51
|
Dwivedi M, Tiwari S, Kemp EH, Begum R. Implications of regulatory T cells in anti-cancer immunity: from pathogenesis to therapeutics. Heliyon 2022; 8:e10450. [PMID: 36082331 PMCID: PMC9445387 DOI: 10.1016/j.heliyon.2022.e10450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Regulatory T cells (Tregs) play an essential role in maintaining immune tolerance and suppressing inflammation. However, Tregs present major hurdle in eliciting potent anti-cancer immune responses. Therefore, curbing the activity of Tregs represents a novel and efficient way towards successful immunotherapy of cancer. Moreover, there is an emerging interest in harnessing Treg-based strategies for augmenting anti-cancer immunity in different types of the disease. This review summarises the crucial mechanisms of Tregs' mediated suppression of anti-cancer immunity and strategies to suppress or to alter such Tregs to improve the immune response against tumors. Highlighting important clinical studies, the review also describes current Treg-based therapeutic interventions in cancer, and discusses Treg-suppression by molecular targeting, which may emerge as an effective cancer immunotherapy and as an alternative to detrimental chemotherapeutic agents.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Tarsadi, Surat, Gujarat, 394350, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, 226002, Uttar Pradesh, India
| | - E. Helen Kemp
- Department of Oncology and Metabolism, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, S10 2RX, UK
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, Gujarat, India
| |
Collapse
|
52
|
Itahashi K, Irie T, Nishikawa H. Regulatory T-cell development in the tumor microenvironment. Eur J Immunol 2022; 52:1216-1227. [PMID: 35879813 DOI: 10.1002/eji.202149358] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/01/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022]
Abstract
Regulatory T (Treg) cells are required for maintaining self-tolerance and preventing the development of autoimmune diseases. However, Treg cells are abundant in tumors and suppress antitumor immunity, contributing to tumor development and growth. Thus, the selective deletion of tumor-infiltrating Treg cells is important for successful Treg cell-targeted therapies, providing effective antitumor immunity without inducing deleterious autoimmune disorders. Advancements in sequencing technologies have exposed the diversity and heterogeneity of human Treg cells during activation and differentiation, further emphasizing the importance of understanding tumor-infiltrating Treg cells for the development of Treg cell-targeted therapies. This review provides an overview of the classification and function of Treg cells and summarizes recent knowledge on the activation and differentiation of Treg cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Kota Itahashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
53
|
Autoimmune Encephalitis in COVID-19 Infection: Our Experience and Systematic Review of the Literature. Biomedicines 2022; 10:biomedicines10040774. [PMID: 35453524 PMCID: PMC9024859 DOI: 10.3390/biomedicines10040774] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
The neurologic complications of COVID-19 infection are frequent in hospitalized patients; a high percentage of them present neurologic manifestations at some point during the course of their disease. Headache, muscle pain, encephalopathy and dizziness are among the most common complications. Encephalitis is an inflammatory condition with many etiologies. There are several forms of encephalitis associated with antibodies against intracellular neuronal proteins, cell surfaces or synaptic proteins, referred to as autoimmune encephalitis. Several case reports published in the literature document autoimmune encephalitis cases triggered by COVID-19 infection. Our paper first presents our experience in this issue and then systematically reviews the literature on autoimmune encephalitis that developed in the background of SARS-CoV-2 infections and also discusses the possible pathophysiological mechanisms of auto-immune-mediated damage to the nervous system. This review contributes to improve the management and prognosis of COVID-19-related autoimmune encephalitis.
Collapse
|
54
|
Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono H, Ito D, Fujii R, Watanabe S, Sai A, Fukuoka S, Sugiyama E, Watanabe G, Owari T, Nishinakamura H, Sugiyama D, Maeda Y, Kawazoe A, Yukami H, Chida K, Ohara Y, Yoshida T, Shinno Y, Takeyasu Y, Shirasawa M, Nakama K, Aokage K, Suzuki J, Ishii G, Kuwata T, Sakamoto N, Kawazu M, Ueno T, Mori T, Yamazaki N, Tsuboi M, Yatabe Y, Kinoshita T, Doi T, Shitara K, Mano H, Nishikawa H. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 2022; 40:201-218.e9. [PMID: 35090594 DOI: 10.1016/j.ccell.2022.01.001] [Citation(s) in RCA: 473] [Impact Index Per Article: 157.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/07/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
The balance of programmed death-1 (PD-1)-expressing CD8+ T cells and regulatory T (Treg) cells in the tumor microenvironment (TME) determines the clinical efficacy of PD-1 blockade therapy through the competition of their reactivation. However, factors that determine this balance remain unknown. Here, we show that Treg cells gain higher PD-1 expression than effector T cells in highly glycolytic tumors, including MYC-amplified tumors and liver tumors. Under low-glucose environments via glucose consumption by tumor cells, Treg cells actively absorbed lactic acid (LA) through monocarboxylate transporter 1 (MCT1), promoting NFAT1 translocation into the nucleus, thereby enhancing the expression of PD-1, whereas PD-1 expression by effector T cells was dampened. PD-1 blockade invigorated the PD-1-expressing Treg cells, resulting in treatment failure. We propose that LA in the highly glycolytic TME is an active checkpoint for the function of Treg cells in the TME via upregulation of PD-1 expression.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/drug effects
- Glycolysis
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immune Checkpoint Proteins/metabolism
- Immunophenotyping
- Lactic Acid/metabolism
- Lactic Acid/pharmacology
- Lymphocyte Activation
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Molecular Targeted Therapy
- Prognosis
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/genetics
- Programmed Cell Death 1 Receptor/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Tokiyoshi Tanegashima
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Yi-Tzu Lin
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Takahiro Kamada
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Genki Okumura
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Hidetoshi Kono
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Daisuke Ito
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Rika Fujii
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Sho Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Atsuo Sai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shota Fukuoka
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Eri Sugiyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Go Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Takuya Owari
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Hitomi Nishinakamura
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yuka Maeda
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan
| | - Akihito Kawazoe
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Hiroki Yukami
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Keigo Chida
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Yuuki Ohara
- Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuki Shinno
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Yuki Takeyasu
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Masayuki Shirasawa
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Kenta Nakama
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Genichiro Ishii
- Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Takeshi Kuwata
- Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Naoya Sakamoto
- Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Taisuke Mori
- Department of Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Yasushi Yatabe
- Department of Pathology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Toshihiko Doi
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo 104-0045/Chiba 277-8577, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
55
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
56
|
Ni Q, Xu F, Wang Y, Li Y, Qing G, Zhang Y, Zhong J, Li J, Liang XJ. Nanomaterials with changeable physicochemical property for boosting cancer immunotherapy. J Control Release 2022; 342:210-227. [PMID: 34998916 DOI: 10.1016/j.jconrel.2022.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
The past decade has witnessed a great progress in cancer immunotherapy with the sequential approvals of therapeutic cancer vaccine, immune checkpoint inhibitor and chimeric antigen receptor (CAR) T cell therapy. However, some hurdles still remain to the wide implementation of cancer immunotherapy, including low immune response, complex tumor heterogeneity, off-target immunotoxicity, poor solid tumor infiltration, and immune evasion-induced treatment tolerance. Owing to changeable physicochemical properties in response to endogenous or exogenous stimuli, nanomaterials hold the remarkable potential in incorporation of multiple agents, efficient biological barrier penetration, precise immunomodulator delivery, and controllable content release for boosting cancer immunotherapy. Herein, we review the recent advances in nanomaterials with changeable physicochemical property (NCPP) to develop cancer vaccine, remold tumor microenvironment and evoke direct T cell activation. Besides, we provide our outlook on this emerging field at the intersection of NCPP design and cancer immunotherapy.
Collapse
Affiliation(s)
- Qiankun Ni
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Fengfei Xu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujie Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Guangchao Qing
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuxuan Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Zhong
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
57
|
Xu Z, Chen D, Hu Y, Jiang K, Huang H, Du Y, Wu W, Wang J, Sui J, Wang W, Zhang L, Li S, Li C, Yang Y, Chang J, Chen T. Anatomically distinct fibroblast subsets determine skin autoimmune patterns. Nature 2022; 601:118-124. [PMID: 34912121 DOI: 10.1038/s41586-021-04221-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 11/05/2021] [Indexed: 12/18/2022]
Abstract
The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.
