51
|
Na J, Tai C, Wang Z, Yang Z, Chen X, Zhang J, Zheng L, Fan Y. Stiff extracellular matrix drives the differentiation of mesenchymal stem cells toward osteogenesis by the multiscale 3D genome reorganization. Biomaterials 2025; 312:122715. [PMID: 39094522 DOI: 10.1016/j.biomaterials.2024.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Extracellular matrix (ECM) stiffness is a major driver of stem cell fate. However, the involvement of the three-dimensional (3D) genomic reorganization in response to ECM stiffness remains unclear. Here, we generated comprehensive 3D chromatin landscapes of mesenchymal stem cells (MSCs) exposed to various ECM stiffness. We found that there were more long-range chromatin interactions, but less compartment A in MSCs cultured on stiff ECM than those cultured on soft ECM. However, the switch from compartment B in MSCs cultured on soft ECM to compartment A in MSCs cultured on stiff ECM included genes encoding proteins primarily enriched in cytoskeleton organization. At the topologically associating domains (TADs) level, stiff ECM tends to have merged TADs on soft ECM. These merged TADs on stiff ECM include upregulated genes encoding proteins enriched in osteogenesis, such as SP1, ETS1, and DCHS1, which were validated by quantitative real-time polymerase chain reaction and found to be consistent with the increase of alkaline phosphatase staining. Knockdown of SP1 or ETS1 led to the downregulation of osteogenic marker genes, including COL1A1, RUNX2, ALP, and OCN in MSCs cultured on stiff ECM. Our study provides an important insight into the stiff ECM-mediated promotion of MSC differentiation towards osteogenesis, emphasizing the influence of mechanical cues on the reorganization of 3D genome architecture and stem cell fate.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chengzheng Tai
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ziyi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyuan Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Jing Zhang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100083, China.
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
52
|
Wang B, Luo Q, Medalia O. Lamins and chromatin join forces. Adv Biol Regul 2025; 95:101059. [PMID: 39547851 DOI: 10.1016/j.jbior.2024.101059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
The intricate interplay between lamins and chromatin underpins the structural integrity and functional organization of the eukaryotic nucleus. Lamins, type V intermediate filament proteins, form a robust meshwork beneath the inner nuclear membrane that is crucial for sustaining nuclear architecture through interactions with lamin-associated domains (LADs). LADs are predominantly heterochromatic regions in which compacted chromatin is enriched at the nuclear periphery, interacting with lamins and lamin-associated proteins. Disruptions of these interactions are implicated in a spectrum of diseases, including laminopathies, cancer, and age-related pathologies, highlighting the importance of lamin-LAD interactions. Thus, a detailed understanding of lamin-chromatin interactions may provide new insights into chromatin organization and shed light on the mechanism behind certain disease states. Here, we discuss the current state of knowledge of lamin-chromatin interactions from a biochemical and structural point of view.
Collapse
Affiliation(s)
- Baihui Wang
- Department of Biochemistry, University of Zurich, Winterthur 190, 8057, Zurich, Switzerland.
| | - Qiang Luo
- Department of Biochemistry, University of Zurich, Winterthur 190, 8057, Zurich, Switzerland.
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthur 190, 8057, Zurich, Switzerland.
| |
Collapse
|
53
|
Dong R, Kang M, Qu Y, Hou T, Zhao J, Cheng X. Incorporating Hydrogel (with Low Polymeric Content) into 3D-Printed PLGA Scaffolds for Local and Sustained Release of BMP2 in Repairing Large Segmental Bone Defects. Adv Healthc Mater 2025; 14:e2403613. [PMID: 39491519 DOI: 10.1002/adhm.202403613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Indexed: 11/05/2024]
Abstract
Treating large bone defects remains a considerable challenge for clinicians: bone repair requires scaffolds with mechanical properties and bioactivities. Herein, based on crosslinking o-phthalaldehyde (OPA) with amine groups, 4-arm polyethylene glycol (4armPEG)-OPA/Gelatin hydrogel loaded with bone morphogenetic protein 2 (BMP2) is prepared and a three dimensional (3D)-printed poly (lactic-co-glycolic acid) (PLGA) porous scaffold is filled with the hydrogel solution. The composite scaffold, with a compression modulus of 0.68 ± 0.097 GPa similar to the cancellous bone, has a porosity of 56.67 ± 4.72% and a pore size of about 380 µm, promoting bone growth. The hydrogel forms a porous network at low concentrations, aiding protein release and cell migration. The hydrogel degrades in approximately three weeks, and the scaffold takes five months, matching bone repair timelines. BMP2 release experiment shows a sustained BMP2 release with a 72.4 ± 0.53% release ratio. The ALP activity test and alizarin red staining shows effective osteogenic promotion, while RT-PCR confirms BMP2@Gel enhanced COL-1 and OPN expression. Animal experiments further validate the composite scaffold's bone repair efficacy. This study demonstrates the effectiveness of the hydrogel in releasing BMP2 and the mechanical support of the 3D-printed PLGA porous scaffold, providing a new treatment for bone defects.
Collapse
Affiliation(s)
- Rongpeng Dong
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Mingyang Kang
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Yang Qu
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Tingting Hou
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Jianwu Zhao
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, Jilin, 130014, China
| |
Collapse
|
54
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
55
|
Shagieva G, Dugina V, Burakov A, Levuschkina Y, Kudlay D, Boichuk S, Khromova N, Vasileva M, Kopnin P. Divergent Contribution of Cytoplasmic Actins to Nuclear Structure of Lung Cancer Cells. Int J Mol Sci 2024; 25:13607. [PMID: 39769373 PMCID: PMC11727787 DOI: 10.3390/ijms252413607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2. In contrast, the suppression of γ-actin led to upregulation of the lamin A/B ratio through an increase in A-type lamins. Histone H3 post-translational modifications display distinct patterns in response to decreased actin isoform expression. The level of dimethylated H3K9me2 declined while acetylated H3K9ac increased in β-actin-depleted A549 cells. In contrast, the inhibition of γ-actin expression resulted in a reduction in H3K9ac. Based on our observations, we propose that β-actin plays a role in chromatin compaction and deactivation, and is involved in the elevation of nuclear stiffness through the control of the lamins ratio. The non-muscle γ-actin is presumably responsible for chromatin decondensation and activation. The identification of novel functions for actin isoforms offers insights into the mechanisms through which they influence cell fate during development and cancer progression.
Collapse
Affiliation(s)
- Galina Shagieva
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
| | - Vera Dugina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anton Burakov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
| | - Yulia Levuschkina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.S.); (V.D.)
| | - Dmitry Kudlay
- Department of Pharmacology, The I.M. Sechenov First Moscow State Medical University (The Sechenov University), 119991 Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergei Boichuk
- Department of Pathology, Kazan State Medical University, 420012 Kazan, Russia
- Department of Radiotherapy and Radiology, Russian Medical Academy of Continuous Professional Education, 119454 Moscow, Russia
| | - Natalia Khromova
- Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Maria Vasileva
- Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| | - Pavel Kopnin
- Scientific Research Institute of Carcinogenesis, N.N. Blokhin National Medical Research Center of Oncology, 115478 Moscow, Russia
| |
Collapse
|
56
|
Ko K, Bandara SR, Zhou W, Svenningsson L, Porras-Gómez M, Kambar N, Dreher-Threlkeld J, Topgaard D, Hernández-Saavedra D, Anakk S, Leal C. Diet-Induced Obesity Modulates Close-Packing of Triacylglycerols in Lipid Droplets of Adipose Tissue. J Am Chem Soc 2024; 146:34796-34810. [PMID: 39644234 DOI: 10.1021/jacs.4c13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Adipose-derived lipid droplets (LDs) are rich in triacylglycerols (TAGs), which regulate essential cellular processes, such as energy storage. Although TAG accumulation and LD expansion in adipocytes occur during obesity, how LDs dynamically package TAGs in response to excessive nutrients remains elusive. Here, we found that LD lipidomes display a remarkable increase in TAG acyl chain saturation under calorie-dense diets, turning them conducive to close-packing. Using high-resolution X-ray diffraction, solid-state NMR, and imaging, we show that beyond size expansion LDs from mice under varied obesogenic diets govern fat accumulation by packing TAGs in different crystalline polymorphs. Consistently, LDs and tissue stiffen for high-calorie-fed mice with more than a 2-fold increase in elastic moduli compared to normal diet. Our data suggest that in addition to expanding, adipocyte LDs undergo structural remodeling by close-packing rigid and highly saturated TAGs in response to caloric overload, as opposed to liquid TAGs in a low-calorie diet. This work provides insights into how lipid packing within LDs can allow for the rapid and optimal expansion of fat during the initial stages of obesity.
