51
|
Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 2000; 102:898-901. [PMID: 10952959 DOI: 10.1161/01.cir.102.8.898] [Citation(s) in RCA: 514] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is being investigated for therapeutic angiogenesis in ischemic myocardium. Primarily, transient delivery systems have been tested. The goal of this study was to investigate the effects of continuous expression of VEGF in myocardium by use of myoblast-mediated delivery. METHODS AND RESULTS Primary murine myoblasts (5 x 10(5) cells in 10 microL of PBS with 0.5% BSA) expressing both the murine VEGF gene and the beta-galactosidase (beta-gal) gene from a retroviral promoter were implanted in the ventricular wall of immunodeficient mice (n=11) via a subdiaphragmatic approach. Control immunodeficient mice (n=12) were injected with the same number of myoblasts expressing only the beta-gal gene. Between days 14 and 16, surviving mice were euthanized and the hearts processed for histology. In the experimental group, 11 of 11 mice demonstrated failure to thrive by day 13; 5 deaths occurred between days 8 and 15. There were no complications in the control mice. Histochemistry documented successful implantation of myoblasts (positive beta-gal reaction product) in 6 of 6 surviving experimental mice and 12 of 12 controls. Histology disclosed intramural vascular tumors resembling hemangiomas in the VEGF-myoblast-injected myocardium in 6 of 6 surviving mice. beta-Gal-expressing cells were present at the site of the vascular tumors. Immunohistochemistry localized abundant endothelial nitric oxide synthase and CD31 (platelet and endothelial cell adhesion molecule) within the lesion, consistent with the presence of endothelial cells. CONCLUSIONS In this model, unregulated continuous expression of VEGF is associated with (1) a high rate of failure to thrive/death and (2) formation of endothelial cell-derived intramural vascular tumors in the implantation site. These results underscore the importance of regulating VEGF expression for therapeutic angiogenesis.
Collapse
Affiliation(s)
- R J Lee
- Department of Medicine and the Cardiovascular Research Institute, University of California, San Francisco, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Ozawa CR, Springer ML, Blau HM. A novel means of drug delivery: myoblast-mediated gene therapy and regulatable retroviral vectors. Annu Rev Pharmacol Toxicol 2000; 40:295-317. [PMID: 10836138 DOI: 10.1146/annurev.pharmtox.40.1.295] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A potentially powerful approach to drug delivery in the treatment of disease involves the use of cells to introduce genes encoding therapeutic proteins into the body. Candidate genes for delivery include those encoding secreted factors that could have broad applications ranging from treatment of inherited single-gene deficiencies to acquired disorders of the vasculature or cancer. Myoblasts, the proliferative cell type of skeletal muscle tissues, are potent tools for stable delivery of a gene of interest into the body, as they become an integral part of the muscle into which they are injected, in close proximity to the circulation. The recent development of improved tetracycline-inducible retroviral vectors allows for fine control of recombinant gene expression levels. The combination of ex vivo gene transfer using myoblasts and regulatable retroviral vectors provides a powerful toolbox with which to develop gene therapies for a number of human diseases.
Collapse
Affiliation(s)
- C R Ozawa
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA.
| | | | | |
Collapse
|
53
|
Ojima K, Lin Z, Bang ML, Holtzer S, Matsuda R, Labeit S, Sweeney H, Holtzer H. Distinct families of Z-line targeting modules in the COOH-terminal region of nebulin. J Cell Biol 2000; 150:553-66. [PMID: 10931867 PMCID: PMC2175182 DOI: 10.1083/jcb.150.3.553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To learn how nebulin functions in the assembly and maintenance of I-Z-I bands, MYC- and GFP- tagged nebulin fragments were expressed in primary cultured skeletal myotubes. Their sites of incorporation were visualized by double staining with anti-MYC, antibodies to myofibrillar proteins, and FITC- or rhodamine phalloidin. Contrary to expectations based on in vitro binding studies, none of the nebulin fragments expressed in maturing myotubes were incorporated selectively into I-band approximately 1.0-micrometer F-alpha-actin-containing thin filaments. Four of the MYC/COOH-terminal nebulin fragments were incorporated exclusively into periodic approximately 0.1-micrometer Z-bands. Whereas both anti-MYC and Rho-phalloidin stained intra-Z-band F-alpha-actin oligomers, only the latter stained the pointed ends of the polarized approximately 1.0-micrometer thin filaments. Z-band incorporation was independent of the nebulin COOH-terminal Ser or SH3 domains. In vitro cosedimentation studies also demonstrated that nebulin SH3 fragments did not bind to F-alpha-actin or alpha-actinin. The remaining six fragments were not incorporated into Z-bands, but were incorporated (a) diffusely throughout the sarcoplasm and into (b) fibrils/patches of varying lengths and widths nested among normal striated myofibrils. Over time, presumably in response to the mediation of muscle-specific homeostatic controls, many of the ectopic MYC-positive structures were resorbed. None of the tagged nebulin fragments behaved as dominant negatives; they neither blocked the assembly nor induced the disassembly of mature striated myofibrils. Moreover, they were not cytotoxic in myotubes, as they were in the fibroblasts and presumptive myoblasts in the same cultures.
Collapse
Affiliation(s)
- K. Ojima
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Z.X. Lin
- Department of Cell Biology, Beijing Institute for Cancer Research, Beijing Medical University, Beijing 100034, China
| | | | - S. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R. Matsuda
- Department of Life Science, University of Tokyo, Tokyo, Japan 153-8092
| | - S. Labeit
- Department of Anesthesiology and Intensive Operative Care, Klinikum, Mannheim, Germany
| | - H.L. Sweeney
- Department of Physiology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - H. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
54
|
Coe S, Harron M, Winslet M, Goldspink G. The use of skeletal muscle to express genes for the treatment of cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 465:95-111. [PMID: 10810619 DOI: 10.1007/0-306-46817-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- S Coe
- Department of Anatomy and Developmental Biology, Royal Free and University College Medical School, University of London, UK
| | | | | | | |
Collapse
|
55
|
Morishita R, Gibbons GH, Kaneda Y, Ogihara T, Dzau VJ. Systemic administration of HVJ viral coat-liposome complex containing human insulin vector decreases glucose level in diabetic mouse: A model of gene therapy. Biochem Biophys Res Commun 2000; 273:666-74. [PMID: 10873662 DOI: 10.1006/bbrc.2000.2936] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the feasibility of a systemic administration of HVJ-liposome complex containing human insulin construct into the blood in mice via the tail vein. Transfection of human insulin vector resulted in a transient decrease in serum glucose in streptozotocin (SZT)-induced diabetic mice, accompanied by the detection of human insulin in the liver and spleen. In accordance with the decreased glucose, plasma immunoreactive insulin could be detected up to 14 days after a single transfection in mice transfected with insulin vector. Repeated intravenous injection of human insulin vector every week resulted in a sustained decrease in serum glucose over a 4-week period, accompanied by the detection of C-peptide fragments and a significant decrease in BUN and creatinine. Here, we demonstrated the feasibility of intravenous systemic administration of an insulin vector that results in a sustained improvement of diabetic glucose metabolism.
Collapse
Affiliation(s)
- R Morishita
- Division of Gene Therapy Science, Osaka University Medical School, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|
56
|
Abstract
Adeno-associated virus (AAV) vectors were shown capable of high efficiency transduction of both dividing and nondividing cells and tissues. AAV-mediated transduction leads to stable, long-term transgene expression in the absence of apparent immune response. These properties and the broad host range of AAV vectors indicate that they constitute a powerful tool for gene therapy purposes. An additional potential benefit of AAV vectors is their ability to integrate site-specifically in the presence of Rep proteins which can be expressed transiently, thus limiting their suspected adverse effects. The major restrictions of AAV as vectors are their limited genetic capacity and strict packaging size constraint of less than 5 kb. Another difficulty is the labor-intensive and expensive procedure for the production and packaging of recombinant AAV vectors. The major benefits and drawbacks of AAV vectors and advances made in the past 3 years are discussed.
