51
|
Ma S, Liu L, Eggink D, Herfst S, Fouchier RAM, de Vries RP, Boons GJ. Asymmetrical Biantennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses. JACS AU 2024; 4:607-618. [PMID: 38425896 PMCID: PMC10900492 DOI: 10.1021/jacsau.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biologically relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical biantennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae, which temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of the evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans are critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses again agglutinate erythrocytes, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicate that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.
Collapse
Affiliation(s)
- Shengzhou Ma
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lin Liu
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Dirk Eggink
- Amsterdam
UMC Location University of Amsterdam, Department
of Medical Microbiology and Infection prevention, Laboratory of Applied
Evolutionary Biology, 1105
AZ Amsterdam, The
Netherlands
- Center
for Infectious Disease Control, National
Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sander Herfst
- Department
of Viroscience, Erasmus University Medical
Center, 3015 CD Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department
of Viroscience, Erasmus University Medical
Center, 3015 CD Rotterdam, The Netherlands
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
52
|
Fratty IS, Jurkowicz M, Zuckerman N, Nemet I, Atari N, Kliker L, Gur-Arie L, Rosenberg A, Glatman-Freedman A, Lustig Y, Mandelboim M. Influenza vaccine compatibility among hospitalized patients during and after the COVID-19 pandemic. Front Microbiol 2024; 14:1296179. [PMID: 38322758 PMCID: PMC10844098 DOI: 10.3389/fmicb.2023.1296179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Following the significant decrease in SARS-CoV-2 cases worldwide, Israel, as well as other countries, have again been faced with a rise in seasonal influenza. This study compared circulating influenza A and B in hospitalized patients in Israel with the influenza strains in the vaccine following the 2021-2022 winter season which was dominated by the omicron variant. Methods Nasopharyngeal samples of 16,325 patients were examined for the detection of influenza A(H1N1)pdm09, influenza A(H1N1)pdm09 and influenza B. Phylogenetic trees of hemagglutinin were then prepared using sanger sequencing. Vaccine immunogenicity was also performed using the hemagglutination inhibition test. Results Of the 16,325 nasopharyngeal samples collected from hospitalized patients between September 2021 (Week 40) and April 2023 (Week 15), 7.5% were found to be positive for influenza. Phylogenetic analyses show that in the 2021-2022 winter season, the leading virus subtype was influenza A(H3N2), belonging to clade 3C.2a1b.2a.2. However, the following winter season was dominated by influenza A(H1N1)pdm09, which belongs to clade 6B.aA.5a.2. The circulating influenza A(H1N1)pdm09 strain showed a shift from the vaccine strain, while the co-circulating influenza A(H3N2) and influenza B strains were similar to those of the vaccine. Antigenic analysis coincided with the sequence analysis. Discussion Influenza prevalence during 2022-2023 returned to typical levels as seen prior to the emergence of SARS-CoV-2, which may suggest a gradual viral adaptation to SARS-CoV-2 variants. Domination of influenza A(H1N1)pdm09 was observed uniquely in Israel compared to Europe and USA and phylogenetic and antigenic analysis showed lower recognition of the vaccine with the circulating influenza A(H1N1)pdm09 in Israel compared to the vaccine.
Collapse
Affiliation(s)
- Ilana S. Fratty
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Menucha Jurkowicz
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Neta Zuckerman
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ital Nemet
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
| | - Nofar Atari
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
| | - Limor Kliker
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
| | - Lea Gur-Arie
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Alina Rosenberg
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
| | - Aharona Glatman-Freedman
- The Israel Center for Disease Control, Israel Ministry of Health, Ramat-Gan, Israel
- Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Public Health Services, Ministry of Health and Sheba Medical Center, Ramat-Gan, Israel
- Faculty of Medicine, Department of Epidemiology and Preventive Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
53
|
Li X, Li Y, Shang X, Kong H. A sequence-based machine learning model for predicting antigenic distance for H3N2 influenza virus. Front Microbiol 2024; 15:1345794. [PMID: 38314434 PMCID: PMC10834737 DOI: 10.3389/fmicb.2024.1345794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction Seasonal influenza A H3N2 viruses are constantly changing, reducing the effectiveness of existing vaccines. As a result, the World Health Organization (WHO) needs to frequently update the vaccine strains to match the antigenicity of emerged H3N2 variants. Traditional assessments of antigenicity rely on serological methods, which are both labor-intensive and time-consuming. Although numerous computational models aim to simplify antigenicity determination, they either lack a robust quantitative linkage between antigenicity and viral sequences or focus restrictively on selected features. Methods Here, we propose a novel computational method to predict antigenic distances using multiple features, including not only viral sequence attributes but also integrating four distinct categories of features that significantly affect viral antigenicity in sequences. Results This method exhibits low error in virus antigenicity prediction and achieves superior accuracy in discerning antigenic drift. Utilizing this method, we investigated the evolution process of the H3N2 influenza viruses and identified a total of 21 major antigenic clusters from 1968 to 2022. Discussion Interestingly, our predicted antigenic map aligns closely with the antigenic map generated with serological data. Thus, our method is a promising tool for detecting antigenic variants and guiding the selection of vaccine candidates.
Collapse
Affiliation(s)
- Xingyi Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Yanyan Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Big Data Storage and Management MIIT Lab, Xi'an, Shaanxi, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, China
| |
Collapse
|
54
|
Shu C, Sun Q, Fan G, Peng K, Yu Z, Luo Y, Gao S, Ma J, Deng T, Hu S, Wu L. VarEPS-Influ:an risk evaluation system of occurred and virtual variations of influenza virus genomes. Nucleic Acids Res 2024; 52:D798-D807. [PMID: 37889020 PMCID: PMC10767863 DOI: 10.1093/nar/gkad912] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Influenza viruses undergo frequent genomic mutations, leading to potential cross-species transmission, phenotypic changes, and challenges in diagnostic reagents and vaccines. Accurately evaluating and predicting the risk of such variations remain significant challenges. To address this, we developed the VarEPS-Influ database, an influenza virus variations risk evaluation system (VarEPS-Influ). This database employs a 'multi-dimensional evaluation of mutations' strategy, utilizing various tools to assess the physical and chemical properties, primary, secondary, and tertiary structures, receptor affinity, antibody binding capacity, antigen epitopes, and other aspects of the variation's impact. Additionally, we consider space-time distribution, host species distribution, pedigree analysis, and frequency of mutations to provide a comprehensive risk evaluation of mutations and viruses. The VarEPS-Influ database evaluates both observed variations and virtual variations (variations that have not yet occurred), thereby addressing the time-lag issue in risk predictions. Our current one-stop evaluation system for influenza virus genomic variation integrates 1065290 sequences from 224 927 Influenza A, B and C isolates retrieved from public resources. Researchers can freely access the data at https://nmdc.cn/influvar/.
Collapse
Affiliation(s)
- Chang Shu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinglan Sun
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Guomei Fan
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Kesheng Peng
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Zhengfei Yu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Yingfeng Luo
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenghan Gao
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juncai Ma
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| | - Tao Deng
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Songnian Hu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhuan Wu
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese National Microbiology Data Center (NMDC), Beijing 100101, China
| |
Collapse
|
55
|
Liu F, Gross FL, Joshi S, Gaglani M, Naleway AL, Murthy K, Groom HC, Wesley MG, Edwards LJ, Grant L, Kim SS, Sambhara S, Gangappa S, Tumpey T, Thompson MG, Fry AM, Flannery B, Dawood FS, Levine MZ. Redirecting antibody responses from egg-adapted epitopes following repeat vaccination with recombinant or cell culture-based versus egg-based influenza vaccines. Nat Commun 2024; 15:254. [PMID: 38177116 PMCID: PMC10767121 DOI: 10.1038/s41467-023-44551-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Repeat vaccination with egg-based influenza vaccines could preferentially boost antibodies targeting the egg-adapted epitopes and reduce immunogenicity to circulating viruses. In this randomized trial (Clinicaltrials.gov: NCT03722589), sera pre- and post-vaccination with quadrivalent inactivated egg-based (IIV4), cell culture-based (ccIIV4), and recombinant (RIV4) influenza vaccines were collected from healthcare personnel (18-64 years) in 2018-19 (N = 723) and 2019-20 (N = 684) influenza seasons. We performed an exploratory analysis. Vaccine egg-adapted changes had the most impact on A(H3N2) immunogenicity. In year 1, RIV4 induced higher neutralizing and total HA head binding antibodies to cell- A(H3N2) virus than ccIIV4 and IIV4. In year 2, among the 7 repeat vaccination arms (IIV4-IIV4, IIV4-ccIIV4, IIV4-RIV4, RIV4-ccIIV4, RIV4-RIV4, ccIIV4-ccIIV4 and ccIIV4-RIV4), repeat vaccination with either RIV4 or ccIIV4 further improved antibody responses to circulating viruses with decreased neutralizing antibody egg/cell ratio. RIV4 also had higher post-vaccination A(H1N1)pdm09 and A(H3N2) HA stalk antibodies in year 1, but there was no significant difference in HA stalk antibody fold rise among vaccine groups in either year 1 or year 2. Multiple seasons of non-egg-based vaccination may be needed to redirect antibody responses from immune memory to egg-adapted epitopes and re-focus the immune responses towards epitopes on the circulating viruses to improve vaccine effectiveness.
Collapse
Affiliation(s)
- Feng Liu
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - F Liaini Gross
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sneha Joshi
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Manjusha Gaglani
- Baylor Scott & White Health, Temple, TX, USA
- Baylor College of Medicine, Temple, TX, USA
- Texas A & M University, College of Medicine, Temple, TX, USA
| | - Allison L Naleway
- Kaiser Permanente Northwest Center for Health Research, Portland, OR, USA
| | | | - Holly C Groom
- Kaiser Permanente Northwest Center for Health Research, Portland, OR, USA
| | - Meredith G Wesley
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Abt Associates, Atlanta, GA, USA
| | | | - Lauren Grant
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sara S Kim
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Terrence Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mark G Thompson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Alicia M Fry
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brendan Flannery
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fatimah S Dawood
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Min Z Levine
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
56
|
Finney J, Moseman AP, Kong S, Watanabe A, Song S, Walsh RM, Kuraoka M, Kotaki R, Moseman EA, McCarthy KR, Liao D, Liang X, Nie X, Lavidor O, Abbott R, Harrison SC, Kelsoe G. Protective human antibodies against a conserved epitope in pre- and postfusion influenza hemagglutinin. Proc Natl Acad Sci U S A 2024; 121:e2316964120. [PMID: 38147556 PMCID: PMC10769852 DOI: 10.1073/pnas.2316964120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Phylogenetically and antigenically distinct influenza A and B viruses (IAV and IBV) circulate in human populations, causing widespread morbidity. Antibodies (Abs) that bind epitopes conserved in both IAV and IBV hemagglutinins (HAs) could protect against disease by diverse virus subtypes. Only one reported HA Ab, isolated from a combinatorial display library, protects against both IAV and IBV. Thus, there has been so far no information on the likelihood of finding naturally occurring human Abs that bind HAs of diverse IAV subtypes and IBV lineages. We have now recovered from several unrelated human donors five clonal Abs that bind a conserved epitope preferentially exposed in the postfusion conformation of IAV and IVB HA2. These Abs lack neutralizing activity in vitro but in mice provide strong, IgG subtype-dependent protection against lethal IAV and IBV infections. Strategies to elicit similar Abs routinely might contribute to more effective influenza vaccines.
