51
|
Bhasin N, Cunha SR, Mudannayake M, Gigena MS, Rogers TB, Mohler PJ. Molecular basis for PP2A regulatory subunit B56alpha targeting in cardiomyocytes. Am J Physiol Heart Circ Physiol 2007; 293:H109-19. [PMID: 17416611 DOI: 10.1152/ajpheart.00059.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 2A (PP2A) is a multifunctional protein phosphatase with critical roles in excitable cell signaling. In the heart, PP2A function is linked with modulation of beta-adrenergic signaling and has been suggested to regulate key ion channels and transporters including Na/Ca exchanger, ryanodine receptor, inositol 1,4,5-trisphosphate receptor, and Na/K ATPase. Although many of the functional roles and molecular targets for PP2A in heart are known, little is established regarding the cellular pathways that localize specific PP2A isoform activities to subcellular sites. We report that the PP2A regulatory subunit B56alpha is an in vivo binding partner for ankyrin-B, an adapter protein required for normal subcellular localization of the Na/Ca exchanger, Na/K ATPase, and inositol 1,4,5-trisphosphate receptor. Ankyrin-B and B56alpha are colocalized and coimmunoprecipitate in primary cardiomyocytes. Using multiple strategies, we identified the structural requirements on B56alpha for ankyrin-B association as a 13 residue motif in the B56alpha COOH terminus not present in other B56 family polypeptides. Finally, we report that reduced ankyrin-B expression in primary ankyrin-B(+/-) cardiomyocytes results in disorganized distribution of B56alpha that can be rescued by exogenous expression of ankyrin-B. These new data implicate ankyrin-B as a critical targeting component for PP2A in heart and identify a new class of signaling proteins targeted by ankyrin polypeptides.
Collapse
Affiliation(s)
- Naina Bhasin
- Department of Internal Medicine, Division of Cardiology, University of Iowa Carver College of Medicine, 285 Newton Road, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
53
|
Mafe OA, Gregg EV, Medina-Ortiz WE, Koulen P. Localization of inositol 1,4,5-trisphosphate receptors in mouse retinal ganglion cells. J Neurosci Res 2007; 84:1750-8. [PMID: 17061256 DOI: 10.1002/jnr.21090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) are ligand-gated intracellular Ca(2+)channels that mediate release of Ca(2+) from intracellular stores into the cytosol on activation by second messenger IP(3.). Similarly, IP(3)R mediated changes in cytosolic Ca(2+) concentrations control neuronal functions ranging from synaptic transmission to differentiation and apoptosis. IP(3)R-generated cytosolic Ca(2+) transients also control intracellular Ca(2+) release and subsequent retinal ganglion cell (RGC) physiology and pathophysiology. The distribution of IP(3)R isotypes in primary adult mouse RGC cultures was determined to identify molecular substrates of IP(3)R mediated signaling in these neurons. Immunocytochemical labeling of IP(3)Rs in retinal sections and cultured RGCs was carried out using isoform specific antibodies and was detected with fluorescence microscopy. RGCs were identified by the use of morphologic criteria and RGC-specific immunocytochemical markers, neurofilament 68 kDa, Thy 1.1, and Thy 1.2. RGC morphology and immunoreactivity to neurofilament 68 kDa and Thy 1.1 or Thy 1.2 were identified in both RGC primary cultures and tissue cryosections. RGCs showed localization on intracellular membranes with a differential distribution of IP(3)R isoforms 1, 2, and 3. IP(3)R Types 1 and 3 were detected intracellularly throughout the cell whereas Type 2 was expressed predominantly in soma. Expression of all three IP(3)Rs by RGCs indicates that all IP(3)R types potentially play a role in Ca(2+) homeostasis and Ca(2+) signaling in these cells. Differential localization of IP(3) receptor subtypes in combination with biophysical properties of IP(3)R types may be an important molecular mechanism by which RGCs organize their cytosolic Ca(2+) signals.
Collapse
Affiliation(s)
- Oloruntoyin A Mafe
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107-2699, USA
| | | | | | | |
Collapse
|
54
|
Ashworth R, Devogelaere B, Fabes J, Tunwell RE, Koh KR, De Smedt H, Patel S. Molecular and functional characterization of inositol trisphosphate receptors during early zebrafish development. J Biol Chem 2007; 282:13984-93. [PMID: 17331947 DOI: 10.1074/jbc.m700940200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fluctuations in cytosolic Ca(2+) are crucial for a variety of cellular processes including many aspects of development. Mobilization of intracellular Ca(2+) stores via the production of inositol trisphosphate (IP(3)) and the consequent activation of IP(3)-sensitive Ca(2+) channels is a ubiquitous means by which diverse stimuli mediate their cellular effects. Although IP(3) receptors have been well studied at fertilization, information regarding their possible involvement during subsequent development is scant. In the present study we examined the role of IP(3) receptors in early development of the zebrafish. We report the first molecular analysis of zebrafish IP(3) receptors which indicates that, like mammals, the zebrafish genome contains three distinct IP(3) receptor genes. mRNA for all isoforms was detectable at differing levels by the 64 cell stage, and IP(3)-induced Ca(2+) transients could be readily generated (by flash photolysis) in a controlled fashion throughout the cleavage period in vivo. Furthermore, we show that early blastula formation was disrupted by pharmacological blockade of IP(3) receptors or phospholipase C, by molecular inhibition of the former by injection of IRBIT (IP(3) receptor-binding protein released with IP(3)) and by depletion of thapsigargin-sensitive Ca(2+) stores after completion of the second cell cycle. Inhibition of Ca(2+) entry or ryanodine receptors, however, had little effect. Our work defines the importance of IP(3) receptors during early development of a genetically and optically tractable model vertebrate organism.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Embryo, Nonmammalian/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Developmental
- Inositol 1,4,5-Trisphosphate Receptors/classification
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ryanodine Receptor Calcium Release Channel/metabolism
- Thapsigargin/pharmacology
- Zebrafish/embryology
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Rachel Ashworth
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
55
|
Lee B, Vermassen E, Yoon SY, Vanderheyden V, Ito J, Alfandari D, De Smedt H, Parys JB, Fissore RA. Phosphorylation of IP3R1 and the regulation of [Ca2+]i responses at fertilization: a role for the MAP kinase pathway. Development 2007; 133:4355-65. [PMID: 17038520 PMCID: PMC2909192 DOI: 10.1242/dev.02624] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.
Collapse
Affiliation(s)
- Bora Lee
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Elke Vermassen
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Sook-Young Yoon
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Veerle Vanderheyden
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Junya Ito
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Dominique Alfandari
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
| | - Humbert De Smedt
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Jan B. Parys
- Laboratorium voor Fysiologie, Katholieke Universiteit Leuven, Campus Gasthuisberg O/N1, bus 802, B-3000 Leuven, Belgium
| | - Rafael A. Fissore
- Molecular and Cellular Biology Program and Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01002, USA
- Author for correspondence ()
| |
Collapse
|
56
|
Davidson D, Schraven B, Veillette A. PAG-associated FynT regulates calcium signaling and promotes anergy in T lymphocytes. Mol Cell Biol 2007; 27:1960-73. [PMID: 17210649 PMCID: PMC1820463 DOI: 10.1128/mcb.01983-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Phosphoprotein associated with glycolipid-enriched membranes (PAG), also named Csk-binding protein (Cbp), is a transmembrane adaptor associated with lipid rafts. It is phosphorylated on multiple tyrosines located in the cytoplasmic domain. One tyrosine, tyrosine 314 (Y314) in the mouse, interacts with Csk, a protein tyrosine kinase that negatively regulates Src kinases. This interaction enables PAG to inhibit T-cell antigen receptor (TCR)-mediated T-cell activation. PAG also associates with the Src-related kinase FynT. Genetic studies indicated that FynT was required for PAG tyrosine phosphorylation and binding of PAG to Csk in T cells. Herein, we investigated the function and regulation of PAG-associated FynT. Our data showed that PAG was constitutively associated with FynT in unstimulated T cells and that this association was rapidly lost in response to TCR stimulation. Dissociation of the PAG-FynT complex preceded PAG dephosphorylation and PAG-Csk dissociation after TCR engagement. Interestingly, in anergic T cells, the association of PAG with FynT, but not Csk, was increased. Analyses of PAG mutants provided evidence that PAG interacted with FynT by way of tyrosines other than Y314. Enforced expression of a PAG variant interacting with FynT, but not Csk, caused a selective enhancement of TCR-triggered calcium fluxes in normal T cells. Furthermore, it promoted T-cell anergy. Both effects were absent in mice lacking FynT, implying that the effects were mediated by PAG-associated FynT. Hence, besides enabling PAG tyrosine phosphorylation and the PAG-Csk interaction, PAG-associated FynT can stimulate calcium signals and favor T-cell anergy. These data improve our comprehension of the function of PAG in T cells. They also further implicate FynT in T-cell anergy.
Collapse
|
57
|
Krebs B, Wiebelitz A, Balitzki-Korte B, Vassallo N, Paluch S, Mitteregger G, Onodera T, Kretzschmar HA, Herms J. Cellular prion protein modulates the intracellular calcium response to hydrogen peroxide. J Neurochem 2007; 100:358-67. [PMID: 17241158 DOI: 10.1111/j.1471-4159.2006.04256.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The physiological function of the cellular prion protein (PrP(C)) is still under intense investigation. It has been suggested that PrP(C) has a protective role in neuronal cells, particularly against environmental stress caused by reactive oxygen species (ROS). Here we analysed the acute effect of a major ROS, hydrogen peroxide (H(2)O(2)), on intracellular calcium homeostasis in cultured cerebellar granule cells and immortalized hippocampal neuronal cells. Both neuronal cell culture models showed that the rise in intracellular calcium following application of H(2)O(2) was strongly dependent on the presence of PrP(C). Moreover, the N-terminal octapeptide repeats of PrP(C) were required for this effect, because neuronal cells expressing a PrP(C) lacking the N-terminus resembled the PrP(C)-deficient phenotype. Neurones deficient of fyn kinase, or pharmacological inhibition of fyn, also abrogated the calcium response to H(2)O(2) treatment, indicating that fyn activation is a critical step within the PrP(C) signalling cascade. Finally, we identified a possible role of this PrP(C) signalling pathway in the neuroprotective response of PrP(C) to oxidative stress. In conclusion, we put forward the hypothesis that PrP(C) functions as a sensor for H(2)O(2), thereby activating a protective signalling cascade involving fyn kinase that leads to calcium release from intracellular stores.