Collapse
Affiliation(s)
- J Tal
- Department of Virology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
57
|
Springer ML, Hortelano G, Bouley DM, Wong J, Kraft PE, Blau HM. Induction of angiogenesis by implantation of encapsulated primary myoblasts expressing vascular endothelial growth factor. J Gene Med 2000; 2:279-88. [PMID: 10953919 DOI: 10.1002/1521-2254(200007/08)2:4<279::aid-jgm114>3.0.co;2-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND We previously demonstrated that intramuscular implantation of primary myoblasts engineered to express vascular endothelial growth factor (VEGF) constitutively resulted in hemangioma formation and the appearance of VEGF in the circulation. To investigate the potential for using allogeneic myoblasts and the effects of delivery of VEGF-expressing myoblasts to non-muscle sites, we have enclosed them in microcapsules that protect allogeneic cells from rejection, yet allow the secretion of proteins produced by the cells. METHODS Encapsulated mouse primary myoblasts that constitutively expressed murine VEGF164, or encapsulated negative control cells, were implanted either subcutaneously or intraperitoneally into mice. RESULTS Upon subcutaneous implantation, capsules containing VEGF-expressing myoblasts gave rise to large tissue masses at the implantation site that continued to grow and were composed primarily of endothelial and smooth muscle cells directly surrounding the capsules, and macrophages and capillaries further away from the capsules. Similarly, when injected intraperitoneally, VEGF-producing capsules caused significant localized inflammation and angiogenesis within the peritoneum, and ultimately led to fatal intraperitoneal hemorrhage. Notably, however, VEGF was not detected in the plasma of any mice. CONCLUSIONS We conclude that encapsulated primary myoblasts persist and continue to secrete VEGF subcutaneously and intraperitoneally, but that the heparin-binding isoform VEGF164 exerts localized effects at the site of production. VEGF secreted from the capsules attracts endothelial and smooth muscle cells in a macrophage-independent manner. These results, along with our previous results, show that the mode and site of delivery of the same factor by the same engineered myoblasts can lead to markedly different outcomes. Moreover, the results confirm that constitutive delivery of high levels of VEGF is not desirable. In contrast, regulatable expression may lead to efficacious, safe, and localized VEGF delivery by encapsulated allogeneic primary myoblasts that can serve as universal donors.
Collapse
Affiliation(s)
- M L Springer
- Department of Molecular Pharmacology, Stanford University School of Medicine, CA 94305-5174, USA
| | | | | | | | | | | |
Collapse
|
58
|
Hodgetts SI, Beilharz MW, Scalzo AA, Grounds MD. Why do cultured transplanted myoblasts die in vivo? DNA quantification shows enhanced survival of donor male myoblasts in host mice depleted of CD4+ and CD8+ cells or Nk1.1+ cells. Cell Transplant 2000; 9:489-502. [PMID: 11038066 DOI: 10.1177/096368970000900406] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Overcoming the massive and rapid death of injected donor myoblasts is the primary hurdle for successful myoblast transfer therapy (MTT), designed as a treatment for the lethal childhood myopathy Duchenne muscular dystrophy. The injection of male myoblasts into female host mice and quantification of surviving male DNA using the Y-chromosome-specific (Y1) probe allows the speed and extent of death of donor myoblasts to be determined. Cultured normal C57BL/10Sn male donor myoblasts were injected into untreated normal C57BL/10Sn and dystrophic mdx female host mice and analyzed by slot blots using a 32P-labeled Y1 probe. The amount of male DNA from donor myoblasts showed a remarkable decrease within minutes and by 1 h represented only about 10-18% of the 2.5 x 10(5) cells originally injected (designated 100%). This declined further over 1 week to approximately 1-4%. The host environment (normal or dystrophic) as well as the extent of passaging in tissue culture (early "P3" or late "P15-20" passage) made no difference to this result. Modulation of the host response by CD4+/CD8+ -depleting antibodies administered prior to injection of the cultured myoblasts dramatically enhanced donor myoblast survival in dystrophic mdx hosts (15-fold relative to untreated hosts after 1 week). NK1.1 depletion also dramatically enhanced donor myoblast survival in dystrophic mdx hosts (21-fold after 1 week) compared to untreated hosts. These results provide a strategic approach to enhance donor myoblast survival in clinical trials of MTT.
Collapse
Affiliation(s)
- S I Hodgetts
- Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Perth.
| | | | | | | |
Collapse
|
59
|
Pagel CN, Morgan JE, Gross JG, Partridge TA. Thymic myoid cells as a source of cells for myoblast transfer. Cell Transplant 2000; 9:531-8. [PMID: 11038069 DOI: 10.1177/096368970000900409] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transplantation of disaggregated myoblasts from normal donor to the muscles of a diseased host, or reimplantation of genetically modified host myoblasts, has been suggested as a possible route to therapy for inherited myopathies such as Duchenne muscular dystrophy, or to supply missing proteins that are required systemically in diseases such as hemophilia. With two exceptions, studies of myoblast transfer in the mouse have involved transplantation of donor myoblasts isolated from adult or neonatal skeletal muscle satellite cells. In this study we present evidence that thymic myoid cells are capable of participating in the regeneration of postnatal skeletal muscle, resulting in the expression of donor-derived proteins such as dystrophin and retrovirally encoded proteins such as beta-galactosidase within host muscles. This leads us to conclude that thymic myoid cells may provide an alternative to myoblasts derived from skeletal muscle as a source of myogenic cells for myoblast transfer.
Collapse
Affiliation(s)
- C N Pagel
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
60
|
Chancellor MB, Yokoyama T, Tirney S, Mattes CE, Ozawa H, Yoshimura N, de Groat WC, Huard J. Preliminary results of myoblast injection into the urethra and bladder wall: a possible method for the treatment of stress urinary incontinence and impaired detrusor contractility. Neurourol Urodyn 2000; 19:279-87. [PMID: 10797585 DOI: 10.1002/(sici)1520-6777(2000)19:3<279::aid-nau9>3.0.co;2-m] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to explore the feasibility of myoblasts, the precursors of muscle fibers, injected periurethrally as a potential treatment of stress urinary incontinence. We also studied myoblast injection into the bladder wall to potentially improve detrusor contractility. A myoblast cell line was transduced with adenovirus carrying the expression of the beta-galactosidase reporter gene while in culture. The cells were incubated with fluorescent latex microspheres (FLMs) to follow the outcome of the injected cells. The tissue was harvested 3-4 days after injection; sectioned, fixed, assayed for beta-galactosidase expression, and counterstained with H+E. Photographs of the slides were taken under light and fluorescence microscopy. We have noted a large number of cells expressing beta-galactosidase and containing FLMs in the urethral and bladder walls under fluorescent microscopy (8 animals). Many regenerative myofibers expressing beta-galactosidase were also seen in the urethral and bladder walls. The fusion of injected myoblasts to form myotubes was seen in both the urethral and bladder walls. The introduction of myoblasts into the urethral and bladder wall is feasible and results in formation of myotubes and myofibers in the smooth muscle layers of the lower urinary tract. We hypothesize that myoblast injections can be used as a non-allergenic agent to enhance urethral closure and bladder function.
Collapse
Affiliation(s)
- M B Chancellor
- Division of Urologic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Reinlib L, Field L. Cell transplantation as future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation 2000; 101:E182-7. [PMID: 10801766 DOI: 10.1161/01.cir.101.18.e182] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the development of improved therapies and the significant advances in the understanding of the basis of disease pathogenesis, millions of Americans continue to live with life-threatening cardiovascular diseases. Recent breakthroughs suggest exciting directions that are likely to produce more effective therapies for the treatment of cardiovascular disease. One such area, cell transplantation (grafting of healthy cells into the diseased heart), holds enormous potential as an approach to cardiovascular pathophysiology. Once thought to be a scientific long shot, cell transplantation is becoming recognized as a viable strategy to strengthen weak hearts and limit infarct growth. The technology could also be used for the long-term delivery of beneficial recombinant proteins to the heart, which is a strategy to complement molecular biology advances and provide an alternative strategy for gene therapy. On August 24, 1998, the National Heart, Lung, and Blood Institute convened a workshop to discuss the current status of this fast-moving line of research and to explore its promise for treating cardiovascular disease. The participants included basic and clinical researchers, with representatives from academic and commercial research settings. The workshop was designed to establish the state-of-the-art and to equate current research with practical clinical application. The group recommended short- and long-term goals to assist in realizing, in the most expedient manner, the potential utility of cell transplantation for the treatment of cardiovascular disease. A summary of the meeting discussions and recommendations for future areas of research is presented.