Collapse
Affiliation(s)
- Joel Finney
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Annie Park Moseman
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Susan Kong
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Akiko Watanabe
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Shengli Song
- Department of Surgery, Duke University, Durham, NC27710
| | - Richard M. Walsh
- The Harvard Cryo-Electron Microscopy (Cryo-EM) Center for Structural Biology, Harvard Medical School, Boston, MA02115
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Masayuki Kuraoka
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Ryutaro Kotaki
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - E. Ashley Moseman
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Kevin R. McCarthy
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Dongmei Liao
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Xiaoe Liang
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Xiaoyan Nie
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
| | - Olivia Lavidor
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Richard Abbott
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA02115
| | - Stephen C. Harrison
- Laboratory of Molecular Medicine, Children’s Hospital, Harvard Medical School, Boston, MA02115
- HHMI, Boston, MA02115
| | - Garnett Kelsoe
- Department of Integrative Immunobiology, Duke University, Durham, NC27710
- Department of Surgery, Duke University, Durham, NC27710
- Duke Human Vaccine Institute, Duke University, Durham, NC27710
| |
Collapse
|
57
|
de Waure C, Gärtner BC, Lopalco PL, Puig-Barbera J, Nguyen-Van-Tam JS. Real world evidence for public health decision-making on vaccination policies: perspectives from an expert roundtable. Expert Rev Vaccines 2024; 23:27-38. [PMID: 38084895 DOI: 10.1080/14760584.2023.2290194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION Influenza causes significant morbidity and mortality, but influenza vaccine uptake remains below most countries' targets. Vaccine policy recommendations vary, as do procedures for reviewing and appraising the evidence. AREAS COVERED During a series of roundtable discussions, we reviewed procedures and methodologies used by health ministries in four European countries to inform vaccine recommendations. We review the type of evidence currently recommended by each health ministry and the range of approaches toward considering randomized controlled trials (RCTs) and real-world evidence (RWE) studies when setting influenza vaccine recommendations. EXPERT OPINION Influenza vaccine recommendations should be based on data from both RCTs and RWE studies of efficacy, effectiveness, and safety. Such data should be considered alongside health-economic, cost-effectiveness, and budgetary factors. Although RCT data are more robust and less prone to bias, well-designed RWE studies permit timely evaluation of vaccine benefits, effectiveness comparisons over multiple seasons in large populations, and detection of rare adverse events, under real-world conditions. Given the variability of vaccine effectiveness due to influenza virus mutations and increasing diversification of influenza vaccines, we argue that consideration of both RWE and RCT evidence is the best approach to more nuanced and timely updates of influenza vaccine recommendations.
Collapse
Affiliation(s)
- Chiara de Waure
- Public Health, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Barbara C Gärtner
- Department and Institute of Microbiology, Saarland University Hospital, Homburg, Germany
| | | | - Joan Puig-Barbera
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Region, Valencia, Spain
| | | |
Collapse
|
58
|
Dosey A, Ellis D, Boyoglu-Barnum S, Syeda H, Saunders M, Watson MJ, Kraft JC, Pham MN, Guttman M, Lee KK, Kanekiyo M, King NP. Combinatorial immune refocusing within the influenza hemagglutinin RBD improves cross-neutralizing antibody responses. Cell Rep 2023; 42:113553. [PMID: 38096052 PMCID: PMC10801708 DOI: 10.1016/j.celrep.2023.113553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
The receptor-binding domain (RBD) of influenza virus hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies. Here, we evaluate the ability of several immunofocusing techniques to enhance the functional breadth of vaccine-elicited immune responses against the HA RBD. We present a series of "trihead" nanoparticle immunogens that display native-like closed trimeric RBDs from the HAs of several H1N1 influenza viruses. The series includes hyperglycosylated and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the receptor-binding site periphery. Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicit higher hemagglutination inhibition (HAI) and neutralizing activity than the corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation. By contrast, mosaic nanoparticle display and antigen hypervariation do not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Our results yield important insights into antibody responses against the RBD and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.
Collapse
Affiliation(s)
- Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mason Saunders
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael J Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John C Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
59
|
Zhang N, Quan K, Chen Z, Hu Q, Nie M, Xu N, Gao R, Wang X, Qin T, Chen S, Peng D, Liu X. The emergence of new antigen branches of H9N2 avian influenza virus in China due to antigenic drift on hemagglutinin through antibody escape at immunodominant sites. Emerg Microbes Infect 2023; 12:2246582. [PMID: 37550992 PMCID: PMC10444018 DOI: 10.1080/22221751.2023.2246582] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/09/2023]
Abstract
Vaccination is a crucial prevention and control measure against H9N2 avian influenza viruses (AIVs) that threaten poultry production and public health. However, H9N2 AIVs in China undergo continuous antigenic drift of hemagglutinin (HA) under antibody pressure, leading to the emergence of immune escape variants. In this study, we investigated the molecular basis of the current widespread antigenic drift of H9N2 AIVs. Specifically, the most prevalent h9.4.2.5-lineage in China was divided into two antigenic branches based on monoclonal antibody (mAb) hemagglutination inhibition (HI) profiling analysis, and 12 antibody escape residues were identified as molecular markers of these two branches. The 12 escape residues were mapped to antigenic sites A, B, and E (H3 was used as the reference). Among these, eight residues primarily increased 3`SLN preference and contributed to antigenicity drift, and four of the eight residues at sites A and B were positively selected. Moreover, the analysis of H9N2 strains over time and space has revealed the emergence of a new antigenic branch in China since 2015, which has replaced the previous branch. However, the old antigenic branch recirculated to several regions after 2018. Collectively, this study provides a theoretical basis for understanding the molecular mechanisms of antigenic drift and for developing vaccine candidates that contest with the current antigenicity of H9N2 AIVs.
Collapse
Affiliation(s)
- Nan Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Keji Quan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zixuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Qun Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Maoshun Nie
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, People’s Republic of China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, People’s Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
60
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
61
|
Liu L, Chen G, Huang S, Wen F. Receptor Binding Properties of Neuraminidase for influenza A virus: An Overview of Recent Research Advances. Virulence 2023; 14:2235459. [PMID: 37469130 PMCID: PMC10361132 DOI: 10.1080/21505594.2023.2235459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Influenza A viruses (IAVs) pose a serious risk to both human and animal health. IAVs' receptor binding characteristics account for a major portion of their host range and tissue tropism. While the function of neuraminidase (NA) in promoting the release of progeny virus is well-known, its role in the virus entry process remains poorly understood. Studies have suggested that certain subtypes of NA can act as receptor-binding proteins, either alone or in conjunction with haemagglutinin (HA). An important distinction is that NA from the avian influenza virus have a second sialic acid-binding site (2SBS) that is preserved in avian strains but missing in human or swine strains. Those observations suggest that the 2SBS may play a key role in the adaptation of the avian influenza virus to mammalian hosts. In this review, we provide an update of the recent research advances in the receptor-binding role of NA and highlight its underestimated importance during the early stages of the IAV life cycle. By doing so, we aim to provide new insights into the mechanisms underlying IAV host adaptation and pathogenesis.
Collapse
Affiliation(s)
- Lian Liu
- School of Medicine, Foshan University, Foshan, China
| | - Gaojie Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Feng Wen
- School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
62
|
Zhang Y, Cui P, Shi J, Chen Y, Zeng X, Jiang Y, Tian G, Li C, Chen H, Kong H, Deng G. Key Amino Acid Residues That Determine the Antigenic Properties of Highly Pathogenic H5 Influenza Viruses Bearing the Clade 2.3.4.4 Hemagglutinin Gene. Viruses 2023; 15:2249. [PMID: 38005926 PMCID: PMC10674173 DOI: 10.3390/v15112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The H5 subtype highly pathogenic avian influenza viruses bearing the clade 2.3.4.4 HA gene have been pervasive among domestic poultry and wild birds worldwide since 2014, presenting substantial risks to human and animal health. Continued circulation of clade 2.3.4.4 viruses has resulted in the emergence of eight subclades (2.3.4.4a-h) and multiple distinct antigenic groups. However, the key antigenic substitutions responsible for the antigenic change of these viruses remain unknown. In this study, we analyzed the HA gene sequences of 5713 clade 2.3.4.4 viruses obtained from a public database and found that 23 amino acid residues were highly variable among these strains. We then generated a series of single-amino-acid mutants based on the H5-Re8 (a vaccine seed virus) background and tested their reactivity with a panel of eight monoclonal antibodies (mAbs). Six mutants bearing amino acid substitutions at positions 120, 126, 141, 156, 185, or 189 (H5 numbering) led to reduced or lost reactivity to these mAbs. Further antigenic cartography analysis revealed that the amino acid residues at positions 126, 156, and 189 acted as immunodominant epitopes of H5 viruses. Collectively, our findings offer valuable guidance for the surveillance and early detection of emerging antigenic variants.
Collapse
Affiliation(s)
- Yuancheng Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Pengfei Cui
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Jianzhong Shi
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Xianying Zeng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Yongping Jiang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Guobin Tian
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Chengjun Li
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Hualan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Guohua Deng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| |
Collapse
|
63
|
Ma S, Liu L, Eggink D, Herfst S, Fouchier RAM, de Vries RP, Boons GJ. Asymmetrical Bi-antennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566285. [PMID: 37986780 PMCID: PMC10659364 DOI: 10.1101/2023.11.08.566285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biological relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical bi-antennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae that temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans is critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses agglutinate erythrocytes again, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicates that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.
Collapse
Affiliation(s)
- Shengzhou Ma
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Dirk Eggink
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Applied Evolutionary Biology, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, GA, USA
| |
Collapse
|
64
|
Kistler KE, Bedford T. An atlas of continuous adaptive evolution in endemic human viruses. Cell Host Microbe 2023; 31:1898-1909.e3. [PMID: 37883977 DOI: 10.1016/j.chom.2023.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Through antigenic evolution, viruses such as seasonal influenza evade recognition by neutralizing antibodies. This means that a person with antibodies well tuned to an initial infection will not be protected against the same virus years later and that vaccine-mediated protection will decay. To expand our understanding of which endemic human viruses evolve in this fashion, we assess adaptive evolution across the genome of 28 endemic viruses spanning a wide range of viral families and transmission modes. Surface proteins consistently show the highest rates of adaptation, and ten viruses in this panel are estimated to undergo antigenic evolution to selectively fix mutations that enable the escape of prior immunity. Thus, antibody evasion is not an uncommon evolutionary strategy among human viruses, and monitoring this evolution will inform future vaccine efforts. Additionally, by comparing overall amino acid substitution rates, we show that SARS-CoV-2 is accumulating protein-coding changes at substantially faster rates than endemic viruses.