Collapse
Affiliation(s)
- Kyungwon Ko
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarith R Bandara
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Weinan Zhou
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Leo Svenningsson
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Marilyn Porras-Gómez
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nurila Kambar
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julia Dreher-Threlkeld
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel Topgaard
- Division of Physical Chemistry, Lund University, Lund 22100, Sweden
| | - Diego Hernández-Saavedra
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sayeepriyadarshini Anakk
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cecília Leal
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
57
|
Asghari M, Ivetich SD, Aslan MK, Aramesh M, Melkonyan O, Meng Y, Xu R, Colombo M, Weiss T, Balabanov S, Stavrakis S, deMello AJ. Real-time viscoelastic deformability cytometry: High-throughput mechanical phenotyping of liquid and solid biopsies. SCIENCE ADVANCES 2024; 10:eabj1133. [PMID: 39630916 PMCID: PMC11616701 DOI: 10.1126/sciadv.abj1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
In principle, the measurement of mechanical property differences between cancer cells and their benign counterparts enables the detection, diagnosis, and classification of diseases. Despite the existence of various mechanophenotyping methods, the ability to perform high-throughput single-cell deformability measurements on liquid and/or solid tissue biopsies remains an unmet challenge within clinical settings. To address this issue, we present an ultrahigh-throughput viscoelastic microfluidic platform able to measure the mechanical properties of single cells at rates of up to 100,000 cells per second (and up to 10,000 cells per second in real time). To showcase the utility of the presented platform in clinical scenarios, we perform single-cell phenotyping of both liquid and solid tumor biopsies, cytoskeletal drug analysis, and identification of malignant lymphocytes in peripheral blood samples. Our viscoelastic microfluidic methodology offers opportunities for high-throughput, label-free single-cell analysis, with diverse applications in clinical diagnostics and personalized medicine.
Collapse
Affiliation(s)
- Mohammad Asghari
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Mahmut Kamil Aslan
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Morteza Aramesh
- Department of Materials Science and Engineering, Uppsala University, Uppsala, Sweden
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Oleksandr Melkonyan
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Rong Xu
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Monika Colombo
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
- Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stefan Balabanov
- Clinic for Medical Oncology and Hematology, University Hospital Zürich, 8091 Zürich, Switzerland
- University Center for Laboratory Medicine and Pathology, University Hospital Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Andew J. deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
58
|
Maia-Gil M, Gorjão M, Belousov R, Espina JA, Coelho J, Gouhier J, Ramos AP, Barriga EH, Erzberger A, Norden C. Nuclear deformability facilitates apical nuclear migration in the developing zebrafish retina. Curr Biol 2024; 34:5429-5443.e8. [PMID: 39481375 DOI: 10.1016/j.cub.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/23/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Nuclear positioning is a crucial aspect of cell and developmental biology. One example is the apical movement of nuclei in neuroepithelia before mitosis, which is essential for proper tissue formation. While the cytoskeletal mechanisms that drive nuclei to the apical side have been explored, the influence of nuclear properties on apical nuclear migration is less understood. Nuclear properties, such as deformability, can be linked to lamin A/C expression levels, as shown in various in vitro studies. Interestingly, many nuclei in early development, including neuroepithelial nuclei, express only low levels of lamin A/C. Therefore, we investigated whether increased lamin A expression in the densely packed zebrafish retinal neuroepithelium affects nuclear deformability and, consequently, migration phenomena. We found that overexpressing lamin A in retinal nuclei increases nuclear stiffness, which in turn indeed impairs apical nuclear migration. Interestingly, nuclei that do not overexpress lamin A but are embedded in a stiffer lamin A-overexpressing environment also exhibit impaired apical nuclear migration, indicating that these effects can be cell non-autonomous. Additionally, in the less crowded hindbrain neuroepithelium, only minor effects on apical nuclear migration are observed. Together, this suggests that the material properties of the nucleus influence nuclear movements in a tissue-dependent manner.
Collapse
Affiliation(s)
- Mariana Maia-Gil
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Maria Gorjão
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Roman Belousov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Jaime A Espina
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Cluster of Excellence Physics of Life, Arnoldstrasse 18, 01307 Dresden, Germany
| | - João Coelho
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Juliette Gouhier
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana P Ramos
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Elias H Barriga
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal; Cluster of Excellence Physics of Life, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Caren Norden
- Gulbenkian Institute for Molecular Medicine (GIMM) (previously Instituto Gulbenkian de Ciência), Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
59
|
Dashti P, Lewallen EA, Stein GS, van der Eerden BC, van Leeuwen JP, van Wijnen AJ. Dynamic strain and β-catenin mediated suppression of interferon responsive genes in quiescent mesenchymal stromal/stem cells. Biochem Biophys Rep 2024; 40:101847. [PMID: 39512854 PMCID: PMC11541450 DOI: 10.1016/j.bbrep.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024] Open
Abstract
Multipotent bone marrow mesenchymal stromal/stem cells (MSCs) respond to mechanical forces. MSCs perceive static and dynamic forces through focal adhesions, as well as cytoskeletal and intranuclear actin. Dynamic strain stimulates nuclear β-catenin (Ctnnb1) that controls gene expression and suppresses osteogenesis. The sensitivity of MSCs to external mechanical forces may be altered by cessation of proliferation, when MSCs begin to express extracellular matrix (ECM) proteins and generate cell/cell contact. Therefore, we assessed whether and how gene expression of proliferating versus quiescent MSCs responds to mechanical stimuli. We used RNA-seq and RT-qPCR to evaluate transcriptomes at 3 h after dynamic strain (200 cycles × 2 % for 20 min) once daily during a two-day time course in naïve (uninduced) MSCs. Transcriptomes of untreated MSCs show that cells become quiescent at day 2 when proliferation markers are downregulated, and ECM related genes are upregulated. On both day 1 and day 2, dynamic strain stimulates expression of oxidative stress related genes (e.g., Nqo1, Prl2c2, Prl2c3). Strikingly, in quiescent MSCs, we observe that dynamic strain suppresses multiple interferon (IFN) responsive genes (e.g., Irf7, Oasl2 and Isg15). IFN responsive genes are activated in MSCs depleted of β-catenin using siRNAs, indicating that β-catenin normally suppresses these genes. Our data indicate that the functional effects of dynamic strain and β-catenin on IFN responsive genes in MSCs are mechanistically coupled. Because dynamic strain and β-catenin reduce the osteogenic potential of MSCs, our findings suggest that IFN responsive genes are novel biomarkers and potential regulators of mechanical responses at early stages of lineage-commitment in post-proliferative MSCs.
Collapse
Affiliation(s)
- Parisa Dashti
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Eric A. Lewallen
- Department of Biological Sciences, Hampton University, Hampton, VA, USA
| | - Gary S. Stein
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Bram C.J. van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Andre J. van Wijnen
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| |
Collapse
|
60
|
Perales IE, Jones SD, Piaszynski KM, Geyer PK. Developmental changes in nuclear lamina components during germ cell differentiation. Nucleus 2024; 15:2339214. [PMID: 38597409 PMCID: PMC11008544 DOI: 10.1080/19491034.2024.2339214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.
Collapse
Affiliation(s)
- Isabella E. Perales
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Samuel D. Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | | | - Pamela K. Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
61
|
Attar AG, Paturej J, Banigan EJ, Erbaş A. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus. Nucleus 2024; 15:2351957. [PMID: 38753956 PMCID: PMC11407394 DOI: 10.1080/19491034.2024.2351957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.
Collapse
Affiliation(s)
- Ali Goktug Attar
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
| | | | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, Turkey
- Institute of Physics, University of Silesia, Chorzów, Poland
| |
Collapse
|
62
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
63
|
Lima JT, Ferreira JG. Mechanobiology of the nucleus during the G2-M transition. Nucleus 2024; 15:2330947. [PMID: 38533923 DOI: 10.1080/19491034.2024.2330947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/09/2024] [Indexed: 03/28/2024] Open
Abstract
Cellular behavior is continuously influenced by mechanical forces. These forces span the cytoskeleton and reach the nucleus, where they trigger mechanotransduction pathways that regulate downstream biochemical events. Therefore, the nucleus has emerged as a regulator of cellular response to mechanical stimuli. Cell cycle progression is regulated by cyclin-CDK complexes. Recent studies demonstrated these biochemical pathways are influenced by mechanical signals, highlighting the interdependence of cellular mechanics and cell cycle regulation. In particular, the transition from G2 to mitosis (G2-M) shows significant changes in nuclear structure and organization, ranging from nuclear pore complex (NPC) and nuclear lamina disassembly to chromosome condensation. The remodeling of these mechanically active nuclear components indicates that mitotic entry is particularly sensitive to forces. Here, we address how mechanical forces crosstalk with the nucleus to determine the timing and efficiency of the G2-M transition. Finally, we discuss how the deregulation of nuclear mechanics has consequences for mitosis.