Collapse
Affiliation(s)
- L Reinlib
- Division of Heart and Vascular Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-7940, USA.
| | | |
Collapse
|
62
|
Suzuki K, Oyama M, Faulcon L, Robbins PD, Niyibizi C. In vivo expression of human growth hormone by genetically modified murine bone marrow stromal cells and its effect on the cells in vitro. Cell Transplant 2000; 9:319-27. [PMID: 10972331 DOI: 10.1177/096368970000900303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human growth hormone (hGH) is frequently used clinically for growth abnormalities in children and also in adults with growth hormone deficiency. The hormone is usually administered to the individuals by frequent injections. In the present study we investigated the potential of bone marrow stromal cells as vehicles to deliver the GH in vivo by infusion of cells transduced with hGH cDNA into mice femurs. The effect of the hormone on the transduced cells in vitro was also assessed. Bone marrow stromal cells established from a mouse model of human osteogenesis imperfecta mice (oim) were transduced with a retrovirus containing hGH and neomycin resistance genes. The hGH-expressing cells were selected in a medium containing G418 and were then assessed for the hGH expression in vitro. The selected cells synthesized 15 ng/10(6) cells of hGH per 24 h in vitro and exhibited alkaline phosphatase activity when they were treated with the human recombinant bone morphogenetic protein 2 (rhBMP-2). The transduced cells also proliferated faster than the LacZ transduced cells but they did not exhibit a higher rate of matrix synthesis. When 2 x 10(6) hGH+ cells were injected into the femurs of mice, hGH was detected in the serum of the recipient mice up to 10 days after injection. The highest level of growth hormone expression, 750 pg/ml, was detected in the serum of the recipient mice I day after injection of the transduced cells. hGH was also detected in the medium conditioned by cells that were flushed from the femurs of the recipient mice at 1, 3, and 6 days after cell injection. These data indicate that bone marrow stromal cells could potentially be used therapeutically for the delivery of GH or any other therapeutic proteins targeted for bone. The data also suggest that GH may exert its effects on bone marrow stromal cells by increasing their rate of proliferation.
Collapse
Affiliation(s)
- K Suzuki
- Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | |
Collapse
|
63
|
Byun J, Kim SH, Kim SZ, Heard JM, Huh JE, Choe YH, Park SJ, Jung EA, Kim DK. Ectopic expression of active processed form of atrial natriuretic peptide in skeletal myoblasts. Biochem Biophys Res Commun 2000; 270:637-42. [PMID: 10753676 DOI: 10.1006/bbrc.2000.2468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone that elicits a profound diuresis, natriuresis, and hypotension. As a preliminary study toward ANP gene therapy of cardiovascular disorders, we have cloned a cDNA for mouse preproANP and carried out expression studies in muscle cells. The expression cassette, which was flanked by ITRs from AAV-2, consisted of HCMV IE enhancer/promoter, preproANP gene, and polyadenylation signal from bovine growth hormone. We transfected this expression vector into primary skeletal myoblasts and examined the following points: (1) secretion of immunoreactive ANP, (2) biological activity, and (3) nature of secreted ANP(s). The conditioned media from cells transfected with ANP vector had significantly higher levels of irANP in comparison to mock control. The secreted irANP had biological activity as confirmed by the elevated level of intracellular cGMP in human umbilical vein endothelial cells. Reverse-phase HPLC analysis showed that the processed form of ANP was the predominant form. These results demonstrate that preproANP gene could be ectopically expressed and correctly processed in skeletal myoblasts, which has implications for development of muscle-based ANP gene therapy.
Collapse
Affiliation(s)
- J Byun
- Center for Clinical Research, Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Malik AK, Monahan PE, Allen DL, Chen BG, Samulski RJ, Kurachi K. Kinetics of recombinant adeno-associated virus-mediated gene transfer. J Virol 2000; 74:3555-65. [PMID: 10729130 PMCID: PMC111864 DOI: 10.1128/jvi.74.8.3555-3565.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have been shown to be useful for efficient gene delivery to a variety of dividing and nondividing cells. Mechanisms responsible for the long-term, persistent expression of the rAAV transgene are not well understood. In this study we investigated the kinetics of rAAV-mediated human factor IX (hFIX) gene transfer into human primary myoblasts and myotubes. Transduction of both myoblasts and myotubes occured with a similar and high efficiency. After 3 to 4 weeks of transduction, rAAV with a cytomegalovirus (CMV) promoter showed 10- to 15-fold higher expression than that with a muscle-specific creatine kinase enhancer linked to beta-actin promoter. Factor IX expression from transduced myoblasts as well as myotubes reached levels as high as approximately 2 microgram of hFIX/10(6) cells/day. Southern blot analyses of high-molecular-weight (HMW) cellular genomic and Hirt DNAs isolated from rAAV/CMVhFIXm1-transduced cells showed that the conversion of single-stranded vector genomes to double-stranded DNA forms, but not the level of the integrated forms in HMW DNA, correlated with increasing expression of the transgene. Together, these results indicate that rAAV can transduce both proliferating and terminally differentiated muscle cells at about the same efficiency, that expression of transgenes increases linearly over their lifetime with no initial lag phase, and that increasing expression correlates with the appearance of double-stranded episomal rAAV genomes. Evidence showing that the rAAV virions can copackage hFIX, presumably nonspecifically, was also obtained.
Collapse
Affiliation(s)
- A K Malik
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | | | | | | | | | |
Collapse
|
65
|
Pruchnic R, Cao B, Peterson ZQ, Xiao X, Li J, Samulski RJ, Epperly M, Huard J. The use of adeno-associated virus to circumvent the maturation-dependent viral transduction of muscle fibers. Hum Gene Ther 2000; 11:521-36. [PMID: 10724031 DOI: 10.1089/10430340050015716] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Muscle-based gene therapy using adenovirus, retrovirus, and herpes simplex virus has been hindered by viral cytotoxicity, host immune response, and the maturation-dependent viral transduction of muscle fibers. The development of new mutant vectors has greatly reduced the toxicity and the immune rejection problems, but the inability of viral vectors to penetrate and transduce mature myofibers remains an important issue. Research has been focused on the characterization of barriers to viral transduction in mature myofibers to develop strategies to circumvent the maturation-dependent viral transduction of myofibers. Here, we report that adeno-associated virus (AAV) can be used to overcome the maturation-dependent viral transduction of myofibers. We have investigated by which mechanism AAV can penetrate and efficiently transduce mature muscle fibers, and have shown that this viral vector is not blocked by the basal lamina and that AAV transduction of myofibers is independent of myoblast mediation. Although AAV can efficiently transduce mature myofibers, a differential transduction is still observed among the different types of myofibers that correlates with the expression of the heparan sulfate proteoglycan receptors, the muscle maturity, the number of viral particles used, and the time postinjection. The identification of the mechanisms by which AAV transduces mature myofibers will help in the development of strategies to achieve an efficient muscle-based gene therapy for inherited and acquired diseases.
Collapse
Affiliation(s)
- R Pruchnic
- Department of Orthopedic Surgery, Children's Hospital of Pittsburgh and University of Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Gorza L, Vitadello M. Reduced amount of the glucose-regulated protein GRP94 in skeletal myoblasts results in loss of fusion competence. FASEB J 2000; 14:461-75. [PMID: 10698961 DOI: 10.1096/fasebj.14.3.461] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We previously showed that skeletal myocytes of the adult rabbit do not accumulate the endoplasmic reticulum glucose-regulated protein GRP94, neither constitutively nor inducibly, at variance with skeletal myocytes during perinatal development (5). Here we show that C2C12 cells up-regulate GRP94 during differentiation and, similarly to primary cultures of murine skeletal myocytes, specifically display GRP94 immunoreactivity on the cell surface. Stable transfection of C2C12 cells with grp94 antisense cDNA shows lack of myotube formation in clones displaying >40% reduction in GRP94 amount. The same result is obtained after in vivo injection of grp94-antisense myoblasts. Conversely, GRP94 overexpression is accompanied by accelerated myotube formation. Analyses of BrdU incorporation, p21 nuclear translocation, and muscle-gene expression show that muscle differentiation is not apparently affected in grp94-antisense clones. In contrast, cell-surface GRP94 is greatly reduced in grp94-antisense clones, as shown by immunocytochemistry and precipitation of cell-surface biotinylated proteins. Thus, cell-surface expression of GRP94 is necessary for maintenance of fusion competence. Furthermore, differentiating C2C12 cells grown in the presence of anti-GRP94 antibody show decreased myotube number suggesting that cell-surface GRP94 is directly involved in myoblast fusion process.