Collapse
Affiliation(s)
- Kathryn E Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
65
|
Hayati M, Sobkowiak B, Stockdale JE, Colijn C. Phylogenetic identification of influenza virus candidates for seasonal vaccines. SCIENCE ADVANCES 2023; 9:eabp9185. [PMID: 37922357 PMCID: PMC10624341 DOI: 10.1126/sciadv.abp9185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
The seasonal influenza (flu) vaccine is designed to protect against those influenza viruses predicted to circulate during the upcoming flu season, but identifying which viruses are likely to circulate is challenging. We use features from phylogenetic trees reconstructed from hemagglutinin (HA) and neuraminidase (NA) sequences, together with a support vector machine, to predict future circulation. We obtain accuracies of 0.75 to 0.89 (AUC 0.83 to 0.91) over 2016-2020. We explore ways to select potential candidates for a seasonal vaccine and find that the machine learning model has a moderate ability to select strains that are close to future populations. However, consensus sequences among the most recent 3 years also do well at this task. We identify similar candidate strains to those proposed by the World Health Organization, suggesting that this approach can help inform vaccine strain selection.
Collapse
Affiliation(s)
- Maryam Hayati
- School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Benjamin Sobkowiak
- Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | | | - Caroline Colijn
- Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
66
|
Carnaccini S, Cáceres CJ, Gay LC, Ferreri LM, Skepner E, Burke DF, Brown IH, Geiger G, Obadan A, Rajao DS, Lewis NS, Perez DR. Antigenic mapping of the hemagglutinin of the H9 subtype influenza A viruses using sera from Japanese quail ( Coturnix c. japonica). J Virol 2023; 97:e0074323. [PMID: 37800947 PMCID: PMC10617583 DOI: 10.1128/jvi.00743-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/18/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Determining the relevant amino acids involved in antigenic drift on the surface protein hemagglutinin (HA) is critical to understand influenza virus evolution and efficient assessment of vaccine strains relative to current circulating strains. We used antigenic cartography to generate an antigenic map of the H9 hemagglutinin (HA) using sera produced in one of the most relevant minor poultry species, Japanese quail. Key antigenic positions were identified and tested to confirm their impact on the antigenic profile. This work provides a better understanding of the antigenic diversity of the H9 HA as it relates to reactivity to quail sera and will facilitate a rational approach for selecting more efficacious vaccines against poultry-origin H9 influenza viruses in minor poultry species.
Collapse
Affiliation(s)
- Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Lucas M. Ferreri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Eugene Skepner
- Center for Pathogen Evolution, University of Cambridge, Cambridge, United Kingdom
| | - David F. Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian H. Brown
- Animal and Plant Health Agency (APHA), Weybridge, United Kingdom
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Adebimpe Obadan
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Daniela S. Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Nicola S. Lewis
- World Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
67
|
Wallace LE, de Vries E, van Kuppeveld FJM, de Haan CAM. Neuraminidase-dependent entry of influenza A virus is determined by hemagglutinin receptor-binding specificity. J Virol 2023; 97:e0060223. [PMID: 37754760 PMCID: PMC10617504 DOI: 10.1128/jvi.00602-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Influenza A viruses (IAVs) contain hemagglutinin (HA) proteins involved in sialoglycan receptor binding and neuraminidase (NA) proteins that cleave sialic acids. While the importance of the NA protein in virion egress is well established, its role in virus entry remains to be fully elucidated. NA activity is needed for the release of virions from mucus decoy receptors, but conflicting results have been reported on the importance of NA activity in virus entry in the absence of decoy receptors. We now show that inhibition of NA activity affects virus entry depending on the receptor-binding properties of HA and the receptor repertoire present on cells. Inhibition of entry by the presence of mucus correlated with the importance of NA activity for virus entry, with the strongest inhibition being observed when mucus and OsC were combined. These results shed light on the importance in virus entry of the NA protein, an important antiviral drug target.
Collapse
Affiliation(s)
- Louisa E. Wallace
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Erik de Vries
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Frank J. M. van Kuppeveld
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Cornelis A. M. de Haan
- Section of Virology, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
68
|
Kok A, Scheuer R, Bestebroer TM, Burke DF, Wilks SH, Spronken MI, de Meulder D, Lexmond P, Pronk M, Smith DJ, Herfst S, Fouchier RAM, Richard M. Characterization of A/H7 influenza virus global antigenic diversity and key determinants in the hemagglutinin globular head mediating A/H7N9 antigenic evolution. mBio 2023; 14:e0048823. [PMID: 37565755 PMCID: PMC10655666 DOI: 10.1128/mbio.00488-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 08/12/2023] Open
Abstract
IMPORTANCE A/H7 avian influenza viruses cause outbreaks in poultry globally, resulting in outbreaks with significant socio-economical impact and zoonotic risks. Occasionally, poultry vaccination programs have been implemented to reduce the burden of these viruses, which might result in an increased immune pressure accelerating antigenic evolution. In fact, evidence for antigenic diversification of A/H7 influenza viruses exists, posing challenges to pandemic preparedness and the design of vaccination strategies efficacious against drifted variants. Here, we performed a comprehensive analysis of the global antigenic diversity of A/H7 influenza viruses and identified the main substitutions in the hemagglutinin responsible for antigenic evolution in A/H7N9 viruses isolated between 2013 and 2019. The A/H7 antigenic map and knowledge of the molecular determinants of their antigenic evolution add value to A/H7 influenza virus surveillance programs, the design of vaccines and vaccination strategies, and pandemic preparedness.
Collapse
Affiliation(s)
- Adinda Kok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rachel Scheuer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo M. Bestebroer
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - David F. Burke
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Samuel H. Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Monique I. Spronken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dennis de Meulder
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mark Pronk
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Derek J. Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sander Herfst
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mathilde Richard
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
69
|
Chardès V, Mazzolini A, Mora T, Walczak AM. Evolutionary stability of antigenically escaping viruses. Proc Natl Acad Sci U S A 2023; 120:e2307712120. [PMID: 37871216 PMCID: PMC10622963 DOI: 10.1073/pnas.2307712120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/24/2023] [Indexed: 10/25/2023] Open
Abstract
Antigenic variation is the main immune escape mechanism for RNA viruses like influenza or SARS-CoV-2. While high mutation rates promote antigenic escape, they also induce large mutational loads and reduced fitness. It remains unclear how this cost-benefit trade-off selects the mutation rate of viruses. Using a traveling wave model for the coevolution of viruses and host immune systems in a finite population, we investigate how immunity affects the evolution of the mutation rate and other nonantigenic traits, such as virulence. We first show that the nature of the wave depends on how cross-reactive immune systems are, reconciling previous approaches. The immune-virus system behaves like a Fisher wave at low cross-reactivities, and like a fitness wave at high cross-reactivities. These regimes predict different outcomes for the evolution of nonantigenic traits. At low cross-reactivities, the evolutionarily stable strategy is to maximize the speed of the wave, implying a higher mutation rate and increased virulence. At large cross-reactivities, where our estimates place H3N2 influenza, the stable strategy is to increase the basic reproductive number, keeping the mutation rate to a minimum and virulence low.
Collapse
Affiliation(s)
- Victor Chardès
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
- Center for Computational Biology, Flatiron Institute, New York, NY10010
| | - Andrea Mazzolini
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| | - Thierry Mora
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de Physique de l’École Normale Supérieure, CNRS, Paris Sciences & Lettres University, Sorbonne Université, and Université Paris-Cité, 75005Paris, France
| |
Collapse
|
70
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. Science 2023; 382:eadj0070. [PMID: 37797027 DOI: 10.1126/science.adj0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, multiple variants escaping preexisting immunity emerged, causing reinfections of previously exposed individuals. Here, we used antigenic cartography to analyze patterns of cross-reactivity among 21 variants and 15 groups of human sera obtained after primary infection with 10 different variants or after messenger RNA (mRNA)-1273 or mRNA-1273.351 vaccination. We found antigenic differences among pre-Omicron variants caused by substitutions at spike-protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months after a second dose. We found changes in immunodominance of different spike regions, depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine-strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
71
|
Haas KM, McGregor MJ, Bouhaddou M, Polacco BJ, Kim EY, Nguyen TT, Newton BW, Urbanowski M, Kim H, Williams MAP, Rezelj VV, Hardy A, Fossati A, Stevenson EJ, Sukerman E, Kim T, Penugonda S, Moreno E, Braberg H, Zhou Y, Metreveli G, Harjai B, Tummino TA, Melnyk JE, Soucheray M, Batra J, Pache L, Martin-Sancho L, Carlson-Stevermer J, Jureka AS, Basler CF, Shokat KM, Shoichet BK, Shriver LP, Johnson JR, Shaw ML, Chanda SK, Roden DM, Carter TC, Kottyan LC, Chisholm RL, Pacheco JA, Smith ME, Schrodi SJ, Albrecht RA, Vignuzzi M, Zuliani-Alvarez L, Swaney DL, Eckhardt M, Wolinsky SM, White KM, Hultquist JF, Kaake RM, García-Sastre A, Krogan NJ. Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets. Nat Commun 2023; 14:6030. [PMID: 37758692 PMCID: PMC10533562 DOI: 10.1038/s41467-023-41442-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT.
Collapse
Affiliation(s)
- Kelsey M Haas
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Michael J McGregor
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Mehdi Bouhaddou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Benjamin J Polacco
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Eun-Young Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Thong T Nguyen
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Billy W Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
| | - Matthew Urbanowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Heejin Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael A P Williams
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Alexandra Hardy
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Andrea Fossati
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Erica J Stevenson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Ellie Sukerman
- Division of Infectious Diseases, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tiffany Kim
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sudhir Penugonda
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Infectious Diseases, Hospital Universitario Ramón y Cajal and IRYCIS, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Yuan Zhou
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Giorgi Metreveli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bhavya Harjai
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Tia A Tummino
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
- Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco, San Francisco, CA, 94158, USA
| | - James E Melnyk
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Margaret Soucheray
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Jyoti Batra
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Lars Pache
- Infectious and Inflammatory Disease Center, Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Laura Martin-Sancho
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Infectious Disease, Imperial College London, London, SW7 2BX, UK
| | - Jared Carlson-Stevermer
- Synthego Corporation, Redwood City, CA, 94063, USA
- Serotiny Inc., South San Francisco, CA, 94080, USA
| | - Alexander S Jureka
- Molecular Virology and Vaccine Team, Immunology and Pathogenesis Branch, Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA, 30333, USA
- General Dynamics Information Technology, Federal Civilian Division, Atlanta, GA, 30329, USA
| | - Christopher F Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Brian K Shoichet
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Jeffrey R Johnson
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Megan L Shaw
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medical Biosciences, University of the Western Cape, Bellville, 7535, Western Cape, South Africa
| | - Sumit K Chanda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tonia C Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, 54449, USA
| | - Leah C Kottyan
- Center of Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Rex L Chisholm
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jennifer A Pacheco
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Maureen E Smith
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Steven J Schrodi
- Laboratory of Genetics, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marco Vignuzzi
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Institut Pasteur, Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Paris, France
| | - Lorena Zuliani-Alvarez
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Danielle L Swaney
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Manon Eckhardt
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
| | - Steven M Wolinsky
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Kris M White
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Judd F Hultquist
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, 60611, USA.
| | - Robyn M Kaake
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| | - Adolfo García-Sastre
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Nevan J Krogan
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA.
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, 94158, USA.