Collapse
Affiliation(s)
- Joana T Lima
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
- Programa Doutoral em Biomedicina, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Jorge G Ferreira
- Epithelial Polarity and Cell Division Laboratory, Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal
- Departamento de Biomedicina, Unidade de Biologia Experimental, Faculdade de Medicina do Porto, Porto, Portugal
| |
Collapse
|
64
|
Wang TC, Abolghasemzade S, McKee BP, Singh I, Pendyala K, Mohajeri M, Patel H, Shaji A, Kersey AL, Harsh K, Kaur S, Dollahon CR, Chukkapalli S, Lele PP, Conway DE, Gaharwar AK, Dickinson RB, Lele TP. Matrix stiffness drives drop like nuclear deformation and lamin A/C tension-dependent YAP nuclear localization. Nat Commun 2024; 15:10151. [PMID: 39578439 PMCID: PMC11584751 DOI: 10.1038/s41467-024-54577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Extracellular matrix (ECM) stiffness influences cancer cell fate by altering gene expression. Previous studies suggest that stiffness-induced nuclear deformation may regulate gene expression through YAP nuclear localization. We investigated the role of the nuclear lamina in this process. We show that the nuclear lamina exhibits mechanical threshold behavior: once unwrinkled, the nuclear lamina is inextensible. A computational model predicts that the unwrinkled lamina is under tension, which is confirmed using a lamin tension sensor. Laminar unwrinkling is caused by nuclear flattening during cell spreading on stiff ECM. Knockdown of lamin A/C eliminates nuclear surface tension and decreases nuclear YAP localization. These findings show that nuclear deformation in cells conforms to the nuclear drop model and reveal a role for lamin A/C tension in controlling YAP localization in cancer cells.
Collapse
Affiliation(s)
- Ting-Ching Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Brendan P McKee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Ishita Singh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kavya Pendyala
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Hailee Patel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Aakansha Shaji
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Anna L Kersey
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Kajol Harsh
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Simran Kaur
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Christina R Dollahon
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Sasanka Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Richard B Dickinson
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Tanmay P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, USA.
| |
Collapse
|
65
|
Zhao JZ, Xia J, Brangwynne CP. Chromatin compaction during confined cell migration induces and reshapes nuclear condensates. Nat Commun 2024; 15:9964. [PMID: 39557835 PMCID: PMC11574006 DOI: 10.1038/s41467-024-54120-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
Cell migration through small constrictions during cancer metastasis requires significant deformation of the nucleus, with associated mechanical stress on the nuclear lamina and chromatin. However, how mechanical deformation impacts various subnuclear structures, including protein and nucleic acid-rich biomolecular condensates, is largely unknown. Here, we find that cell migration through confined spaces gives rise to mechanical deformations of the chromatin network, which cause embedded nuclear condensates, including nucleoli and nuclear speckles, to deform and coalesce. Chromatin deformations exhibit differential behavior in the advancing vs. trailing region of the nucleus, with the trailing half being more permissive for de novo condensate formation. We show that this results from increased chromatin heterogeneity, which gives rise to a shift in the binodal phase boundary. Taken together, our findings show how chromatin deformation impacts condensate assembly and properties, which can potentially contribute to cellular mechanosensing.
Collapse
Affiliation(s)
- Jessica Z Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jing Xia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
- Princeton Materials Institute, Princeton University, Princeton, NJ, USA.
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
66
|
Zhang W, Liu S, Wang L, Li B, Xie M, Deng Y, Zhang J, Zeng H, Qiu L, Huang L, Gou T, Cen X, Tang J, Wang J. Triple-crosslinked double-network alginate/dextran/dendrimer hydrogel with tunable mechanical and adhesive properties: A potential candidate for sutureless keratoplasty. Carbohydr Polym 2024; 344:122538. [PMID: 39218556 DOI: 10.1016/j.carbpol.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
An ideal adhesive hydrogel must possess high adhesion to the native tissue, biocompatibility, eligible biodegradability, and good mechanical compliance with the substrate tissues. We constructed an interpenetrating double-network hydrogel containing polysaccharides (alginate and dextran) and nanosized spherical dendrimer by both physical and chemical crosslinking, thus endowing the hydrogel with a broad range of mechanical properties, adhesive properties, and biological functions. The double-network hydrogel has moderate pore sizes and swelling properties. The chelation of calcium ions significantly enhances the tensile and compressive properties. The incorporation of dendrimer improves both the mechanical and adhesive properties. This multicomponent interpenetrating network hydrogel has excellent biocompatibility, tunable mechanical and adhesive properties, and satisfied multi-functions to meet the complex requirements of wound healing and tissue engineering. The hydrogel exhibits promising corneal adhesion capabilities in vitro, potentially supplanting the need for sutures in corneal stromal surgery and mitigating the risks associated with donor corneal damage and graft rejection during corneal transplantation. This novel polysaccharide and dendrimer hydrogel also shows good results in sutureless keratoplasty, with high efficiency and reliability. Based on the clinical requirements for tissue bonding and wound closure, the hydrogel provides insight into solving the mechanical properties and adhesive strength of tissue adhesives.
Collapse
Affiliation(s)
- Wen Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shujing Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Boxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mengzhen Xie
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jialuo Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huazhang Zeng
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lisha Huang
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Gou
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Cen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
67
|
Li L, Alsema E, Beijer NRM, Gumuscu B. Magnetically Driven Hydrogel Surfaces for Modulating Macrophage Behavior. ACS Biomater Sci Eng 2024; 10:6974-6983. [PMID: 39383333 PMCID: PMC11558558 DOI: 10.1021/acsbiomaterials.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
During the host response toward implanted biomaterials, macrophages can shift phenotypes rapidly upon changes in their microenvironment within the host tissue. Exploration of this phenomenon can benefit significantly from the development of adequate tools. Creating cell microenvironment alterations on classical hydrogel substrates presents challenges, particularly when integrating them with cell cultivation and monitoring processes. However, having the capability to dynamically manipulate the cell microenvironment on biomaterial surfaces holds significant potential. We introduce magnetically actuated hydrogels (MadSurface) tailored to induce reversible stiffness changes on polyacrylamide hydrogel substrates with embedded magnetic microparticles in a time-controllable manner. Our investigation focused on exploring the potential of magnetic fields and MadSurfaces in dynamically modulating macrophage behavior in a programmable manner. We achieved a consistent modulation by subjecting the MadSurface to a pulsed magnetic field with a frequency of 0.1 Hz and a magnetic field flux density of 50 mT and analyzed exposed cells using flow cytometry and ELISA. At the single-cell level, we identified a subpopulation for which the dynamic stiffness conditions in conjunction with the pulsed magnetic field increased the expression of CD206 in M1-activated THP-1 cells, indicating a consistent shift toward the M2 anti-inflammatory phenotype on MadSurface. At the population level, this effect was mostly hindered in the culture period utilized in this work. The MadSurface approach advances our understanding of the interplay between magnetic field, cell microenvironment alterations, and macrophage behavior.
Collapse
Affiliation(s)
- Lanhui Li
- Biosensors
and Devices Lab, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Biointerface
Science Group, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB Eindhoven, The Netherlands
| | - Els Alsema
- Biointerface
Science Group, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, 5600MB Eindhoven, The Netherlands
- Centre
for Health Protection, National Institute for Public Health and the
Environment (RIVM), 3720BA Bilthoven, The Netherlands
| | - Nick R. M. Beijer
- Centre
for Health Protection, National Institute for Public Health and the
Environment (RIVM), 3720BA Bilthoven, The Netherlands
| | - Burcu Gumuscu
- Biosensors
and Devices Lab, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
68
|
Maremonti MI, Causa F. A computational model for single cell Lamin-A structural organization after microfluidic compression. Biotechnol Bioeng 2024; 121:3551-3562. [PMID: 39020522 DOI: 10.1002/bit.28810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
In recent years, nuclear mechanobiology gained a lot of attention for the study of cell responses to external cues like adhesive forces, applied compression, and/or shear-stresses. In details, the Lamin-A protein-as major constituent of the cell nucleus structure-plays a crucial role in the overall nucleus mechanobiological response. However, modeling and analysis of Lamin-A protein organization upon rapid compression conditions in microfluidics are still difficult to be performed. Here, we introduce the possibility to control an applied microfluidic compression on single cells, deforming them up to the nucleus level. In a wide range of stresses (~1-102 kPa) applied on healthy and cancer cells, we report increasing Lamin-A intensities which scale as a power law with the applied compression. Then, an increase up to two times of the nuclear viscosity is measured in healthy cells, due to the modified Lamin-A organization. This is ascribable to the increasing assembly of Lamin-A filament-like branches which increment both in number and elongation (up to branches four-time longer). Moreover, the solution of a computational model of differential equations is presented as a powerful tool for a single cell prediction of the Lamin-A assembly as a function of the applied compression.