Collapse
Affiliation(s)
- L Gorza
- CNR-Unit for Muscle Biology, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | |
Collapse
|
67
|
Abstract
Myoblast transplantation (MT) consists of injecting normal or genetically modified myogenic cells into muscles, where they are expected to fuse and form mature fibers. As an experimental approach to treat severe genetic muscle diseases, MT was tested in dystrophic patients at the beginning of the 1990s. Although these early clinical trials were unsuccessful, MT has progressed through the research on animal models. Many factors that may condition the success of MT were identified in the last years. The present review updates our knowledge on MT and describes the different problems that have limited its success. Factors that were first underestimated, like the specific immune response after MT, are presently well characterized. Destruction of the hybrid fibers by activated T-lymphocytes and production of antibodies against the transplanted myoblasts take place after MT and are responsible for the graft rejection. The choice of the immunosuppression seems to be very important, and FK506 is the best agent known to allow the best results after MT. Under FK506 immunosuppression, very efficient MT were obtained both in mice and monkeys. Moreover, in dystrophic mice it was demonstrated that MT ameliorates some phenotypical characteristics of the disease. The improvement of the survival of the transplanted cells and the increase of their migration into the injected tissue are presently under investigation. Some of the present research is directed also to bypass the immunosuppression by using the patient's own cells for MT. In this sense, efforts are conducted to introduce the normal gene into the patient's myoblasts before MT and to improve the ability of these cells to proliferate in vitro. Micros. Res. Tech. 48:213-222, 2000.
Collapse
Affiliation(s)
- D Skuk
- Unité de recherche en Génétique humaine, Centre de Recherche de Pavillon Centre Hospitalier de l'Université Laval, CHUQ et Faculté de Médecine de l'Université Laval, Québec, Canada G1V 4G2
| | | |
Collapse
|
68
|
Abstract
Treatment of sports injuries has improved through sophisticated rehabilitation programs, novel operative techniques, and advances in biomechanical research during the past two decades. Despite considerable progress, treatments remain limited due to poor healing capacity for anterior or posterior cruciate ligament rupture, central meniscal tear, cartilage lesions, and delayed bone fracture. New biological approaches seek to treat these injuries with growth factors to stimulate and hasten the healing process. Gene therapy using the transfer of defined genes such as those encoding growth factors represents a promising way to deliver therapeutic proteins to the injured tissue. Tissue engineering, which may eventually be combined with gene therapy, offers the potential to create tissues or scaffolds for regeneration of defects occurring from trauma.
Collapse
Affiliation(s)
- V Martinek
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, 15213-2583, USA
| | | | | |
Collapse
|
69
|
Vasculogenesis and Angiogenesis. J Vasc Interv Radiol 2000. [DOI: 10.1016/s1051-0443(00)70178-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
70
|
Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP. Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. TISSUE ENGINEERING 1999; 5:525-32. [PMID: 10611544 DOI: 10.1089/ten.1999.5.525] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Skeletal muscle is responsible for the control of voluntary movement and the maintenance of structural contours of the body. Muscle loss or deficiency is encountered in various pathological states, and attempts to correct them have been employed with limited success. The aim of the present study was to tissue engineer three-dimensional vascularized skeletal muscle using isolated myoblasts attached to synthetic biodegradable polymer for tissue replacement in the enhancement of muscle regeneration. Myoblasts derived from neonatal rats (3-5-day-old), Fisher CDF-F344, were seeded onto polyglycolic acid meshes and implanted into the omentum of syngeneic adult Fisher CDF-F344 rats. Rats were sacrificed on day 30 and day 45 after the transplantation, and the cell-polymer constructs were harvested for morphological analysis. Histological analysis of the constructs were performed by hematoxylin and eosin, and immunohistochemical staining was positive for alpha sarcomeric actin and desmin skeletal muscle marker. Viable myoblasts organized between strands of degrading polymer mesh formed the new tissue, and vascularization of the entire construct was observed. Organization of neomuscle strands surrounded by vascularized tissue composed of degrading polymer and fusing myoblasts demonstrated the ability of myoblast constructs to survive, reorganize and regenerate tissue-like structures. Since myoblast transplantation to date has been limited to the cellular level of replacement, myoblast-polyglycolic acid constructs may be useful in defining the application of tissue engineering for future skeletal muscle transplantations.
Collapse
Affiliation(s)
- A K Saxena
- Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
71
|
Fan L, Owen JS, Dickson G. Construction and characterization of polycistronic retrovirus vectors for sustained and high-level co-expression of apolipoprotein A-I and lecithin-cholesterol acyltransferase. Atherosclerosis 1999; 147:139-45. [PMID: 10525135 DOI: 10.1016/s0021-9150(99)00191-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Apolipoprotein A-I (apo A-I) and lecithin-cholesterol acyltransferase (LCAT) are constituents of circulating high-density lipoprotein (HDL) particles and play an important role in 'reverse cholesterol transport', the process by which cholesterol in peripheral tissues is transferred to the liver for excretion. Enhancing levels of apo A-I, as well as LCAT, in plasma may promote the removal of excess cholesterol from the arterial wall and thus reduce the formation of atherosclerotic lesions. Indeed, both apo A-I and LCAT genes have been identified as therapeutic targets to prevent or limit atherogenesis. Here, we have constructed two retroviral vectors, one containing LCAT cDNA and the neomycin phosphotransferase (NEO) gene (pLLEN), the other apo A-I cDNA, LCAT cDNA and the NEO gene (pLAPLEN) linked by internal ribosome entry sites (IRES). Both bi- and tricistronic retroviral vectors efficiently co-expressed their two or three genes when transfected into cultured mouse C2C12 muscle cells or human 293 cells. After 30 days, the retroviral vector sequences were retained by the host cells, whereas those of a conventional plasmid vector were lost. Moreover, transduced C2C12 mouse myoblasts maintained the ability for heterologous expression of human LCAT and apo A-I even after differentiation into myotubes. Stably-transduced clones of C2C12 cells were selected by neomycin (G418) resistance and continued to efficiently express human LCAT for 60 days. These findings indicate that the use of polycistronic retrovirus vectors to genetically modify myoblasts, which can be transplanted back into skeletal muscle, might be a safe and feasible strategy to express human apo A-I and LCAT and hence have therapeutic potential to regress atherosclerotic lesions.
Collapse
Affiliation(s)
- L Fan
- Division of Biochemistry, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | | |
Collapse
|
72
|
|
73
|
DiEdwardo CA, Petrosko P, Acarturk TO, DiMilla PA, LaFramboise WA, Johnson PC. Muscle Tissue Engineering. Clin Plast Surg 1999. [DOI: 10.1016/s0094-1298(20)32663-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
74
|
Abstract
During the past 20 years, there have been many impressive advances in a number of scientific disciplines that have led to the discovery and development of exciting new biotechnologies that offer the potential to improve productive efficiency of animal agriculture. Some technologies have been developed from advances made in our understanding of how the endocrine system regulates growth and lactation. This information then has been used to devise viable strategies that alter circulating hormone concentration(s) to enhance animal production and productive efficiency. The most notable success to date using this approach has been bovine somatotropin, which has been adopted for use in the dairy industry in certain countries. Advances in transgenic biology, gene therapy, "knock-out" gene technologies, and cloning may lead to other novel products/strategies that enhance productive efficiency. The purpose of this paper is to discuss what future strategies might emerge that will increase meat and milk production and the efficiency of these processes.
Collapse
Affiliation(s)
- T D Etherton
- Department of Dairy and Animal Science, The Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
75
|
Mohajeri MH, Figlewicz DA, Bohn MC. Intramuscular grafts of myoblasts genetically modified to secrete glial cell line-derived neurotrophic factor prevent motoneuron loss and disease progression in a mouse model of familial amyotrophic lateral sclerosis. Hum Gene Ther 1999; 10:1853-66. [PMID: 10446925 DOI: 10.1089/10430349950017536] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effects of ex vivo GDNF gene delivery on the degeneration of motoneurons were studied in the G1H transgenic mouse model of familial ALS carrying a human superoxide dismutase (SOD1) with a Gly93Ala mutation (Gurney et al., 1994). Retroviral vectors were made to produce human GDNF or E. coli beta-galactosidase (beta-Gal) by transient transfection of the Phoenix cell line and used to infect primary mouse myoblasts. In 6-week-old G1H mice, 50,000 myoblasts per muscle were injected bilaterally into two hindlimb muscles. Untreated G1H and wild-type mice served as additional controls. At 17 weeks of age, 1 week before sacrifice, these muscles were injected with fluorogold (FG) to retrogradely label spinal motoneurons that maintained axonal projections to the muscles. There were significantly more large FG-labeled alpha motoneurons at 18 weeks in GDNF-treated G1H mice than in untreated and beta-Gal-treated G1H mice. A morphometric study of motoneuron size distribution showed that GDNF shifted the size distribution of motoneurons toward larger cells compared with control G1H mice, although the average size and number of large motoneurons in GDNF-treated mice were less than that in wild-type mice. GDNF also prolonged the onset of disease, delayed the deterioration of performance in tests of motor behavior, and slowed muscle atrophy. Quantitative, real-time RT-PCR and PCR showed persistence of transgene mRNA and DNA in muscle for up to 12 weeks postgrafting. These observations demonstrate that ex vivo GDNF gene therapy in a mouse model of FALS promotes the survival of functional motoneurons, suggesting that a similar approach might delay the progression of neurodegeneration in ALS.