Collapse
Affiliation(s)
- Zijian Xu
- National Institute of Biological Sciences, Beijing, China
| | - Daoming Chen
- National Institute of Biological Sciences, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing, China
| | - Yucheng Hu
- Academy for Multidisciplinary Studies, Beijing National Center for Applied Mathematics, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing, China
| | - Kaiju Jiang
- National Institute of Biological Sciences, Beijing, China
| | - Huanwei Huang
- National Institute of Biological Sciences, Beijing, China
| | - Yingxue Du
- National Institute of Biological Sciences, Beijing, China
| | - Wenbo Wu
- National Institute of Biological Sciences, Beijing, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China
| | - Wenhui Wang
- Peking University Third Hospital, Beijing, China
| | - Long Zhang
- Peking University Third Hospital, Beijing, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Xi'an, China
| | - Yong Yang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Jianmin Chang
- Department of Dermatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ting Chen
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
58
|
Maeda Y, Wada H, Sugiyama D, Saito T, Irie T, Itahashi K, Minoura K, Suzuki S, Kojima T, Kakimi K, Nakajima J, Funakoshi T, Iida S, Oka M, Shimamura T, Doi T, Doki Y, Nakayama E, Ueda R, Nishikawa H. Depletion of central memory CD8 + T cells might impede the antitumor therapeutic effect of Mogamulizumab. Nat Commun 2021; 12:7280. [PMID: 34907192 PMCID: PMC8671535 DOI: 10.1038/s41467-021-27574-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
Regulatory T (Treg) cells are important negative regulators of immune homeostasis, but in cancers they tone down the anti-tumor immune response. They are distinguished by high expression levels of the chemokine receptor CCR4, hence their targeting by the anti-CCR4 monoclonal antibody mogamulizumab holds therapeutic promise. Here we show that despite a significant reduction in peripheral effector Treg cells, clinical responses are minimal in a cohort of patients with advanced CCR4-negative solid cancer in a phase Ib study (NCT01929486). Comprehensive immune-monitoring reveals that the abundance of CCR4-expressing central memory CD8+ T cells that are known to play roles in the antitumor immune response is reduced. In long survivors, characterised by lower CCR4 expression in their central memory CD8+ T cells possessed and/or NK cells with an exhausted phenotype, cell numbers are eventually maintained. Our study thus shows that mogamulizumab doses that are currently administered to patients in clinical studies may not differentiate between targeting effector Treg cells and central memory CD8+ T cells, and dosage refinement might be necessary to avoid depletion of effector components during immune therapy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/therapeutic use
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/metabolism
- Dose-Response Relationship, Drug
- Female
- Humans
- Immunotherapy
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Male
- Memory T Cells/drug effects
- Middle Aged
- Neoplasms/drug therapy
- Neoplasms/immunology
- Receptors, CCR4/antagonists & inhibitors
- Receptors, CCR4/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
Collapse
Grants
- Research Activity Start-up grant no. 15H06878, for Young Scientists (B) grant no. 17K15738 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.the Projects for Cancer Research by Therapeutic Evolution [P-CREATE, no. 17cm0106322h0002]
- Scientific Research (B) grant no. 19H03729 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
- the Development of Technology for Patient Stratification Biomarker Discovery grant [no.19ae0101074s0401] from the Japan Agency for Medical Research and Development (AMED)
- Grants-in-Aid for Scientific Research (S) grant no. 17H06162, for Challenging Exploratory Research grant no. 16K15551, from the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Projects for Cancer Research by Therapeutic Evolution [P-CREATE, no. 16cm0106301h0001, the Development of Technology for Patient Stratification Biomarker Discovery grant [no.19ae0101074s0401] from the Japan Agency for Medical Research and Development (AMED), the National Cancer Center Research and Development Fund [no. 28-A-7 and 31-A-7]
Collapse
Affiliation(s)
- Yuka Maeda
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, 104-0045/Chiba, 277-8577, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, 104-0045/Chiba, 277-8577, Japan
| | - Kota Itahashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, 104-0045/Chiba, 277-8577, Japan
| | - Kodai Minoura
- Department of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University, Aichi, 480-1195, Japan
| | - Takashi Kojima
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, 277-8577, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Jun Nakajima
- Department of Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Institute of Medical and Pharmaceutical Sciences, Nagoya, 467-8601, Japan
| | - Mikio Oka
- Department of Respiratory Medicine, Kawasaki Medical School, Okayama 701-0192, Japan
| | - Teppei Shimamura
- Department of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Toshihiko Doi
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, 277-8577, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare, Okayama, 701-0192, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University, Aichi, 480-1195, Japan.
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo, 104-0045/Chiba, 277-8577, Japan.
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
59
|
Liu J, Wang X, Deng Y, Yu X, Wang H, Li Z. Research Progress on the Role of Regulatory T Cell in Tumor Microenvironment in the Treatment of Breast Cancer. Front Oncol 2021; 11:766248. [PMID: 34868991 PMCID: PMC8636122 DOI: 10.3389/fonc.2021.766248] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem comprised of cancer cells, stromal cells, and immune cells. Analysis of the composition of TME is essential to assess the prognosis of patients with breast cancer (BC) and the efficacy of different regimes. Treg plays a crucial role in the microenvironment of breast cancer subtypes, and its function contributes to the development and progression of BC by suppressing anti-tumor immunity directly or indirectly through multiple mechanisms. In addition, conventional treatments, such as anthracycline-based neoadjuvant chemotherapy, and neo-therapies, such as immune-checkpoint blockades, have a significant impact on the absence of Tregs in BC TME, thus gaining additional anti-tumor effect to some extent. Strikingly, Treg in BC TME revealed the predicted efficacy of some therapeutic strategies. All these results suggest that we can manipulate the abundance of Treg to achieve the ultimate effect of both conventional and novel treatments. In this review, we discuss new insights into the characteristics of Treg in BC TME, the impact of different regiments on Treg, and the possibilities of Treg as a predictive marker of efficacy for certain treatments.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhan Deng
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Yu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongbin Wang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhigao Li
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
60
|
Zhou S, Fan C, Zeng Z, Young KH, Li Y. Clinical and Immunological Effects of p53-Targeting Vaccines. Front Cell Dev Biol 2021; 9:762796. [PMID: 34805170 PMCID: PMC8595300 DOI: 10.3389/fcell.2021.762796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy, including immune checkpoint blockade and chimeric antigen receptor T cells, is one of the most promising approaches to treat cancer. Vaccines have been effective in preventing cancers like liver cancer and cervical cancer with a viral etiology. Instead of preventing disease, therapeutic cancer vaccines mobilize the immune system to attack existing cancer. p53 is dysregulated in the majority of human cancers and is a highly promising target for cancer vaccines. Over twenty clinical trials have targeted p53 in malignant diseases using vaccines. In this work, we review the progress of vaccinations with p53 or its peptides as the antigens and summarize the clinical and immunological effects of p53-targeting vaccines from clinical trials. The delivery platforms include p53 peptides, viral vectors, and dendritic cells pulsed with short peptides or transduced by p53-encoding viruses. These studies shed light on the feasibility, safety, and clinical benefit of p53 vaccination in select groups of patients, implicating that p53-targeting vaccines warrant further investigations in experimental animals and human studies.
Collapse
Affiliation(s)
- Shan Zhou
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chunmei Fan
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, China
| | - Ken H. Young
- Hematopathology Division, Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Yong Li
- Section of Epidemiology and Population Science, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
61
|
Gellatly KJ, Strassner JP, Essien K, Refat MA, Murphy RL, Coffin-Schmitt A, Pandya AG, Tovar-Garza A, Frisoli ML, Fan X, Ding X, Kim EE, Abbas Z, McDonel P, Garber M, Harris JE. scRNA-seq of human vitiligo reveals complex networks of subclinical immune activation and a role for CCR5 in T reg function. Sci Transl Med 2021; 13:eabd8995. [PMID: 34516831 DOI: 10.1126/scitranslmed.abd8995] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kyle J Gellatly
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - James P Strassner
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Kingsley Essien
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Maggi Ahmed Refat
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Rachel L Murphy
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Anthony Coffin-Schmitt
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Amit G Pandya
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Andrea Tovar-Garza
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael L Frisoli
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xueli Fan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xiaolan Ding
- Department of Dermatology, Peking University People's Hospital, Beijing, China
| | - Evangeline E Kim
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Zainab Abbas
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Patrick McDonel
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
62
|
Moody R, Wilson K, Flanagan KL, Jaworowski A, Plebanski M. Adaptive Immunity and the Risk of Autoreactivity in COVID-19. Int J Mol Sci 2021; 22:ijms22168965. [PMID: 34445670 PMCID: PMC8396528 DOI: 10.3390/ijms22168965] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
While first and foremost considered a respiratory infection, COVID-19 can result in complications affecting multiple organs. Immune responses in COVID-19 can both protect against the disease as well as drive it. Insights into these responses, and specifically the targets being recognised by the immune system, are of vital importance in understanding the side effects of COVID-19 and associated pathologies. The body's adaptive immunity recognises and responds against specific targets (antigens) expressed by foreign pathogens, but not usually to target self-antigens. However, if the immune system becomes dysfunctional, adaptive immune cells can react to self-antigens, which can result in autoimmune disease. Viral infections are well reported to be associated with, or exacerbate, autoimmune diseases such as multiple sclerosis (MS) and systemic lupus erythematosus (SLE). In COVID-19 patients, both new onset MS and SLE, as well as the occurrence of other autoimmune-like pathologies, have been reported. Additionally, the presence of autoantibodies, both with and without known associations to autoimmune diseases, have been found. Herein we describe the mechanisms of virally induced autoimmunity and summarise some of the emerging reports on the autoimmune-like diseases and autoreactivity that is reported to be associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Rhiane Moody
- School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (K.L.F.); (A.J.)
| | - Kirsty Wilson
- School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (K.L.F.); (A.J.)
| | - Katie L. Flanagan
- School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (K.L.F.); (A.J.)