Collapse
Affiliation(s)
- Maria Isabella Maremonti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", Naples, Italy
| | - Filippo Causa
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", Naples, Italy
| |
Collapse
|
69
|
Romero-Bueno R, Fragoso-Luna A, Ayuso C, Mellmann N, Kavsek A, Riedel CG, Ward JD, Askjaer P. A human progeria-associated BAF-1 mutation modulates gene expression and accelerates aging in C. elegans. EMBO J 2024; 43:5718-5746. [PMID: 39367234 PMCID: PMC11574047 DOI: 10.1038/s44318-024-00261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024] Open
Abstract
Alterations in the nuclear envelope are linked to a variety of rare diseases termed laminopathies. A single amino acid substitution at position 12 (A12T) of the human nuclear envelope protein BAF (Barrier to Autointegration Factor) causes Néstor-Guillermo Progeria Syndrome (NGPS). This premature ageing condition leads to growth retardation and severe skeletal defects, but the underlying mechanisms are unknown. Here, we have generated a novel in vivo model for NGPS by modifying the baf-1 locus in C. elegans to mimic the human NGPS mutation. These baf-1(G12T) mutant worms displayed multiple phenotypes related to fertility, lifespan, and stress resistance. Importantly, nuclear morphology deteriorated faster during aging in baf-1(G12T) compared to wild-type animals, recapitulating an important hallmark of cells from progeria patients. Although localization of BAF-1(G12T) was similar to wild-type BAF-1, lamin accumulation at the nuclear envelope was reduced in mutant worms. Tissue-specific chromatin binding and transcriptome analyses showed reduced BAF-1 association in most genes deregulated by the baf-1(G12T) mutation, suggesting that altered BAF chromatin association induces NGPS phenotypes via altered gene expression.
Collapse
Affiliation(s)
- Raquel Romero-Bueno
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Cristina Ayuso
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Nina Mellmann
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain
| | - Alan Kavsek
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14157, Sweden
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Junta de Andalucía, Carretera de Utrera, km 1, 41013, Sevilla, Spain.
| |
Collapse
|
70
|
Dickinson RB, Abolghasemzade S, Lele TP. Rethinking nuclear shaping: insights from the nuclear drop model. SOFT MATTER 2024; 20:7558-7565. [PMID: 39105242 PMCID: PMC11446230 DOI: 10.1039/d4sm00683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Changes in the nuclear shape caused by cellular shape changes are generally assumed to reflect an elastic deformation from a spherical nuclear shape. Recent evidence, however, suggests that the nuclear lamina, which forms the outer nuclear surface together with the nuclear envelope, possesses more area than that of a sphere of the same volume. This excess area manifests as folds/wrinkles in the nuclear surface in rounded cells and allows facile nuclear flattening during cell spreading without any changes in nuclear volume or surface area. When the lamina becomes smooth and taut, it is inextensible, and supports a surface tension. At this point, it is possible to mathematically calculate the limiting nuclear shape purely based on geometric considerations. In this paper, we provide a commentary on the "nuclear drop model" which seeks to integrate the above features. We outline its testable physical properties and explore its biological implications.
Collapse
Affiliation(s)
- Richard B Dickinson
- Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL, 32611, USA.
| | - Samere Abolghasemzade
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, 101 Bizzell St., College Station, TX, 77843, USA.
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX, 77843, USA
- Department of Translational Medical Sciences, Texas A&M University, 2121 W Holcombe St., Houston, TX, 77030, USA
| |
Collapse
|
71
|
Leconte M, Bonne G, Bertrand AT. Recent insights in striated muscle laminopathies. Curr Opin Neurol 2024; 37:509-514. [PMID: 38989655 DOI: 10.1097/wco.0000000000001297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW To highlight recent insights in different aspects of striated muscle laminopathies (SMLs) related to LMNA mutations. RECENT FINDINGS Clinical and genetic studies allow better patient management and diagnosis, with confirmation of ventricular tachyarrhythmias (VTA) risk prediction score to help with ICD implantation and development of models to help with classification of LMNA variants of uncertain significance. From a pathophysiology perspective, characterization of lamin interactomes in different contexts revealed new lamin A/C partners. Expression or function modulation of these partners evidenced them as potential therapeutic targets. After a positive phase 2, the first phase 3 clinical trial, testing a p38 inhibitor targeting the life-threatening cardiac disease of SML, has been recently stopped, thus highlighting the need for new therapeutic approaches together with new animal and cell models. SUMMARY Since the first LMNA mutation report in 1999, lamin A/C structure and functions have been actively explored to understand the SML pathophysiology. The latest discoveries of partners and altered pathways, highlight the importance of lamin A/C at the nuclear periphery and in the nucleoplasm. Modulation of altered pathways allowed some benefits, especially for cardiac involvement. However, additional studies are still needed to fully assess treatment efficacy and safety.
Collapse
Affiliation(s)
- Marine Leconte
- Sorbonne Université, Inserm, Institut de Myologie, Centre de recherche en Myologie, Paris, France
| | | | | |
Collapse
|
72
|
Hernandez-Miranda ML, Xu D, Ben Issa AA, Johnston DA, Browne M, Cook RB, Sengers BG, Evans ND. Geometric constraint of mechanosensing by modification of hydrogel thickness prevents stiffness-induced differentiation in bone marrow stromal cells. J R Soc Interface 2024; 21:20240485. [PMID: 39353563 PMCID: PMC11444768 DOI: 10.1098/rsif.2024.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
Extracellular matrix (ECM) stiffness is fundamental in cell division, movement and differentiation. The stiffness that cells sense is determined not only by the elastic modulus of the ECM material but also by ECM geometry and cell density. We hypothesized that these factors would influence cell traction-induced matrix deformations and cellular differentiation in bone marrow stromal cells (BMSCs). To achieve this, we cultivated BMSCs on polyacrylamide hydrogels that varied in elastic modulus and geometry and measured cell spreading, cell-imparted matrix deformations and differentiation. At low cell density BMSCs spread to a greater extent on stiff compared with soft hydrogels, or on thin compared with thick hydrogels. Cell-imparted matrix deformations were greater on soft compared with stiff hydrogels or thick compared with thin hydrogels. There were no significant differences in osteogenic differentiation relative to hydrogel elastic modulus and thickness. However, increased cell density and/or prolonged culture significantly reduced matrix deformations on soft hydrogels to levels similar to those on stiff substrates. This suggests that at high cell densities cell traction-induced matrix displacements are reduced by both neighbouring cells and the constraint imposed by an underlying stiff support. This may explain observations of the lack of difference in osteogenic differentiation as a function of stiffness.
Collapse
Affiliation(s)
- Maria L. Hernandez-Miranda
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, Institute for Life Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Dichu Xu
- Ningbo Institute of Technology, Beihang University, Ningbo315800, People’s Republic of China
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Aya A. Ben Issa
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, Institute for Life Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - David A. Johnston
- Biomedical Imaging Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | - Martin Browne
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Richard B. Cook
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Bram G. Sengers
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| | - Nicholas D. Evans
- Centre for Human Development, Stem Cells and Regenerative Medicine, Bone and Joint Research Group, Institute for Life Sciences, University of Southampton Faculty of Medicine, Southampton, UK
- Bioengineering Science Research Group, University of Southampton Faculty of Engineering and Physical Sciences, Southampton, UK
| |
Collapse
|
73
|
Yang Z, Liu X, Li X, Abbate M, Rui H, Guan M, Sun Z. The destruction of cytoplasmic skeleton leads to the change of nuclear structure and the looseness of lamin A submicroscopic network. Heliyon 2024; 10:e36583. [PMID: 39309767 PMCID: PMC11414493 DOI: 10.1016/j.heliyon.2024.e36583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The interaction between lamin A and the cytoplasmic skeleton plays a key role in maintaining nuclear mechanical properties. However, the effect of destruction of the cytoplasmic skeleton on the 3D submicroscopic structure of lamin A has not been elucidated. In this study, we developed an image quantization algorithm to quantify changes in the submicroscopic structure of the intact lamin A 3D network within the nucleus. We used blebbistatin or nocodazole to disrupt the fibrillar structure of F-actin or tubulin, respectively, and then quantified changes in the lamin A super-resolution network structure, the morphological and mechanical properties of the nucleus and the spatial distribution of chromosomes. Ultimately, we found for the first time that disruption of the cytoplasmic skeleton changes the lamin A submicroscopic network and nuclear structural characteristics. In summary, this study contributes to understanding the trans-nuclear membrane interaction characteristics of lamin A and the cytoplasmic skeleton.
Collapse
Affiliation(s)
- Zhenyu Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Xianglong Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Xiaoliang Li
- ZEISS Research Microscopy Solutions, Shanghai, China
| | | | - Han Rui
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zhenglong Sun
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
74
|
Zhang X, Avellaneda J, Spletter ML, Lemke SB, Mangeol P, Habermann BH, Schnorrer F. Mechanoresponsive regulation of myogenesis by the force-sensing transcriptional regulator Tono. Curr Biol 2024; 34:4143-4159.e6. [PMID: 39163855 DOI: 10.1016/j.cub.2024.07.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/26/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Muscle morphogenesis is a multi-step program, starting with myoblast fusion, followed by myotube-tendon attachment and sarcomere assembly, with subsequent sarcomere maturation, mitochondrial amplification, and specialization. The correct chronological order of these steps requires precise control of the transcriptional regulators and their effectors. How this regulation is achieved during muscle development is not well understood. In a genome-wide RNAi screen in Drosophila, we identified the BTB-zinc-finger protein Tono (CG32121) as a muscle-specific transcriptional regulator. tono mutant flight muscles display severe deficits in mitochondria and sarcomere maturation, resulting in uncontrolled contractile forces causing muscle rupture and degeneration during development. Tono protein is expressed during sarcomere maturation and localizes in distinct condensates in flight muscle nuclei. Interestingly, internal pressure exerted by the maturing sarcomeres deforms the muscle nuclei into elongated shapes and changes the Tono condensates, suggesting that Tono senses the mechanical status of the muscle cells. Indeed, external mechanical pressure on the muscles triggers rapid liquid-liquid phase separation of Tono utilizing its BTB domain. Thus, we propose that Tono senses high mechanical pressure to adapt muscle transcription, specifically at the sarcomere maturation stages. Consistently, tono mutant muscles display specific defects in a transcriptional switch that represses early muscle differentiation genes and boosts late ones. We hypothesize that a similar mechano-responsive regulation mechanism may control the activity of related BTB-zinc-finger proteins that, if mutated, can result in uncontrolled force production in human muscle.