- Quantitative Biosciences Institute (QBI) Coronavirus Research Group (QCRG), San Francisco, CA, 94158, USA.
| |
Collapse
|
72
|
Wang Y, Lv H, Lei R, Yeung YH, Shen IR, Choi D, Teo QW, Tan TJ, Gopal AB, Chen X, Graham CS, Wu NC. An explainable language model for antibody specificity prediction using curated influenza hemagglutinin antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557288. [PMID: 37745338 PMCID: PMC10515799 DOI: 10.1101/2023.09.11.557288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Despite decades of antibody research, it remains challenging to predict the specificity of an antibody solely based on its sequence. Two major obstacles are the lack of appropriate models and inaccessibility of datasets for model training. In this study, we curated a dataset of >5,000 influenza hemagglutinin (HA) antibodies by mining research publications and patents, which revealed many distinct sequence features between antibodies to HA head and stem domains. We then leveraged this dataset to develop a lightweight memory B cell language model (mBLM) for sequence-based antibody specificity prediction. Model explainability analysis showed that mBLM captured key sequence motifs of HA stem antibodies. Additionally, by applying mBLM to HA antibodies with unknown epitopes, we discovered and experimentally validated many HA stem antibodies. Overall, this study not only advances our molecular understanding of antibody response to influenza virus, but also provides an invaluable resource for applying deep learning to antibody research.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuen-Hei Yeung
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ivana R. Shen
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Danbi Choi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Qi Wen Teo
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Akshita B. Gopal
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire S. Graham
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
73
|
Chiba S, Kong H, Neumann G, Kawaoka Y. Influenza H3 hemagglutinin vaccine with scrambled immunodominant epitopes elicits antibodies directed toward immunosubdominant head epitopes. mBio 2023; 14:e0062223. [PMID: 37466314 PMCID: PMC10470489 DOI: 10.1128/mbio.00622-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Vaccination is the most effective countermeasure to reduce the severity of influenza. Current seasonal influenza vaccines mainly elicit humoral immunity targeting hemagglutinin (HA). In particular, the amino acid residues around the receptor-binding site in the HA head domain are predominantly targeted by humoral immunity as "immunodominant" epitopes. However, mutations readily accumulate in the head domain due to high plasticity, resulting in antigenic drift and vaccine mismatch, particularly with influenza A (H3N2) viruses. A vaccine strategy that targets more conserved immunosubdominant epitopes is required to attain a universal vaccine. Here, we designed an H3 HA vaccine antigen with various amino acids at immunodominant epitopes of the HA head domain, termed scrambled HA (scrHA). In ferrets, scrHA vaccination induced lower serum neutralizing antibody levels against homologous virus compared with wild-type (WT) HA vaccination; however, similar levels of moderately neutralizing titers against antigenically distinct H3N2 viruses were observed. Ferrets vaccinated with scrHA twice and then challenged with homologous or heterologous virus showed the same level of reduced virus shedding in nasal swabs as WT HA-vaccinated animals but reduced body temperature increase, whereas WT HA-vaccinated ferrets exhibited body temperature increases similar to those of mock-vaccinated animals. scrHA elicited antibodies against HA immunodominant and -subdominant epitopes at lower and higher levels, respectively, than WT HA vaccination, whereas antistalk antibodies were induced at the same level for both groups, suggesting scrHA-induced redirection from immunodominant to immunosubdominant head epitopes. scrHA vaccination thus induced broader coverage than WT HA vaccination by diluting out the immunodominancy of HA head epitopes. IMPORTANCE Current influenza vaccines mainly elicit antibodies that target the immunodominant head domain, where strain-specific mutations rapidly accumulate, resulting in frequent antigenic drift and vaccine mismatch. Targeting conserved immunosubdominant epitopes is essential to attain a universal vaccine. Our findings with the scrHA developed in this study suggest that designing vaccine antigens that "dilute out" the immunodominancy of the head epitopes may be an effective strategy to induce conserved immunosubdominant epitope-based immune responses.
Collapse
Affiliation(s)
- Shiho Chiba
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Huihui Kong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
74
|
Liu M, Bakker AS, Narimatsu Y, van Kuppeveld FJM, Clausen H, de Haan CAM, de Vries E. H3N2 influenza A virus gradually adapts to human-type receptor binding and entry specificity after the start of the 1968 pandemic. Proc Natl Acad Sci U S A 2023; 120:e2304992120. [PMID: 37467282 PMCID: PMC10401031 DOI: 10.1073/pnas.2304992120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/01/2023] [Indexed: 07/21/2023] Open
Abstract
To become established upon zoonotic transfer, influenza A viruses (IAV) need to switch binding from "avian-type" α2-3-linked sialic acid receptors (2-3Sia) to "human-type" Siaα2-6-linked sialic acid receptors (2-6Sia). For the 1968 H3N2 pandemic virus, this was accomplished by two canonical amino acid substitutions in its hemagglutinin (HA) although a full specificity shift had not occurred. The receptor repertoire on epithelial cells is highly diverse and simultaneous interaction of a virus particle with a range of low- to very low-affinity receptors results in tight heteromultivalent binding. How this range of affinities determines binding selectivity and virus motility remains largely unknown as the analysis of low-affinity monovalent HA-receptor interactions is technically challenging. Here, a biolayer interferometry assay enabled a comprehensive analysis of receptor-binding kinetics evolution upon host-switching. Virus-binding kinetics of H3N2 virus isolates slowly evolved from 1968 to 1979 from mixed 2-3/2-6Sia specificity to high 2-6Sia specificity, surprisingly followed by a decline in selectivity after 1992. By using genetically tuned HEK293 cells, presenting either a simplified 2-3Sia- or 2-6Sia-specific receptor repertoire, receptor-specific binding was shown to correlate strongly with receptor-specific entry. In conclusion, the slow and continuous evolution of entry and receptor-binding specificity of seasonal H3N2 viruses contrasts with the paradigm that human IAVs need to rapidly acquire and maintain a high specificity for 2-6Sia. Analysis of the kinetic parameters of receptor binding provides a basis for understanding virus-binding specificity, motility, and HA/neuraminidase balance at the molecular level.
Collapse
Affiliation(s)
- Mengying Liu
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - A. Sophie Bakker
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Yoshiki Narimatsu
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200Copenhagen, Denmark
| | - Frank J. M. van Kuppeveld
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Henrik Clausen
- Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200Copenhagen, Denmark
| | - Cornelis A. M. de Haan
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| | - Erik de Vries
- Virology section, Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584CLUtrecht, the Netherlands
| |
Collapse
|
75
|
Guo Z, Lu X, Carney PJ, Chang J, Tzeng WP, York IA, Levine MZ, Stevens J. Use of Biolayer Interferometry to Identify Dominant Binding Epitopes of Influenza Hemagglutinin Protein of A(H1N1)pdm09 in the Antibody Response to 2010-2011 Influenza Seasonal Vaccine. Vaccines (Basel) 2023; 11:1307. [PMID: 37631875 PMCID: PMC10458479 DOI: 10.3390/vaccines11081307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The globular head domain of influenza virus surface protein hemagglutinin (HA1) is the major target of neutralizing antibodies elicited by vaccines. As little as one amino acid substitution in the HA1 can result in an antigenic drift of influenza viruses, indicating the dominance of some epitopes in the binding of HA to polyclonal serum antibodies. Therefore, identifying dominant binding epitopes of HA is critical for selecting seasonal influenza vaccine viruses. In this study, we have developed a biolayer interferometry (BLI)-based assay to determine dominant binding epitopes of the HA1 in antibody response to influenza vaccines using a panel of recombinant HA1 proteins of A(H1N1)pdm09 virus with each carrying a single amino acid substitution. Sera from individuals vaccinated with the 2010-2011 influenza trivalent vaccines were analyzed for their binding to the HA1 panel and hemagglutination inhibition (HI) activity against influenza viruses with cognate mutations. Results revealed an over 50% reduction in the BLI binding of several mutated HA1 compared to the wild type and a strong correlation between dominant residues identified by the BLI and HI assays. Our study demonstrates a method to systemically analyze antibody immunodominance in the humoral response to influenza vaccines.
Collapse
Affiliation(s)
- Zhu Guo
- Correspondence: (Z.G.); (J.S.)
| | | | | | | | | | | | | | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA; (X.L.); (P.J.C.); (J.C.); (W.-p.T.); (I.A.Y.); (M.Z.L.)
| |
Collapse
|
76
|
Peng F, Xia Y, Li W. Prediction of Antigenic Distance in Influenza A Using Attribute Network Embedding. Viruses 2023; 15:1478. [PMID: 37515165 PMCID: PMC10385503 DOI: 10.3390/v15071478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Owing to the rapid changes in the antigenicity of influenza viruses, it is difficult for humans to obtain lasting immunity through antiviral therapy. Hence, tracking the dynamic changes in the antigenicity of influenza viruses can provide a basis for vaccines and drug treatments to cope with the spread of influenza viruses. In this paper, we developed a novel quantitative prediction method to predict the antigenic distance between virus strains using attribute network embedding techniques. An antigenic network is built to model and combine the genetic and antigenic characteristics of the influenza A virus H3N2, using the continuous distributed representation of the virus strain protein sequence (ProtVec) as a node attribute and the antigenic distance between virus strains as an edge weight. The results show a strong positive correlation between supplementing genetic features and antigenic distance prediction accuracy. Further analysis indicates that our prediction model can comprehensively and accurately track the differences in antigenic distances between vaccines and influenza virus strains, and it outperforms existing methods in predicting antigenic distances between strains.
Collapse
Affiliation(s)
- Fujun Peng
- School of Information Science and Engineering, Yunnan University, Kunming 650500, China
| | - Yuanling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Weihua Li
- School of Information Science and Engineering, Yunnan University, Kunming 650500, China
| |
Collapse
|
77
|
Rouzine IM, Rozhnova G. Evolutionary implications of SARS-CoV-2 vaccination for the future design of vaccination strategies. COMMUNICATIONS MEDICINE 2023; 3:86. [PMID: 37336956 PMCID: PMC10279745 DOI: 10.1038/s43856-023-00320-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Once the first SARS-CoV-2 vaccine became available, mass vaccination was the main pillar of the public health response to the COVID-19 pandemic. It was very effective in reducing hospitalizations and deaths. Here, we discuss the possibility that mass vaccination might accelerate SARS-CoV-2 evolution in antibody-binding regions compared to natural infection at the population level. Using the evidence of strong genetic variation in antibody-binding regions and taking advantage of the similarity between the envelope proteins of SARS-CoV-2 and influenza, we assume that immune selection pressure acting on these regions of the two viruses is similar. We discuss the consequences of this assumption for SARS-CoV-2 evolution in light of mathematical models developed previously for influenza. We further outline the implications of this phenomenon, if our assumptions are confirmed, for the future design of SARS-CoV-2 vaccination strategies.