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS 7250, Australia
- School of Medicine, University of Tasmania, Launceston, TAS 7250, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Anthony Jaworowski
- School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (K.L.F.); (A.J.)
| | - Magdalena Plebanski
- School of Health and Biomedical Science, RMIT University, Bundoora, VIC 3083, Australia; (R.M.); (K.W.); (K.L.F.); (A.J.)
- Correspondence:
| |
Collapse
|
63
|
Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci U S A 2021; 118:2023739118. [PMID: 34301886 DOI: 10.1073/pnas.2023739118] [Citation(s) in RCA: 240] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foxp3-expressing CD4+CD25+ regulatory T cells (Tregs) constitutively and highly express the immune checkpoint receptor cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), whose Treg-specific deficiency causes severe systemic autoimmunity. As a key mechanism of Treg-mediated suppression, Treg-expressed CTLA-4 down-regulates the expression of CD80/CD86 costimulatory molecules on antigen-presenting cells (APCs). Here, we show that Treg-expressed CTLA-4 facilitated Treg-APC conjugation and immune synapse formation. The immune synapses thus formed provided a stable platform whereby Tregs were able to deplete CD80/CD86 molecules on APCs by extracting them via CTLA-4-dependent trogocytosis. The depletion occurred even with Tregs solely expressing a mutant CTLA-4 form lacking the cytoplasmic portion required for its endocytosis. The CTLA-4-dependent trogocytosis of CD80/CD86 also accelerated in vitro and in vivo passive transfer of other membrane proteins and lipid molecules from APCs to Tregs without their significant reduction on the APC surface. Furthermore, CD80 down-regulation or blockade by Treg-expressed membrane CTLA-4 or soluble CTLA-4-immunoglobulin (CTLA-4-Ig), respectively, disrupted cis-CD80/programmed death ligand-1 (PD-L1) heterodimers and increased free PD-L1 on dendritic cells (DCs), expanding a phenotypically distinct population of CD80lo free PD-L1hi DCs. Thus, Tregs are able to inhibit the T cell stimulatory activity of APCs by reducing their CD80/CD86 expression via CTLA-4-dependent trogocytosis. This CD80/CD86 reduction on APCs is able to exert dual suppressive effects on T cell immune responses by limiting CD80/CD86 costimulation to naïve T cells and by increasing free PD-L1 available for the inhibition of programmed death-1 (PD-1)-expressing effector T cells. Blockade of CTLA-4 and PD-1/PD-L1 in combination may therefore synergistically hinder Treg-mediated immune suppression, thereby effectively enhancing immune responses, including tumor immunity.
Collapse
|
64
|
Immunophenotypic Analysis Reveals Differences in Circulating Immune Cells in the Peripheral Blood of Patients with Segmental and Nonsegmental Vitiligo. J Invest Dermatol 2021; 142:876-883.e3. [PMID: 34166674 DOI: 10.1016/j.jid.2021.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Accumulating studies have indicated immune-based destruction of melanocytes in both segmental vitiligo (SV) and non-SV (NSV). Whereas SV often occurs unilaterally during childhood and stabilizes after an initial period of activity, the disease course of NSV is usually slowly progressive, with new lesions occurring bilaterally during life. This suggests an involvement of distinct pathophysiology pathways, specifically increased systemic immune activation in patients with NSV but not in patients with SV. This research aimed to identify the differences in immune cells in the blood of patients with SV and NSV through immunophenotyping of circulating cells. Regulatory T cells were unaffected in patients with SV compared with that in healthy controls but decreased in patients with NSV. In patients with NSV, the reduction in regulatory T cells was associated with the presence of other systemic autoimmune comorbidities, which were less present in SV. Similarly, the absence of a melanocyte-specific antibody response in patients with SV suggests less involvement of B-cell immunity in SV. These data show that in contrast to patients with NSV, no increased systemic immunity is found in patients with SV, indicating that SV pathogenesis is associated with a localized cytotoxic reaction targeting epidermal melanocytes.
Collapse
|
65
|
Nguyen TTT, Wang ZE, Shen L, Schroeder A, Eckalbar W, Weiss A. Cbl-b deficiency prevents functional but not phenotypic T cell anergy. J Exp Med 2021; 218:212089. [PMID: 33974042 PMCID: PMC8117209 DOI: 10.1084/jem.20202477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
T cell anergy is an important peripheral tolerance mechanism. We studied how T cell anergy is established using an anergy model in which the Zap70 hypermorphic mutant W131A is coexpressed with the OTII TCR transgene (W131AOTII). Anergy was established in the periphery, not in the thymus. Contrary to enriched tolerance gene signatures and impaired TCR signaling in mature peripheral CD4 T cells, CD4SP thymocytes exhibited normal TCR signaling in W131AOTII mice. Importantly, the maintenance of T cell anergy in W131AOTII mice required antigen presentation via MHC-II. We investigated the functional importance of the inhibitory receptor PD-1 and the E3 ubiquitin ligases Cbl-b and Grail in this model. Deletion of each did not affect expression of phenotypic markers of anergic T cells or T reg numbers. However, deletion of Cbl-b, but not Grail or PD-1, in W131AOTII mice restored T cell responsiveness and signaling. Thus, Cbl-b plays an essential role in the establishment and/or maintenance of unresponsiveness in T cell anergy.
Collapse
Affiliation(s)
- Trang T T Nguyen
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Zhi-En Wang
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Lin Shen
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Andrew Schroeder
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Walter Eckalbar
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Arthur Weiss
- Russell/Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
66
|
Truckenbrod EN, Burrack KS, Knutson TP, Borges da Silva H, Block KE, O'Flanagan SD, Stagliano KR, Hurwitz AA, Fulton RB, Renkema KR, Jameson SC. CD8 + T cell self-tolerance permits responsiveness but limits tissue damage. eLife 2021; 10:65615. [PMID: 33929324 PMCID: PMC8147182 DOI: 10.7554/elife.65615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/29/2021] [Indexed: 01/25/2023] Open
Abstract
Self-specific CD8+T cells can escape clonal deletion, but the properties and capabilities of such cells in a physiological setting are unclear. We characterized polyclonal CD8+ T cells specific for the melanocyte antigen tyrosinase-related protein 2 (Trp2) in mice expressing or lacking this enzyme (due to deficiency in Dct, which encodes Trp2). Phenotypic and gene expression profiles of pre-immune Trp2/Kb-specific cells were similar; the size of this population was only slightly reduced in wild-type (WT) compared to Dct-deficient (Dct-/-) mice. Despite comparable initial responses to Trp2 immunization, WT Trp2/Kb-specific cells showed blunted expansion and less readily differentiated into a CD25+proliferative population. Functional self-tolerance clearly emerged when assessing immunopathology: adoptively transferred WT Trp2/Kb-specific cells mediated vitiligo much less efficiently. Hence, CD8+ T cell self-specificity is poorly predicted by precursor frequency, phenotype, or even initial responsiveness, while deficient activation-induced CD25 expression and other gene expression characteristics may help to identify functionally tolerant cells.
Collapse
Affiliation(s)
| | - Kristina S Burrack
- Center for Immunology, University of Minnesota, Saint Paul, United States
| | - Todd P Knutson
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, United States
| | | | - Katharine E Block
- Center for Immunology, University of Minnesota, Saint Paul, United States
| | | | - Katie R Stagliano
- Center for Immunology, University of Minnesota, Saint Paul, United States
| | - Arthur A Hurwitz
- Center for Immunology, University of Minnesota, Saint Paul, United States
| | - Ross B Fulton
- Center for Immunology, University of Minnesota, Saint Paul, United States
| | - Kristin R Renkema
- Center for Immunology, University of Minnesota, Saint Paul, United States
| | - Stephen C Jameson
- Center for Immunology, University of Minnesota, Saint Paul, United States
| |
Collapse
|
67
|
ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey. Nat Rev Immunol 2021; 21:257-267. [PMID: 33077935 DOI: 10.1038/s41577-020-00454-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
Following their exit from the thymus, T cells are endowed with potent effector functions but must spare host tissue from harm. The fate of these cells is dictated by a series of checkpoints that regulate the quality and magnitude of T cell-mediated immunity, known as tolerance checkpoints. In this Perspective, we discuss the mediators and networks that control the six main peripheral tolerance checkpoints throughout the life of a T cell: quiescence, ignorance, anergy, exhaustion, senescence and death. At the naive T cell stage, two intrinsic checkpoints that actively maintain tolerance are quiescence and ignorance. In the presence of co-stimulation-deficient T cell activation, anergy is a dominant hallmark that mandates T cell unresponsiveness. When T cells are successfully stimulated and reach the effector stage, exhaustion and senescence can limit excessive inflammation and prevent immunopathology. At every stage of the T cell's journey, cell death exists as a checkpoint to limit clonal expansion and to terminate unrestrained responses. Here, we compare and contrast the T cell tolerance checkpoints and discuss their specific roles, with the aim of providing an integrated view of T cell peripheral tolerance and fate regulation.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
68
|
Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers (Basel) 2021; 13:1440. [PMID: 33809974 PMCID: PMC8005092 DOI: 10.3390/cancers13061440] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind to CD80 and CD86 with a higher affinity than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of the ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Aram Davtyan
- Atomwise, 717 Market St, San Francisco, CA 94103, USA;
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy;
| | - Raheleh Roudi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
69
|
Abstract
Vitiligo is a disease of the skin characterized by the appearance of white spots. Significant progress has been made in understanding vitiligo pathogenesis over the past 30 years, but only through perseverance, collaboration, and open-minded discussion. Early hypotheses considered roles for innervation, microvascular anomalies, oxidative stress, defects in melanocyte adhesion, autoimmunity, somatic mosaicism, and genetics. Because theories about pathogenesis drive experimental design, focus, and even therapeutic approach, it is important to consider their impact on our current understanding about vitiligo. Animal models allow researchers to perform mechanistic studies, and the development of improved patient sample collection methods provides a platform for translational studies in vitiligo that can also be applied to understand other autoimmune diseases that are more difficult to study in human samples. Here we discuss the history of vitiligo translational research, recent advances, and their implications for new treatment approaches.