Collapse
Affiliation(s)
- Bjarne Krebs
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Choe CU, Ehrlich BE. The inositol 1,4,5-trisphosphate receptor (IP3R) and its regulators: sometimes good and sometimes bad teamwork. ACTA ACUST UNITED AC 2006; 2006:re15. [PMID: 17132820 DOI: 10.1126/stke.3632006re15] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In both nonexcitable and excitable cells, the inositol 1,4,5-trisphosphate receptor (IP(3)R) is the primary cytosolic target responsible for the initiation of intracellular calcium (Ca(2+)) signaling. To fulfill this function, the IP(3)R depends on interaction with accessory subunits and regulatory proteins. These include proteins that reside in the lumen of the endoplasmic reticulum (ER), such as chromogranin A and B and ERp44, and cytosolic proteins, such as neuronal Ca(2+) sensor 1, huntingtin, cytochrome c, IP(3)R-binding protein released with inositol 1,4,5-trisphosphate, Homer, and 4.1N. Specific interactions between these modulatory proteins and the IP(3)R have been described, making it clear that the controlled modulation of the IP(3)R by its binding partners is necessary for physiological cell regulation. The functional coupling of these modulators with the IP(3)R can control apoptosis, intracellular pH, the initiation and regulation of neuronal Ca(2+) signaling, exocytosis, and gene expression. The pathophysiological relevance of IP(3)R modulation is apparent when the functional interaction of these proteins is enhanced or abolished by mutation or overexpression. The subsequent deregulation of the IP(3)R leads to pathological changes in Ca(2+) signaling, signal initiation, the amplitude and frequency of Ca(2+) signals, and the duration of the Ca(2+) elevation. Consequences of this deregulation include abnormal growth and apoptosis. Complex regulation of Ca(2+) signaling is required for the cell to live and function, and this difficult task can only be managed when the IP(3)R teams up and acts properly with its numerous binding partners.
Collapse
Affiliation(s)
- Chi-Un Choe
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
59
|
Zhong F, Davis MC, McColl KS, Distelhorst CW. Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. ACTA ACUST UNITED AC 2006; 172:127-37. [PMID: 16391001 PMCID: PMC2063540 DOI: 10.1083/jcb.200506189] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To investigate the effect of Bcl-2 on Ca2+ signaling in T cells, we continuously monitored Ca2+ concentration in Bcl-2–positive and –negative clones of the WEHI7.2 T cell line after T cell receptor (TCR) activation by anti-CD3 antibody. In Bcl-2–negative cells, high concentrations of anti-CD3 antibody induced a transient Ca2+ elevation, triggering apoptosis. In contrast, low concentrations of anti-CD3 antibody induced Ca2+ oscillations, activating the nuclear factor of activated T cells (NFAT), a prosurvival transcription factor. Bcl-2 blocked the transient Ca2+ elevation induced by high anti-CD3, thereby inhibiting apoptosis, but did not inhibit Ca2+ oscillations and NFAT activation induced by low anti-CD3. Reduction in the level of all three inositol 1,4,5-trisphosphate (InsP3) receptor subtypes by small interfering RNA inhibited the Ca2+ elevation induced by high but not low anti-CD3, suggesting that Ca2+ responses to high and low anti-CD3 may have different requirements for the InsP3 receptor. Therefore, Bcl-2 selectively inhibits proapoptotic Ca2+ elevation induced by strong TCR activation without hindering prosurvival Ca2+ signals induced by weak TCR activation.
Collapse
Affiliation(s)
- Fei Zhong
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
60
|
Lalancette C, Bordeleau LJ, Faure RL, Leclerc P. Bull testicular haploid germ cells express a messenger encoding for a truncated form of the protein tyrosine kinase HCK. Mol Reprod Dev 2006; 73:520-30. [PMID: 16432821 DOI: 10.1002/mrd.20422] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein tyrosine phosphorylation is a process that has been studied worldwide during sperm capacitation and acrosomal exocytosis events. Although few capacitation-induced phosphotyrosine-containing proteins have been identified, little is known about the tyrosine kinases directly involved in this post-translational modification. Different studies from our and other groups using tyrosine kinase inhibitors suggest the involvement of members of the family of src-related tyrosine kinases in the sperm capacitation associated increase in protein tyrosine phosphorylation. Using a molecular biology approach, we report for the first time messengers encoding for members from the src-related tyrosine kinase family in bovine spermatogenic cells. Degenerated primers were designed within a highly homologous region specific to the family of src tyrosine kinases, and RNAs coding for c-src, c-yes, lyn, lck, and hck were identified in bull testis and haploid germ cells by RT-PCR. We also report the presence of a messenger in haploid bull germ cells that could encode for a truncated isoform of the hck tyrosine kinase. This messenger was detected by screening of a haploid germ cells cDNA library using the RT-PCR product homologous to hck as a probe. The presence of this transcript in haploid germ cell RNA preparations was validated by RT-PCR, 3'RACE, 5'RACE as well as Northern blot. Such a truncated protein could function as an adaptor protein or as a competitive inhibitor in spermiogenesis or mature sperm functions.
Collapse
Affiliation(s)
- Claudia Lalancette
- Département d'Obstétrique/Gynécologie, Centre de Recherche en Biologie de la Reproduction, Université Laval and Endocrinologie de la Reproduction, Centre de recherche du CHUQ, Québec, Canada
| | | | | | | |
Collapse
|
61
|
Hsu MF, Sun SP, Chen YS, Tsai CR, Huang LJ, Tsao LT, Kuo SC, Wang JP. Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonic acid-induced Ca2+ signals through thiol modification in neutrophils. Biochem Pharmacol 2005; 70:1320-9. [PMID: 16143313 DOI: 10.1016/j.bcp.2005.07.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2005] [Revised: 07/11/2005] [Accepted: 07/22/2005] [Indexed: 10/25/2022]
Abstract
In this study, we demonstrate that N-ethylmaleimide (NEM), a cell permeable thiol-alkylating agent, enhanced the [Ca2+]i rise caused by stimulation with cyclopiazonic acid (CPA), a sarcoplasmic-endoplasmic reticulum Ca2+-ATPase inhibitor, in rat neutrophils. In addition, NEM attenuated the formyl-Met-Leu-Phe (fMLP)-induced [Ca2+]i rise whether NEM was added to cells prior to or after fMLP stimulation. Moreover, application of NEM after fMLP activation in the absence of external Ca2+ inhibited the Ca2+ signal upon addition of Ca2+ to the medium. Similar patterns were also obtained by using 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), a cell impermeable dithiol-oxidizing agent, which replaced NEM in the CPA- and fMLP-induced [Ca2+]i rise experiments. Treatment with dithiothreitol (DTT), a cell permeable dithiol-reducing agent, N-acetyl-l-cysteine (NAC), a cell permeable monothiol-reducing agent, and tris-(2-carboxyethyl)phosphine (TCEP), a cell impermeable reductant without a thiol group, all rescued the fMLP-induced Ca2+ signal from NEM. Rat neutrophils express the mRNA encoding for transient receptor potential (TRP) C6, inositol trisphosphate receptor (IP3R) 2 and IP3R3. NEM had no effect on the mitochondrial membrane potential. NEM could restore the polarization and F-actin accumulation of fMLP-treated cells to those of the control. In the absence of external Ca2+, NEM rendered the CPA-induced [Ca2+]i elevation persistently but inhibited the fMLP-induced Ca2+ spike, which was reversed by tris-(2-cyanoethyl)phosphine (TCP), a cell permeable reductant without a thiol group. DTNB did not affect the Ca2+ spike caused by fMLP. These results indicate that through protein thiol oxidation, NEM affects the receptor-activated and the store depletion-derived Ca2+ signals in an opposing manner.
Collapse
Affiliation(s)
- Mei-Feng Hsu
- Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Wallace TA, Xia SL, Sayeski PP. Jak2 tyrosine kinase prevents angiotensin II-mediated inositol 1,4,5 trisphosphate receptor degradation. Vascul Pharmacol 2005; 43:336-45. [PMID: 16257270 DOI: 10.1016/j.vph.2005.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 08/01/2005] [Indexed: 11/28/2022]
Abstract
In addition to its role as a vasoconstrictor, angiotensin II also acts as a potent growth factor by activating several tyrosine kinases, including Jak2. Interestingly, Jak2 has been linked to similar cardiovascular pathologies as have been previously linked to the renin-angiotensin system. Identifying the downstream targets of Jak2 via the AT(1) receptor may therefore elucidate its role in the progression of various pathologies. Previously, microarray analysis from our laboratory identified the Type 1 inositol 1,4,5 trisphosphate (IP(3)) receptor as a potential target of Jak2 following chronic stimulation by angiotensin II. Therefore, we hypothesized that Jak2 regulates IP(3) receptor expression in response to angiotensin II. To test this hypothesis, rat aortic smooth muscle (RASM) cells over-expressing a dominant negative (DN) Jak2 protein were used. The Jak2-dependent signaling in these cells is reduced approximately 90% when compared to RASM control cells. Analysis of protein expression showed that the IP(3) receptor was degraded approximately 2-fold (P<0.05) in cells lacking functional Jak2 within 1 h of treatment by angiotensin II. Notably, degradation of the IP(3) receptor was reversible since protein levels were restored to normal following 2 h of recovery from angiotensin II. To eliminate the possibility of clonal artifact in the DN cells, wild type RASM cells were treated with the Jak2 pharmacological inhibitor, AG490. We found that angiotensin II treatment degraded IP(3) receptor in AG490-treated cells, but not in the vehicle controls. Treatment with lactacystin, a proteasome inhibitor, completely blocked angiotensin II-mediated degradation of IP(3) receptor, thereby suggesting that the degradation occurs through a proteasome-dependent mechanism. Moreover, the degradation of IP(3) receptor in DN cells correlated with a significant loss of intracellular calcium mobilization when treated with angiotensin II (DN 27.4+/-1.1% vs. WT 42.2+/-4.7%; n=5, P=0.002). We next examined through what mechanism Jak2 regulates the IP(3) receptor. When wild type RASM cells were treated with PP2, an Src-family inhibitor, IP(3) receptor expression was markedly reduced. Since previous data show that Fyn, a downstream target of Jak2, is able to phosphorylate the IP(3) receptor at Tyr 353, we believe our data suggest that Jak2 prevents the angiotensin II-mediated IP(3) receptor degradation through the activation of Fyn. In conclusion, these data suggest that Jak2 has a protective role in maintaining IP(3) receptor expression, potentially through activation of Fyn and subsequent phosphorylation of the IP(3) receptor.