Collapse
Affiliation(s)
- M H Mohajeri
- Department of Pediatrics, Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL 60614, USA
| | | | | |
Collapse
|
76
|
|
77
|
Gros L, Riu E, Montoliu L, Ontiveros M, Lebrigand L, Bosch F. Insulin production by engineered muscle cells. Hum Gene Ther 1999; 10:1207-17. [PMID: 10340552 DOI: 10.1089/10430349950018193] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type 1 diabetic patients depend dramatically on insulin replacement therapy, which involves the administration of intermediate- or long-acting insulin, together with short-acting insulin to mimic physiological insulin profiles. However, the delayed-action preparations available are not generally able to produce smooth background levels of insulin. Muscle cells were tested for long-term delivery of active human insulin as an approach to achieve a constant basal level of insulin. Thus, C2C12 mouse myoblast cells were stably transfected with a chimeric gene obtained by linking the myosin-light chain 1 (MLC1) promoter to the human proinsulin gene, containing genetically engineered furin endoprotease cleavage sites (MLC1/Insm). When differentiated, C2C12Insm myotube cells expressed high levels of insulin mRNA and protein, whereas no insulin was detected in myoblast cells. HPLC fractionation of culture medium and cell extracts from differentiated C2C12Insm cells revealed that about 90% of the proinsulin was processed to mature insulin. In addition, these cells released significant levels (about 100 microU/10(6) cells/hr) of mature insulin to the medium. The hormone was biologically active since it increased glucose consumption and utilization by the differentiated C2C12Insm cells and was able to block the expression of the endogenous phosphoenolpyruvate carboxykinase (PEPCK) gene in FTO-2B rat hepatoma cells. Furthermore, when C2C12Insm myoblast cells were transplanted into diabetic mice an increase in insulinemia and a decrease in hyperglycemia were observed. Thus, our results suggest that the use of engineered myotube cells continuously secreting a defined level of insulin might be a useful approach to improve the efficacy of insulin injection treatment.
Collapse
Affiliation(s)
- L Gros
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autonoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
78
|
Day CS, Bosch P, Kasemkijwattana C, Menetrey J, Moreland MS, Fu FH, Ziran B, Huard J. Use of muscle cells to mediate gene transfer to the bone defect. TISSUE ENGINEERING 1999; 5:119-25. [PMID: 10358219 DOI: 10.1089/ten.1999.5.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Segmental bone defects and nonunions are relatively common problems facing all orthopaedic surgeons. Osteogenic proteins, i.e., BMP-2, can promote bone healing in segmental bone defects. However, a large quantity of the human recombinant protein is needed to enhance the bone healing potential. Cell mediated gene therapy in the bone defect can allow a sustained expression of the osteogenic proteins and further enhance bone healing. Muscle cells can be easily isolated and cultivated, and they are known to be an efficient gene delivery vehicle to muscle and nonmuscle tissues. Furthermore, they are capable of transforming into osteoblasts when stimulated by BMP-2. Thus, the utilization of muscle cells as the gene delivery vehicle to a bone defect would be an important step in establishing a less invasive treatment for non-unions and segmental bone defects. Muscle cells were transduced when the adenoviral-lacZ vector and injected into the bone defect and the muscles surrounding the defect. Expression of the marker gene was visualized 7 days after the injection, both macroscopically and microscopically, using lacZ histochemistry. The lacZ expressing cells in the defect tissue were also stained for desmin, a muscle specific marker, indicating the presence of muscle cells that have fused into myofibers in this nonmuscle bone defect area. With successful myoblast mediated gene delivery into the segmental bone defect, future experiments would focus on delivering viral vectors expressing osteogenic proteins to eventually improve bone healing postinjury.
Collapse
Affiliation(s)
- C S Day
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Children's Hospital of Pittsburgh and University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Kessler PD, Byrne BJ. Myoblast cell grafting into heart muscle: cellular biology and potential applications. Annu Rev Physiol 1999; 61:219-42. [PMID: 10099688 DOI: 10.1146/annurev.physiol.61.1.219] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys a wide range of cellular and molecular approaches to strengthening the injured or weakened heart, focusing on strategies to replace dysfunctional, necrotic, or apoptotic cardiomyocytes with new cells of mesodermal origin. A variety of cell types, including myogenic cell lines, adult skeletal myoblasts, immoratalized atrial cells, embryonic and adult cardiomyocytes, embryonic stem cells, tetratoma cells, genetically altered fibroblasts, smooth muscle cells, and bone marrow-derived cells have all been proposed as useful cells in cardiac repair and may have the capacity to perform cardiac work. We focus on the implantation of mesodermally derived cells, the best developed of the options. We review the developmental and cell biology that have stimulated these studies, examine the limitations of current knowledge, and identify challenges for the future, which we believe are considerable.
Collapse
Affiliation(s)
- P D Kessler
- Peter Belfer Cardiac Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
80
|
Beauchamp JR, Morgan JE, Pagel CN, Partridge TA. Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 1999; 144:1113-22. [PMID: 10087257 PMCID: PMC2150577 DOI: 10.1083/jcb.144.6.1113] [Citation(s) in RCA: 360] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Myoblasts, the precursors of skeletal muscle fibers, can be induced to withdraw from the cell cycle and differentiate in vitro. Recent studies have also identified undifferentiated subpopulations that can self-renew and generate myogenic cells (Baroffio, A., M. Hamann, L. Bernheim, M.-L. Bochaton-Pillat, G. Gabbiani, and C.R. Bader. 1996. Differentiation. 60:47-57; Yoshida, N., S. Yoshida, K. Koishi, K. Masuda, and Y. Nabeshima. 1998. J. Cell Sci. 111:769-779). Cultured myoblasts can also differentiate and contribute to repair and new muscle formation in vivo, a capacity exploited in attempts to develop myoblast transplantation (MT) for genetic modification of adult muscle. Our studies of the dynamics of MT demonstrate that cultures of myoblasts contain distinct subpopulations defined by their behavior in vitro and divergent responses to grafting. By comparing a genomic and a semiconserved marker, we have followed the fate of myoblasts transplanted into muscles of dystrophic mice, finding that the majority of the grafted cells quickly die and only a minority are responsible for new muscle formation. This minority is behaviorally distinct, slowly dividing in tissue culture, but rapidly proliferative after grafting, suggesting a subpopulation with stem cell-like characteristics.
Collapse
Affiliation(s)
- J R Beauchamp
- Muscle Cell Biology Group, MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London W12 0NN, United Kingdom.
| | | | | | | |
Collapse
|
81
|
Klinman DM, Conover J, Leiden JM, Rosenberg AS, Sechler JM. Safe and effective regulation of hematocrit by gene gun administration of an erythropoietin-encoding DNA plasmid. Hum Gene Ther 1999; 10:659-65. [PMID: 10094209 DOI: 10.1089/10430349950018733] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This work examines the effect of delivering a DNA plasmid encoding murine erythropoietin (pVRmEpo) to BALB/c mice by gene gun. Whereas intramuscular injection elicits a rise in hematocrit persisting >8 months, intradermal delivery triggers the dose-dependent secretion of biologically active erythropoietin (Epo) for approximately 1 month. Repeated administration of pVRmEpo by gene gun elicits a stable increase in hematocrit. The source of the Epo produced following gene gun delivery was analyzed by periodically grafting the site of injection onto naive recipients. Results indicate that both stationary cells (presumably keratinocytes) and migratory (presumably dendritic) cells were transfected and secreted biologically active Epo in vivo. Gene gun administration of plasmid DNA appears to be safe, and provides an additional strategy for achieving the regulated secretion of an exogenous gene product.