Collapse
Affiliation(s)
- Xu Zhang
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; School of Life Science and Engineering, Foshan University, Foshan 52800, Guangdong, China
| | - Jerome Avellaneda
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Maria L Spletter
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany; Department of Physiological Chemistry, Biomedical Center, Ludwig Maximilians University of Munich, Großhaderner Strasse, Martinsried, 82152 Munich, Germany; Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Rockhill Road, Kansas City, MO 64110, USA
| | - Sandra B Lemke
- Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Pierre Mangeol
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France
| | - Bianca H Habermann
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany
| | - Frank Schnorrer
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Parc Scientifique de Luminy, 13288 Marseille, France; Max Planck Institute of Biochemistry, Am Klopferspitz, Martinsried, 82152 Munich, Germany.
| |
Collapse
|
75
|
Dooling LJ, Anlaş AA, Tobin MP, Ontko NM, Marchena T, Wang M, Andrechak JC, Discher DE. Clustered macrophages cooperate to eliminate tumors via coordinated intrudopodia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613918. [PMID: 39345601 PMCID: PMC11430028 DOI: 10.1101/2024.09.19.613918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Macrophages often pervade solid tumors, but their nearest neighbor organization is understudied and potentially enables key functions such as phagocytosis. Here, we observe dynamic macrophage clusters in tumors under conditions that maximize cancer cell phagocytosis and use reductionist approaches to uncover pathways to cluster formation and roles for tumor-intrusive pseudopodia, which we term 'intrudopodia'. Macrophage clusters form over hours on low- adhesion substrates after M1 polarization with interferons, including T cell-derived cytokines, and yet clusters prove fluid on timescales of minutes. Clusters also sort from M2 macrophages that disperse on the same substrates. M1 macrophages upregulate specific cell-cell adhesion receptors but suppress actomyosin contractility, and while both pathways contribute to cluster formation, decreased cortical tension was predicted to unleash pseudopodia. Macrophage neighbors in tumor spheroids indeed extend intrudopodia between adjacent cancer cell junctions - at least when phagocytosis conditions are maximized, and coordinated intrudopodia help detach and individualize cancer cells for rapid engulfment. Macrophage clusters thereby provide a cooperative advantage for phagocytosis to overcome solid tumor cohesion.
Collapse
|
76
|
Yu S, Xu X, Ma L, Zhao F, Mao J, Zhang J, Wang Z. Versatile and Tunable Performance of PVA/PAM Tridimensional Hydrogel Models for Tissues and Organs: Augmenting Realism in Advanced Surgical Training. ACS APPLIED BIO MATERIALS 2024; 7:6261-6275. [PMID: 39194173 DOI: 10.1021/acsabm.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The increasing complexity and difficulty of surgical procedures have led to a rise in medical errors within clinical settings in recent years. Gastrointestinal diseases, in particular, present significant medical challenges and impose substantial economic burdens, underscoring the urgent need for experiential, high-fidelity gastrointestinal surgical training tools. This study leverages patient-specific computed tomography (CT) and magnetic resonance imaging (MRI) data, combined with 3D printed manufacturing, to develop hydrogel organ models with tunable performance and tissue-mimicking softness. These properties are achieved by regulating the freeze-thaw cycles, cross-linking agents, and the concentration of incorporated antibacterial nanoparticles in DN hydrogels. Through the application of indirect 3D printing and the "sacrificial material method", we successfully fabricate organ tissues such as the stomach, intestines, and blood vessels with high precision. In ex vivo surgical training demonstrations, these tissue-like soft hydrogels provide an effective platform for preoperative simulation and surgical training in digestive surgery, accommodating various surgical procedures and accurately simulating intraoperative bleeding. The development of advanced bionic organ models with specific and tunable characteristics based on DN hydrogels is poised to significantly advance surgical training, medical device testing, and the reform of medical education.
Collapse
Affiliation(s)
- ShiJie Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - XiaoDong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Liang Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Fei Zhao
- Center for General Practice Medicine, Department of Gastroenterology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - JinLei Mao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - ZhiFei Wang
- General Surgery, Cancer Center, Department of Hernia Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
77
|
Sala S, Caillier A, Oakes PW. Principles and regulation of mechanosensing. J Cell Sci 2024; 137:jcs261338. [PMID: 39297391 PMCID: PMC11423818 DOI: 10.1242/jcs.261338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Research over the past two decades has highlighted that mechanical signaling is a crucial component in regulating biological processes. Although many processes and proteins are termed 'mechanosensitive', the underlying mechanisms involved in mechanosensing can vary greatly. Recent studies have also identified mechanosensing behaviors that can be regulated independently of applied force. This important finding has major implications for our understanding of downstream mechanotransduction, the process by which mechanical signals are converted into biochemical signals, as it offers another layer of biochemical regulatory control for these crucial signaling pathways. In this Review, we discuss the different molecular and cellular mechanisms of mechanosensing, how these processes are regulated and their effects on downstream mechanotransduction. Together, these discussions provide an important perspective on how cells and tissues control the ways in which they sense and interpret mechanical signals.
Collapse
Affiliation(s)
- Stefano Sala
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Alexia Caillier
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Patrick W. Oakes
- Department of Cell & Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| |
Collapse
|
78
|
Francis EA, Rangamani P. Computational modeling establishes mechanotransduction as a potent modulator of the mammalian circadian clock. J Cell Sci 2024; 137:jcs261782. [PMID: 39140137 PMCID: PMC11423814 DOI: 10.1242/jcs.261782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Mechanotransduction, which is the integration of mechanical signals from the external environment of a cell to changes in intracellular signaling, governs many cellular functions. Recent studies have shown that the mechanical state of the cell is also coupled to the cellular circadian clock. To investigate possible interactions between circadian rhythms and cellular mechanotransduction, we have developed a computational model that integrates the two pathways. We postulated that translocation of the transcriptional regulators MRTF (herein referring to both MRTF-A and MRTF-B), YAP and TAZ (also known as YAP1 and WWTR1, respectively; collectively denoted YAP/TAZ) into the nucleus leads to altered expression of circadian proteins. Simulations from our model predict that lower levels of cytoskeletal activity are associated with longer circadian oscillation periods and higher oscillation amplitudes, which is consistent with recent experimental observations. Furthermore, accumulation of YAP/TAZ and MRTF in the nucleus causes circadian oscillations to decay in our model. These effects hold both at the single-cell level and within a population-level framework. Finally, we investigated the effects of mutations in YAP or lamin A, the latter of which result in a class of diseases known as laminopathies. In silico, oscillations in circadian proteins are substantially weaker in populations of cells with mutations in YAP or lamin A, suggesting that defects in mechanotransduction can disrupt the circadian clock in certain disease states; however, reducing substrate stiffness in the model restores normal oscillatory behavior, suggesting a possible compensatory mechanism. Thus, our study identifies that mechanotransduction could be a potent modulatory cue for cellular clocks and that this crosstalk can be leveraged to rescue the circadian clock in disease states.
Collapse
Affiliation(s)
- Emmet A. Francis
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
79
|
Popęda M, Kowalski K, Wenta T, Beznoussenko GV, Rychłowski M, Mironov A, Lavagnino Z, Barozzi S, Richert J, Bertolio R, Myszczyński K, Szade J, Bieńkowski M, Miszewski K, Matuszewski M, Żaczek AJ, Braga L, Del Sal G, Bednarz-Knoll N, Maiuri P, Nastały P. Emerin mislocalization during chromatin bridge resolution can drive prostate cancer cell invasiveness in a collagen-rich microenvironment. Exp Mol Med 2024; 56:2016-2032. [PMID: 39218980 PMCID: PMC11446916 DOI: 10.1038/s12276-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61β. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.