Collapse
Affiliation(s)
- Tiffany A Wallace
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, P.O. Box 100274, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
63
|
Soghoian D, Jayaraman V, Silane M, Berenstein A, Jayaraman T. Inositol 1,4,5-trisphosphate receptor phosphorylation in breast cancer. Tumour Biol 2005; 26:207-12. [PMID: 16006774 DOI: 10.1159/000086954] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to establish the type(s) of inositol 1,4,5-trisphosphate receptors (IP3Rs) in T47D breast cancer cells that regulate intracellular calcium (Ca2+) and whether they interact with cyclin (Cy), an important regulator of cyclin-dependent kinases (cdk), during cell cycle progression. Immunoblotting, immunoprecipitation, and pull-down assays were used to identify IP3R expression and interaction with Cy. The relative IP3R3 expression, as compared to IP3R1, was higher in these cells. Pull-down analysis showed that IP3R3 interacted with both CyA and CyB. The interaction with Cys and the phosphorylation of IP3Rs by Cy/cdk complexes provide a novel mechanism of regulating intracellular Ca2+ release and Ca2+-dependent signaling events in breast cancer.
Collapse
Affiliation(s)
- Damien Soghoian
- Vascular Biology Laboratory, Department of Neurosurgery, St. Luke's Roosevelt Hospital Center, New York, N.Y. 10025, USA
| | | | | | | | | |
Collapse
|
64
|
Yuan Z, Cai T, Tian J, Ivanov AV, Giovannucci DR, Xie Z. Na/K-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell 2005; 16:4034-45. [PMID: 15975899 PMCID: PMC1196317 DOI: 10.1091/mbc.e05-04-0295] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have shown that the caveolar Na/K-ATPase transmits ouabain signals via multiple signalplexes. To obtain the information on the composition of such complexes, we separated the Na/K-ATPase from the outer medulla of rat kidney into two different fractions by detergent treatment and density gradient centrifugation. Analysis of the light fraction indicated that both PLC-gamma1 and IP3 receptors (isoforms 2 and 3, IP3R2 and IP3R3) were coenriched with the Na/K-ATPase, caveolin-1 and Src. GST pulldown assays revealed that the central loop of the Na/K-ATPase alpha1 subunit interacts with PLC-gamma1, whereas the N-terminus binds IP3R2 and IP3R3, suggesting that the signaling Na/K-ATPase may tether PLC-gamma1 and IP3 receptors together to form a Ca(2+)-regulatory complex. This notion is supported by the following findings. First, both PLC-gamma1 and IP3R2 coimmunoprecipitated with the Na/K-ATPase and ouabain increased this interaction in a dose- and time-dependent manner in LLC-PK1 cells. Depletion of cholesterol abolished the effects of ouabain on this interaction. Second, ouabain induced phosphorylation of PLC-gamma1 at Tyr(783) and activated PLC-gamma1 in a Src-dependent manner, resulting in increased hydrolysis of PIP2. It also stimulated Src-dependent tyrosine phosphorylation of the IP3R2. Finally, ouabain induced Ca(2+) release from the intracellular stores via the activation of IP3 receptors in LLC-PK1 cells. This effect required the ouabain-induced activation of PLC-gamma1. Inhibition of Src or depletion of cholesterol also abolished the effect of ouabain on intracellular Ca(2+).
Collapse
Affiliation(s)
- Zhaokan Yuan
- Department of Pharmacology, Medical College of Ohio, Toledo, OH 43614, USA
| | | | | | | | | | | |
Collapse
|
65
|
Guillemette J, Caron AZ, Regimbald-Dumas Y, Arguin G, Mignery GA, Boulay G, Guillemette G. Expression of a truncated form of inositol 1,4,5-trisphosphate receptor type III in the cytosol of DT40 triple inositol 1,4,5-trisphosphate receptor-knockout cells. Cell Calcium 2005; 37:97-104. [PMID: 15589990 DOI: 10.1016/j.ceca.2004.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/30/2004] [Accepted: 03/30/2004] [Indexed: 11/26/2022]
Abstract
In non-excitable cells, the inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ channel playing a major role in Ca2+ signaling. Three isoforms of IP3R have been identified and most cell types express different proportions of each isoform. The DT40 B lymphocyte cell line lacking all three IP3R isoforms (DT40IP3R-KO cells) represents an excellent model to re-express any recombinant IP3R and analyze its specific properties. In the study presented here, we confirmed that DT40IP3R-KO cells do not express any IP3-sensitive Ca2+ release channel. However, with an immunoblot approach and a [3H]IP3 binding approach we demonstrated the presence of a C-terminally truncated form of IP3R type III in the cytosolic fraction of DT40IP3R-KO cells. We further showed that this truncated IP3R retained the ability to couple to the Ca2+ entry channel TRPC6. Therefore, a word of caution is offered about the interpretation of results obtained in using DT40IP3R-KO cells to study the cellular mechanisms of Ca2+ entry.
Collapse
Affiliation(s)
- Joelle Guillemette
- Department of Pharmacology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Que., Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
66
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
67
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
68
|
Fotheringham J, Mayne M, Holden C, Nath A, Geiger JD. Adenosine receptors control HIV-1 Tat-induced inflammatory responses through protein phosphatase. Virology 2004; 327:186-95. [PMID: 15351206 DOI: 10.1016/j.virol.2004.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Recently, adenosine has been proposed to be a "metabolic" switch that may sense and direct immune and inflammatory responses. Inflammation and pro-inflammatory cytokine production are important in development of HIV-1 associated dementia, a devastating consequence of HIV-1 infection of the CNS. The HIV-1 protein Tat induces cell death in the CNS and activates local inflammatory responses partially by inducing calcium release from the endoplasmic reticulum. Because activation of adenosine receptors decreases production of the pro-inflammatory cytokine TNF-alpha in several experimental paradigms both in vitro and in vivo, we hypothesized that adenosine receptor activation would control both increased intracellular calcium and TNF-alpha production induced by Tat. Treatment of primary monocytes with Tat significantly increased the levels of intracellular calcium released from IP3 stores. Activation of adenosine receptors with CGS 21680 inhibited Tat-induced increases of intracellular calcium by 90 +/- 8% and was dependent on protein phosphatase activity because okadaic acid blocked the actions of CGS 21680. Tat-induced TNF-alpha production was inhibited 90 +/- 6% by CGS 21680 and concurrent treatment with okadaic acid blocked the inhibitory actions of CGS 21680. Using a model monocytic cell line, CGS 21680 treatment increased cytosolic serine/threonine phosphatase. Together, these data indicate that A2A receptor activation increases protein phosphatase activity, which blocks IP3 receptor-regulated calcium release and reduction of intracellular calcium inhibits TNF-alpha production in monocytes.
Collapse
Affiliation(s)
- J Fotheringham
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | |
Collapse
|
69
|
Prasanna G, Narayan S, Krishnamoorthy RR, Yorio T. Eyeing endothelins: a cellular perspective. Mol Cell Biochem 2004; 253:71-88. [PMID: 14619958 DOI: 10.1023/a:1026005418874] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelin is an endogenous vasoactive peptide that is considered among the most potent vasoconstrictor substances known. In addition to its vascular effects, endothelins and their receptors have been shown to be present in the eye and to have a number of ocular actions that may be important for ocular homeostasis, but, in excess can be a potential contributor to ocular neuropathy in glaucoma. The current review focuses on the cellular and molecular aspects of endothelins and its receptors in the eye with an emphasis on its relationship to ocular function and its potential role in the etiology of glaucoma pathophysiology.
Collapse
Affiliation(s)
- Ganesh Prasanna
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | | | | |
Collapse
|
70
|
Vermassen E, Fissore RA, Nadif Kasri N, Vanderheyden V, Callewaert G, Missiaen L, Parys JB, De Smedt H. Regulation of the phosphorylation of the inositol 1,4,5-trisphosphate receptor by protein kinase C. Biochem Biophys Res Commun 2004; 319:888-93. [PMID: 15184066 DOI: 10.1016/j.bbrc.2004.05.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/30/2022]
Abstract
The various inositol 1,4,5-trisphosphate receptor (IP(3)R) isoforms are potential substrates for several protein kinases. We compared the in vitro phosphorylation of purified IP(3)R1 and IP(3)R3 by the catalytic subunit of protein kinase C (PKC). Phosphorylation of IP(3)R1 by PKC was about eight times stronger than that of IP(3)R3 under identical conditions. Protein kinase A strongly stimulated the PKC-induced phosphorylation of IP(3)R1. In contrast, Ca(2+) inhibited its phosphorylation (IC(50)<or=2microM) and this inhibition was further potentiated by calmodulin (CaM), while the Ca(2+)-independent CaM mutant CaM(1234) was ineffective. Ca(2+) and CaM, however, did not inhibit IP(3)R3 phosphorylation by PKC. Taken together, these findings show that Ca(2+) and CaM differentially regulate the PKC-mediated phosphorylation of IP(3)R1 and IP(3)R3 and are indicative for a role for the inhibition of IP(3)R1 phosphorylation by Ca(2+) and CaM in the negative slope of the bell-shaped effect of Ca(2+) on IP(3)R function.
