 deposits (96.7% vs 64.4%, p=0.01) and less C3 deposits (46.7% vs 72.9%, p=0.02) than those without glomerular IgG4 deposition. They also had better renal survival than those without glomerular IgG4 deposition (96.7% vs 79.7%, p=0.03). Multivariate Cox regression showed that high serum creatinine level (relative risk (RR)=1.005, 95% CI 1.002 to 1.008, p=0.01) and high Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores (RR=1.078, 95% CI 1.004 to 1.157, p=0.04) independently correlated with poor renal outcome, while glomerular IgG4 deposition tended to correlate with good renal outcome (RR=5.95, 95% CI 0.759 to 45.97, p=0.09). Further, patients with both glomerular IgG4 and PLA2R positivity (n=13) had higher levels of serum C3 and C4 and less glomerular C3 deposits compared with those with positive IgG4 but negative PLA2R in the glomerulus (n=17), and had a tendency of low SLEDAI score (p=0.07). CONCLUSIONS Patients with LN with glomerular IgG4 deposits may have better renal survival, and patients with LN with simultaneous glomerular IgG4 and PLA2R deposits may have low disease activity.
Collapse
Affiliation(s)
- Xue Jiang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China.,Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lan Lan
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Huijing Wang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Huiping Wang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| | - Fei Han
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine; Institute of Nephrology, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, Zhejiang, China
| |
Collapse
|
98
|
Congdon EE, Jiang Y, Sigurdsson EM. Targeting tau only extracellularly is likely to be less efficacious than targeting it both intra- and extracellularly. Semin Cell Dev Biol 2022; 126:125-137. [PMID: 34896021 PMCID: PMC9680670 DOI: 10.1016/j.semcdb.2021.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Aggregation of the tau protein is thought to be responsible for the neurodegeneration and subsequent functional impairments in diseases that are collectively named tauopathies. Alzheimer's disease is the most common tauopathy, but the group consists of over 20 different diseases, many of which have tau pathology as their primary feature. The development of tau therapies has mainly focused on preventing the formation of and/or clearing these aggregates. Of these, immunotherapies that aim to either elicit endogenous tau antibodies or deliver exogenous ones are the most common approach in clinical trials. While their mechanism of action can involve several pathways, both extra- and intracellular, pharmaceutical companies have primarily focused on antibody-mediated clearance of extracellular tau. As we have pointed out over the years, this is rather surprising because it is well known that most of pathological tau protein is found intracellularly. It has been repeatedly shown by several groups over the past decades that antibodies can enter neurons and that their cellular uptake can be enhanced by various means, particularly by altering their charge. Here, we will briefly describe the potential extra- and intracellular mechanisms involved in antibody-mediated clearance of tau pathology, discuss these in the context of recent failures of some of the tau antibody trials, and finally provide a brief overview of how the intracellular efficacy of tau antibodies can potentially be further improved by certain modifications that aim to enhance tau clearance via specific intracellular degradation pathways.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States.
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, United States; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
99
|
Shin HG, Yang HR, Yoon A, Lee S. Bispecific Antibody-Based Immune-Cell Engagers and Their Emerging Therapeutic Targets in Cancer Immunotherapy. Int J Mol Sci 2022; 23:5686. [PMID: 35628495 PMCID: PMC9146966 DOI: 10.3390/ijms23105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is the second leading cause of death worldwide after cardiovascular diseases. Harnessing the power of immune cells is a promising strategy to improve the antitumor effect of cancer immunotherapy. Recent progress in recombinant DNA technology and antibody engineering has ushered in a new era of bispecific antibody (bsAb)-based immune-cell engagers (ICEs), including T- and natural-killer-cell engagers. Since the first approval of blinatumomab by the United States Food and Drug Administration (US FDA), various bsAb-based ICEs have been developed for the effective treatment of patients with cancer. Simultaneously, several potential therapeutic targets of bsAb-based ICEs have been identified in various cancers. Therefore, this review focused on not only highlighting the action mechanism, design and structure, and status of bsAb-based ICEs in clinical development and their approval by the US FDA for human malignancy treatment, but also on summarizing the currently known and emerging therapeutic targets in cancer. This review provides insights into practical considerations for developing next-generation ICEs.
Collapse
Affiliation(s)
- Ha Gyeong Shin
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
| | - Aerin Yoon
- R&D Division, GC Biopharma, Yongin 16924, Korea
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, College of Science and Technology, Kookmin University, Seoul 02707, Korea; (H.G.S.); (H.R.Y.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
100
|
Rodgers CB, Mustard CJ, McLean RT, Hutchison S, Pritchard AL. A B-cell or a key player? The different roles of B-cells and antibodies in melanoma. Pigment Cell Melanoma Res 2022; 35:303-319. [PMID: 35218154 PMCID: PMC9314792 DOI: 10.1111/pcmr.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The B‐cell system plays an important role in the melanoma immune response; however, consensus has yet to be reached in many facets. Here, we comprehensively review human studies only, due to fundamental differences in the humoral response with animal models. Tumour‐infiltrating B‐cells are associated with contradictory prognostic values, reflecting a lack of agreement between studies on cell subset classification and differences in the markers used, particularly the common use of a single marker not differentiating multiple subsets. Tertiary lymphoid structures (TLS) organise T‐cells and B‐cells within tumours to generate a local anti‐tumour response and TLS presence associates with improved survival in response to immune checkpoint blockade, in late‐stage disease. Autoantibody production is increased in melanoma patients and has been proposed as biomarkers for diagnosis, prognosis and treatment/toxicity response; however, no consistent targets are yet identified. The function of antibodies in an anti‐tumour response is determined by its isotype and subclass; IgG4 is immune‐suppressive and robustly correlate with poor patient survival in melanoma. We conclude that the current B‐cell literature needs careful interpretation based on the methods used and that we need a consensus of markers to define B‐cells and associated lymphoid organs. Furthermore, future studies need to not only examine antibody targets, but also isotypes when considering functional roles.
Collapse
Affiliation(s)
- Chloe B Rodgers
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Colette J Mustard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Ryan T McLean
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Sharon Hutchison
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Antonia L Pritchard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|