Collapse
Affiliation(s)
| | - John E. Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
70
|
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev 2021; 41:1138-1166. [PMID: 33200838 PMCID: PMC7983894 DOI: 10.1002/med.21754] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune depigment disease results from extensive melanocytes destruction. The destruction of melanocyte is thought to be of multifactorial causation. Genome-wide associated studies have identified single-nucleotide polymorphisms in a panel of susceptible loci as risk factors in melanocyte death. But vitiligo onset can't be solely attributed to a susceptive genetic background. Oxidative stress triggered by elevated levels of reactive oxygen species accounts for melanocytic molecular and organelle dysfunction, a minority of melanocyte demise, and melanocyte-specific antigens exposure. Of note, the self-responsive immune function directly contributes to the bulk of melanocyte deaths in vitiligo. The aberrantly heightened innate immunity, type-1-skewed T helper, and incompetent regulatory T cells tip the balance toward autoreaction and CD8+ cytotoxic T lymphocytes finally execute the killing of melanocytes, possibly alarmed by resident memory T cells. In addition to the well-established apoptosis and necrosis, we discuss several death modalities like oxeiptosis, ferroptosis, and necroptosis that are probably employed in melanocyte destruction. This review focuses on the various mechanisms of melanocytic death in vitiligo pathogenesis to demonstrate a panorama of that. We hope to provide new insights into vitiligo pathogenesis and treatment strategies by the review.
Collapse
Affiliation(s)
- Jianru Chen
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Shuli Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Chunying Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| |
Collapse
|
71
|
Plaza-Rojas L, Guevara-Patiño JA. The Role of the NKG2D in Vitiligo. Front Immunol 2021; 12:624131. [PMID: 33717132 PMCID: PMC7952755 DOI: 10.3389/fimmu.2021.624131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin depigmentation. In this review, we examine the role of cells stress and self-reactive T cells responses. Given the canonical and non-canonical functions of NKG2D, such as authenticating stressed target and enhance TCR signaling, we examine how melanocyte stress leads to the expression of ligands that are recognized by the activating receptor NKG2D, and how its signaling results in the turning of T cells against self (melanocyte suicide by proxy). We also discuss how this initiation phase is followed by T cell perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with improved cytolytic properties.
Collapse
Affiliation(s)
- Lourdes Plaza-Rojas
- Department of Cancer Biology, Loyola University Chicago, Chicago, IL, United States
| | | |
Collapse
|
72
|
Adipose Tissue T Regulatory Cells: Implications for Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:125-139. [PMID: 33523447 DOI: 10.1007/978-981-15-6407-9_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity dramatically increases the risk of numerous conditions, including type 2 diabetes mellitus and other components of the metabolic syndrome. Pro-inflammatory changes that occur in adipose tissue are critical to the pathogenesis of these obesity-induced complications. Adipose tissue is one of the body's largest endocrine organs, and the cells that comprise the adipose tissue immunoenvironment secrete multiple factors (including adipokines and cytokines) that impact systemic metabolism. In particular, immunosuppressive regulatory T cells (Tregs) decline in obesity, partly in response to its complex interaction with adipocytes, and this decline contributes to disruption of the typical homeostasis observed in lean adipose tissue. Although the regulation of Treg differentiation, function, and enrichment is incompletely understood, factors including various cell-surface co-stimulatory molecules, certain lipid species, and cytokines such as PPARγ, adiponectin, and leptin are important mediators. It is also clear that there may be depot-specific differences in Tregs, rendering adipose tissue Tregs distinct from lymphoid or circulating Tregs, with implications on maintenance and functionality. While most of these findings are derived from studies in murine models, comparatively little is known about the human adipose tissue Treg signature, which requires further investigation.
Collapse
|
73
|
Ye Z, Shen Y, Jin K, Qiu J, Hu B, Jadhav RR, Sheth K, Weyand CM, Goronzy JJ. Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation. Nat Commun 2021; 12:907. [PMID: 33568645 PMCID: PMC7875984 DOI: 10.1038/s41467-021-21242-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are two distinct autoimmune diseases that manifest with chronic synovial inflammation. Here, we show that CD4+ T cells from patients with RA and PsA have increased expression of the pore-forming calcium channel component ORAI3, thereby increasing the activity of the arachidonic acid-regulated calcium-selective (ARC) channel and making T cells sensitive to arachidonic acid. A similar increase does not occur in T cells from patients with systemic lupus erythematosus. Increased ORAI3 transcription in RA and PsA T cells is caused by reduced IKAROS expression, a transcriptional repressor of the ORAI3 promoter. Stimulation of the ARC channel with arachidonic acid induces not only a calcium influx, but also the phosphorylation of components of the T cell receptor signaling cascade. In a human synovium chimeric mouse model, silencing ORAI3 expression in adoptively transferred T cells from patients with RA attenuates tissue inflammation, while adoptive transfer of T cells from healthy individuals with reduced expression of IKAROS induces synovitis. We propose that increased ARC activity due to reduced IKAROS expression makes T cells more responsive and contributes to chronic inflammation in RA and PsA. ORAI3 is part of pore forming calcium channels involved in T cell activation. Here the authors show that there is increased expression of ORAI3 in T cells from patients with rheumatoid arthritis and that the transcription factor IKAROS negatively regulates the ORAI3 promoter, indicating a regulatory loop that can control auto-reactivity of T cells in these patients.
Collapse
Affiliation(s)
- Zhongde Ye
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Yi Shen
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ke Jin
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jingtao Qiu
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Bin Hu
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Rohit R Jadhav
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Khushboo Sheth
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Cornelia M Weyand
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA.,Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jörg J Goronzy
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA. .,Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
74
|
Effects of CpG oligodeoxynucleotides on the differentiation of Treg/Th17 cells. Mol Immunol 2021; 132:199-208. [PMID: 33454107 DOI: 10.1016/j.molimm.2021.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/21/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
AIM The balance between Th17 cells and T regulatory (Treg) cells has emerged as a prominent factor in regulating cancer development. However, the effect of CpG oligodeoxynucleotides (ODNs) on the differentiation of Treg/Th17 cells has not been well studied. We sought here to explore the function of CpG ODNs in the differentiation of Tregs and Th17 cells in vitro and in vivo. METHODS Mouse spleen cells were cultured with anti-CD3 monoclonal antibodies in vitro. Tregs and Th17 cell differentiation was induced by transforming growth factor (TGF)-β and interleukin (IL)-2, or TGF-β, IL-6, and IL-23, respectively. Then cells were treated with two CpG ODNs, CpG 1982, or CpG 1826. FBL-3-inoculated C57Bl/6 mice were treated with CpG 1826, tumor vaccine, or combination of CpG 1826 and tumor vaccine. After treatment, spleen cells and serum were isolated, and Tregs/Th17 cells were detected by flow cytometry. The expression of forkhead box P3 (Foxp3), retinoid-related orphan receptor gamma-t (RORγt), IL-10, and IL-17 mRNA was measured by real-time PCR, and protein levels were measured by Western blot and enzyme-linked immunosorbent assay. RESULTS The frequency of Treg cells increased significantly (p < 0.05) in the FBL-3-inoculated leukemia mouse model compared with control mice, whereas the frequency of Th17 cells did not change. Median survival of mice after treatment with CpG 1826 and tumor vaccine was significantly prolonged compared with that of control mice (p < 0.05). The frequency of induced Treg cells decreased after treatment with CpG 1826, whereas the frequency of Th17 cells induced by cytokines in vitro and in the murine leukemia model increased following treatment with CpG 1826. Furthermore, after treatment with CpG 1826, the mRNA and protein levels of Foxp3 and IL-10 decreased significantly both in vitro and in vivo (p < 0.05), whereas those of RORγt and IL-17 increased significantly (p < 0.05). CONCLUSION CpG 1826 may inhibit the differentiation of Treg cells induced by cytokines, promote the differentiation of Th17 cells in vitro and in murine leukemia models, and prolong the median survival of mice with leukemia.