Collapse
Affiliation(s)
- Igor M Rouzine
- Immunogenetics, Sechenov Institute of Evolutionary Physiology and Biochemistry of Russian Academy of Sciences, Saint-Petersburg, Russia.
| | - Ganna Rozhnova
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
- Center for Complex Systems Studies (CCSS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
78
|
Wilks SH, Mühlemann B, Shen X, Türeli S, LeGresley EB, Netzl A, Caniza MA, Chacaltana-Huarcaya JN, Corman VM, Daniell X, Datto MB, Dawood FS, Denny TN, Drosten C, Fouchier RAM, Garcia PJ, Halfmann PJ, Jassem A, Jeworowski LM, Jones TC, Kawaoka Y, Krammer F, McDanal C, Pajon R, Simon V, Stockwell MS, Tang H, van Bakel H, Veguilla V, Webby R, Montefiori DC, Smith DJ. Mapping SARS-CoV-2 antigenic relationships and serological responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.01.28.477987. [PMID: 35860221 PMCID: PMC9298128 DOI: 10.1101/2022.01.28.477987] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During the SARS-CoV-2 pandemic, multiple variants escaping pre-existing immunity emerged, causing concerns about continued protection. Here, we use antigenic cartography to analyze patterns of cross-reactivity among a panel of 21 variants and 15 groups of human sera obtained following primary infection with 10 different variants or after mRNA-1273 or mRNA-1273.351 vaccination. We find antigenic differences among pre-Omicron variants caused by substitutions at spike protein positions 417, 452, 484, and 501. Quantifying changes in response breadth over time and with additional vaccine doses, our results show the largest increase between 4 weeks and >3 months post-2nd dose. We find changes in immunodominance of different spike regions depending on the variant an individual was first exposed to, with implications for variant risk assessment and vaccine strain selection.
Collapse
Affiliation(s)
- Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| | - Miguela A Caniza
- Department of Global Pediatric Medicine, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Xiaoju Daniell
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Michael B Datto
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | | | - Patricia J Garcia
- School of Public Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Agatha Jassem
- BC Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Lara M Jeworowski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Terry C Jones
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Science, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo, Japan
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charlene McDanal
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Cellular and Molecular Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa S Stockwell
- Division of Child and Adolescent Health, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, and Department of Population and Family Health, Mailman School of Public Health, New York, NY, USA
| | - Haili Tang
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vic Veguilla
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Richard Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK
| |
Collapse
|
79
|
Liu M, van Kuppeveld FJM, de Haan CAM, de Vries E. Gradual adaptation of animal influenza A viruses to human-type sialic acid receptors. Curr Opin Virol 2023; 60:101314. [DOI: 10.1016/j.coviro.2023.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 04/01/2023]
|
80
|
Dosey A, Ellis D, Boyoglu-Barnum S, Syeda H, Saunders M, Watson M, Kraft JC, Pham MN, Guttman M, Lee KK, Kanekiyo M, King NP. Combinatorial immune refocusing within the influenza hemagglutinin head elicits cross-neutralizing antibody responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541996. [PMID: 37292967 PMCID: PMC10245820 DOI: 10.1101/2023.05.23.541996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The head domain of influenza hemagglutinin (HA) elicits potently neutralizing yet mostly strain-specific antibodies during infection and vaccination. Here we evaluated a series of immunogens that combined several immunofocusing techniques for their ability to enhance the functional breadth of vaccine-elicited immune responses. We designed a series of "trihead" nanoparticle immunogens that display native-like closed trimeric heads from the HAs of several H1N1 influenza viruses, including hyperglycosylated variants and hypervariable variants that incorporate natural and designed sequence diversity at key positions in the periphery of the receptor binding site (RBS). Nanoparticle immunogens displaying triheads or hyperglycosylated triheads elicited higher HAI and neutralizing activity against vaccine-matched and -mismatched H1 viruses than corresponding immunogens lacking either trimer-stabilizing mutations or hyperglycosylation, indicating that both of these engineering strategies contributed to improved immunogenicity. By contrast, mosaic nanoparticle display and antigen hypervariation did not significantly alter the magnitude or breadth of vaccine-elicited antibodies. Serum competition assays and electron microscopy polyclonal epitope mapping revealed that the trihead immunogens, especially when hyperglycosylated, elicited a high proportion of antibodies targeting the RBS, as well as cross-reactive antibodies targeting a conserved epitope on the side of the head. Our results yield important insights into antibody responses against the HA head and the ability of several structure-based immunofocusing techniques to influence vaccine-elicited antibody responses.
Collapse
Affiliation(s)
- Annie Dosey
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Daniel Ellis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hubza Syeda
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mason Saunders
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael Watson
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - John C. Kraft
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Minh N. Pham
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kelly K. Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
81
|
Kissling E, Maurel M, Emborg HD, Whitaker H, McMenamin J, Howard J, Trebbien R, Watson C, Findlay B, Pozo F, Bolt Botnen A, Harvey C, Rose A. Interim 2022/23 influenza vaccine effectiveness: six European studies, October 2022 to January 2023. Euro Surveill 2023; 28:2300116. [PMID: 37227299 PMCID: PMC10283457 DOI: 10.2807/1560-7917.es.2023.28.21.2300116] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/26/2023] Open
Abstract
BackgroundBetween October 2022 and January 2023, influenza A(H1N1)pdm09, A(H3N2) and B/Victoria viruses circulated in Europe with different influenza (sub)types dominating in different areas.AimTo provide interim 2022/23 influenza vaccine effectiveness (VE) estimates from six European studies, covering 16 countries in primary care, emergency care and hospital inpatient settings.MethodsAll studies used the test-negative design, but with differences in other study characteristics, such as data sources, patient selection, case definitions and included age groups. Overall and influenza (sub)type-specific VE was estimated for each study using logistic regression adjusted for potential confounders.ResultsThere were 20,477 influenza cases recruited across the six studies, of which 16,589 (81%) were influenza A. Among all ages and settings, VE against influenza A ranged from 27 to 44%. Against A(H1N1)pdm09 (all ages and settings), VE point estimates ranged from 28% to 46%, higher among children (< 18 years) at 49-77%. Against A(H3N2), overall VE ranged from 2% to 44%, also higher among children (62-70%). Against influenza B/Victoria, overall and age-specific VE were ≥ 50% (87-95% among children < 18 years).ConclusionsInterim results from six European studies during the 2022/23 influenza season indicate a ≥ 27% and ≥ 50% reduction in disease occurrence among all-age influenza vaccine recipients for influenza A and B, respectively, with higher reductions among children. Genetic virus characterisation results and end-of-season VE estimates will contribute to greater understanding of differences in influenza (sub)type-specific results across studies.
Collapse
Affiliation(s)
| | | | - Hanne-Dorthe Emborg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | - Ramona Trebbien
- Department of Virus and Microbiological Special diagnostics, National Influenza Center, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Francisco Pozo
- National Centre for Microbiology, National Influenza Reference Laboratory, WHO-National Influenza Centre, Institute of Health Carlos III, Madrid, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Institute of Health Carlos III, Madrid, Spain
| | - Amanda Bolt Botnen
- Department of Virus and Microbiological Special diagnostics, National Influenza Center, Statens Serum Institut, Copenhagen, Denmark
| | | | | |
Collapse
|
82
|
Moulana A, Dupic T, Phillips AM, Desai MM. Genotype-phenotype landscapes for immune-pathogen coevolution. Trends Immunol 2023; 44:384-396. [PMID: 37024340 PMCID: PMC10147585 DOI: 10.1016/j.it.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
Our immune systems constantly coevolve with the pathogens that challenge them, as pathogens adapt to evade our defense responses, with our immune repertoires shifting in turn. These coevolutionary dynamics take place across a vast and high-dimensional landscape of potential pathogen and immune receptor sequence variants. Mapping the relationship between these genotypes and the phenotypes that determine immune-pathogen interactions is crucial for understanding, predicting, and controlling disease. Here, we review recent developments applying high-throughput methods to create large libraries of immune receptor and pathogen protein sequence variants and measure relevant phenotypes. We describe several approaches that probe different regions of the high-dimensional sequence space and comment on how combinations of these methods may offer novel insight into immune-pathogen coevolution.
Collapse
Affiliation(s)
- Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas Dupic
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angela M Phillips
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA; NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138, USA; Quantitative Biology Initiative, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
83
|
Agustiningsih A, Indalao IL, Pangesti KA, Sukowati CHC, Ramadhany R. Molecular Characterization of Influenza A/H3N2 Virus Isolated from Indonesian Hajj and Umrah Pilgrims 2013 to 2014. Life (Basel) 2023; 13:1100. [PMID: 37240745 PMCID: PMC10221221 DOI: 10.3390/life13051100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The Hajj and Umrah are the annual mass gatherings of Muslims in Saudi Arabia and increase the transmission risk of acute respiratory infection. This study describes influenza infection among pilgrims upon arrival in Indonesia and the genetic characterization of imported influenza A/H3N2 virus. In total, 251 swab samples with influenza-like illness were tested using real-time RT-PCR for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and influenza viruses. Complete sequences of influenza A/H3N2 HA and NA genes were obtained using DNA sequencing and plotted to amino acid and antigenicity changes. Phylogenetic analysis was performed using a neighbour-joining method including the WHO vaccine strains and influenza A/H3N2 as references. The real-time RT-PCR test detected 100 (39.5%) samples positive with influenza with no positivity of MERS-CoV. Mutations in the HA gene were mainly located within the antigenic sites A, B, and D, while for the NA gene, no mutations related to oseltamivir resistance were observed. Phylogenetic analysis revealed that these viruses grouped together with clades 3C.2 and 3C.3; however, they were not closely grouped with the WHO-recommended vaccine (clades 3C.1). Sequences obtained from Hajj and Umrah pilgrims were also not grouped together with viruses from Middle East countries but clustered according to years of collection. This implies that the influenza A/H3N2 virus mutates continually across time.
Collapse
Affiliation(s)
- Agustiningsih Agustiningsih
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat, DKI, Jakarta 10340, Indonesia
| | - Irene Lorinda Indalao
- Ministry of Health of the Republic of Indonesia, Jl. H.R. Rasuna Said Blok X.5 Kav. 4-9, Jakarta Selatan, DKI, Jakarta 12950, Indonesia
| | - Krisnanur A. Pangesti
- Ministry of Health of the Republic of Indonesia, Jl. H.R. Rasuna Said Blok X.5 Kav. 4-9, Jakarta Selatan, DKI, Jakarta 12950, Indonesia
| | - Caecilia H. C. Sukowati
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat, DKI, Jakarta 10340, Indonesia
- Fondazione Italiana Fegato ONLUS, AREA Science Park, Basovizza, 34049 Trieste, Italy
| | - Ririn Ramadhany
- Ministry of Health of the Republic of Indonesia, Jl. H.R. Rasuna Said Blok X.5 Kav. 4-9, Jakarta Selatan, DKI, Jakarta 12950, Indonesia
| |
Collapse
|
84
|
Lee CY, Raghunathan V, Caceres C, Geiger G, Seibert B, Cargnin Faccin F, Gay L, Ferreri L, Kaul D, Wrammert J, Tan G, Perez D, Lowen A. Epistasis reduces fitness costs of influenza A virus escape from stem-binding antibodies. Proc Natl Acad Sci U S A 2023; 120:e2208718120. [PMID: 37068231 PMCID: PMC10151473 DOI: 10.1073/pnas.2208718120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 02/15/2023] [Indexed: 04/19/2023] Open
Abstract
The hemagglutinin (HA) stem region is a major target of universal influenza vaccine efforts owing to the presence of highly conserved epitopes across multiple influenza A virus (IAV) strains and subtypes. To explore the potential impact of vaccine-induced immunity targeting the HA stem, we examined the fitness effects of viral escape from stem-binding broadly neutralizing antibodies (stem-bnAbs). Recombinant viruses containing each individual antibody escape substitution showed diminished replication compared to wild-type virus, indicating that stem-bnAb escape incurred fitness costs. A second-site mutation in the HA head domain (N129D; H1 numbering) reduced the fitness effects observed in primary cell cultures and likely enabled the selection of escape mutations. Functionally, this putative permissive mutation increased HA avidity for its receptor. These results suggest a mechanism of epistasis in IAV, wherein modulating the efficiency of attachment eases evolutionary constraints imposed by the requirement for membrane fusion. Taken together, the data indicate that viral escape from stem-bnAbs is costly but highlights the potential for epistatic interactions to enable evolution within the functionally constrained HA stem domain.