Collapse
Affiliation(s)
- D M Klinman
- Retroviral Immunology Section, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
82
|
Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I. Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating bone: a novel cell-mediated gene therapy. J Gene Med 1999; 1:121-33. [PMID: 10738576 DOI: 10.1002/(sici)1521-2254(199903/04)1:2<121::aid-jgm26>3.0.co;2-j] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the approximately 6.5 million fractures suffered in the United States every year, about 15% are difficult to heal. As yet, for most of these difficult cases there is no effective therapy. We have developed a mouse radial segmental defect as a model experimental system for testing the capacity of Genetically Engineered Pluripotent Mesenchymal Cells (GEPMC, C3H10T1/2 clone expressing rhBMP-2), for gene delivery, engraftment, and induction of bone growth in regenerating bone. METHODS Transfected GEPMC expressing rhBMP-2 were further infected with a vector carrying the lacZ gene, that encodes for beta-galactosidase (beta-gal). In vitro levels of rhBMP-2 expression and function were confirmed by immunohistochemistry, and bioassay. Differentiation was assayed using alkaline phosphatase staining. GEPMC were transplanted in vivo into a radial segmental defect. The main control groups included lacZ clones of WT-C3H10T1/2-LacZ, and CHO-rhBMP-2 cells. New bone formation was measured quantitatively via fluorescent labeling, X-ray analysis and histomorphometry. Engrafted mesenchymal cells were localized in vivo by beta-gal expression, and double immunofluorescence. RESULTS In vitro, GEPMC expressed rhBMP-2, beta-gal and spontaneously differentiated into osteogenic cells expressing alkaline phosphatase. Detection of transplanted cells revealed engrafted cells that had differentiated into osteoblasts and co-expressed beta-gal and rhBMP-2. Analysis of new bone formation revealed that at four to eight week post-transplantation, GEPMS significantly enhanced segmental defect repair. CONCLUSIONS Our study shows that cell-mediated gene transfer can be utilized for growth factor delivery to signaling receptors of transplanted cells (autocrine effect) and host mesenchymal cells (paracrine effect) suggesting the ability of GEPMC to engraft, differentiate, and stimulate bone growth. We suggest that our approach should lead to the designing of mesenchymal stem cell based gene therapy strategies for bone lesions as well as other tissues.
Collapse
Affiliation(s)
- D Gazit
- Molecular Pathology Laboratory, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
83
|
Powell C, Shansky J, Del Tatto M, Forman DE, Hennessey J, Sullivan K, Zielinski BA, Vandenburgh HH. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy. Hum Gene Ther 1999; 10:565-77. [PMID: 10094200 DOI: 10.1089/10430349950018643] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.
Collapse
Affiliation(s)
- C Powell
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Krueger GG, Jorgensen CM, Matsunami N, Morgan JR, Liimatta A, Meloni-Ehrig A, Shepard R, Petersen MJ. Persistent transgene expression and normal differentiation of immortalized human keratinocytes in vivo. J Invest Dermatol 1999; 112:233-9. [PMID: 9989801 DOI: 10.1046/j.1523-1747.1999.00499.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells transduced ex vivo with transgenes encoded on retroviruses have constant and prolonged expression in vitro; however, in vivo expression is quickly lost. Much attention has been directed at methods to circumvent this problem. We have shown that loss of transgene expression does not occur when transduced immortalized 3T3 cells are transplanted to the in vivo setting of athymic mice. Ease of acquisition and potential for clinical application led us to assess the potential of using immortalized human keratinocytes for expression of transgenes in vivo. Human keratinocytes were immortalized with a HPV16-E6/E7 retrovirus, transduced with a lacZ retrovirus, cloned by limiting dilution, seeded onto a physiologic dermal substrate, and transplanted to athymic mice. Six weeks after transplantation, the immortalized transgene expressing keratinocytes had formed an epidermis that was indistinguishable from one formed by nonimmortalized keratinocytes; furthermore, there was no loss of expression of the lacZ gene. These observations show that methods to extend cell survival are an alternative approach to achieving stable and prolonged expression of transgenes in vivo and that HPV16-E6/ E7 immortalized keratinocytes generate an epidermis with normal morphology.
Collapse
Affiliation(s)
- G G Krueger
- The Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City 84132, USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Skuk D, Roy B, Goulet M, Tremblay JP. Successful myoblast transplantation in primates depends on appropriate cell delivery and induction of regeneration in the host muscle. Exp Neurol 1999; 155:22-30. [PMID: 9918701 DOI: 10.1006/exnr.1998.6973] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myoblast transplantation (MT) may be a potential treatment for severe recessive hereditary myopathies. The limited results of MT in clinical trials led us to improve this technique in monkeys, an animal model phylogenetically similar to humans. Three Macaca mulata monkeys were used as donors and six as receivers for MT. Myoblasts were grown in culture from muscle biopsies of adult monkeys and infected with a retroviral vector encoding the LacZ gene. Different numbers of cells (i.e., 4 x 10(6), 8 x 10(6), and 24 x 10(6) cells) were transplanted into different muscles and 8 x 10(6) cells (resuspended in a notexin solution) were injected in one muscle of four monkeys. For these transplantations, the cell suspension (in a volume of about 100 microl) was injected at 35 sites less than 1 mm apart. Two other monkeys received 100 x 10(6) myoblasts resuspended in 1 ml of HBSS or 1 ml of notexin. For these two monkeys, the myoblasts were injected at 200-250 sites within a small portion of the muscle. All monkeys were immunosuppressed with daily injections of FK506. Four weeks after MT, the transplanted muscle portions were biopsied and the presence of beta-galactosidase-positive (beta-Gal+) muscle fibers was investigated. The number of beta-Gal+ fibers was 822 +/- 150 (site grafted with 4 x 10(6) cells), 1253 +/- 515 (8 x 10(6) cells), 1084 +/- 278 (24 x 10(6)), and 2852 +/- 1211 (notexin). In the monkeys grafted with 100 x 10(6) myoblasts, the number of beta-Gal+ fibers was 4850 (site without notexin) and 9600 (site with notexin). We demonstrated that a precise mechanical distribution of myoblasts into the tissue improves substantially MT in primates. The presence of notexin with the transplanted cells further increased the success of their transplantation. These are the best results obtained either with MT or gene therapy in primates and they encourage the possibility to human MT trials.
Collapse
Affiliation(s)
- D Skuk
- Unité de Recherche en Génétique Humaine, Centre Hospitalier de l'Université Laval, Québec, Canada
| | | | | | | |
Collapse
|
86
|
Vandenburgh H, Tatto MD, Shansky J, Goldstein L, Russell K, Genes N, Chromiak J, Yamada S. Attenuation of Skeletal Muscle Wasting with Recombinant Human Growth Hormone Secreted from a Tissue-Engineered Bioartificial Muscle. Hum Gene Ther 1998. [DOI: 10.1089/10430349850019391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
87
|
Kringstein AM, Rossi FM, Hofmann A, Blau HM. Graded transcriptional response to different concentrations of a single transactivator. Proc Natl Acad Sci U S A 1998; 95:13670-5. [PMID: 9811858 PMCID: PMC24877 DOI: 10.1073/pnas.95.23.13670] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1998] [Indexed: 11/18/2022] Open
Abstract
Threshold mechanisms of transcriptional activation are thought to be critical for translating continuous gradients of extracellular signals into discrete all-or-none cellular responses, such as mitogenesis and differentiation. Indeed, unequivocal evidence for a graded transcriptional response in which the concentration of inducer directly correlates with the level of gene expression in individual eukaryotic cells is lacking. By using a novel binary tetracycline regulatable retroviral vector system, we observed a graded rather than a threshold mechanism of transcriptional activation in two different model systems. When polyclonal populations of cells were analyzed at the single cell level, a dose-dependent, stepwise increase in expression of the reporter gene, green fluorescent protein (GFP), was observed by fluorescence-activated cell sorting. These data provide evidence that, in addition to the generally observed all-or-none switch, the basal transcription machinery also can respond proportionally to changes in concentration of extracellular inducers and trancriptional activators.
Collapse
Affiliation(s)
- A M Kringstein
- Department of Molecular Pharmacology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5332, USA
| | | | | | | |
Collapse
|
88
|
Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM. VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 1998; 2:549-58. [PMID: 9844628 DOI: 10.1016/s1097-2765(00)80154-9] [Citation(s) in RCA: 263] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Constitutive expression of VEGF after implantation of genetically engineered myoblasts into non-ischemic muscle led to an increase in vascular structures. Previously, effects of VEGF delivery to adult muscle have only been reported in ischemic tissues. The resulting vascular structures were reminiscent of those formed during embryonic vasculogenesis, rather than angiogenesis, sprouting from preexisting vessels. Initially, VEGF caused an accumulation of endothelial cells and macrophages, followed by networks of vascular channels and hemangiomas with locally high serum VEGF levels. No effects were evident in adjacent tissue or contralateral legs, where low serum VEGF was detected. These data suggest that the induction by VEGF of angiogenesis or vasculogenesis may be dose-dependent. Furthermore, VEGF expression must be carefully modulated, as overexpression is deleterious.