Collapse
|
75
|
Wohn C, Le Guen V, Voluzan O, Fiore F, Henri S, Malissen B. Absence of MHC class II on cDC1 dendritic cells triggers fatal autoimmunity to a cross-presented self-antigen. Sci Immunol 2020; 5:5/45/eaba1896. [PMID: 32169954 DOI: 10.1126/sciimmunol.aba1896] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 12/19/2022]
Abstract
Conventional dendritic cells expressing the XCR1 chemokine receptor (cDC1s) excel at cross-presentation. Here, we developed and used a mouse model in which a Cre recombinase is expressed under the control of the Xcr1 gene while preserving XCR1 expression. We used it to generate mice with conditional deletion of MHC class II (MHCII) molecules on cDC1s. By preventing cDC1s to receive suppressive regulatory T cell inputs via MHCII-restricted interactions, the objective of the present study was to gauge whether MHCII-deficient cDC1s lose their capacity of tolerizing autoreactive CD8+ T cells. Whereas MHCII+ cDC1 readily cross-tolerized strongly autoreactive CD8+ T cells specific for a keratinocyte-derived self-antigen, MHCII-deficient cDC1s converted them into potent effectors capable of triggering a fast-onset lethal autoimmunity associated with severe skin histopathological manifestations. Preventing egress of such pathogenic self-reactive CD8+ T cell effectors from the cutaneous draining lymph nodes abrogated the autoimmune condition. Therefore, our results revealed that the cross-tolerizing capacity of cDC1s is not a property fully acquired at the time they undergo homeostatic maturation but needs to be enforced via MHCII-restricted, suppressive interactions with regulatory T cells.
Collapse
Affiliation(s)
- Christian Wohn
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Valentin Le Guen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Odessa Voluzan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Frédéric Fiore
- Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France.
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France. .,Centre d'Immunophénomique, Aix Marseille Université, INSERM, CNRS, 13288 Marseille, France
| |
Collapse
|
76
|
Ebelt ND, Zuniga E, Marzagalli M, Zamloot V, Blazar BR, Salgia R, Manuel ER. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy. Biomedicines 2020; 8:E617. [PMID: 33339195 PMCID: PMC7765568 DOI: 10.3390/biomedicines8120617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022] Open
Abstract
Therapeutic options for non-small cell lung cancer (NSCLC) treatment have changed dramatically in recent years with the advent of novel immunotherapeutic approaches. Among these, immune checkpoint blockade (ICB) using monoclonal antibodies has shown tremendous promise in approximately 20% of patients. In order to better predict patients that will respond to ICB treatment, biomarkers such as tumor-associated CD8+ T cell frequency, tumor checkpoint protein status and mutational burden have been utilized, however, with mixed success. In this study, we hypothesized that significantly altering the suppressive tumor immune landscape in NSCLC could potentially improve ICB efficacy. Using sub-therapeutic doses of our Salmonella typhimurium-based therapy targeting the suppressive molecule indoleamine 2,3-dioxygenase (shIDO-ST) in tumor-bearing mice, we observed dramatic changes in immune subset phenotypes that included increases in antigen presentation markers, decreased regulatory T cell frequency and overall reduced checkpoint protein expression. Combination shIDO-ST treatment with anti-PD-1/CTLA-4 antibodies enhanced tumor growth control, compared to either treatment alone, which was associated with significant intratumoral infiltration by CD8+ and CD4+ T cells. Ultimately, we show that increases in antigen presentation markers and infiltration by T cells is correlated with significantly increased survival in NSCLC patients. These results suggest that the success of ICB therapy may be more accurately predicted by taking into account multiple factors such as potential for antigen presentation and immune subset repertoire in addition to markers already being considered. Alternatively, combination treatment with agents such as shIDO-ST could be used to create a more conducive tumor microenvironment for improving responses to ICB.
Collapse
Affiliation(s)
- Nancy D. Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Edith Zuniga
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Monica Marzagalli
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Vic Zamloot
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA;
| | - Edwin R. Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; (N.D.E.); (E.Z.); (M.M.); (V.Z.)
| |
Collapse
|
77
|
Salaman MR, Gould KG. Breakdown of T-cell ignorance: The tolerance failure responsible for mainstream autoimmune diseases? J Transl Autoimmun 2020; 3:100070. [PMID: 33294833 PMCID: PMC7695872 DOI: 10.1016/j.jtauto.2020.100070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
This article explores the possibility that the major autoimmune diseases come about because of the breakdown of T lymphocyte ignorance – that state in which antigen and lymphocyte have never come together in such a way as to induce tolerance or an immune response. By use of transgenic technique to place a foreign antigen/peptide in various mouse tissues the widespread occurrence of ignorance has been observed and information obtained on when it is likely to occur. Now, with the advent of tetramer technique to enrich specific T cells and the recognition of lymphocyte markers indicating whether or not antigen interaction has taken place, ignorance of genuine self-antigens is being examined in mouse and man. In the absence of thymic deletion it seems that tolerance to self-antigens is brought about either by T cell ignorance or T cell regulatory control. The initiating factor in these major diseases is likely to be a change in the condition of the antigen leading to tolerance failure. There is evidence that it is ignorance that breaks down in Type 1 diabetes and systemic lupus erythematosus. If this proves a general rule, it may be because ignorance is the tolerance mechanism most vulnerable to subversion. T cell ignorance or regulation maintain self-tolerance when thymic deletion is absent. Increased antigen availability is the likely initiator of major autoimmune diseases. Altered antigen availability may result in breakdown of T cell ignorance. Loss of ignorance will lead to autoimmune disease unless T cell regulation steps in.
Collapse
Affiliation(s)
- Myer R. Salaman
- Corresponding author. Department of Infectious Disease, St Mary’s Campus, Imperial College, London, W2 1PG, UK.
| | | |
Collapse
|
78
|
Speeckaert R, Lambert J, Bulat V, Belpaire A, Speeckaert M, van Geel N. Autoimmunity in Segmental Vitiligo. Front Immunol 2020; 11:568447. [PMID: 33193342 PMCID: PMC7655129 DOI: 10.3389/fimmu.2020.568447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
The autoimmune basis of segmental vitiligo (SV) has only recently been recognized. Systemic autoimmune diseases are less frequently associated compared to non-segmental vitiligo (NSV), but localized skin disorders - in particular linear morphea - have been repeatedly observed in patients with SV. The inflammatory response is documented on a clinical level with cases displaying erythematous borders or a hypochromic stage, on a histopathological level with predominantly CD8 lymphocytes migrating toward the basal layer and by flow cytometry demonstrating the antimelanocyte specificity of these cytotoxic T cells. The increased risk for halo naevi and NSV in these patients further underline the immune-mediated mechanisms of SV. Nonetheless, the localized and unique distribution pattern points to somatic mosaicism. This places SV in a category of similar diseases such as lichen striatus, blaschkitis, linear lupus erythematosus, and linear scleroderma where an immune reaction against genetically mutated skin cells is believed to be the underlying cause. All these disorders are characterized by a young age of onset, a temporary disease activity with spontaneous resolution, limited response to treatment, and often long-term sequelae. Although challenging, genetic research proving this genetic mosaicism could offer crucial insights into the pathogenesis of both segmental and non-segmental vitiligo.
Collapse
Affiliation(s)
| | - Jo Lambert
- Department of Dermatology, Gent University Hospital, Gent, Belgium
| | - Vedrana Bulat
- Department of Dermatology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Arno Belpaire
- Department of Dermatology, Gent University Hospital, Gent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Gent University Hospital, Gent, Belgium
| |
Collapse
|
79
|
Leko V, Rosenberg SA. Identifying and Targeting Human Tumor Antigens for T Cell-Based Immunotherapy of Solid Tumors. Cancer Cell 2020; 38:454-472. [PMID: 32822573 PMCID: PMC7737225 DOI: 10.1016/j.ccell.2020.07.013] [Citation(s) in RCA: 275] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Cancer elimination in humans can be achieved with immunotherapy that relies on T lymphocyte-mediated recognition of tumor antigens. Several types of these antigens have been recognized based on their cellular origins and expression patterns, while their detection has been greatly facilitated by recent achievements in next-generation sequencing and immunopeptidomics. Some of them have been targeted in clinical trials with various immunotherapy approaches, while many others remain untested. Here, we discuss molecular identification of different tumor antigen types, and the clinical safety and efficacy of targeting them with immunotherapy. Additionally, we suggest strategies to increase the efficacy and availability of antigen-directed immunotherapies for treatment of patients with metastatic cancer.