Collapse
Affiliation(s)
- Elke Vermassen
- Laboratory of Physiology, K.U. Leuven Campus Gasthuisberg O/N, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only approximately 5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
Collapse
Affiliation(s)
- Randen L Patterson
- Department of Neuroscience, Johns Hopkins University, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
72
|
Manclús JJ, Abad A, Lebedev MY, Mojarrad F, Micková B, Mercader JV, Primo J, Miranda MA, Montoya A. Development of a monoclonal immunoassay selective for chlorinated cyclodiene insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:2776-2784. [PMID: 15137813 DOI: 10.1021/jf035382h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Organochlorine pesticides still generate public health concerns because of their unresolved health impact and their persistence in living beings, which is demanding appropriate analytical techniques for their monitoring. In this study, an enzyme-linked immunosorbent assay based on monoclonal antibodies (MAbs) for the detection of an important group of organochlorine pesticides, the cyclodiene group, has been developed. With this aim, several hapten-protein conjugates, characterized by exposure of the common hexachlorinated bicyclic (norbornene) moiety and differing in the linking structure to the carrier protein, were prepared. From mice immunized with these conjugates, several MAbs with the ability to sensitively bind the majority of cyclodienes were obtained. Among them CCD2.2 MAb displaying the broadest recognition to cyclodiene compounds (endosulfan, dieldrin, endrin, chlordane, heptachlor, aldrin, toxaphene: I(50) values in the 6-25 nM range) was selected for the assay. Interestingly, this MAb showed certain stereospecificity toward other polychlorinated cycloalkanes because the gamma-isomer of hexachlorocyclohexane (lindane) was also very well recognized (I(50) value of 22 nM). This immunoassay is potentially a very valuable analytical tool for the rapid and sensitive determination of cyclodiene insecticides and related compounds, which in turn may contribute to the understanding of the biological activities and of the overall environmental impact of these persistent organic pollutants.
Collapse
Affiliation(s)
- Juan J Manclús
- Centro de Investigación e Innovación en Bioingeniería and Instituto de Tecnología Química, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Macdonald A, Crowder K, Street A, McCormick C, Harris M. The hepatitis C virus NS5A protein binds to members of the Src family of tyrosine kinases and regulates kinase activity. J Gen Virol 2004; 85:721-729. [PMID: 14993658 DOI: 10.1099/vir.0.19691-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The hepatitis C virus (HCV) non-structural NS5A protein has been shown to associate with a variety of cellular signalling proteins. Of particular interest is the observation that a highly conserved C-terminal polyproline motif in NS5A was able to interact with the Src-homology 3 (SH3) domains of the adaptor protein Grb2. As it has previously been shown that specific polyproline motifs can interact with a range of SH3 domains, we investigated whether NS5A was capable of interacting with other SH3 domain-containing proteins. We show here that NS5A interacts with the SH3 domains of members of the Src family of tyrosine kinases: a combination of in vitro binding assays and co-immunoprecipitation experiments revealed an interaction between NS5A and Hck, Lck, Lyn and Fyn, but interestingly not Src itself. Mutational analysis confirmed that the polyproline motif responsible for binding to Grb2 also bound to the SH3 domains of Hck, Lck, Lyn and Fyn. Furthermore, a previously unidentified polyproline motif, adjacent to the first motif, was also able to mediate binding to the SH3 domain of Lyn. Using transient transfections and Huh-7 cells harbouring a persistently replicating subgenomic HCV replicon we demonstrate that NS5A bound to native Src-family kinases in vivo and differentially modulated kinase activity, inhibiting Hck, Lck and Lyn but activating Fyn. Lastly, we show that signalling pathways controlled by Src-family kinases are modulated in replicon cells. We conclude that the interactions between NS5A and Src-family kinases are physiologically relevant and may play a role in either virus replication or pathogenesis.
Collapse
Affiliation(s)
- Andrew Macdonald
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Katherine Crowder
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Street
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher McCormick
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
74
|
Cui J, Matkovich SJ, deSouza N, Li S, Rosemblit N, Marks AR. Regulation of the Type 1 Inositol 1,4,5-Trisphosphate Receptor by Phosphorylation at Tyrosine 353. J Biol Chem 2004; 279:16311-6. [PMID: 14761954 DOI: 10.1074/jbc.m400206200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) plays an essential role in Ca2+ signaling during lymphocyte activation. Engagement of the T cell or B cell receptor by antigen initiates a signal transduction cascade that leads to tyrosine phosphorylation of IP3R by Src family nonreceptor protein tyrosine kinases, including Fyn. However, the effect of tyrosine phosphorylation on the IP3R and subsequent Ca2+ release is poorly understood. We have identified tyrosine 353 (Tyr353) in the IP3-binding domain of type 1 IP3R (IP3R1) as a phosphorylation site for Fyn both in vitro and in vivo. We have developed a phosphoepitope-specific antibody and shown that IP3R1-Y353 becomes phosphorylated during T cell and B cell activation. Furthermore, tyrosine phosphorylation of IP3R1 increased IP3 binding at low IP3 concentrations (<10 nm). Using wild-type IP3R1 or an IP3R1-Y353F mutant that cannot be tyrosine phosphorylated at Tyr353 or expressed in IP3R-deficient DT40 B cells, we demonstrated that tyrosine phosphorylation of Tyr353 permits prolonged intracellular Ca2+ release during B cell activation. Taken together, these data suggest that one function of tyrosine phosphorylation of IP3R1-Y353 is to enhance Ca2+ signaling in lymphocytes by increasing the sensitivity of IP3R1 to activation by low levels of IP3.
Collapse
Affiliation(s)
- Jie Cui
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
75
|
Bultynck G, Vermassen E, Szlufcik K, De Smet P, Fissore RA, Callewaert G, Missiaen L, De Smedt H, Parys JB. Calcineurin and intracellular Ca2+-release channels: regulation or association? Biochem Biophys Res Commun 2004; 311:1181-93. [PMID: 14623304 DOI: 10.1016/j.bbrc.2003.08.084] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Ca(2+)- and calmodulin-dependent phosphatase calcineurin was reported to interact with the inositol 1,4,5-trisphosphate receptor (IP(3)R) and the ryanodine receptor (RyR) and to modulate their phosphorylation status and activity. However, controversial data on the molecular mechanisms involved and on the functional relevance of calcineurin for these channel-complexes have been described. Hence, we will focus on the functional importance of calcineurin for IP(3)R and RyR function and on the different mechanisms by which Ca(2+)-dependent dephosphorylation can affect the gating of those intracellular Ca(2+)-release channels. Since many studies made use of immunosuppressive drugs that are inhibiting calcineurin activity, we will also have to take the different side effects of these drugs into account for the proper interpretation of the effects of calcineurin on intracellular Ca(2+)-release channels. In addition, it became recently known that various other phosphatases and kinases can associate with these channels, thereby forming macromolecular complexes. The relevance of these enzymes for IP(3)R and RyR functioning will be reviewed since in some cases they could interfere with the effects ascribed to calcineurin. Finally, we will discuss the downstream effects of calcineurin on the regulation of the expression levels of intracellular Ca(2+)-release channels as well as the relation between IP(3)R- and RyR-mediated Ca(2+) release and calcineurin-dependent gene expression.
Collapse
Affiliation(s)
- G Bultynck
- Department of Biological Sciences, Stanford University, Gilbert Hall, Room 208B, 371 Serra Mall, Stanford, CA 94305-5020, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Salomonsson M, Arendshorst WJ. Effect of tyrosine kinase blockade on norepinephrine-induced cytosolic calcium response in rat afferent arterioles. Am J Physiol Renal Physiol 2004; 286:F866-74. [PMID: 15075182 DOI: 10.1152/ajprenal.00213.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used genistein (Gen) and tyrphostin 23 (Tyr-23) to evaluate the importance of tyrosine phosphorylation in norepinephrine (NE)-induced changes in intracellular free calcium concentration ([Ca(2+)](i)) in rat afferent arterioles. [Ca(2+)](i) was measured in microdissected arterioles using ratiometric photometry of fura 2 fluorescence. The control [Ca(2+)](i) response to NE (1 microM) consisted of a rapid initial peak followed by a plateau phase sustained above baseline. Pretreatment with the tyrosine kinase inhibitor Tyr-23 (50 microM, 10 min) caused a slow 40% increase in baseline [Ca(2+)](i). Tyr-23 attenuated peak and plateau responses to NE, both by approximately 70%. In the absence of extracellular Ca(2+) (0 Ca), Tyr-23 reduced the immediate [Ca(2+)](i) response to NE by approximately 60%, indicative of mobilization of internal stores, and abolished the plateau phase. In other arterioles, the [Ca(2+)](i) response to depolarization induced by KCl (50 mM) was not attenuated by Tyr-23, indicating no direct effect on L-type Ca(+) channels activated by depolarization. The Ca(2+) channel blocker nifedipine (1 microM) inhibited the NE response by approximately 50%; the effects of nifedipine and Tyr-23 were not additive. Nifedipine had no inhibitory effect after Tyr-23 pretreatment, indicating Tyr-23 inhibition of Ca(2+) entry. Another tyrosine kinase inhibitor, Gen (5 and 50 microM), did not affect baseline [Ca(2+)](i). High-dose Gen inhibited the peak and plateau response to NE by 87 and 75%, respectively; low-dose Gen attenuated both responses by approximately 20%. In 0 Ca, Gen (50 microM) abolished the immediate [Ca(2+)](i) mobilization response. Combined nifedipine and Gen (50 microM) inhibited the rapid NE response by approximately 90% in the presence of extracellular Ca(2+). Gen (50 microM) also inhibited by 60% the [Ca(2+)](i) response to 50 mM KCl, indicating a direct interaction with voltage-sensitive, L-type Ca(2+) entry channels. These results indicate that tyrosine phosphorylation is an important link in the chain of events leading to alpha-adrenoceptor-induced Ca(2+) recruitment (both entry and release) in afferent arteriolar smooth muscle cells. Furthermore, different blockers of tyrosine kinase appear to have different modes of action in renal microvessels.