Collapse
Affiliation(s)
- M L Springer
- Department of Molecular Pharmacology, Stanford University School of Medicine, CA 94305-5332, USA
| | | | | | | | | |
Collapse
|
89
|
Control of Erythropoietin Delivery by Doxycycline in Mice After Intramuscular Injection of Adeno-Associated Vector. Blood 1998. [DOI: 10.1182/blood.v92.5.1512.417k43_1512_1517] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported previously that controlled expression of a foreign gene in response to tetracycline derivative can be accomplished in mice by the autologous transplantation of retrovirus-modified muscle cells. Although regulated systemic delivery of therapeutic proteins from engineered tissues has potential clinical application, the transplantation of muscle cells is not currently feasible in humans. Several studies have shown that a single injection of adeno-associated virus (AAV) vectors into mouse muscle results in long-term expression of reporter genes as well as sustained delivery of proteins into the serum. Because this method is potentially applicable clinically, we constructed an AAV vector in which the expression of the mouse erythropoietin (Epo) cDNA is modulated in response to doxycycline. The vector was injected intramuscularly in normal mice. We observed that hematocrit and serum Epo concentrations could be modulated over a 29-week period in response to the presence or absence of doxycycline in the drinking water of these animals. Thus, a regulated gene expression cassette can be incorporated into a single AAV vector, such that intramuscular injection of the vector allows sustained and regulated expression of a desired gene.© 1998 by The American Society of Hematology.
Collapse
|
90
|
Control of Erythropoietin Delivery by Doxycycline in Mice After Intramuscular Injection of Adeno-Associated Vector. Blood 1998. [DOI: 10.1182/blood.v92.5.1512] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We reported previously that controlled expression of a foreign gene in response to tetracycline derivative can be accomplished in mice by the autologous transplantation of retrovirus-modified muscle cells. Although regulated systemic delivery of therapeutic proteins from engineered tissues has potential clinical application, the transplantation of muscle cells is not currently feasible in humans. Several studies have shown that a single injection of adeno-associated virus (AAV) vectors into mouse muscle results in long-term expression of reporter genes as well as sustained delivery of proteins into the serum. Because this method is potentially applicable clinically, we constructed an AAV vector in which the expression of the mouse erythropoietin (Epo) cDNA is modulated in response to doxycycline. The vector was injected intramuscularly in normal mice. We observed that hematocrit and serum Epo concentrations could be modulated over a 29-week period in response to the presence or absence of doxycycline in the drinking water of these animals. Thus, a regulated gene expression cassette can be incorporated into a single AAV vector, such that intramuscular injection of the vector allows sustained and regulated expression of a desired gene.
© 1998 by The American Society of Hematology.
Collapse
|
91
|
Abstract
This review presents a current overview of the discipline of human gene therapy. In addition, a gene therapy method is described in which plasmid genes are transferred from a structural matrix carrier into fresh wound sites so as to enhance tissue repair and regeneration. The potential to develop a gene therapy for bone regeneration is discussed in detail.
Collapse
Affiliation(s)
- RJ Levy
- Children's Hospital of Philadelphia, Abramson Pediatric Research Center, 11th Floor, 34th and Civic Center Blvd., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
92
|
Mulder MM, Hitchcock RW, Tresco PA. Skeletal myogenesis on elastomeric substrates: implications for tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 1998; 9:731-48. [PMID: 9686337 DOI: 10.1163/156856298x00118] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Studies geared towards understanding the interaction between skeletal muscle and biomaterials may provide useful information for the development of various emerging technologies, ranging from novel delivery vehicles for genetically modified cells to fully functional skeletal muscle tissue. To determine the utility of elastomeric materials as substrates for such applications, we asked whether skeletal myogenesis would be supported on a commercially available polyurethane, Tecoflex SG-80A. G8 skeletal myoblasts were cultured on Tecoflex two-dimensional solid thin films fabricated by a spin-casting method. Myoblasts attached, proliferated, displayed migratory activity and differentiated into multinucleated myotubes which expressed myosin heavy chain on solid thin films indicating that Tecoflex SG-80A was permissive for skeletal myogenesis. Porous three-dimensional (3-D) cell scaffolds were fabricated in a variety of shapes, thicknesses, and porosities by an immersion precipitation method, and where subsequently characterized with microscopic and mechanical methods. Mechanical analysis revealed that the constructs were elastomeric, recovering their original length following 100% elongation. The 3-D substrates were seeded with muscle precursors to determine if muscle differentiation could be obtained within the porous network of the fabricated constructs. Following several weeks in culture, histological studies revealed the presence of multinucleated myotubes within the elastomeric material. In addition, immunohistochemical analysis indicated that the myotubes expressed the myosin heavy chain protein suggesting that the myotubes had reached a state of terminal differentiation. Together the results of the study suggest that it is indeed feasible to engineer bioartificial systems consisting of skeletal muscle cultivated on a 3-D elastomeric substrate.
Collapse
Affiliation(s)
- M M Mulder
- University of Utah, Department of Bioengineering, Salt Lake City 84112, USA
| | | | | |
Collapse
|
93
|
Boss V, Wang X, Koppelman LF, Xu K, Murphy TJ. Histamine induces nuclear factor of activated T cell-mediated transcription and cyclosporin A-sensitive interleukin-8 mRNA expression in human umbilical vein endothelial cells. Mol Pharmacol 1998; 54:264-72. [PMID: 9687567 DOI: 10.1124/mol.54.2.264] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear factor of activated T cells (NFAT) mediates a cyclosporin A (CsA)- and FK506-suppressible transcriptional program in lymphocytes after antigen-stimulated phospholipase C activation. Nonlymphoid cells also express NFAT isoforms, raising the possibility that these isoforms can be regulated by other extracellular stimuli. This study sought to determine whether histamine can trigger NFAT-mediated transcription in human umbilical vein endothelial cells (HUVEC), using a retrovirus-based luciferase reporter driven by a well characterized, NFAT-specific enhancer. Luciferase levels are induced up to 60-fold over basal levels after costimulation of HUVEC with Ca2+-mobilizing drugs and a phorbol ester, a response that is 20-fold greater than that observed when HUVEC are stimulated with either drug alone. These synergistic responses are inhibited in cells treated with CsA. CsA and FK506 also inhibit the luciferase response to histamine, indicating that histamine can induce NFAT-mediated transcription in HUVEC. To identify candidate genes in HUVEC that might be regulated by NFAT, the expression of several chemokine mRNAs was measured after histamine treatment. Of the mRNAs tested, only those encoding monocyte chemotactic protein-1 (approximately 2-fold over basal) and interleukin-8 (approximately 6-fold over basal) are induced by histamine; both of these responses are suppressed by CsA and FK506. The H1 histamine receptor antagonist chlorpheniramine, but not the H2 receptor antagonist ranitidine, blocks the effects of histamine in this preparation. These data provide the first evidence for a physiological inducer of NFAT-mediated transcription in endothelial cells and support the hypothesis that NFAT participates in H1 histamine receptor-induced interleukin-8 gene expression.
Collapse
Affiliation(s)
- V Boss
- Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
94
|
Lin Z, Hijikata T, Zhang Z, Choi J, Holtzer S, Sweeney HL, Holtzer H. Dispensability of the actin-binding site and spectrin repeats for targeting sarcomeric alpha-actinin into maturing Z bands in vivo: implications for in vitro binding studies. Dev Biol 1998; 199:291-308. [PMID: 9698448 DOI: 10.1006/dbio.1998.8920] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To explore the roles of specific domains of sarcomeric alpha-actinin (s-alpha-actinin) in the assembly and maintenance of striated myofibrils, myogenic cultures were transfected with four MYC-tagged s-alpha-actinin peptides. They were: (1) full-length sarcomeric alpha-actinin, (2) an N-terminal deletion that removed the actin-binding site only (MYC/A-), (3) a peptide that consisted of the actin-binding site only (MYC/A+), and (4) an N-terminal deletion that removed the EF-hands and titin-binding domains (MYC/EFT-). While cytotoxic in replicating myogenic cells, as they were in PtK2 cells, the four MYC peptides were not cytotoxic in postmitotic myotubes. In myotubes each of the four different MYC peptides were promptly and selectively incorporated into normal Z bands. The incorporation of MYC/A-, MYC/A+, and MYC/EFT- into Z bands suggests that (a) the actin-binding site, (b) the spectrin-repeats believed to be responsible for anti-parallel dimerization, and (c) the C-terminal EF-hands and titin-binding domains are each dispensable for targeting s-alpha-actinin/MYC peptides into Z bands. These findings could not have been predicted from the behavior of alpha-actinin (a) in binding assays in cell-free systems or (b) when expressed in transfected nonmuscle cells.