Collapse
Affiliation(s)
- Vid Leko
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10-CRC, Room 3-3942, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
80
|
Muramatsu K, Zheng M, Yoshimoto N, Ito T, Ujiie I, Iwata H, Shimizu H, Ujiie H. Regulatory T cell subsets in bullous pemphigoid and dipeptidyl peptidase-4 inhibitor-associated bullous pemphigoid. J Dermatol Sci 2020; 100:23-30. [PMID: 32843228 DOI: 10.1016/j.jdermsci.2020.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Regulatory T (Treg) cells play an essential role in peripheral immune tolerance. Bullous pemphigoid (BP) is the most common blistering disease and is caused by autoantibodies to two BP antigens: type XVII collagen and BP230. Recently, we reported that Treg cell dysfunction may cause the production of autoantibodies to BP antigens. Several studies have suggested an association between Treg cells and BP pathogenesis. However, Treg cells are heterogeneous in humans, leading to inconsistent results in previous studies. OBJECTIVE To assess functional Treg subsets in BP. METHODS We examined three distinct Treg subsets in conventional BP (cBP) patients before versus after systemic corticosteroid treatment, dipeptidyl peptidase-4 inhibitor-associated BP (DPP-4i-BP) patients, younger controls and older controls. RESULTS We found that total Treg cells and all Treg cell subsets were increased in cBP patients before treatment and decreased by systemic corticosteroid treatment. In contrast, neither total Treg cells nor all Treg subsets were increased in DPP-4i-BP. Notably, CD45RA- Foxp3hi effector Treg cells positively correlated with disease severity in cBP, whereas CD45RA+Foxp3lo naïve Treg cells positively correlated with the disease severity in DPP-4i-BP. CONCLUSION These findings suggest that Treg cells are differently involved in the pathogeneses of cBP and DPP-4i-BP.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Autoantibodies/immunology
- Autoantibodies/metabolism
- Autoantigens/immunology
- CD4 Lymphocyte Count
- Case-Control Studies
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Dipeptidyl-Peptidase IV Inhibitors/adverse effects
- Dystonin/immunology
- Female
- Glucocorticoids/administration & dosage
- Healthy Volunteers
- Humans
- Male
- Middle Aged
- Non-Fibrillar Collagens/immunology
- Pemphigoid, Bullous/blood
- Pemphigoid, Bullous/chemically induced
- Pemphigoid, Bullous/diagnosis
- Pemphigoid, Bullous/immunology
- Severity of Illness Index
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Collagen Type XVII
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Miao Zheng
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Norihiro Yoshimoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takamasa Ito
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Inkin Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
81
|
Kumagai S, Togashi Y, Sakai C, Kawazoe A, Kawazu M, Ueno T, Sato E, Kuwata T, Kinoshita T, Yamamoto M, Nomura S, Tsukamoto T, Mano H, Shitara K, Nishikawa H. An Oncogenic Alteration Creates a Microenvironment that Promotes Tumor Progression by Conferring a Metabolic Advantage to Regulatory T Cells. Immunity 2020; 53:187-203.e8. [PMID: 32640259 DOI: 10.1016/j.immuni.2020.06.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/31/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022]
Abstract
Only a small percentage of patients afflicted with gastric cancer (GC) respond to immune checkpoint blockade (ICB). To study the mechanisms underlying this resistance, we examined the immune landscape of GC. A subset of these tumors was characterized by high frequencies of regulatory T (Treg) cells and low numbers of effector T cells. Genomic analyses revealed that these tumors bore mutations in RHOA that are known to drive tumor progression. RHOA mutations in cancer cells activated the PI3K-AKT-mTOR signaling pathway, increasing production of free fatty acids that are more effectively consumed by Treg cells than effector T cells. RHOA mutant tumors were resistant to PD-1 blockade but responded to combination of PD-1 blockade with inhibitors of the PI3K pathway or therapies targeting Treg cells. We propose that the metabolic advantage conferred by RHOA mutations enables Treg cell accumulation within GC tumors, generating an immunosuppressive TME that underlies resistance to ICB.
Collapse
Affiliation(s)
- Shogo Kumagai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Togashi
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan.
| | - Chika Sakai
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan
| | - Akihito Kawazoe
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, Group for Cancer Development and Progression, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, Group for Cancer Development and Progression, National Cancer Center Research Institute, Tokyo, Japan
| | - Eiichi Sato
- Department of Pathology, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takeshi Kuwata
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Chiba, Japan
| | - Takahiro Kinoshita
- Department of Gastric Surgery, National Cancer Center Hospital East, Chiba, Japan
| | - Masami Yamamoto
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Aichi, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, Group for Cancer Development and Progression, National Cancer Center Research Institute, Tokyo, Japan
| | - Kohei Shitara
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tokyo/Chiba, Japan; Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
82
|
Reversible suppression of T cell function in the bone marrow microenvironment of acute myeloid leukemia. Proc Natl Acad Sci U S A 2020; 117:14331-14341. [PMID: 32513686 PMCID: PMC7321988 DOI: 10.1073/pnas.1916206117] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with approximately four new cases per 100,000 persons per year. Standard treatment for AML consists of induction chemotherapy with remission achieved in 50 to 75% of cases. Unfortunately, most patients will relapse and die from their disease, as 5-y survival is roughly 29%. Therefore, other treatment options are urgently needed. In recent years, immune-based therapies have led to unprecedented rates of survival among patients with some advanced cancers. Suppression of T cell function in the tumor microenvironment is commonly observed and may play a role in AML. We found that there is a significant association between T cell infiltration in the bone marrow microenvironment of newly diagnosed patients with AML and increased overall survival. Functional studies aimed at establishing the degree of T cell suppression in patients with AML revealed impaired T cell function in many patients. In most cases, T cell proliferation could be restored by blocking the immune checkpoint molecules PD-1, CTLA-4, or TIM3. Our data demonstrate that AML establishes an immune suppressive environment in the bone marrow, in part through T cell checkpoint function.
Collapse
|
83
|
Suzuki S, Ogawa T, Sano R, Takahara T, Inukai D, Akira S, Tsuchida H, Yoshikawa K, Ueda R, Tsuzuki T. Immune-checkpoint molecules on regulatory T-cells as a potential therapeutic target in head and neck squamous cell cancers. Cancer Sci 2020; 111:1943-1957. [PMID: 32304268 PMCID: PMC7293074 DOI: 10.1111/cas.14422] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/18/2022] Open
Abstract
Immune-checkpoint inhibitors improve the survival of head and neck squamous cell carcinoma (HNSCC) patients. Although recent studies have demonstrated that the tumor immune microenvironment (TIME) has critical roles in immunotherapy, the precise mechanisms involved are unclear. Therefore, further investigations of TIME are required for the improvement of immunotherapy. The frequency of effector regulatory T-cells (eTregs) and the expression of immune-checkpoint molecules (ICM) on eTregs and conventional T-cells (Tconvs) both in peripheral blood lymphocytes (PBL) and tumor-infiltrating lymphocytes (TIL) from HNSCC patients were analyzed by flow cytometry and their distributions were evaluated by multi-color immunofluorescence microscopy. High frequency eTreg infiltration into HNSCC tissues was observed and high expressions of CD25, FOXP3, stimulatory-ICM (4-1BB, ICOS, OX40 and GITR) and inhibitory-ICM (programmed cell death-1 [PD-1] and cytotoxic T-lymphocyte-associated protein-4 [CTLA-4]) were found on invasive eTregs. In contrast, the expression of stimulatory-ICM on Tconvs was low and the expression of inhibitory-ICM was high. In addition, ICM-ligands (programmed cell death-1 [PD-L1], galectin-9 and CEACAM-1) were frequently expressed on cancer cells. PD-L1 and galectin-9 were also expressed on macrophages. PD-1+ T-cells interacted with PD-L1+ cancer cells or PD-L1+ macrophages. This suggested that in TIL, eTregs are highly activated, but Tconvs are exhausted or inactivated by eTregs and immune-checkpoint systems, and ICM and eTregs are strongly involved in the creation of an immunosuppressive environment in HNSCC tissues. These suggested eTreg targeting drugs are expected to be a combination partner with immune-checkpoint inhibitors that will improve immunotherapy of HNSCC.