Collapse
Affiliation(s)
- Chung-Young Lee
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, The Republic of Korea
| | - Vedhika Raghunathan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - C. Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | | | - Jens Wrammert
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322
| | - Gene S. Tan
- J. Craig Venter Institute, La Jolla, CA 92037
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, CA 92093
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
- Emory-University of Georgia Center of Excellence for Influenza Research and Surveillance, Atlanta, GA 30322
| |
Collapse
|
85
|
Burke DF. Structural Consequences of Antigenic Variants of Human A/H3N2 Influenza Viruses. Viruses 2023; 15:v15041008. [PMID: 37112987 PMCID: PMC10144855 DOI: 10.3390/v15041008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The genetic basis of antigenic drift of human A/H3N2 influenza virus is crucial to understanding the constraints of influenza evolution and determinants of vaccine escape. Amino acid changes at only seven positions near the receptor binding site of the surface hemagglutinin protein have been shown to be responsible for the major antigenic changes for over forty years. Experimental structures of HA are now available for the majority of the observed antigenic clusters of A/H3N2. An analysis of the HA structures of these viruses reveals the likely consequences of these mutations on the structure of HA and thus, provides a structural basis for the antigenic changes seen in human influenza viruses.
Collapse
Affiliation(s)
- David Francis Burke
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|
86
|
Harvey WT, Davies V, Daniels RS, Whittaker L, Gregory V, Hay AJ, Husmeier D, McCauley JW, Reeve R. A Bayesian approach to incorporate structural data into the mapping of genotype to antigenic phenotype of influenza A(H3N2) viruses. PLoS Comput Biol 2023; 19:e1010885. [PMID: 36972311 PMCID: PMC10079231 DOI: 10.1371/journal.pcbi.1010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/06/2023] [Accepted: 01/20/2023] [Indexed: 03/29/2023] Open
Abstract
Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.
Collapse
Affiliation(s)
- William T. Harvey
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (WTH); (RR)
| | - Vinny Davies
- School of Computing, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Rodney S. Daniels
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Lynne Whittaker
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Victoria Gregory
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Alan J. Hay
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Dirk Husmeier
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - John W. McCauley
- Worldwide Influenza Centre, The Francis Crick Institute, London, United Kingdom
| | - Richard Reeve
- Boyd Orr Centre for Population and Ecosystem Health, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail: (WTH); (RR)
| |
Collapse
|
87
|
Lee J, Hadfield J, Black A, Sibley TR, Neher RA, Bedford T, Huddleston J. Joint visualization of seasonal influenza serology and phylogeny to inform vaccine composition. FRONTIERS IN BIOINFORMATICS 2023; 3:1069487. [PMID: 37035035 PMCID: PMC10073671 DOI: 10.3389/fbinf.2023.1069487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Seasonal influenza vaccines must be updated regularly to account for mutations that allow influenza viruses to escape our existing immunity. A successful vaccine should represent the genetic diversity of recently circulating viruses and induce antibodies that effectively prevent infection by those recent viruses. Thus, linking the genetic composition of circulating viruses and the serological experimental results measuring antibody efficacy is crucial to the vaccine design decision. Historically, genetic and serological data have been presented separately in the form of static visualizations of phylogenetic trees and tabular serological results to identify vaccine candidates. To simplify this decision-making process, we have created an interactive tool for visualizing serological data that has been integrated into Nextstrain's real-time phylogenetic visualization framework, Auspice. We show how the combined interactive visualizations may be used by decision makers to explore the relationships between complex data sets for both prospective vaccine virus selection and retrospectively exploring the performance of vaccine viruses.
Collapse
Affiliation(s)
- Jover Lee
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Allison Black
- Chan Zuckerberg Initiative, San Francisco, CA, United States
| | - Thomas R. Sibley
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Richard A. Neher
- Biozentrum, Universität Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Howard Hughes Medical Institute, Seattle, WA, United States
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| |
Collapse
|
88
|
Amino Acid Variation at Hemagglutinin Position 193 Impacts the Properties of H9N2 Avian Influenza Virus. J Virol 2023; 97:e0137922. [PMID: 36749072 PMCID: PMC9973016 DOI: 10.1128/jvi.01379-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Despite active control strategies, including the vaccination program in poultry, H9N2 avian influenza viruses possessing mutations in hemagglutinin (HA) were frequently isolated. In this study, we analyzed the substitutions at HA residue 193 (H3 numbering) of H9N2 and investigated the impact of these mutations on viral properties. Our study indicated that H9N2 circulating in the Chinese poultry have experienced frequent mutations at HA residue 193 since 2013, with viruses that carried asparagine (N) being replaced by those with alanine (A), aspartic acid (D), glutamic acid (E), glycine (G), and serine (S), etc. Our results showed the N193G mutation impeded the multiple cycles of growth of H9N2, and although most of the variant HAs retained the preference for human-like receptors as did the wild-type N193 HA, the N193E mutation altered the preference for both human and avian-like receptors. Furthermore, these mutations substantially altered the antigenicity of H9N2 as measured by both monoclonal antibodies and antisera. In vivo studies further demonstrated that these mutations showed profound impact on viral replication and transmission of H9N2 in chicken. Viruses with D, E, or S at residue 193 acquired the ability to replicate in lungs of the infected chickens, whereas virus with G193 reduced its transmissibility in infected chickens to those in direct contact. Our findings demonstrated that variations at HA residue 193 altered various properties of H9N2, highlighting the significance of the continued surveillance of HA for better understanding of the etiology and effective control of H9N2 in poultry. IMPORTANCE H9N2 are widespread and have sporadically caused clinical diseases in humans. Extensive vaccinations in poultry helped constrain H9N2; however, they might have facilitated the evolution of the virus. It is therefore of importance to monitor the variation of the circulating H9N2 and evaluate its risk to both veterinary and public health. Here, we found substitutions at position 193 of HA from H9N2 circulated since 2013 and assessed the impact of several mutations on viral properties. Our data showed these mutations resulted in substantial antigenic change. N193E altered the binding preference of HA for human-like to both avian and human-like receptors. More importantly, N193G impaired the growth of H9N2 and its transmission in chickens, whereas mutations from N to D, E, and S enhanced the viral replication in lungs of chickens. Our study enriched the knowledge about H9N2 and may help implement an effective control strategy for H9N2.
Collapse
|
89
|
Chon I, Saito R, Kyaw Y, Aye MM, Setk S, Phyu WW, Wagatsuma K, Li J, Sun Y, Otoguro T, Win SMK, Yoshioka S, Win NC, Ja LD, Tin HH, Watanabe H. Whole-Genome Analysis of Influenza A(H3N2) and B/Victoria Viruses Detected in Myanmar during the COVID-19 Pandemic in 2021. Viruses 2023; 15:v15020583. [PMID: 36851797 PMCID: PMC9964416 DOI: 10.3390/v15020583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
An influenza circulation was observed in Myanmar between October and November in 2021. Patients with symptoms of influenza-like illness were screened using rapid diagnostic test (RDT) kits, and 147/414 (35.5%) upper respiratory tract specimens presented positive results. All RDT-positive samples were screened by a commercial multiplex real-time polymerase chain reaction (RT-PCR) assay, and 30 samples positive for influenza A(H3N2) or B underwent further typing/subtyping for cycle threshold (Ct) value determination based on cycling probe RT-PCR. The majority of subtyped samples (n = 13) were influenza A(H3N2), while only three were B/Victoria. Clinical samples with low Ct values obtained by RT-PCR were used for whole-genome sequencing via next-generation sequencing technology. All collected viruses were distinct from the Southern Hemisphere vaccine strains of the corresponding season but matched with vaccines of the following season. Influenza A(H3N2) strains from Myanmar belonged to clade 2a.3 and shared the highest genetic proximity with Bahraini strains. B/Victoria viruses belonged to clade V1A.3a.2 and were genetically similar to Bangladeshi strains. This study highlights the importance of performing influenza virus surveillance with genetic characterization of the influenza virus in Myanmar, to contribute to global influenza surveillance during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Irina Chon
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Correspondence: ; Tel.: +81-25-227-2129
| | - Reiko Saito
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yadanar Kyaw
- Respiratory Medicine Department, Thingangyun General Hospital, Yangon 110-71, Myanmar
| | - Moe Myat Aye
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Swe Setk
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Wint Wint Phyu
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Keita Wagatsuma
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Jiaming Li
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yuyang Sun
- Division of International Health, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Teruhime Otoguro
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Su Mon Kyaw Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Yangon 111-91, Myanmar
| | - Sayaka Yoshioka
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nay Chi Win
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Yangon 111-91, Myanmar
| | - Lasham Di Ja
- Infectious Diseases Research Center of Niigata University in Myanmar (IDRC), Yangon 111-91, Myanmar
| | - Htay Htay Tin
- National Health Laboratory, Department of Medical Services, Dagon Township, Yangon 111-91, Myanmar
| | - Hisami Watanabe
- Infectious Diseases Research Center of Niigata University (IDRC), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
90
|
Soga T, Duong C, Pattinson D, Sakai-Tagawa Y, Tokita A, Izumida N, Nishino T, Hagiwara H, Wada N, Miyamoto Y, Kuroki H, Hayashi Y, Seki M, Kasuya N, Koga M, Adachi E, Iwatsuki-Horimoto K, Yotsuyanagi H, Yamayoshi S, Kawaoka Y. Characterization of Influenza A(H1N1)pdm09 Viruses Isolated in the 2018-2019 and 2019-2020 Influenza Seasons in Japan. Viruses 2023; 15:v15020535. [PMID: 36851749 PMCID: PMC9968111 DOI: 10.3390/v15020535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The influenza A(H1N1)pdm09 virus that emerged in 2009 causes seasonal epidemic worldwide. The virus acquired several amino acid substitutions that were responsible for antigenic drift until the 2018-2019 influenza season. Viruses possessing mutations in the NA and PA proteins that cause reduced susceptibility to NA inhibitors and baloxavir marboxil, respectively, have been detected after antiviral treatment, albeit infrequently. Here, we analyzed HA, NA, and PA sequences derived from A(H1N1)pdm09 viruses that were isolated during the 2018-2019 and 2019-2020 influenza seasons in Japan. We found that A(H1N1)pdm09 viruses possessing the D187A and Q189E substitutions in HA emerged and dominated during the 2019-2020 season; these substitutions in the antigenic site Sb, a high potency neutralizing antibody-eliciting site for humans, changed the antigenicity of A(H1N1)pdm09 viruses. Furthermore, we found that isolates possessing the N156K substitution, which was predicted to affect the antigenicity of A(H1N1)pdm09 virus at the laboratory level, were detected at a frequency of 1.0% in the 2018-2019 season but 10.1% in the 2019-2020 season. These findings indicate that two kinds of antigenically drifted viruses-N156K and D187A/Q189E viruses-co-circulated during the 2019-2020 influenza season in Japan.