Collapse
Affiliation(s)
- Max Salomonsson
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
77
|
Malathi K, Kohyama S, Ho M, Soghoian D, Li X, Silane M, Berenstein A, Jayaraman T. Inositol 1,4,5-trisphosphate receptor (type 1) phosphorylation and modulation by Cdc2. J Cell Biochem 2003; 90:1186-96. [PMID: 14635192 DOI: 10.1002/jcb.10720] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Calcium (Ca2+) release from the endoplasmic reticulum (ER) controls numerous cellular functions including proliferation, and is regulated in part by inositol 1,4,5-trisphosphate receptors (IP3Rs). IP3Rs are ubiquitously expressed intracellular Ca2+-release channels found in many cell types. Although IP3R-mediated Ca2+ release has been implicated in cellular proliferation, the biochemical pathways that modulate intracellular Ca2+ release during cell cycle progression are not known. Sequence analysis of IP3R1 reveals the presence of two putative phosphorylation sites for cyclin-dependent kinases (cdks). In the present study, we show that cdc2/CyB, a critical regulator of eukaryotic cell cycle progression, phosphorylates IP3R1 in vitro and in vivo at both Ser(421) and Thr(799) and that this phosphorylation increases IP3 binding. Taken together, these results indicate that IP3R1 may be a specific target for cdc2/CyB during cell cycle progression.
Collapse
Affiliation(s)
- Krishnamurthy Malathi
- Vascular Biology Laboratory, Department of Medicine, St. Luke's Roosevelt Hospital Center, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Wagner LE, Li WH, Yule DI. Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2- splice variants. J Biol Chem 2003; 278:45811-7. [PMID: 12939273 DOI: 10.1074/jbc.m306270200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (InsP3R) are the major route of intracellular calcium release in eukaryotic cells and as such are pivotal for stimulation of Ca2+-dependent effectors important for numerous physiological processes. Modulation of this release has important consequences for defining the particular spatio-temporal characteristics of Ca2+ signals. In this study, regulation of Ca2+ release by phosphorylation of type-1 InsP3R (InsP3R-1) by cAMP (PKA)- and cGMP (PKG)-dependent protein kinases was investigated in the two major splice variants of InsP3R-1. InsP3R-1 was expressed in DT-40 cells devoid of endogenous InsP3R. In cells expressing the neuronal, S2+ splice variant of the InsP3R-1, Ca2+ release was markedly enhanced when either PKA or PKG was activated. The sites of phosphorylation were investigated by mutation of serine residues present in two canonical phosphorylation sites present in the protein. Potentiated Ca2+ release was abolished when serine 1755 was mutated to alanine (S1755A) but was unaffected by a similar mutation of serine 1589 (S1589A). These data demonstrate that Ser-1755 is the functionally important residue for phosphoregulation by PKA and PKG in the neuronal variant of the InsP3R-1. Activation of PKA also resulted in potentiated Ca2+ release in cells expressing the non-neuronal, S2- splice variant of the InsP3R-1. However, the PKA-induced potentiation was still evident in S1589A or S1755A InsP3R-1 mutants. The effect was abolished in the double (S1589A/S1755A) mutant, indicating both sites are phosphorylated and contribute to the functional effect. Activation of PKG had no effect on Ca2+ release in cells expressing the S2- variant of InsP3R-1. Collectively, these data indicate that phosphoregulation of InsP3R-1 has dramatic effects on Ca2+ release and defines the molecular sites phosphorylated in the major variants expressed in neuronal and peripheral tissues.
Collapse
Affiliation(s)
- Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
79
|
Montero M, Lobatón CD, Gutierrez-Fernández S, Moreno A, Alvarez J. Modulation of histamine-induced Ca2+ release by protein kinase C. Effects on cytosolic and mitochondrial [Ca2+] peaks. J Biol Chem 2003; 278:49972-9. [PMID: 14523015 DOI: 10.1074/jbc.m308378200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.
Collapse
Affiliation(s)
- Mayte Montero
- Instituto de Biología y Genética Molecular, Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid and Consejo Superior de Investigaciones Científicas, Ramón y Cajal, 7, E-47005 Valladolid, Spain
| | | | | | | | | |
Collapse
|
80
|
Morel JL, Fritz N, Lavie JL, Mironneau J. Crucial role of type 2 inositol 1,4,5-trisphosphate receptors for acetylcholine-induced Ca2+ oscillations in vascular myocytes. Arterioscler Thromb Vasc Biol 2003; 23:1567-75. [PMID: 12893684 DOI: 10.1161/01.atv.0000089013.82552.5d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to correlate the expression of InsP3R subtypes in native vascular and visceral myocytes with specific Ca2+-signaling patterns. METHODS AND RESULTS By Western blot and immunostaining, we showed that rat portal vein expressed InsP3R1 and InsP3R2 but not InsP3R3, whereas rat ureter expressed InsP3R1 and InsP3R3 but not InsP3R2. Acetylcholine induced single Ca2+ responses in all ureteric myocytes but only in 50% of vascular myocytes. In the remaining vascular myocytes, the first transient peak was followed by Ca2+ oscillations. By correlating Ca2+ signals and immunostaining, we revealed that oscillating vascular cells expressed both InsP3R1 and InsP3R2 whereas nonoscillating vascular cells expressed only InsP3R1. Acetylcholine-induced oscillations were not affected by inhibitors of ryanodine receptors, Ca2+-ATPases, Ca2+ influx, and mitochondrial Ca2+ uniporter but were inhibited by intracellular infusion of heparin. Using specific antibodies against InsP3R subtypes, we showed that acetylcholine-induced Ca2+ oscillations were specifically blocked by the anti-InsP3R antibody. These data were supported by antisense oligonucleotides targeting InsP3R2, which selectively inhibited Ca2+ oscillations. CONCLUSIONS Our results suggest that in native smooth muscle cells, a differential expression of InsP3R subtypes encodes specific InsP3-mediated Ca2+ responses and that the presence of the InsP3R2 subtype is required for acetylcholine-induced Ca2+ oscillations in vascular myocytes.
Collapse
MESH Headings
- Acetylcholine/physiology
- Animals
- Calcium/metabolism
- Calcium Channels/biosynthesis
- Calcium Channels/physiology
- Calcium Signaling/physiology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Muscle Cells/chemistry
- Muscle Cells/metabolism
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Protein Isoforms/biosynthesis
- Protein Isoforms/physiology
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/physiology
Collapse
Affiliation(s)
- Jean-Luc Morel
- Laboratoire de Signalisation et Interactions Cellulaires, CNRS UMR 5017, Université Bordeaux 2, Bordeaux, France
| | | | | | | |
Collapse
|
81
|
Ando H, Mizutani A, Matsu-ura T, Mikoshiba K. IRBIT, a novel inositol 1,4,5-trisphosphate (IP3) receptor-binding protein, is released from the IP3 receptor upon IP3 binding to the receptor. J Biol Chem 2003; 278:10602-12. [PMID: 12525476 DOI: 10.1074/jbc.m210119200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) channels on intracellular Ca(2+) stores. Herein, we report a novel protein, termed IRBIT (IP(3)R binding protein released with inositol 1,4,5-trisphosphate), which interacts with type 1 IP(3)R (IP(3)R1) and was released upon IP(3) binding to IP(3)R1. IRBIT was purified from a high salt extract of crude rat brain microsomes with IP(3) elution using an affinity column with the huge immobilized N-terminal cytoplasmic region of IP(3)R1 (residues 1-2217). IRBIT, consisting of 530 amino acids, has a domain homologous to S-adenosylhomocysteine hydrolase in the C-terminal and in the N-terminal, a 104 amino acid appendage containing multiple potential phosphorylation sites. In vitro binding experiments showed the N-terminal region of IRBIT to be essential for interaction, and the IRBIT binding region of IP(3)R1 was mapped to the IP(3) binding core. IP(3) dissociated IRBIT from IP(3)R1 with an EC(50) of approximately 0.5 microm, i.e. it was 50 times more potent than other inositol polyphosphates. Moreover, alkaline phosphatase treatment abolished the interaction, suggesting that the interaction was dualistically regulated by IP(3) and phosphorylation. Immunohistochemical studies and co-immunoprecipitation assays showed the relevance of the interaction in a physiological context. These results suggest that IRBIT is released from activated IP(3)R, raising the possibility that IRBIT acts as a signaling molecule downstream from IP(3)R.
Collapse
Affiliation(s)
- Hideaki Ando
- Division of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Japan.
| | | | | | | |
Collapse
|
82
|
Abstract
Cells use signalling networks to translate with high fidelity extracellular signals into specific cellular functions. Signalling networks are often composed of multiple signalling pathways that act in concert to regulate a particular cellular function. In the centre of the networks are the receptors that receive and transduce the signals. A versatile family of receptors that detect a remarkable variety of signals are the G protein-coupled receptors (GPCRs). Virtually all cells express several GPCRs that use the same biochemical machinery to transduce their signals. Considering the specificity and fidelity of signal transduction, a central question in cell signalling is how signalling specificity is achieved, in particular among GPCRs that use the same biochemical machinery. Ca(2+) signalling is particularly suitable to address such questions, since [Ca(2+)](i) can be recorded with excellent spatial and temporal resolutions in living cells and tissues and now in living animals. Ca(2+) is a unique second messenger in that both biochemical and biophysical components form the Ca(2+) signalling complex to regulate its concentration. Both components act in concert to generate repetitive [Ca(2+)](i) oscillations that can be either localized or in the form of global, propagating Ca(2+) waves. Most of the key proteins that form Ca(2+) signalling complexes are known and their activities are reasonably well understood on the biochemical and biophysical levels. We review here the information gained from studying Ca(2+) signalling by GPCRs to gain further understanding of the mechanisms used to generate cellular signalling specificity.