Collapse
Affiliation(s)
- Susumu Suzuki
- Research Creation Support Centre, Aichi Medical University, Nagakute, Japan.,Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Rui Sano
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Daisuke Inukai
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Satou Akira
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiromi Tsuchida
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazuhiro Yoshikawa
- Research Creation Support Centre, Aichi Medical University, Nagakute, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
84
|
Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc Natl Acad Sci U S A 2020; 117:12258-12268. [PMID: 32414925 PMCID: PMC7275710 DOI: 10.1073/pnas.1922600117] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cells (Tregs) expressing the Treg-specific transcription factor Foxp3 are indispensable for suppressing hazardous immune responses such as autoimmune disease and allergy. Their stable function requires DNA hypomethylation at specific regions of Treg function-associated genes such as Foxp3. This report shows that, in the course of in vitro Treg generation from conventional T cells by antigenic stimulation in the presence of TGF-β and IL-2, deprivation of CD28 costimulatory signal can induce Treg-specific DNA hypomethylation in developing Tregs. Additional in vitro culture with IL-2 alone further stabilizes their Treg-type hypomethylation status, enabling their in vivo transfer to effectively suppress immune responses. These findings would help in producing functionally stable Tregs from disease-mediating T cells for treatment of various immunological diseases. Foxp3-expressing regulatory T cells (Tregs) can be generated in vitro by antigenic stimulation of conventional T cells (Tconvs) in the presence of TGF-β and IL-2. However, unlike Foxp3+ naturally occurring Tregs, such in vitro induced Tregs (iTregs) are functionally unstable mainly because of incomplete Treg-type epigenetic changes at Treg signature genes such as Foxp3. Here we show that deprivation of CD28 costimulatory signal at an early stage of iTreg generation is able to establish Treg-specific DNA hypomethylation at Treg signature genes. It was achieved, for example, by TCR/TGF-β/IL-2 stimulation of CD28-deficient Tconvs or CD28-intact Tconvs without anti-CD28 agonistic mAb or with CD80/CD86-blocked or -deficient antigen-presenting cells. The signal abrogation could induce Treg-type hypomethylation in memory/effector as well as naive Tconvs, while hindering Tconv differentiation into effector T cells. Among various cytokines and signal activators/inhibitors, TNF-α and PKC agonists inhibited the hypomethylation. Furthermore, CD28 signal deprivation significantly reduced c-Rel expression in iTregs; and the specific genomic perturbation of a NF-κB binding motif at the Foxp3 CNS2 locus enhanced the locus-specific DNA hypomethylation even in CD28 signaling-intact iTregs. In addition, in vitro maintenance of such epigenome-installed iTregs with IL-2 alone, without additional TGF-β or antigenic stimulation, enabled their expansion and stabilization of Treg-specific DNA hypomethylation. These iTregs indeed stably expressed Foxp3 after in vivo transfer and effectively suppressed antigen-specific immune responses. Taken together, inhibition of the CD28-PKC-NF-κB signaling pathway in iTreg generation enables de novo acquisition of Treg-specific DNA hypomethylation at Treg signature genes and abundant production of functionally stable antigen-specific iTregs for therapeutic purposes.
Collapse
|
85
|
Abstract
Vitiligo is an autoimmune disease of the skin that targets pigment-producing melanocytes and results in patches of depigmentation that are visible as white spots. Recent research studies have yielded a strong mechanistic understanding of this disease. Autoreactive cytotoxic CD8+ T cells engage melanocytes and promote disease progression through the local production of IFN-γ, and IFN-γ-induced chemokines are then secreted from surrounding keratinocytes to further recruit T cells to the skin through a positive-feedback loop. Both topical and systemic treatments that block IFN-γ signaling can effectively reverse vitiligo in humans; however, disease relapse is common after stopping treatments. Autoreactive resident memory T cells are responsible for relapse, and new treatment strategies focus on eliminating these cells to promote long-lasting benefit. Here, we discuss basic, translational, and clinical research studies that provide insight into the pathogenesis of vitiligo, and how this insight has been utilized to create new targeted treatment strategies.
Collapse
Affiliation(s)
- Michael L. Frisoli
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - Kingsley Essien
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - John E. Harris
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| |
Collapse
|
86
|
Abdel-Malek ZA, Jordan C, Ho T, Upadhyay PR, Fleischer A, Hamzavi I. The enigma and challenges of vitiligo pathophysiology and treatment. Pigment Cell Melanoma Res 2020; 33:778-787. [PMID: 32198977 DOI: 10.1111/pcmr.12878] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Vitiligo is the most common acquired pigmentary disorder, which afflicts 0.5%-1% of the world population, and is characterized by depigmented skin patches resulting from melanocyte loss. Vitiligo has a complex etiology and varies in its manifestations, progression, and response to treatment. It presents as an autoimmune disease, evidenced by circulating melanocyte-specific antibodies, and association with other autoimmune diseases. However, autoimmunity may be secondary to the high oxidative stress in vitiligo skin and to intrinsic defects in melanocytes and their microenvironment, which contribute to aberrant stress response, neo-antigenicity, and susceptibility of melanocytes to immune attack and apoptosis. There is also a genetic predisposition to vitiligo, which sensitizes melanocytes to environmental agents, such as phenolic compounds. Currently, there are different treatment modalities for re-pigmenting vitiligo skin. However, when repigmentation is achieved, the major challenge is maintaining the pigmentation, which is lost in 40% of cases. In this review, we present an overview of the clinical aspects of vitiligo, its pathophysiology, the intrinsic defects in melanocytes and their microenvironment, and treatment strategies. Based on lessons from the biology of human melanocytes, we present our perspective of how repigmentation of vitiligo skin can be achieved and sustained.
Collapse
Affiliation(s)
| | - Christian Jordan
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Tina Ho
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Parth Rajendrakumar Upadhyay
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio.,Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Alan Fleischer
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Iltefat Hamzavi
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
87
|
Yoshimura K, Suzuki Y, Inoue Y, Tsuchiya K, Karayama M, Iwashita Y, Kahyo T, Kawase A, Tanahashi M, Ogawa H, Inui N, Funai K, Shinmura K, Niwa H, Sugimura H, Suda T. CD200 and CD200R1 are differentially expressed and have differential prognostic roles in non-small cell lung cancer. Oncoimmunology 2020; 9:1746554. [PMID: 32395395 PMCID: PMC7204521 DOI: 10.1080/2162402x.2020.1746554] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
CD200, a member of the immunoglobulin superfamily, interacts with its receptor CD200R1 to modulate cancer immune microenvironments. Here, we explored the clinicopathological and prognostic implications of the CD200/CD200R1 axis in non-small-cell lung cancer (NSCLC) patients. We evaluated CD200/CD200R1 expression in the tumors and stroma of 632 NSCLC patients using immunohistochemistry. Associations between CD200/CD200R1 expression levels and clinicopathological data were analyzed. We also examined their expression in lung cancer cell lines. Changes in endogenous immune-related factors and cell proliferation were evaluated by CD200 and CD200R1 knockdown and CD200Fc fusion protein administration. CD200 expression was observed mainly in the tumor, and also in the stroma among a few cases, whereas CD200R1 expression was observed in both the tumor and stroma. High tumoral CD200 expression was significantly associated with female sex, never-smoking status, adenocarcinoma histology, EGFR mutation, and a low density of tumor-infiltrating lymphocytes. Meanwhile, high CD200R1 expression in the tumor and stroma was associated with ever smoking, non-adenocarcinoma histology, and increased tumor-infiltrating lymphocytes. High CD200R1 expression was associated with worse survival (log-rank, P <.001 for both tumor and stroma), whereas high CD200 expression was associated with better survival outcomes (log-rank, P <.001). The transient knockdown of CD200R1 in lung cancer cell lines impaired cell proliferation, and the in vitro modulation of CD200 and CD200R1 altered endogenous oncogenic and inflammation-related gene expression. CD200R1 expression was associated with poor prognosis, whereas CD200 expression was an independent favorable prognostic factor. Our results suggest the importance of CD200 and CD200R1 in lung cancer biology.
Collapse
Affiliation(s)
- Katsuhiro Yoshimura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuzo Suzuki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuo Tsuchiya
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masato Karayama
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Naoki Inui
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Clinical Pharmacology and Therapeutics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroshi Niwa
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
88
|
Ichikawa J, Yoshida T, Isser A, Laino AS, Vassallo M, Woods D, Kim S, Oelke M, Jones K, Schneck JP, Weber JS. Rapid Expansion of Highly Functional Antigen-Specific T Cells from Patients with Melanoma by Nanoscale Artificial Antigen-Presenting Cells. Clin Cancer Res 2020; 26:3384-3396. [PMID: 32241816 DOI: 10.1158/1078-0432.ccr-19-3487] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Generation of antigen-specific T cells from patients with cancer employs large numbers of peripheral blood cells and/or tumor-infiltrating cells to generate antigen-presenting and effector cells commonly requiring multiple rounds of restimulation ex vivo. We used a novel paramagnetic, nanoparticle-based artificial antigen-presenting cell (nano-aAPC) that combines anti-CD28 costimulatory and human MHC class I molecules that are loaded with antigenic peptides to rapidly expand tumor antigen-specific T cells from patients with melanoma. EXPERIMENTAL DESIGN Nano-aAPC-expressing HLA-A*0201 molecules and costimulatory anti-CD28 antibody and HLA-A*0201 molecules loaded with MART-1 or gp100 class I-restricted peptides were used to stimulate CD8 T cells purified from the peripheral blood of treatment-naïve or PD-1 antibody-treated patients with stage IV melanoma. Expanded cells were restimulated with fresh peptide-pulsed nano-aAPC at day 7. Phenotype analysis and functional assays including cytokine release, cytolysis, and measurement of avidity were conducted. RESULTS MART-1-specific CD8 T cells rapidly expanded up to 1,000-fold by day 14 after exposure to peptide-pulsed nano-aAPC. Expanded T cells had a predominantly stem cell memory CD45RA+/CD62L+/CD95+ phenotype; expressed ICOS, PD-1, Tim3, and LAG3; and lacked CD28. Cells from patients with melanoma were polyfunctional; highly avid; expressed IL2, IFNγ, and TNFα; and exhibited cytolytic activity against tumor cell lines. They expanded 2- to 3-fold after exposure to PD-1 antibody in vivo, and expressed a highly diverse T-cell receptor V beta repertoire. CONCLUSIONS Peptide-pulsed nano-aAPC rapidly expanded polyfunctional antigen-specific CD8 T cells with high avidity, potent lytic function, and a stem cell memory phenotype from patients with melanoma.