Collapse
Affiliation(s)
- Z Lin
- Department of Cell Biology, Beijing Institute for Cancer Research, Beijing Medical University, China
| | | | | | | | | | | | | |
Collapse
|
95
|
Song XY, Gu M, Jin WW, Klinman DM, Wahl SM. Plasmid DNA encoding transforming growth factor-beta1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model. J Clin Invest 1998; 101:2615-21. [PMID: 9637694 PMCID: PMC508851 DOI: 10.1172/jci2480] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transforming growth factor beta is a potent immunomodulator with both pro- and antiinflammatory activities. Based on its immunosuppressive actions, exogenous TGF-beta has been shown to inhibit autoimmune and chronic inflammatory diseases. To further explore the potential therapeutic role of TGF-beta, we administered a plasmid DNA encoding human TGF-beta1 intramuscularly to rats with streptococcal cell wall-induced arthritis. A single dose of 300 microg plasmid DNA encoding TGF-beta1, but not vector DNA, administered at the peak of the acute phase profoundly suppressed the subsequent evolution of chronic erosive disease typified by disabling joint swelling and deformity (articular index = 8.17+/-0. 17 vs. 1.25+/-0.76, n = 6, day 26, P < 0.01). Moreover, delivery of the TGF-beta1 DNA even as the chronic phase commenced virtually eliminated subsequent inflammation and arthritis. Both radiologic and histopathologic as well as molecular evidence supported the marked inhibitory effect of TGF-beta1 DNA on synovial pathology, with decreases in the inflammatory cell infiltration, pannus formation, cartilage and bone destruction, and the expression of proinflammatory cytokines that characterize this model. Increases in TGF-beta1 protein were detected in the circulation of TGF-beta1 DNA-treated animals, consistent with the observed therapeutic effects being TGF-beta1 dependent. These observations provide the first evidence that gene transfer of plasmid DNA encoding TGF-beta1 provides a mechanism to deliver this potent cytokine that effectively suppresses ongoing inflammatory pathology in arthritis.
Collapse
Affiliation(s)
- X Y Song
- Oral Infection and Immunity Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20892-4352, USA
| | | | | | | | | |
Collapse
|
96
|
Abstract
Gene transfer into skeletal muscle holds promise for the treatment of a variety of serum protein deficiencies, muscular dystrophies, and chronic ischemic limb syndromes. The past two years have seen the development of new and improved vectors for programming recombinant gene expression in skeletal muscle. Important advances include first, novel plasmid DNA, adenovirus, and adeno-associated virus vectors that can be used to stably express therapeutic levels of recombinant proteins in the skeletal muscle of immunocompetent hosts and second, the development of vector systems that enable regulated and tissue-specific transgene expression in skeletal muscle in vivo.
Collapse
Affiliation(s)
- D J Marshall
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
97
|
van Deutekom JC, Hoffman EP, Huard J. Muscle maturation: implications for gene therapy. MOLECULAR MEDICINE TODAY 1998; 4:214-20. [PMID: 9612801 DOI: 10.1016/s1357-4310(98)01231-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a promising target tissue for gene therapy, for both muscle and non-muscle disorders. A variety of methods have been studied to transfer genes into skeletal muscle, including retroviral, adenoviral and herpes simplex viral vectors. However, various factors impede muscle-based viral gene therapy. Here, we discuss why some viral vectors cannot efficiently transduce mature muscle fibers, and describe some new approaches to overcome this barrier.
Collapse
Affiliation(s)
- J C van Deutekom
- Dept. of Orthopaedic Surgery, Children's Hospital of Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
98
|
van Deutekom JC, Floyd SS, Booth DK, Oligino T, Krisky D, Marconi P, Glorioso JC, Huard J. Implications of maturation for viral gene delivery to skeletal muscle. Neuromuscul Disord 1998; 8:135-48. [PMID: 9631393 DOI: 10.1016/s0960-8966(98)00019-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Different viral vectors have been analyzed as gene delivery vehicles to skeletal muscle for potentially therapeutic purposes. In this review, we evaluate the application of retroviral, adenoviral, and herpes simplex viral vectors to deliver genes to skeletal muscle and focus on the dramatic loss of viral transduction detected throughout muscle maturation. Recent results suggested that there are several factors involved in the reduced viral transducibility of mature skeletal muscle: muscle cells become post-mitotic in an early stage, the extracellular matrix develops into a physical barrier, and a loss of myoblast mediation occurs since myoblasts progressively become quiescent. Approaches to improve viral gene delivery to mature skeletal muscle may include the use of particular enzymes to increase the permeability of the extracellular matrix, the pre-treatment of the muscle with a myonecrotic agent to induce myoblast mediation, or the application of the myoblast-mediated ex vivo gene transfer.
Collapse
Affiliation(s)
- J C van Deutekom
- Department of Orthopaedic Surgery, Children's Hospital, 4151 Rangos Research Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Harding CO, Wild K, Chang D, Messing A, Wolff JA. Metabolic engineering as therapy for inborn errors of metabolism--development of mice with phenylalanine hydroxylase expression in muscle. Gene Ther 1998; 5:677-83. [PMID: 9797873 PMCID: PMC2694047 DOI: 10.1038/sj.gt.3300653] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/1997] [Accepted: 01/09/1998] [Indexed: 11/09/2022]
Abstract
Treatment of many inherited liver enzyme deficiencies requires the removal of toxic intermediate metabolites from the blood of affected individuals. We propose that circulating toxins can be adequately cleared and disease phenotype influenced by enzyme expressed in tissues other than the liver. Phenylalanine hydroxylase (PAH) activity was constitutively expressed in skeletal and cardiac muscle of transgenic mice which carried the PAH cDNA under the transcriptional control of the mouse muscle creatine kinase promoter. Muscle PAH-expressing mice were bred to liver PAH-deficient, hyperphenylalaninemic mice to yield progeny that lack PAH activity in liver but express PAH in muscle. These mice exhibited hyperphenylalaninemia at baseline, but serum phenylalanine levels decreased significantly when the mice were supplemented with tetrahydrobiopterin (BH4), a required cofactor for PAH. This is the first demonstration that a liver-specific enzyme, when expressed in a heterologous tissue and supplied with necessary cofactors, can effectively clear toxic metabolites from the circulation of individuals with inherited enzyme deficiency. This result suggests that gene therapy targeted to heterologous tissues, such as muscle, will be effective in the treatment of selected inborn errors of metabolism.
Collapse
Affiliation(s)
- C O Harding
- Department of Pediatrics, University of Wisconsin, Madison, USA
| | | | | | | | | |
Collapse
|
100
|
Abstract
We have developed an in vitro procedure for packaging of recombinant adeno-associated virus (AAV). By using AAV replicative-form DNA as the substrate, it is possible to synthesize an infectious AAV particle in vitro that can be used to transfer a marker gene to mammalian cells. The packaging procedure requires the presence of both the AAV Rep and capsid proteins. Two kinds of in vitro products can be formed which facilitate DNA transfer. Both are resistant to heat and have a density in cesium chloride gradients that is indistinguishable from that of the in vivo-synthesized wild-type virus. This indicates that the particles formed have the appropriate protein-to-DNA ratio and a structure that shares the heat resistance of mature AAV particles. The two types of particles can be distinguished by their sensitivity to chloroform and DNase I treatment. The chloroform-resistant product is, by several criteria, an authentic AAV particle. In addition to having the correct density and being resistant to treatment with chloroform, DNase I, and heat, this particle is efficiently synthesized only if the AAV genome contains intact terminal repeats, which are known to be required for AAV packaging. It is also precipitated by a monoclonal antibody that recognizes mature virus particles but not bound by an antibody that recognizes monomeric or denatured capsid proteins. The chloroform-resistant species is not made when aphidicolin is present in the reaction mixture, suggesting that active DNA replication is required for in vitro packaging. In contrast, the chloroform-sensitive product has several features that suggest it is an incompletely assembled virus particle. It is sensitive to DNase I, does not require the presence of AAV terminal repeats, and is capable of transferring DNA that is theoretically too large to package. Sucrose gradient centrifugation of the in vitro-synthesized products reveals that the particles have sedimentation values between 60S and 110S, which is consistent with partially assembled and mature AAV particles. The in vitro packaging procedure should be useful for studying the mechanism by which a human icosahedral DNA virus particle is assembled, and it may be useful for producing recombinant AAV for gene therapy. The chloroform-sensitive particle may also be useful for transferring DNA that is too large to be packaged in mature recombinant AAV.
Collapse
Affiliation(s)
- X Zhou
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville 32610, USA
| | | |
Collapse
|