Collapse
Affiliation(s)
- Marta Popęda
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kamil Kowalski
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Zeno Lavagnino
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Julia Richert
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rebecca Bertolio
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kevin Miszewski
- Department of Urology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna J Żaczek
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Giannino Del Sal
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Natalia Bednarz-Knoll
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paulina Nastały
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
80
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
81
|
Shah S, Ghosh D, Otsuka T, Laurencin CT. Classes of Stem Cells: From Biology to Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:309-322. [PMID: 39387056 PMCID: PMC11463971 DOI: 10.1007/s40883-023-00317-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/30/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2024]
Abstract
Purpose The majority of adult tissues are limited in self-repair and regeneration due to their poor intrinsic regenerative capacity. It is widely recognized that stem cells are present in almost all adult tissues, but the natural regeneration in adult mammals is not sufficient to recover function after injury or disease. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth fully engineered class: the synthetic artificial stem cell (SASC). This review aims to discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. Method We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review. Results In this review, we discuss the different classes of stem cells that are biologically derived (ESCs and MSCs) or semi-engineered/engineered (iPSCs, SASC). We also discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of the classes and how they impact the clinical translation of these therapies. Conclusion Each class of stem cells has advantages and disadvantages in preclinical and clinical settings. We also propose the engineered SASC class as a potentially disease-modifying therapy that harnesses the paracrine action of biologically derived stem cells to mimic regenerative potential. Lay Summary The majority of adult tissues are limited in self-repair and regeneration, even though stem cells are present in almost all adult tissues. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth, fully engineered class: the synthetic artificial stem cell (SASC). In this review, we discuss the applications of each of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of these classes and how they impact the clinical translation of these therapies.
Collapse
Affiliation(s)
- Shiv Shah
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| | - Debolina Ghosh
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
| | - Takayoshi Otsuka
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
| | - Cato T. Laurencin
- The Cato T. Laurencin Institute for Regenerative Engineering, University of Connecticut, 263 Farmington Avenue, Farmington, CT 06030-3711, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
82
|
Granero-Moya I, Venturini V, Belthier G, Groenen B, Molina-Jordán M, González-Martín M, Trepat X, van Rheenen J, Andreu I, Roca-Cusachs P. Nucleocytoplasmic transport senses mechanical forces independently of cell density in cell monolayers. J Cell Sci 2024; 137:jcs262363. [PMID: 39120491 PMCID: PMC11423809 DOI: 10.1242/jcs.262363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Cells sense and respond to mechanical forces through mechanotransduction, which regulates processes in health and disease. In single adhesive cells, mechanotransduction involves the transmission of force from the extracellular matrix to the cell nucleus, where it affects nucleocytoplasmic transport (NCT) and the subsequent nuclear localization of transcriptional regulators, such as YAP (also known as YAP1). However, if and how NCT is mechanosensitive in multicellular systems is unclear. Here, we characterize and use a fluorescent sensor of nucleocytoplasmic transport (Sencyt) and demonstrate that NCT responds to mechanical forces but not cell density in cell monolayers. Using monolayers of both epithelial and mesenchymal phenotype, we show that NCT is altered in response both to osmotic shocks and to the inhibition of cell contractility. Furthermore, NCT correlates with the degree of nuclear deformation measured through nuclear solidity, a shape parameter related to nuclear envelope tension. In contrast, YAP is sensitive to cell density, showing that the YAP response to cell-cell contacts is not via a mere mechanical effect of NCT. Our results demonstrate the generality of the mechanical regulation of NCT.
Collapse
Affiliation(s)
- Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
| | - Valeria Venturini
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Guillaume Belthier
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bart Groenen
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- Eindhoven University of Technology, Department of Biomedical Engineering, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marc Molina-Jordán
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Miguel González-Martín
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08014 Barcelona, Spain
| | - Jacco van Rheenen
- Oncode Institute, 1066 CX Amsterdam, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ion Andreu
- Biofisika Institute (CSIC, UPV/EHU), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08014 Barcelona, Spain
- University of Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
83
|
Shores KL, Truskey GA. Mechanotransduction of the vasculature in Hutchinson-Gilford Progeria Syndrome. Front Physiol 2024; 15:1464678. [PMID: 39239311 PMCID: PMC11374724 DOI: 10.3389/fphys.2024.1464678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that causes severe cardiovascular disease, resulting in the death of patients in their teenage years. The disease pathology is caused by the accumulation of progerin, a mutated form of the nuclear lamina protein, lamin A. Progerin binds to the inner nuclear membrane, disrupting nuclear integrity, and causes severe nuclear abnormalities and changes in gene expression. This results in increased cellular inflammation, senescence, and overall dysfunction. The molecular mechanisms by which progerin induces the disease pathology are not fully understood. Progerin's detrimental impact on nuclear mechanics and the role of the nucleus as a mechanosensor suggests dysfunctional mechanotransduction could play a role in HGPS. This is especially relevant in cells exposed to dynamic, continuous mechanical stimuli, like those of the vasculature. The endothelial (ECs) and smooth muscle cells (SMCs) within arteries rely on physical forces produced by blood flow to maintain function and homeostasis. Certain regions within arteries produce disturbed flow, leading to an impaired transduction of mechanical signals, and a reduction in cellular function, which also occurs in HGPS. In this review, we discuss the mechanics of nuclear mechanotransduction, how this is disrupted in HGPS, and what effect this has on cell health and function. We also address healthy responses of ECs and SMCs to physiological mechanical stimuli and how these responses are impaired by progerin accumulation.
Collapse
Affiliation(s)
- Kevin L Shores
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
84
|
Odell J, Lammerding J. N-terminal tags impair the ability of lamin A to provide structural support to the nucleus. J Cell Sci 2024; 137:jcs262207. [PMID: 39092499 PMCID: PMC11361635 DOI: 10.1242/jcs.262207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is crucial for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient (Lmna-/-) MEFs, and all LaA constructs prevented increased nuclear envelope ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit emerin to the nuclear membrane in Lmna-/- MEFs. Our finding that tags impede some LaA functions but not others might explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.
Collapse
Affiliation(s)
- Jacob Odell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
85
|
Younesi FS, Hinz B. The Myofibroblast Fate of Therapeutic Mesenchymal Stromal Cells: Regeneration, Repair, or Despair? Int J Mol Sci 2024; 25:8712. [PMID: 39201399 PMCID: PMC11354465 DOI: 10.3390/ijms25168712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues of healthy or patient donors to be retransplanted in cell therapies. Because the number of MSCs obtained from biopsies is typically too low for direct clinical application, MSC expansion in cell culture is required. However, ex vivo amplification often reduces the desired MSC regenerative potential and enhances undesired traits, such as activation into fibrogenic myofibroblasts. Transiently activated myofibroblasts restore tissue integrity after organ injury by producing and contracting extracellular matrix into scar tissue. In contrast, persistent myofibroblasts cause excessive scarring-called fibrosis-that destroys organ function. In this review, we focus on the relevance and molecular mechanisms of myofibroblast activation upon contact with stiff cell culture plastic or recipient scar tissue, such as hypertrophic scars of large skin burns. We discuss cell mechanoperception mechanisms such as integrins and stretch-activated channels, mechanotransduction through the contractile actin cytoskeleton, and conversion of mechanical signals into transcriptional programs via mechanosensitive co-transcription factors, such as YAP, TAZ, and MRTF. We further elaborate how prolonged mechanical stress can create persistent myofibroblast memory by direct mechanotransduction to the nucleus that can evoke lasting epigenetic modifications at the DNA level, such as histone methylation and acetylation. We conclude by projecting how cell culture mechanics can be modulated to generate MSCs, which epigenetically protected against myofibroblast activation and transport desired regeneration potential to the recipient tissue environment in clinical therapies.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Boris Hinz
- Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada;
- Keenan Research Institute for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
86
|
Sakamoto N, Ito K, Ii S, Conway DE, Ueda Y, Nagatomi J. A homeostatic role of nucleus-actin filament coupling in the regulation of cellular traction forces in fibroblasts. Biomech Model Mechanobiol 2024; 23:1289-1298. [PMID: 38502433 PMCID: PMC11932025 DOI: 10.1007/s10237-024-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Cellular traction forces are contractile forces that depend on the material/substrate stiffness and play essential roles in sensing mechanical environments and regulating cell morphology and function. Traction forces are primarily generated by the actin cytoskeleton and transmitted to the substrate through focal adhesions. The cell nucleus is also believed to be involved in the regulation of this type of force; however, the role of the nucleus in cellular traction forces remains unclear. In this study, we explored the effects of nucleus-actin filament coupling on cellular traction forces in human dermal fibroblasts cultured on substrates with varying stiffness (5, 15, and 48 kPa). To investigate these effects, we transfected the cells with a dominant-negative Klarsicht/ANC-1/Syne homology (DN-KASH) protein that was designed to displace endogenous linker proteins and disrupt nucleus-actin cytoskeleton connections. The force that exists between the cytoskeleton and the nucleus (nuclear tension) was also evaluated with a fluorescence resonance energy transfer (FRET)-based tension sensor. We observed a biphasic change in cellular traction forces with a peak at 15 kPa, regardless of DN-KASH expression, that was inversely correlated with the nuclear tension. In addition, the relative magnitude and distribution of traction forces in nontreated wild-type cells were similar across different stiffness conditions, while DN-KASH-transfected cells exhibited a different distribution pattern that was impacted by the substrate stiffness. These results suggest that the nucleus-actin filament coupling play a homeostatic role by maintaining the relative magnitude of cellular traction forces in fibroblasts under different stiffness conditions.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| | - Keisuke Ito
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Satoshi Ii
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Daniel E Conway
- Department of Biomedical Engineering, The Ohio State University, 140W 19th Avenue, Columbus, OH, USA
| | - Yuki Ueda
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami- Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Jiro Nagatomi
- Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
- Department of Bioengineering, Clemson University, 301 Rhodes Research Center, Clemson, SC, 29634-0905, USA
| |
Collapse
|
87
|
Dutta S, Muraganadan T, Vasudevan M. Evaluation of lamin A/C mechanotransduction under different surface topography in LMNA related muscular dystrophy. Cytoskeleton (Hoboken) 2024. [PMID: 39091017 DOI: 10.1002/cm.21895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
Most of the single point mutations of the LMNA gene are associated with distinct muscular dystrophies, marked by heterogenous phenotypes but primarily the loss and symmetric weakness of skeletal muscle tissue. The molecular mechanism and phenotype-genotype relationships in these muscular dystrophies are poorly understood. An effort has been here to delineating the adaptation of mechanical inputs into biological response by mutant cells of lamin A associated muscular dystrophy. In this study, we implement engineered smooth and pattern surfaces of particular young modulus to mimic muscle physiological range. Using fluorescence and atomic force microscopy, we present distinct architecture of the actin filament along with abnormally distorted cell and nuclear shape in mutants, which showed a tendency to deviate from wild type cells. Topographic features of pattern surface antagonize the binding of the cell with it. Correspondingly, from the analysis of genome wide expression data in wild type and mutant cells, we report differential expression of the gene products of the structural components of cell adhesion as well as LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes. This study also reveals mis expressed downstream signaling processes in mutant cells, which could potentially lead to onset of the disease upon the application of engineered materials to substitute the role of conventional cues in instilling cellular behaviors in muscular dystrophies. Collectively, these data support the notion that lamin A is essential for proper cellular mechanotransduction from extracellular environment to the genome and impairment of the muscle cell differentiation in the pathogenic mechanism for lamin A associated muscular dystrophy.