Collapse
Affiliation(s)
- Takuma Soga
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Calvin Duong
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - David Pattinson
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuko Sakai-Tagawa
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Akifumi Tokita
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Clinic Bambini, Tokyo 108-0071, Japan
| | - Naomi Izumida
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Akebonocho Clinic, Tokyo 120-0023, Japan
| | - Tamon Nishino
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Alpaca Kids ENT Clinic, Tokyo 171-0052, Japan
| | - Haruhisa Hagiwara
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Hagiwara Clinic, Tokyo 173-0016, Japan
| | - Noriyuki Wada
- Tokyo Pediatric Association Public Health Committee, Saitama 331-0815, Japan
- Wada Pediatric Clinic, Tokyo 121-0812, Japan
| | | | | | - Yuka Hayashi
- Saitama Citizens Medical Center, Saitama 331-0054, Japan
| | - Masafumi Seki
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | | | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Eisuke Adachi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of the Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | - Hiroshi Yotsuyanagi
- Department of Infectious Diseases and Applied Immunology, IMSUT Hospital of the Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Correspondence: (S.Y.); (Y.K.)
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Minato-ku, Tokyo 108-8639, Japan
- Correspondence: (S.Y.); (Y.K.)
| |
Collapse
|
91
|
Rajao DS, Zanella GC, Wymore Brand M, Khan S, Miller ME, Ferreri LM, Caceres CJ, Cadernas-Garcia S, Souza CK, Anderson TK, Gauger PC, Vincent Baker AL, Perez DR. Live attenuated influenza A virus vaccine expressing an IgA-inducing protein protects pigs against replication and transmission. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2023.1042724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
IntroductionThe rapid evolution of influenza A viruses (FLUAV) complicates disease control for animal and public health. Although vaccination is an effective way to control influenza, available vaccines for use in swine result in limited protection against the antigenically distinct FLUAV that currently co-circulate in pigs. Vaccines administered parenterally usually stimulate IgG antibodies but not strong mucosal IgA or cell-mediated responses, which are typically more cross-reactive.MethodsWe developed a live attenuated influenza virus (LAIV) vaccine containing IgA-inducing protein (IGIP) as a molecular marker and immunomodulator. This Flu-IGIP vaccine was tested in a bivalent formulation (H1N1 and H3N2) against challenge with antigenically drifted viruses in pigs. Pigs were vaccinated intranasally with either a bivalent Flu-IGIP or a bivalent Flu-att (control without IGIP) and boosted two weeks later. Three weeks post boost, pigs were challenged with antigenically drifted H1N1 or H3N2 virus.ResultsVaccinated pigs had increased numbers of influenza-specific IgA-secreting cells in PBMC two weeks post boost and higher numbers of total and influenza-specific IgA-secreting cells in bronchoalveolar lavage fluid (BALF) 5 days post inoculation (dpi) compared to naïve pigs. Pigs vaccinated with both Flu-IGIP and Flu-att shed significantly less virus after H1N1 or H3N2 challenge compared to non-vaccinated pigs. Vaccination with Flu-att reduced respiratory transmission, while Flu-IGIP fully blocked transmission regardless of challenge virus. Both Flu-IGIP and Flu-att vaccines reduced virus replication in the lungs and lung lesions after inoculation with either virus. IgG and IgA levels in BALF and nasal wash of vaccinated pigs were boosted after inoculation as soon as 5 dpi and remained high at 14 dpi.ConclusionOur results indicate that Flu-IGIP leads to protection from clinical signs, replication and shedding after antigenically drifted influenza virus infection.
Collapse
|
92
|
Korsun N, Trifonova I, Dobrinov V, Madzharova I, Grigorova I, Christova I. Low prevalence of influenza viruses and predominance of A(H3N2) virus with respect to SARS-CoV-2 during the 2021-2022 season in Bulgaria. J Med Virol 2023; 95:e28489. [PMID: 36832544 PMCID: PMC10107854 DOI: 10.1002/jmv.28489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Social distancing, mask-wearing, and travel restrictions during the COVID-19 pandemic have significantly impacted the spread of influenza viruses. The objectives of this study were to analyze the pattern of influenza virus circulation with respect to that of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Bulgaria during the 2021-2022 season and to perform a phylogenetic/molecular analysis of the hemagglutinin (HA) and neuraminidase (NA) sequences of representative influenza strains. Influenza infection was confirmed using real-time reverse transcription polymerase chain reaction in 93 (4.2%) of the 2193 patients with acute respiratory illness tested wherein all detected viruses were subtyped as A(H3N2). SARS-CoV-2 was identified in 377 (24.3%) of the 1552 patients tested. Significant differences in the incidence of influenza viruses and SARS-CoV-2 were found between individual age groups, outpatients/inpatients, and in the seasonal distribution of cases. Two cases of coinfections were identified. In hospitalized patients, the Ct values of influenza viruses at admission were lower in adults aged ≥65 years (indicating higher viral load) than in children aged 0-14 years (p < 0.05). In SARS-CoV-2-positive inpatients, this association was not statistically significant. HA genes of all A(H3N2) viruses analyzed belonged to subclade 3C.2a1b.2a. The sequenced viruses carried 11 substitutions in HA and 5 in NA, in comparison to the vaccine virus A/Cambodia/e0826360/2020, including several substitutions in the HA antigenic sites B and C. This study revealed extensive changes in the typical epidemiology of influenza infection, including a dramatic reduction in the number of cases, diminished genetic diversity of circulating viruses, changes in age, and seasonal distribution of cases.
Collapse
Affiliation(s)
- Neli Korsun
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Ivelina Trifonova
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Veselin Dobrinov
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iveta Madzharova
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iliyana Grigorova
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Iva Christova
- National Laboratory "Influenza and ARI", Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|
93
|
Skowronski DM, Chuang ES, Sabaiduc S, Kaweski SE, Kim S, Dickinson JA, Olsha R, Gubbay JB, Zelyas N, Charest H, Bastien N, Jassem AN, De Serres G. Vaccine effectiveness estimates from an early-season influenza A(H3N2) epidemic, including unique genetic diversity with reassortment, Canada, 2022/23. Euro Surveill 2023; 28:2300043. [PMID: 36729117 PMCID: PMC9896608 DOI: 10.2807/1560-7917.es.2023.28.5.2300043] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/03/2023] Open
Abstract
The Canadian Sentinel Practitioner Surveillance Network estimated vaccine effectiveness (VE) during the unusually early 2022/23 influenza A(H3N2) epidemic. Like vaccine, circulating viruses were clade 3C.2a1b.2a.2, but with genetic diversity affecting haemagglutinin positions 135 and 156, and reassortment such that H156 viruses acquired neuraminidase from clade 3C.2a1b.1a. Vaccine provided substantial protection with A(H3N2) VE of 54% (95% CI: 38 to 66) overall. VE was similar against H156 and vaccine-like S156 viruses, but with potential variation based on diversity at position 135.
Collapse
Affiliation(s)
- Danuta M Skowronski
- University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Erica Sy Chuang
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Suzana Sabaiduc
- British Columbia Centre for Disease Control, Vancouver, Canada
| | | | - Shinhye Kim
- British Columbia Centre for Disease Control, Vancouver, Canada
| | | | | | - Jonathan B Gubbay
- University of Toronto, Toronto, Canada
- Public Health Ontario, Toronto, Canada
| | - Nathan Zelyas
- Public Health Laboratory, Alberta Precision Laboratories, Edmonton, Canada
| | - Hugues Charest
- Institut National de Santé Publique du Québec, Québec, Canada
| | - Nathalie Bastien
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Agatha N Jassem
- University of British Columbia, Vancouver, Canada
- British Columbia Centre for Disease Control, Vancouver, Canada
| | - Gaston De Serres
- Centre Hospitalier Universitaire de Québec, Québec, Canada
- Laval University, Quebec, Canada
- Institut National de Santé Publique du Québec, Québec, Canada
| |
Collapse
|
94
|
Souza CK, Kimble JB, Anderson TK, Arendsee ZW, Hufnagel DE, Young KM, Gauger PC, Lewis NS, Davis CT, Thor S, Vincent Baker AL. Swine-to-Ferret Transmission of Antigenically Drifted Contemporary Swine H3N2 Influenza A Virus Is an Indicator of Zoonotic Risk to Humans. Viruses 2023; 15:331. [PMID: 36851547 PMCID: PMC9962742 DOI: 10.3390/v15020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Human-to-swine transmission of influenza A (H3N2) virus occurs repeatedly and plays a critical role in swine influenza A virus (IAV) evolution and diversity. Human seasonal H3 IAVs were introduced from human-to-swine in the 1990s in the United States and classified as 1990.1 and 1990.4 lineages; the 1990.4 lineage diversified into 1990.4.A-F clades. Additional introductions occurred in the 2010s, establishing the 2010.1 and 2010.2 lineages. Human zoonotic cases with swine IAV, known as variant viruses, have occurred from the 1990.4 and 2010.1 lineages, highlighting a public health concern. If a variant virus is antigenically drifted from current human seasonal vaccine (HuVac) strains, it may be chosen as a candidate virus vaccine (CVV) for pandemic preparedness purposes. We assessed the zoonotic risk of US swine H3N2 strains by performing phylogenetic analyses of recent swine H3 strains to identify the major contemporary circulating genetic clades. Representatives were tested in hemagglutination inhibition assays with ferret post-infection antisera raised against existing CVVs or HuVac viruses. The 1990.1, 1990.4.A, and 1990.4.B.2 clade viruses displayed significant loss in cross-reactivity to CVV and HuVac antisera, and interspecies transmission potential was subsequently investigated in a pig-to-ferret transmission study. Strains from the three lineages were transmitted from pigs to ferrets via respiratory droplets, but there were differential shedding profiles. These data suggest that existing CVVs may offer limited protection against swine H3N2 infection, and that contemporary 1990.4.A viruses represent a specific concern given their widespread circulation among swine in the United States and association with multiple zoonotic cases.