Collapse
Affiliation(s)
- Kirill Kiselyov
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | |
Collapse
|
83
|
Abstract
We showed that 5-amino-3-(3,4-dichlorophenyl)1,2,3,4-oxatriazolium (GEA3162), a lipophilic nitric oxide (NO)-releasing agent, induced Ca(2+) entry into rat neutrophils in a concentration-dependent manner, whereas the guanylyl cyclase inhibitors, 6-anilino-5,8-quinolinequinone (LY83583) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), had no effect on GEA3162-induced response. The GEA3162-induced Ca(2+) entry was not observed in a Ca(2+)-free medium. GEA3162 did not potentiate but reduced the store-emptying activated Ca(2+) entry caused by cyclopiazonic acid. Stimulation of cells with GEA3162 in the absence of extracellular Ca(2+) followed by addition of cations showed that only Ca(2+) but not Ba(2+) and Sr(2+) entry occurs. Store-operated Ca(2+) entry was sensitive to La(3+) and Ni(2+) inhibition, whereas the GEA3162-induced Ca(2+) entry was sensitive to La(3+) but resistant to Ni(2+). cis-N-(2-Phenylcyclopentyl)azacyclotridec-1-en-2-amine (MDL-12,330A) and calyculin A diminished the Ca(2+) entry activated by cyclopiazonic acid as well as by GEA3162. In contrast, 2-aminoethyldiphenyl borate (2-APB) diminished cyclopiazonic acid-but enhanced GEA3162-induced [Ca(2+)](i) change. Genistein effectively attenuated the cyclopiazonic acid-but slightly inhibited GEA3162-induced [Ca(2+)](i) change. Application of neomycin and high extracellular Ca(2+) concentration did not induce [Ca(2+)](i) rise. These data suggest that GEA3162 induced Ca(2+) entry and regulated Ca(2+) signal, through direct protein thiol oxidation. The action of GEA3162 demonstrates characteristics that distinguish it from the store-operated mechanism in neutrophils and therefore is likely to represent an entirely distinct pathway. Extracellular Ca(2+)-sensing receptor is not existing in neutrophils.
Collapse
Affiliation(s)
- Jih-Pyang Wang
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.
| |
Collapse
|
84
|
Brann JH, Dennis JC, Morrison EE, Fadool DA. Type-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2. J Neurochem 2002; 83:1452-60. [PMID: 12472899 PMCID: PMC3082845 DOI: 10.1046/j.1471-4159.2002.01266.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vomeronasal organ (VNO) is the receptor portion of the accessory olfactory system and transduces chemical cues that identify social hierarchy, reproductive status, conspecifics and prey. Signal transduction in VNO neurons is apparently accomplished via an inositol 1,4,5-trisphosphate (IP3)-activated calcium conductance that includes a different set of G proteins than those identified in vertebrate olfactory sensory neurons. We used immunohistochemical (IHC) and SDS-PAGE/western analysis to localize three IP3 receptors (IP3R) in the rat VNO epithelium. Type-I IP3R expression was weak or absent. Antisera for type-II and -III IP3R recognized appropriate molecular weight proteins by SDS-PAGE, and labeled protein could be abolished by pre-adsorption of the respective antibody with antigenic peptide. In tissue sections, type-II IP3R immunoreactivity was present in the supporting cell zone but not in the sensory cell zone. Type-III IP3R immunoreactivity was present throughout the sensory zone and overlapped that of transient receptor potential channel 2 (TRPC2) in the microvillar layer of sensory epithelium. Co-immunoprecipitation of type-III IP3R and TRPC2 from VNO lysates confirmed the overlapping immunoreactivity patterns. The protein-protein interaction complex between type-III IP3R and TRPC2 could initiate calcium signaling leading to electrical signal production in VNO neurons.
Collapse
Affiliation(s)
- Jessica H Brann
- Program in Neuroscience and Molecular Biophysics, Biomedical Research Facility, Department of Biological Science, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | |
Collapse
|
85
|
DeSouza N, Reiken S, Ondrias K, Yang YM, Matkovich S, Marks AR. Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J Biol Chem 2002; 277:39397-400. [PMID: 12167631 DOI: 10.1074/jbc.m207059200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed intracellular calcium (Ca(2+)) release channel on the endoplasmic reticulum. IP3Rs play key roles in controlling Ca(2+) signals that activate numerous cellular functions including T cell activation, neurotransmitter release, oocyte fertilization and apoptosis. There are three forms of IP3R, all of which are ligand-gated channels activated by the second messenger inositol 1,4,5-trisphosphate. Channel function is modulated via cross-talk with other signaling pathways including those mediated by kinases and phosphatases. In particular IP3Rs are known to be regulated by cAMP-dependent protein kinase (PKA) phosphorylation. In the present study we show that PKA and the protein phosphatases PP1 and PP2A are components of the IP3R1 macromolecular signaling complex. PKA phosphorylation of IP3R1 increases channel activity in planar lipid bilayers. These studies indicate that regulation of IP3R1 function via PKA phosphorylation involves components of a macromolecular signaling complex.
Collapse
Affiliation(s)
- Nikhil DeSouza
- Center for Molecular Cardiology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
86
|
Piepot HA, Groeneveld ABJ, van Lambalgen AA, Sipkema P. Tumor necrosis factor-alpha impairs endothelium-dependent relaxation of rat renal arteries, independent of tyrosine kinase. Shock 2002; 17:394-8. [PMID: 12022760 DOI: 10.1097/00024382-200205000-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We hypothesized that tumor necrosis factor-alpha (TNF-alpha) mimics endotoxin in attenuating endothelium-dependent vasodilation and smooth muscle constriction of rat renal arteries, and that tyrosine kinase is involved. Isolated rat renal arteries (n =6 per group), pretreated for 2 h by genistein (4',5,7-trihydroxyisoflavone, 10 microg/mL, a tyrosine kinase inhibitor) or vehicle, were exposed for 2 h to recombinant human (rh) TNF-alpha (100 ng/mL) or vehicle. rhTNF-alpha attenuated (P < 0.05) the constriction response to depolarizing 125 mM KCl (952.6+/-125.3 mg/mm vs. 1191.4+/-136.8 mg/mm in rhTNF-alpha-exposed and control segments, respectively), but did not affect the constriction response to norepinephrine (NE, 0.01-10 microM). Genistein did not affect the constriction response to KCl. The concentration-response relation to NE in genistein-pretreated control segments showed (P < 0.05) a rightward shift, while the maximum constriction was not affected. Genistein did not prevent a reduction (P < 0.05) by rhTNF-alpha in the maximum response to NE (721.7+/-42.4 mg/mm vs. 999.8+/-84.4 mg/mm in controls). The endothelium-dependent relaxation induced by (acetyl choline) ACh (0.001-1.0 microM) was attenuated (P < 0.05) by rhTNF-alpha (39.4%+/-6.7% and 77.4%+/-10.0% in rhTNF-alpha-exposed and control segments, respectively). The reduction (P < 0.05) in maximum ACh-induced relaxation after exposure to rhTNF-alpha was not affected by genistein (44.6%+/-3.4% and 70.8% x 2.2% in genistein-pretreated rhTNF-alpha-exposed and control segments, respectively). Hence, the attenuated endothelium-dependent relaxation and smooth muscle constriction of rat renal arteries following short-term rhTNF-alpha exposure, mimicking the effect of endotoxin, does not involve the activity of tyrosine kinase. The latter may be involved in pharmacomechanical coupling, by increasing Ca2+ sensitivity, but less in the electromechanical coupling of smooth muscle constriction.
Collapse
Affiliation(s)
- Harro A Piepot
- Laboratory for Physiology, Institute for Cardiovascular Research Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
87
|
Manninen A, Saksela K. HIV-1 Nef interacts with inositol trisphosphate receptor to activate calcium signaling in T cells. J Exp Med 2002; 195:1023-32. [PMID: 11956293 PMCID: PMC2193699 DOI: 10.1084/jem.20012039] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
HIV-1 pathogenicity factor Nef has been shown to modulate calcium signaling in host cells, but the underlying molecular mechanisms have remained unclear. Here we show that calcium/calcineurin-dependent activation of nuclear factor of activated T cells (NFAT) by Nef in Jurkat T cells requires the endoplasmic reticulum-resident inositol trisphosphate receptor (IP(3)R), but yet does not involve increase in phospholipase-C gamma 1 (PLC gamma 1)-catalyzed production of IP(3) or depletion of IP(3)-regulated intracellular calcium stores. Nef could be coprecipitated with endogenous IP(3)R type-1 (IP(3)R1) from Nef-transfected Jurkat T cells as well as from HIV-infected primary human peripheral mononuclear cells. Thus, the Nef/IP(3)R1-interaction defines a novel T cell receptor-independent mechanism by which Nef can promote T cell activation, and appears to involve atypical IP(3)R-triggered activation of plasma membrane calcium influx channels in a manner that is uncoupled from depletion of intracellular calcium stores.