Collapse
Affiliation(s)
- Subarna Dutta
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
- Theomics International Private Limited, Bengaluru, India
| | - T Muraganadan
- CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|
88
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
89
|
Zou J, Peng B, Fan N, Liu Y. Simulation and experimental study on the influence of lamina on nanoneedle penetration into the cell nucleus. Biomech Model Mechanobiol 2024; 23:1241-1262. [PMID: 38526703 DOI: 10.1007/s10237-024-01836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
We have developed a finite element model to simulate the penetration of nanoneedles into the cellular nucleus. It is found that the nuclear lamina, the primary supporting structure of the nuclear membrane, plays a crucial role in maintaining the integrity of the nuclear envelope and enhancing stress concentration in the nuclear membrane. Notably, nuclear lamina A exhibits a more pronounced effect compared to nuclear lamina B. Subsequently, we further conducted experiments by controlling the time of osteopontin (OPN) treatment to modify the nuclear lamina density, and the results showed that an increase in nuclear lamina density enhances the probability of nanoneedle penetration into the nuclear membrane. Through employing both simulation and experimental techniques, we have gathered compelling evidence indicating that an augmented density of nuclear lamina A can enhance the penetration of nanoneedles into the nuclear membrane.
Collapse
Affiliation(s)
- Jie Zou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bei Peng
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Na Fan
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
90
|
Odell J, Lammerding J. N-terminal tags impair the ability of Lamin A to provide structural support to the nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590311. [PMID: 39211210 PMCID: PMC11361184 DOI: 10.1101/2024.04.19.590311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lamins are intermediate filament proteins that contribute to numerous cellular functions, including nuclear morphology and mechanical stability. The N-terminal head domain of lamin is critical for higher order filament assembly and function, yet the effects of commonly used N-terminal tags on lamin function remain largely unexplored. Here, we systematically studied the effect of two differently sized tags on Lamin A (LaA) function in a mammalian cell model engineered to allow for precise control of expression of tagged lamin proteins. Untagged, FLAG-tagged, and GFP-tagged LaA completely rescued nuclear shape defects when expressed at similar levels in lamin A/C-deficient ( Lmna -/- ) MEFs, and all LaA constructs prevented increased nuclear envelope (NE) ruptures in these cells. N-terminal tags, however, altered the nuclear localization of LaA and impaired the ability of LaA to restore nuclear deformability and to recruit Emerin to the nuclear membrane in Lmna -/- MEFs. Our finding that tags impede some LaA functions but not others may explain the partial loss of function phenotypes when tagged lamins are expressed in model organisms and should caution researchers using tagged lamins to study the nucleus.
Collapse
|
91
|
Rashid F, Kabbo SA, Wang N. Mechanomemory of nucleoplasm and RNA polymerase II after chromatin stretching by a microinjected magnetic nanoparticle force. Cell Rep 2024; 43:114462. [PMID: 39002538 PMCID: PMC11289711 DOI: 10.1016/j.celrep.2024.114462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/15/2024] Open
Abstract
Increasing evidence suggests that the mechanics of chromatin and nucleoplasm regulate gene transcription and nuclear function. However, how the chromatin and nucleoplasm sense and respond to forces remains elusive. Here, we employed a strategy of applying forces directly to the chromatin of a cell via a microinjected 200-nm anti-H2B-antibody-coated ferromagnetic nanoparticle (FMNP) and an anti-immunoglobulin G (IgG)-antibody-coated or an uncoated FMNP. The chromatin behaved as a viscoelastic gel-like structure and the nucleoplasm was a softer viscoelastic structure at loading frequencies of 0.1-5 Hz. Protein diffusivity of the chromatin, nucleoplasm, and RNA polymerase II (RNA Pol II) and RNA Pol II activity were upregulated in a chromatin-stretching-dependent manner and stayed upregulated for tens of minutes after force cessation. Chromatin stiffness increased, but the mechanomemory duration of chromatin diffusivity decreased, with substrate stiffness. These findings may provide a mechanomemory mechanism of transcription upregulation and have implications on cell and nuclear functions.
Collapse
Affiliation(s)
- Fazlur Rashid
- The Institute for Mechanobiology, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115, USA; Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sadia Amin Kabbo
- The Institute for Mechanobiology, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115, USA
| | - Ning Wang
- The Institute for Mechanobiology, Northeastern University, Boston, MA 02115, USA; Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
92
|
Major GS, Doan VK, Longoni A, Bilek MMM, Wise SG, Rnjak-Kovacina J, Yeo GC, Lim KS. Mapping the microcarrier design pathway to modernise clinical mesenchymal stromal cell expansion. Trends Biotechnol 2024; 42:859-876. [PMID: 38320911 DOI: 10.1016/j.tibtech.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 02/08/2024]
Abstract
Microcarrier expansion systems show exciting potential to revolutionise mesenchymal stromal cell (MSC)-based clinical therapies by providing an opportunity for economical large-scale expansion of donor- and patient-derived cells. The poor reproducibility and efficiency of cell expansion on commercial polystyrene microcarriers have driven the development of novel microcarriers with tuneable physical, mechanical, and cell-instructive properties. These new microcarriers show innovation toward improving cell expansion outcomes, although their limited biological characterisation and compatibility with dynamic culture systems suggest the need to realign the microcarrier design pathway. Clear headway has been made toward developing infrastructure necessary for scaling up these technologies; however, key challenges remain in characterising the wholistic effects of microcarrier properties on the biological fate and function of expanded MSCs.
Collapse
Affiliation(s)
- Gretel S Major
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Vinh K Doan
- School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Alessia Longoni
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marcela M M Bilek
- School of Biomedical Engineering, University of Sydney, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia; Sydney Nano Institute, University of Sydney, Sydney, Australia
| | - Steven G Wise
- School of Medical Sciences, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Jelena Rnjak-Kovacina
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia; Tyree Institute of Health Engineering, University of New South Wales, Sydney, Australia
| | - Giselle C Yeo
- Charles Perkins Centre, University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney, Australia.
| | - Khoon S Lim
- School of Medical Sciences, University of Sydney, Sydney, Australia; Charles Perkins Centre, University of Sydney, Sydney, Australia; Sydney Nano Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
93
|
Liu Y, Okesola BO, Osuna de la Peña D, Li W, Lin M, Trabulo S, Tatari M, Lawlor RT, Scarpa A, Wang W, Knight M, Loessner D, Heeschen C, Mata A, Pearce OMT. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater 2024; 13:e2301941. [PMID: 38471128 PMCID: PMC11468796 DOI: 10.1002/adhm.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Indexed: 03/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.