Collapse
Affiliation(s)
- Carine K. Souza
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - J. Brian Kimble
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Tavis K. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Zebulun W. Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - David E. Hufnagel
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Katharine M. Young
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| | - Phillip C. Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Nicola S. Lewis
- Department of Pathology and Population Sciences, Royal Veterinary College, University of London, Hertfordshire, London NW1 0TU, UK
| | - C. Todd Davis
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sharmi Thor
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Amy L. Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, Ames, IA 50010, USA
| |
Collapse
|
95
|
Galli C, Pellegrinelli L, Giardina F, Ferrari G, Uceda Renteria SC, Novazzi F, Masi E, Pagani E, Piccirilli G, Mauro MV, Binda S, Corvaro B, Tiberio C, Lalle E, Maggi F, Russo C, Ranno S, Vian E, Pariani E, Baldanti F, Piralla A. On the lookout for influenza viruses in Italy during the 2021-2022 season: Along came A(H3N2) viruses with a new phylogenetic makeup of their hemagglutinin. Virus Res 2023; 324:199033. [PMID: 36581046 PMCID: PMC10194219 DOI: 10.1016/j.virusres.2022.199033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
AIMS To assess influenza viruses (IVs) circulation and to evaluate A(H3N2) molecular evolution during the 2021-2022 season in Italy. MATERIALS AND METHODS 12,393 respiratory specimens (nasopharyngeal swabs or broncho-alveolar lavages) collected from in/outpatients with influenza illness in the period spanning from January 1, 2022 (week 2022-01) to May 31, 2022 (week 2022-22) were analysed to identify IV genome and were molecularly characterized by 12 laboratories throughout Italy. A(H3N2) evolution was studied by conducting an in-depth phylogenetic analysis of the hemagglutinin (HA) gene sequences. The predicted vaccine efficacy (pVE) of vaccine strain against circulating A(H3N2) viruses was estimated using the sequence-based Pepitope model. RESULTS The overall IV-positive rate was 7.2% (894/12,393), all were type A IVs. Almost all influenza A viruses (846/894; 94.6%) were H3N2 that circulated in Italy with a clear epidemic trend, with 10% positivity rate threshold crossed for six consecutive weeks from week 2022-11 to week 2022-16. According to the phylogenetic analysis of a subset of A(H3N2) strains (n=161), the study HA sequences were distributed into five different genetic clusters, all of them belonging to the clade 3C.2a, sub-clade 3C.2a1 and the genetic subgroup 3C.2a1b.2a.2. The selective pressure analysis of A(H3N2) sequences showed evidence of diversifying selection particularly in the amino acid position 156. The comparison between the predicted amino acid sequence of the 2021-2022 vaccine strain (A/Cambodia/e0826360/2020) and the study strains revealed 65 mutations in 59 HA amino acid positions, including the substitution H156S and Y159N in antigenic site B, within major antigenic sites adjacent to the receptor-binding site, suggesting the presence of drifted strains. According to the sequence-based Pepitope model, antigenic site B was the dominant antigenic site and the p(VE) against circulating A(H3N2) viruses was estimated to be -28.9%. DISCUSSION AND CONCLUSION After a long period of very low IV activity since public health control measures have been introduced to face COVID-19 pandemic, along came A(H3N2) with a new phylogenetic makeup. Although the delayed 2021-2022 influenza season in Italy was characterized by a significant reduction of the width of the epidemic curve and in the intensity of the influenza activity compared to historical data, a marked genetic diversity of the HA of circulating A(H3N2) strains was observed. The identification of the H156S and Y159N substitutions within the main antigenic sites of most HA sequences also suggested the circulation of drifted variants with respect to the 2021-2022 vaccine strain. Molecular surveillance plays a critical role in the influenza surveillance architecture and it has to be strengthened also at local level to timely assess vaccine effectiveness and detect novel strains with potential impact on public health.
Collapse
Affiliation(s)
- Cristina Galli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Laura Pellegrinelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Federica Giardina
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Guglielmo Ferrari
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Federica Novazzi
- Ospedale di Circolo e Fondazione Macchi, ASST Sette Laghi, Varese, Italy; University of Insubria, Varese, Italy
| | - Elisa Masi
- Laboratorio Aziendale di Microbiologia e Virologia, Hospital of Bolzano (SABES-ASDAA), Bolzano-Bozen, Italy
| | - Elisabetta Pagani
- Laboratorio Aziendale di Microbiologia e Virologia, Hospital of Bolzano (SABES-ASDAA), Bolzano-Bozen, Italy
| | - Giulia Piccirilli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Vittoria Mauro
- Microbiology & Virology Unit, Annunziata Hub Hospital, Azienda Ospedaliera di Cosenza, Cosenza, Italy
| | - Sandro Binda
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Benedetta Corvaro
- Virology Laboratory, Azienda Ospedaliera Ospedali Riuniti di Ancona, Ancona, Italy
| | - Claudia Tiberio
- Microbiology and Virology, Cotugno Hospital AORN dei Colli, Naples, Italy
| | - Eleonora Lalle
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani, Rome, Italy
| | - Fabrizio Maggi
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani, Rome, Italy
| | - Cristina Russo
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Stefania Ranno
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | - Elisa Vian
- Microbiology Unit, Azienda ULSS2 Marca Trevigiana, Treviso, Italy
| | - Elena Pariani
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
96
|
Aguilar-Bretones M, Fouchier RA, Koopmans MP, van Nierop GP. Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. J Clin Invest 2023; 133:e162192. [PMID: 36594464 PMCID: PMC9797340 DOI: 10.1172/jci162192] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and vaccinations targeting the spike protein (S) offer protective immunity against coronavirus disease 2019 (COVID-19). This immunity may further be shaped by cross-reactivity with common cold coronaviruses. Mutations arising in S that are associated with altered intrinsic virus properties and immune escape result in the continued circulation of SARS-CoV-2 variants. Potentially, vaccine updates will be required to protect against future variants of concern, as for influenza. To offer potent protection against future variants, these second-generation vaccines may need to redirect immunity to epitopes associated with immune escape and not merely boost immunity toward conserved domains in preimmune individuals. For influenza, efficacy of repeated vaccination is hampered by original antigenic sin, an attribute of immune memory that leads to greater induction of antibodies specific to the first-encountered variant of an immunogen compared with subsequent variants. In this Review, recent findings on original antigenic sin are discussed in the context of SARS-CoV-2 evolution. Unanswered questions and future directions are highlighted, with an emphasis on the impact on disease outcome and vaccine design.
Collapse
|
97
|
Ye Q, Liu H, Mao J, Shu Q. Nonpharmaceutical interventions for COVID-19 disrupt the dynamic balance between influenza A virus and human immunity. J Med Virol 2023; 95:e28292. [PMID: 36367115 PMCID: PMC9877879 DOI: 10.1002/jmv.28292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
During the COVID-19 epidemic, nonpharmaceutical interventions (NPIs) blocked the transmission route of respiratory diseases. This study aimed to investigate the impact of NPIs on the influenza A virus (IAV) outbreak. The present study enrolled all children with respiratory tract infections who came to the Children's Hospital of Zhejiang University between January 2019 and July 2022. A direct immunofluorescence assay kit detected IAV. Virus isolation and Sanger sequencing were performed. From June to July 2022, in Hangzhou, China, the positive rate of IAV infection in children has increased rapidly, reaching 30.41%, and children over 3 years old are the main infected population, accounting for 75% of the total number of infected children. Influenza A (H3N2) viruses are representative strains during this period. In this outbreak, H3N2 was isolated from a cluster of its own and is highly homologous with A/South_Dakota/22/2022 (2021-2022 Northern Hemisphere). Between isolated influenza A (H3N2) viruses and A/South_Dakota/22/2022, the nucleotide homology of the HA gene ranged from 97.3% to 97.5%; the amino acid homology was 97%-97.2%, and the genetic distance of nucleotides ranged from 0.05 to 0.052. Compared with A/South_Dakota/22/2022, the isolated H3N2 showed S156H, N159Y, I160T, D186S, S198P, I48T, S53D, and K171N mutations. There was no variation in 13 key amino acid sites associated with neuraminidase inhibitor resistance in NA protein. Long-term NPIs have significantly affected the evolution and transmission of the influenza virus and human immunity, breaking the dynamic balance between the IAV and human immunity.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Qiang Shu
- Department of Thoracic & Cardiovascular Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| |
Collapse
|
98
|
de Vries RD, Hoschler K, Rimmelzwaan GF. ADCC: An underappreciated correlate of cross-protection against influenza? Front Immunol 2023; 14:1130725. [PMID: 36911705 PMCID: PMC9992787 DOI: 10.3389/fimmu.2023.1130725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
In this short review, we summarized the results obtained with an assay to detect influenza virus-specific antibodies that mediate ADCC, which was developed and evaluated within the framework of the IMI-funded project "FLUCOP". HA-specific ADCC mediating antibodies were detected in serum samples from children and adults pre- and post-vaccination with monovalent, trivalent, or quadrivalent seasonal influenza vaccines, or following infection with H1N1pdm09 virus. Additionally, using chimeric influenza HA proteins, the presence of HA-stalk-specific ADCC mediating antibodies after vaccination and natural infection with H1N1pdm09 virus was demonstrated. With serum samples obtained from children that experienced a primary infection with an influenza B virus, we showed that primary infection induces HA-specific ADCC-mediating antibodies that cross-reacted with HA from influenza B viruses from the heterologous lineage. These cross-reactive antibodies were found to be directed to the HA stalk region. Antibodies directed to the influenza B virus HA head mediated low levels of ADCC. Finally, vaccination with a recombinant modified vaccinia virus Ankara expressing the HA gene of a clade 1 A(H5N1) highly pathogenic avian influenza virus led to the induction of ADCC-mediating antibodies, which cross-reacted with H5 viruses of antigenically distinct clades. Taken together, it is clear that virus-specific antibodies induced by infection or vaccination have immunological functionalities in addition to neutralization. These functionalities could contribute to protective immunity. The functional profiling of vaccine-induced antibodies may provide further insight into the effector functions of virus-specific antibodies and their contribution to virus-specific immunity.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Katja Hoschler
- Virus Reference Department, Public Health England, London, United Kingdom
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
99
|
Jaiswal D, Verma S, Nair DT, Salunke DM. Antibody multispecificity: A necessary evil? Mol Immunol 2022; 152:153-161. [DOI: 10.1016/j.molimm.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
|
100
|
Caradonna TM, Ronsard L, Yousif AS, Windsor IW, Hecht R, Bracamonte-Moreno T, Roffler AA, Maron MJ, Maurer DP, Feldman J, Marchiori E, Barnes RM, Rohrer D, Lonberg N, Oguin TH, Sempowski GD, Kepler TB, Kuraoka M, Lingwood D, Schmidt AG. An epitope-enriched immunogen expands responses to a conserved viral site. Cell Rep 2022; 41:111628. [PMID: 36351401 PMCID: PMC9883670 DOI: 10.1016/j.celrep.2022.111628] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/22/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Pathogens evade host humoral responses by accumulating mutations in surface antigens. While variable, there are conserved regions that cannot mutate without compromising fitness. Antibodies targeting these conserved epitopes are often broadly protective but remain minor components of the repertoire. Rational immunogen design leverages a structural understanding of viral antigens to modulate humoral responses to favor these responses. Here, we report an epitope-enriched immunogen presenting a higher copy number of the influenza hemagglutinin (HA) receptor-binding site (RBS) epitope relative to other B cell epitopes. Immunization in a partially humanized murine model imprinted with an H1 influenza shows H1-specific serum and >99% H1-specific B cells being RBS-directed. Single B cell analyses show a genetically restricted response that structural analysis defines as RBS-directed antibodies engaging the RBS with germline-encoded contacts. These data show how epitope enrichment expands B cell responses toward conserved epitopes and advances immunogen design approaches for next-generation viral vaccines.
Collapse
Affiliation(s)
| | - Larance Ronsard
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ashraf S Yousif
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Rachel Hecht
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Anne A Roffler
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Max J Maron
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Daniel P Maurer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Elisa Marchiori
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Ralston M Barnes
- Bristol-Myers Squibb, 700 Bay Road, Redwood City, CA 94063-2478, USA
| | - Daniel Rohrer
- Bristol-Myers Squibb, 700 Bay Road, Redwood City, CA 94063-2478, USA
| | - Nils Lonberg
- Bristol-Myers Squibb, 700 Bay Road, Redwood City, CA 94063-2478, USA
| | - Thomas H Oguin
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham NC 27703, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham NC 27703, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|