Collapse
Affiliation(s)
- Aki Manninen
- Institute of Medical Technology, University of Tampere, Tampere FIN-33014, Finland
| | | |
Collapse
|
88
|
Affiliation(s)
- Urs Gerber
- Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
89
|
Yokoyama K, I-hsin Su, Tezuka T, Yasuda T, Mikoshiba K, Tarakhovsky A, Yamamoto T. BANK regulates BCR-induced calcium mobilization by promoting tyrosine phosphorylation of IP(3) receptor. EMBO J 2002; 21:83-92. [PMID: 11782428 PMCID: PMC125810 DOI: 10.1093/emboj/21.1.83] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2001] [Revised: 11/12/2001] [Accepted: 11/12/2001] [Indexed: 12/17/2022] Open
Abstract
B-cell activation mediated through the antigen receptor is dependent on activation of protein tyrosine kinases (PTKs) such as Lyn and Syk and subsequent phosphorylation of various signaling proteins. Here we report on the identification and characterization of the B-cell scaffold protein with ankyrin repeats (BANK), a novel substrate of tyrosine kinases. BANK is expressed in B cells and is tyrosine phosphorylated upon B-cell antigen receptor (BCR) stimulation, which is mediated predominantly by Syk. Overexpres sion of BANK in B cells leads to enhancement of BCR-induced calcium mobilization. We found that both Lyn and inositol 1,4,5-trisphosphate receptor (IP(3)R) associate with the distinct regions of BANK and that BANK promotes Lyn-mediated tyrosine phosphorylation of IP(3)R. Given that IP(3)R channel activity is up-regulated by its tyrosine phosphorylation, BANK appears to be a novel scaffold protein regulating BCR-induced calcium mobilization by connecting PTKs to IP(3)R. Because BANK expression is confined to functional BCR-expressing B cells, BANK-mediated calcium mobilization may be specific to foreign antigen-induced immune responses rather than to signaling required for B-cell development.
Collapse
Affiliation(s)
| | - I-hsin Su
- Department of Oncology and
Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan and Laboratory of Lymphocyte Signaling, the Rockefeller University, New York, NY 10021, USA Present address: Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan Corresponding author e-mail:
| | | | - Tomoharu Yasuda
- Department of Oncology and
Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan and Laboratory of Lymphocyte Signaling, the Rockefeller University, New York, NY 10021, USA Present address: Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan Corresponding author e-mail:
| | - Katsuhiko Mikoshiba
- Department of Oncology and
Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan and Laboratory of Lymphocyte Signaling, the Rockefeller University, New York, NY 10021, USA Present address: Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan Corresponding author e-mail:
| | - Alexander Tarakhovsky
- Department of Oncology and
Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan and Laboratory of Lymphocyte Signaling, the Rockefeller University, New York, NY 10021, USA Present address: Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan Corresponding author e-mail:
| | - Tadashi Yamamoto
- Department of Oncology and
Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan and Laboratory of Lymphocyte Signaling, the Rockefeller University, New York, NY 10021, USA Present address: Department of Tumor Virology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan Corresponding author e-mail:
| |
Collapse
|
90
|
Abstract
Cerebellar long-term depression (LTD) is classically observed when climbing fibers, originating from the inferior olive, and parallel fibers, axons of granule cells, are activated repetitively and synchronously. On the basis that the climbing fiber signals errors in motor performance, LTD provides a mechanism of learning whereby inappropriate motor signals, relayed to the cerebellar cortex by parallel fibers, are selectively weakened through their repeated, close temporal association with climbing fiber activity. LTD therefore provides a cellular substrate for error-driven motor learning in the cerebellar cortex. In recent years, it has become apparent that depression at this synapse can also occur without the need for concurrent climbing fiber activation provided the parallel fibers are activated in such a way as to mobilize calcium within the Purkinje cell. A form of long-term potentiation (LTP) has also been uncovered at this synapse, which similarly relies only upon parallel fiber activation. In brain slice preparations and contrary to expectation, each of these forms of parallel fiber induced plasticity, as well as classical LTD, does not remain confined to activated parallel fibers as previously thought, but both depression and potentiation have the capacity to spread to neighboring parallel fiber synapses several tens of microns away from the activated fibers. Here, the cellular mechanisms responsible for the induction and heterosynaptic spread of parallel fiber LTP and LTD are compared to those involved in classical LTD and the physiological implications that the heterosynaptic spread of plasticity may have on cerebellar signal processing are discussed.
Collapse
Affiliation(s)
- Nicholas A Hartell
- The Pharmaceutical Science Research Institute, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
91
|
Abstract
Following penetration of the zona pellucida, the mammalian spermatozoon binds and fuses with the egg plasma membrane, thereby fertilizing the egg that is still arrested at the second metaphase. Fertilization initiates in the egg a sequence of events referred to as 'egg activation'. An initial increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) appears to be the very early cellular event observed which leads to the cortical granules exocytosis and resumption of meiosis. Various treatments can induce parthenogenetic activation mimicking at least part of the fertilization events. Similar to somatic cells, studies in mammalian eggs suggest that signal transduction pathways mediate egg activation. The initial increase in [Ca(2+)](i) appears to be critical for egg activation. However, other messengers such as protein kinase C (PKC) and protein tyrosine kinases (PTKs), were suggested as possible inducers of some aspects of egg activation. In the present work, studies concerning the involvement of protein kinases during egg activation in our laboratory and in others are summarized.
Collapse
Affiliation(s)
- Efrat Eliyahu
- Department of Embryology, Sackler Faculty of Medicine, Tel Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | | | | |
Collapse
|
92
|
Thrower EC, Hagar RE, Ehrlich BE. Regulation of Ins(1,4,5)P3 receptor isoforms by endogenous modulators. Trends Pharmacol Sci 2001; 22:580-6. [PMID: 11698102 DOI: 10.1016/s0165-6147(00)01809-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three isoforms of the inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] receptor have been identified. Each receptor isoform has been functionally characterized using many different techniques. Although these receptor isoforms possess high homology, interesting differences in their Ca2+ dependence, Ins(1,4,5)P3 sensitivity and subcellular distribution exist, implying distinct cellular roles. Indeed, interplay among the isoforms might be necessary for a cell to control spatial and temporal aspects of cytosolic Ca2+ signals, which are important for many cellular processes. In this review isoform-specific functions, primarily at the single-channel level, will be highlighted and these properties will be correlated with Ca2+ signals in intact cells.
Collapse
Affiliation(s)
- E C Thrower
- Dept of Pharmacology, Yale University, PO Box 208066, 333 Cedar Street, New Haven, CT 06520-8066, USA.
| | | | | |
Collapse
|
93
|
Meldolesi J. Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Prog Neurobiol 2001; 65:309-38. [PMID: 11473791 DOI: 10.1016/s0301-0082(01)00004-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J Meldolesi
- DIBIT, Scientific Institute S. Raffaele, Vita-Salute University, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
94
|
Guse AH, Tsygankov AY, Weber K, Mayr GW. Transient tyrosine phosphorylation of human ryanodine receptor upon T cell stimulation. J Biol Chem 2001; 276:34722-7. [PMID: 11466305 DOI: 10.1074/jbc.m100715200] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The ryanodine receptor of Jurkat T lymphocytes was phosphorylated on tyrosine residues upon stimulation of the cells via the T cell receptor/CD3 complex. The tyrosine phosphorylation was transient, reaching a maximum at 2 min, and rapidly declined thereafter. In co-immunoprecipitates of the ryanodine receptor, the tyrosine kinases p56(lck) and p59(fyn) were detected. However, only p59(fyn) associated with the ryanodine receptor in a stimulation-dependent fashion. Both tyrosine kinases, recombinantly expressed as glutathione S-transferase (GST) fusion proteins, phosphorylated the immunoprecipitated ryanodine receptor in vitro. In permeabilized Jurkat T cells, GST-p59(fyn), but not GST-p56(lck), GST-Grb2, or GST alone, significantly and concentration-dependently enhanced Ca(2+) release by cyclic ADP-ribose. The tyrosine kinase inhibitor PP2 specifically blocked the effect of GST-p59(fyn). This indicates that intracellular Ca(2+) release via ryanodine receptors may be modulated by tyrosine phosphorylation during T cell activation.
Collapse
Affiliation(s)
- A H Guse
- Division of Cellular Signal Transduction, Institute for Medical Biochemistry and Molecular Biology, University of Hamburg, University Hospital Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
95
|
Abstract
Elevation of intracellular free Ca(2+) is one of the key triggering signals for T-cell activation by antigen. A remarkable variety of Ca(2+) signals in T cells, ranging from infrequent spikes to sustained oscillations and plateaus, derives from the interactions of multiple Ca(2+) sources and sinks in the cell. Following engagement of the T cell receptor, intracellular channels (IP3 and ryanodine receptors) release Ca(2+) from intracellular stores, and by depleting the stores trigger prolonged Ca(2+) influx through store-operated Ca(2+) (CRAC) channels in the plasma membrane. The amplitude and dynamics of the Ca(2+) signal are shaped by several mechanisms, including K(+) channels and membrane potential, slow modulation of the plasma membrane Ca(2+)-ATPase, and mitochondria that buffer Ca(2+) and prevent the inactivation of CRAC channels. Ca(2+) signals have a number of downstream targets occurring on multiple time scales. At short times, Ca(2+) signals help to stabilize contacts between T cells and antigen-presenting cells through changes in motility and cytoskeletal reorganization. Over periods of minutes to hours, the amplitude, duration, and kinetic signature of Ca(2+) signals increase the efficiency and specificity of gene activation events. The complexity of Ca(2+) signals contains a wealth of information that may help to instruct lymphocytes to choose between alternate fates in response to antigenic stimulation.