Collapse
Affiliation(s)
- Ying Liu
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Babatunde O. Okesola
- School of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David Osuna de la Peña
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Weiqi Li
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Meng‐Lay Lin
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Sara Trabulo
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Marianthi Tatari
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Rita T. Lawlor
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Wen Wang
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Martin Knight
- Centre for BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Centre for Predictive in vitro ModelsQueen Mary University of LondonLondonE1 4NSUK
| | - Daniela Loessner
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- Department of Chemical and Biological EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| | - Christopher Heeschen
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSCandiolo (TO)10060Italy
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Biodiscovery InstituteUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | |
Collapse
|
94
|
Tan YH, Wang KCW, Chin IL, Sanderson RW, Li J, Kennedy BF, Noble PB, Choi YS. Stiffness Mediated-Mechanosensation of Airway Smooth Muscle Cells on Linear Stiffness Gradient Hydrogels. Adv Healthc Mater 2024; 13:e2304254. [PMID: 38593989 DOI: 10.1002/adhm.202304254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
In obstructive airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), the extracellular matrix (ECM) protein amount and composition of the airway smooth muscle (ASM) is often remodelled, likely altering tissue stiffness. The underlying mechanism of how human ASM cell (hASMC) mechanosenses the aberrant microenvironment is not well understood. Physiological stiffnesses of the ASM were measured by uniaxial compression tester using porcine ASM layers under 0, 5 and 10% longitudinal stretch above in situ length. Linear stiffness gradient hydrogels (230 kPa range) were fabricated and functionalized with ECM proteins, collagen I (ColI), fibronectin (Fn) and laminin (Ln), to recapitulate the above-measured range of stiffnesses. Overall, hASMC mechanosensation exhibited a clear correlation with the underlying hydrogel stiffness. Cell size, nuclear size and contractile marker alpha-smooth muscle actin (αSMA) expression showed a strong correlation to substrate stiffness. Mechanosensation, assessed by Lamin-A intensity and nuc/cyto YAP, exhibited stiffness-mediated behaviour only on ColI and Fn-coated hydrogels. Inhibition studies using blebbistatin or Y27632 attenuated most mechanotransduction-derived cell morphological responses, αSMA and Lamin-A expression and nuc/cyto YAP (blebbistatin only). This study highlights the interplay and complexities between stiffness and ECM protein type on hASMC mechanosensation, relevant to airway remodelling in obstructive airway diseases.
Collapse
Affiliation(s)
- Yong Hwee Tan
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kimberley C W Wang
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Rowan W Sanderson
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
| | - Brendan F Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia, Perth, WA, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, Perth, WA, 6009, Australia
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, Torun, 87-100, Poland
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
95
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
96
|
Nowak N, Sas-Nowosielska H, Szymański J. Nuclear Rac1 controls nuclear architecture and cell migration of glioma cells. Biochim Biophys Acta Gen Subj 2024; 1868:130632. [PMID: 38677529 DOI: 10.1016/j.bbagen.2024.130632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Rac1 (Ras-related C3 botulinum toxin substrate 1) protein has been found in the cell nucleus many years ago, however, its nuclear functions are still poorly characterized but some data suggest its nuclear accumulation in cancers. We investigated nuclear Rac1 in glioma cancer cells nuclei and compared its levels and activity to normal astrocytes, and also characterized the studied cells on various nuclear properties and cell migration patterns. Nuclear Rac1 indeed was found accumulated in glioma cells, but only a small percentage of the protein was in active, GTP-bound state in comparison to healthy control. Altering the nuclear activity of Rac1 influenced chromatin architecture and cell motility in GTP-dependent and independent manner. This suggests that the landscape of Rac1 nuclear interactions might be as complicated and wide as its well-known, non-nuclear signaling.
Collapse
Affiliation(s)
- Natalia Nowak
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| | - Hanna Sas-Nowosielska
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland; Institute of Epigenetics, Department of Cell Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jędrzej Szymański
- Laboratory of Imaging Tissue Structure and Function, Nencki Insitute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| |
Collapse
|
97
|
Perea Paizal J, Au SH, Bakal C. Nuclear rupture induced by capillary constriction forces promotes differential effects on metastatic and normal breast cells. Sci Rep 2024; 14:14793. [PMID: 38926422 PMCID: PMC11208511 DOI: 10.1038/s41598-024-64733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
During metastatic dissemination, circulating tumour cells (CTCs) enter capillary beds, where they experience mechanical constriction forces. The transient and persistent effects of these forces on CTCs behaviour remain poorly understood. Here, we developed a high-throughput microfluidic platform mimicking human capillaries to investigate the impact of mechanical constriction forces on malignant and normal breast cell lines. We observed that capillary constrictions induced nuclear envelope rupture in both cancer and normal cells, leading to transient changes in nuclear and cytoplasmic area. Constriction forces transiently activated cGAS/STING and pathways involved in inflammation (NF-κB, STAT and IRF3), especially in the non-malignant cell line. Furthermore, the non-malignant cell line experienced transcriptional changes, particularly downregulation of epithelial markers, while the metastatic cell lines showed minimal alterations. These findings suggest that mechanical constriction forces within capillaries may promote differential effects in malignant and normal cell lines.
Collapse
Affiliation(s)
- Julia Perea Paizal
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, SW6 6JB, UK.
- Cancer Research UK Convergence Science Centre, Roderic Hill Building, Imperial College London, London, SW7 2BB, UK.
| | - Sam H Au
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Cancer Research UK Convergence Science Centre, Roderic Hill Building, Imperial College London, London, SW7 2BB, UK
| | - Chris Bakal
- Division of Cancer Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, SW6 6JB, UK
- Cancer Research UK Convergence Science Centre, Roderic Hill Building, Imperial College London, London, SW7 2BB, UK
| |
Collapse
|
98
|
Dhankhar M, Guo Z, Kant A, Basir R, Joshi R, Heo SC, Mauck RL, Lakadamyali M, Shenoy VB. Revealing the Biophysics of Lamina-Associated Domain Formation by Integrating Theoretical Modeling and High-Resolution Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600310. [PMID: 38979207 PMCID: PMC11230226 DOI: 10.1101/2024.06.24.600310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The interactions between chromatin and the nuclear lamina orchestrate cell type-specific gene activity by forming lamina-associated domains (LADs) which preserve cellular characteristics through gene repression. However, unlike the interactions between chromatin segments, the strength of chromatin-lamina interactions and their dependence on cellular environment are not well understood. Here, we develop a theory to predict the size and shape of peripheral heterochromatin domains by considering the energetics of chromatin-chromatin interactions, the affinity between chromatin and the nuclear lamina and the kinetics of methylation and acetylation9in human mesenchymal stem cells (hMSCs). Through the analysis of super-resolution images of peripheral heterochromatin domains using this theoretical framework, we determine the nuclear lamina-wide distribution of chromatin-lamina affinities. We find that the extracted affinity is highly spatially heterogeneous and shows a bimodal distribution, indicating regions along the lamina with strong chromatin binding and those exhibiting vanishing chromatin affinity interspersed with some regions exhibiting a relatively diminished chromatin interactions, in line with the presence of structures such as nuclear pores. Exploring the role of environmental cues on peripheral chromatin, we find that LAD thickness increases when hMSCs are cultured on a softer substrate, in correlation with contractility-dependent translocation of histone deacetylase 3 (HDAC3) from the cytosol to the nucleus. In soft microenvironments, chromatin becomes sequestered at the nuclear lamina, likely due to the interactions of HDAC3 with the chromatin anchoring protein LAP2 β ,increasing chromatin-lamina affinity, as well as elevated levels of the intranuclear histone methylation. Our findings are further corroborated by pharmacological interventions that inhibit contractility, as well as by manipulating methylation levels using epigenetic drugs. Notably, in the context of tendinosis, a chronic condition characterized by collagen degeneration, we observed a similar increase in the thickness of peripheral chromatin akin to that of cells cultured on soft substrates consistent with theoretical predictions. Our findings underscore the pivotal role of the microenvironment in shaping genome organization and highlight its relevance in pathological conditions.
Collapse
|
99
|
Flaum E, Prakash M. Curved crease origami and topological singularities enable hyperextensibility of L. olor. Science 2024; 384:eadk5511. [PMID: 38843314 DOI: 10.1126/science.adk5511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/12/2024] [Indexed: 06/15/2024]
Abstract
Fundamental limits of cellular deformations, such as hyperextension of a living cell, remain poorly understood. Here, we describe how the single-celled protist Lacrymaria olor, a 40-micrometer cell, is capable of reversibly and repeatably extending its necklike protrusion up to 1200 micrometers in 30 seconds. We discovered a layered cortical cytoskeleton and membrane architecture that enables hyperextensions through the folding and unfolding of cellular-scale origami. Physical models of this curved crease origami display topological singularities, including traveling developable cones and cytoskeletal twisted domain walls, which provide geometric control of hyperextension. Our work unravels how cell geometry encodes behavior in single cells and provides inspiration for geometric control in microrobotics and deployable architectures.
Collapse
Affiliation(s)
- Eliott Flaum
- Graduate Program in Biophysics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Manu Prakash
- Graduate Program in Biophysics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Biology (courtesy), Stanford University, Stanford, CA, USA
- Department of Oceans (courtesy), Stanford University, Stanford, CA, USA
- Woods Institute for the Environment, Stanford University, Stanford, CA, USA
| |
Collapse
|
100
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|