Collapse
Affiliation(s)
- R S Lewis
- Department of Molecular and Cellular Physiology and Program in Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
96
|
Abdel-Latif AA. Cross talk between cyclic nucleotides and polyphosphoinositide hydrolysis, protein kinases, and contraction in smooth muscle. Exp Biol Med (Maywood) 2001; 226:153-63. [PMID: 11361033 DOI: 10.1177/153537020122600302] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This article provides an update of a minireview published in 1996 (Abdel-Latif AA. Proc Soc Exp Biol Med 211:163-177, 1996), the purpose of which was to examine in nonvascular smooth muscle the biochemical and functional cross talk between the sympathetic nervous system, which governs the formation of cAMP and muscle relaxation, and the parasympathetic nervous system, which governs the generation of IP3 and diacylglycerol, from the polyphosphoinositides, Ca2+ mobilization, and contraction. This review examines further evidence, both from nonvascular and vascular smooth muscle, for cross talk between the cyclic nucleotides, cAMP and cGMP via their respective protein kinases, and the Ca2+-dependent- and Ca2+-independent-signaling pathways involved in agonist-induced contraction. These include the IP3-Ca2+-CaM- myosin light chain kinase (MLCK) pathway and the Ca2+-independent pathways, including protein kinase C-, MAP kinase-, and Rho-kinase. In addition, MLC phosphorylation and contraction can also be increased by a decrease in myosin phosphatase activity. A summary of the cross talk between the cyclic nucleotides and these signaling pathways was presented. In smooth muscle, there are several targets for cyclic nucleotide inhibition and consequent relaxation, including the receptor, G proteins, phospholipase C-beta1-4 isoforms, IP3 receptor, Ca2+ mobilization, MLCK, MAP kinase, Rho-kinase, and myosin phosphatase. While significant progress has been made in the past four years on this cross talk, the precise mechanisms underlying the biochemical basis for the cyclic nucleotide inhibition of Ca2+ mobilization and consequently muscle contraction remain to be established. Although it is well established that second-messenger cross talk plays an important role in smooth muscle relaxation, the many sources which exist in smooth muscle for Ca2+ mobilization, coupled with the multiple signaling pathways involved in agonist-induced contraction, contribute appreciably to the difficulties found by many investigators in identifying the targets for cyclic nucleotide inhibition and consequent relaxation. Better methodology and more novel interdisciplinary approaches are required for elucidating the mechanism(s) of cAMP- and cGMP-inhibition of smooth muscle contraction.
Collapse
Affiliation(s)
- A A Abdel-Latif
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta 30912, USA.
| |
Collapse
|
97
|
Pieper AA, Brat DJ, O'Hearn E, Krug DK, Kaplin AI, Takahashi K, Greenberg JH, Ginty D, Molliver ME, Snyder SH. Differential neuronal localizations and dynamics of phosphorylated and unphosphorylated type 1 inositol 1,4,5-trisphosphate receptors. Neuroscience 2001; 102:433-44. [PMID: 11166129 DOI: 10.1016/s0306-4522(00)00470-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Type 1 inositol 1,4,5-trisphosphate receptors are phosphorylated by cyclic-AMP-dependent protein kinase A at serines 1589 and 1755, with serine 1755 phosphorylation greatly predominating in the brain. Inositol 1,4,5-trisphosphate receptor protein kinase A phosphorylation augments Ca(2+) release. To assess type 1 protein kinase A phosphorylation dynamics in the intact organism, we developed antibodies selective for either serine 1755 phosphorylated or unphosphorylated species. Immunohistochemical studies reveal marked variation in localization. For example, in the hippocampus the phosphorylated type 1 inositol 1,4,5-trisphosphate receptor is restricted to CA1, while the unphosphorylated receptor occurs ubiquitously in CA1-CA3 and dentate gyrus granule cells. Throughout the brain the phosphorylated type 1 inositol 1,4,5-trisphosphate receptor is selectively enriched in dendrites, while the unphosphorylated receptor predominates in cell bodies. Focal cerebral ischemia in rats and humans is associated with dephosphorylation of type 1 inositol 1,4,5-trisphosphate receptors, and glutamatergic excitation of cerebellar Purkinje cells mediated by ibogaine elicits dephosphorylation of type 1 inositol 1,4,5-trisphosphate receptors that precedes evidence of excitotoxic neuronal degeneration. We have demonstrated striking variations in regional and subcellular distribution of inositol 1,4,5-trisphosphate receptor phosphorylation that may influence normal physiological intracellular Ca(2+) signaling in rat and human brain. We have further shown that the subcellular distribution of inositol 1,4,5-trisphosphate receptor phosphorylation in neurons is regulated by excitatory neurotransmission, as well as excitotoxic insult and neuronal ischemia-reperfusion. Phosphorylation dynamics of type 1 inositol 1,4,5-trisphosphate receptors may modulate intracellular Ca(2+) release and influence the cellular response to neurotoxic insults.
Collapse
Affiliation(s)
- A A Pieper
- The Johns Hopkins University, School of Medicine, Department of Neuroscience, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Touyz RM, Wu XH, He G, Park JB, Chen X, Vacher J, Rajapurohitam V, Schiffrin EL. Role of c-Src in the regulation of vascular contraction and Ca2+ signaling by angiotensin II in human vascular smooth muscle cells. J Hypertens 2001; 19:441-9. [PMID: 11288814 DOI: 10.1097/00004872-200103000-00012] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Tyrosine kinases, typically associated with growth-signaling pathways, also play a role in Ang II-stimulated vascular contraction. However the specific kinases involved are unclear. We hypothesize here that c-Src, a non-receptor tyrosine kinase, is an important upstream regulator of vascular smooth muscle cell (VSMC) Ca2+ signaling and associated vascular contraction induced by Ang II. METHODS Cultured VSMCs from resistance arteries of healthy subjects were studied. Human VSMCs electroporated with anti-c-Src antibody and c-Src-deficient VSMCs from small arteries of c-Src knockout mice (Src-/-mVSMCs) were also investigated. Intracellular free Ca2+ concentration ([Ca2+]i), c-Src activity and IP3 production were measured by fura 2, immunoblot and radioimmunoassay respectively. Contraction was examined in intact rat small arteries. RESULTS Ang II rapidly increased VSMC c-Src activity, with peak responses obtained at 1 min. Ang II induced a biphasic [Ca2+]i response (Emax = 636 +/- 123 nmol/l). The initial [Ca2+]i transient, mediated primarily by Ca2+mobilization, was dose-dependently attenuated by the selective Src inhibitor, PP2, but not by PP3 (inactive analogue). Ang II-elicited [Ca2+]i responses were blunted in cells electroporated with anti-c-Src antibodies and in c-Src-/-mVSMCs. Src inhibition decreased Ang II-induced generation of IP3 in human VSMCs. Ang II dose-dependently increased vascular contraction (Emax = 40 +/- 6.5%). These responses were attenuated by PP2 (Emax = 7.8 +/- 0.08%) but not by PP3 (Emax = 35 +/- 4.5%). CONCLUSIONS Our findings identify c-Src as an important regulator of VSMC [Ca2+]i signaling and implicate a novel contractile role for this non-receptor tyrosine kinase in Ang II-stimulated vascular smooth muscle.
Collapse
Affiliation(s)
- R M Touyz
- MRC Multidisciplinary Research Group on Hypertension, Sungkyun Kwan University School of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Hartell NA. Receptors, second messengers and protein kinases required for heterosynaptic cerebellar long-term depression. Neuropharmacology 2001; 40:148-61. [PMID: 11077081 DOI: 10.1016/s0028-3908(00)00107-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raising the frequency and intensity of stimulation to one of two sets of parallel fibre synaptic inputs to cerebellar Purkinje cells results in a localised calcium influx and a long-term depression (LTD) of parallel fibre-Purkinje cell responses. Although the calcium influx remains spatially constrained, depression spreads heterosynaptically to distant sites. Inhibition of the synthetic enzyme for cGMP, guanylate cyclase, did not significantly affect the overall level of calcium-dependent synaptic depression observed at the site of raised stimulation (test site), but it entirely prevented synaptic depression at the distant (control) site. Inhibition of protein kinase G produced identical results. In contrast, protein kinase A inhibition had no effect. Selective inhibition of either metabotropic glutamate receptors (mGluRs), protein kinase C (PKC) or tyrosine protein kinase (PTK) blocked depression at both sites equally effectively. These data reveal that two, inter-dependent cellular pathways capable of inducing cerebellar LTD exist. The levels of PF stimulation required to induce heterosynaptic depression were similar to those used routinely in more widely accepted models of LTD. The data predict that cerebellar long-term depression will not be input specific at the single cell level under those conditions of PF-activation that give rise to NO/cGMP production.
Collapse
Affiliation(s)
- N A Hartell
- The Pharmaceutical Science Research Institute, Aston University, B4 7ET, Birmingham, UK.
| |
Collapse
|
100
|
Ulivieri C, Peter A, Orsini E, Palmer E, Baldari CT. Defective signaling to Fyn by a T cell antigen receptor lacking the alpha -chain connecting peptide motif. J Biol Chem 2001; 276:3574-80. [PMID: 11058601 DOI: 10.1074/jbc.m008588200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key role in the communication between the alphabetaTCR and the CD3/zeta complex is played by a specific motif within the connecting peptide domain of the TCR alpha chain (alpha-CPM). T cell hybridomas expressing an alpha-CPM-mutated TCR show a dramatic impairment in antigen-driven interleukin-2 production. This defect can be complemented by a calcium ionophore, indicating that activation of the calcium pathway is impaired. Several lines of evidence implicate Fyn in the regulation of calcium mobilization, at least in part through the activation of phospholipase Cgamma. Here we have investigated the potential involvement of Fyn in the TCR alpha-CPM signaling defect. Using T cell hybridomas expressing either a wild-type TCR or an alpha-CPM mutant, we show that Fyn fails to be activated by the mutant receptor following SEB binding and fails to generate tyrosine-phosphorylated Pyk2, a member of the focal adhesion kinase family. This defect correlated with an impairment in phospholipase Cgamma phosphorylation. Production of interlukin-2 and activation of the transcription factor NF-AT in response to triggering of the TCR alpha-CPM mutant with SEB were fully restored in the presence of constitutively active Fyn. Hence the signaling defect generated by the TCR alpha-CPM mutation results at least in part from an impaired coupling of the TCR.CD3 complex to Fyn activation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Amino Acid Motifs
- Carrier Proteins/physiology
- Enterotoxins/pharmacology
- Focal Adhesion Kinase 2
- Humans
- Hybridomas
- In Vitro Techniques
- Isoenzymes/metabolism
- Phospholipase C gamma
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
- Signal Transduction/physiology
- T-Lymphocytes/metabolism
- Type C Phospholipases/metabolism
Collapse
Affiliation(s)
- C Ulivieri
- Department of Evolutionary Biology, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | | | | | | | | |
Collapse
|