Collapse
Affiliation(s)
- Junya Ichikawa
- NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, New York, New York.
| | - Tatsuya Yoshida
- NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Ariel Isser
- Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Andressa S Laino
- NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - Melinda Vassallo
- NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, New York, New York
| | - David Woods
- NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, New York, New York
| | | | | | | | | | - Jeffrey S Weber
- NYU Langone Medical Center, Laura and Isaac Perlmutter Cancer Center, New York, New York.
| |
Collapse
|
89
|
Yoshida T, Ichikawa J, Giuroiu I, Laino AS, Hao Y, Krogsgaard M, Vassallo M, Woods DM, Stephen Hodi F, Weber J. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma. J Immunother Cancer 2020; 8:e000234. [PMID: 32303612 PMCID: PMC7204799 DOI: 10.1136/jitc-2019-000234] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND High C reactive protein (CRP) levels have been reported to be associated with a poor clinical outcome in a number of malignancies and with programmed cell death protein 1 immune checkpoint blockade in patients with advanced cancer. Little is known about the direct effects of CRP on adaptive immunity in cancer. Therefore, we investigated how CRP impacted the function of T cells and dendritic cells (DCs) from patients with melanoma. METHODS The effects of CRP on proliferation, function, gene expression and phenotype of patient T cells and DCs, and expansion of MART-1 antigen-specific T cells were analyzed by multicolor flow cytometry and RNA-seq. Additionally, serum CRP levels at baseline from patients with metastatic melanoma treated on the Checkmate-064 clinical trial were assessed by a Luminex assay. RESULTS In vitro, CRP inhibited proliferation, activation-associated phenotypes and the effector function of activated CD4+ and CD8+ T cells from patients with melanoma. CRP-treated T cells expressed high levels of interleukin-1β, which is known to enhance CRP production from the liver. CRP also suppressed formation of the immune synapse and inhibited early events in T-cell receptor engagement. In addition, CRP downregulated the expression of costimulatory molecules on mature DCs and suppressed expansion of MART-1-specific CD8+ T cells in a dose-dependent manner by impacting on both T cells and antigen-presenting cells. High-serum CRP levels at baseline were significantly associated with a shorter survival in both nivolumab-treated and ipilimumab-treated patients. CONCLUSIONS These findings suggest that high levels of CRP induce an immunosuppressive milieu in melanoma and support the blockade of CRP as a therapeutic strategy to enhance immune checkpoint therapies in cancer. TRIAL REGISTRATION NUMBER NCT01783938 and NCT02983006.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Junya Ichikawa
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Iulia Giuroiu
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Andressa S Laino
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Yuhan Hao
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Melinda Vassallo
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - David M Woods
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | | | - Jeffrey Weber
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| |
Collapse
|
90
|
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural Compounds with Potential to Modulate Cancer Therapies and Self-Reactive Immune Cells. Cancers (Basel) 2020; 12:cancers12030673. [PMID: 32183059 PMCID: PMC7139800 DOI: 10.3390/cancers12030673] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-related deaths are approaching 10 million each year. Survival statistics for some cancers, such as ovarian cancer, have remained unchanged for decades, with women diagnosed at stage III or IV having over 80% chance of a lethal cancer recurrence after standard first-line treatment (reductive surgery and chemotherapy). New treatments and adjunct therapies are needed. In ovarian cancer, as in other cancers, the immune response, particularly cytotoxic (CD8+) T cells are correlated with a decreased risk of recurrence. As well as completely new antigen targets resulting from DNA mutations (neo-antigens), these T cells recognize cancer-associated overexpressed, re-expressed or modified self-proteins. However, there is concern that activation of self-reactive responses may also promote off-target pathology. This review considers the complex interplay between cancer-reactive and self-reactive immune cells and discusses the potential uses for various leading immunomodulatory compounds, derived from plant-based sources, as a cancer therapy option or to modulate potential autoimmune pathology. Along with reviewing well-studied compounds such as curcumin (from turmeric), epigallocatechin gallate (EGCG, from green tea) and resveratrol (from grapes and certain berries), it is proposed that compounds from novel sources, for example, native Australian plants, will provide a useful source for the fine modulation of cancer immunity in patients.
Collapse
|
91
|
Riding RL, Harris JE. The Role of Memory CD8 + T Cells in Vitiligo. THE JOURNAL OF IMMUNOLOGY 2020; 203:11-19. [PMID: 31209143 DOI: 10.4049/jimmunol.1900027] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/05/2019] [Indexed: 12/31/2022]
Abstract
Vitiligo is an autoimmune skin disease mediated by autoreactive CD8+ T cells that destroy the pigment-producing cells of the epidermis, melanocytes, leading to areas of depigmentation. Patients with vitiligo require lifelong treatment to regain and maintain their pigment. Clinical observations uncovered the importance of autoimmune memory in vitiligo because cessation of treatment frequently led to relapse of disease at the site of previous lesions. A subset of memory T cells known as CD8+ resident memory T cells (TRM) are long-lived, nonmigratory memory cells that persist in most nonlymphoid tissues, including the skin. Recent reports describe the presence of CD8+ TRM in lesional vitiligo patient skin and suggest their role as active players in disease maintenance. In this review, we will discuss the role of skin CD8+ TRM in maintaining disease in vitiligo and the opportunity to target this population to induce a long-lasting reversal of disease.
Collapse
Affiliation(s)
- Rebecca L Riding
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
92
|
Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T Cells and Human Disease. Annu Rev Immunol 2020; 38:541-566. [PMID: 32017635 DOI: 10.1146/annurev-immunol-042718-041717] [Citation(s) in RCA: 691] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Naturally occurring CD4+ regulatory T cells (Tregs), which specifically express the transcription factor FoxP3 in the nucleus and CD25 and CTLA-4 on the cell surface, are a functionally distinct T cell subpopulation actively engaged in the maintenance of immunological self-tolerance and homeostasis. Recent studies have facilitated our understanding of the cellular and molecular basis of their generation, function, phenotypic and functional stability, and adaptability. It is under investigation in humans how functional or numerical Treg anomalies, whether genetically determined or environmentally induced, contribute to immunological diseases such as autoimmune diseases. Also being addressed is how Tregs can be targeted to control physiological and pathological immune responses, for example, by depleting them to enhance tumor immunity or by expanding them to treat immunological diseases. This review discusses our current understanding of Treg immunobiology in normal and disease states, with a perspective on the realization of Treg-targeting therapies in the clinic.
Collapse
Affiliation(s)
- Shimon Sakaguchi
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan; .,Laboratory of Experimental Immunology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Norihisa Mikami
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - James B Wing
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Atsushi Tanaka
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Kenji Ichiyama
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan;
| |
Collapse
|
93
|
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461:73-103. [PMID: 31025378 PMCID: PMC6994200 DOI: 10.1111/nyas.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
94
|
Kim JH, Kim BS, Lee SK. Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Netw 2020; 20:e4. [PMID: 32158592 PMCID: PMC7049587 DOI: 10.4110/in.2020.20.e4] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022] Open
Abstract
Tregs have a role in immunological tolerance and immune homeostasis by suppressing immune reactions, and its therapeutic potential is critical in autoimmune diseases and cancers. There have been multiple studies conducted on Tregs because of their roles in immune suppression and therapeutic potential. In tumor immunity, Tregs can promote the development and progression of tumors by preventing effective anti-tumor immune responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in poor survival in various types of cancer patients. Identifying factors specifically expressed in Tregs that affect the maintenance of stability and function of Tregs is important for understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion and controlling these cells require fine-tuning and further research. Here, we discuss the role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Jung-Ho Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Beom Seok Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Sang-Kyou Lee
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
95
|
Minoura K, Abe K, Maeda Y, Nishikawa H, Shimamura T. Model-based cell clustering and population tracking for time-series flow cytometry data. BMC Bioinformatics 2019; 20:633. [PMID: 31881827 PMCID: PMC6933651 DOI: 10.1186/s12859-019-3294-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Background Modern flow cytometry technology has enabled the simultaneous analysis of multiple cell markers at the single-cell level, and it is widely used in a broad field of research. The detection of cell populations in flow cytometry data has long been dependent on “manual gating” by visual inspection. Recently, numerous software have been developed for automatic, computationally guided detection of cell populations; however, they are not designed for time-series flow cytometry data. Time-series flow cytometry data are indispensable for investigating the dynamics of cell populations that could not be elucidated by static time-point analysis. Therefore, there is a great need for tools to systematically analyze time-series flow cytometry data. Results We propose a simple and efficient statistical framework, named CYBERTRACK (CYtometry-Based Estimation and Reasoning for TRACKing cell populations), to perform clustering and cell population tracking for time-series flow cytometry data. CYBERTRACK assumes that flow cytometry data are generated from a multivariate Gaussian mixture distribution with its mixture proportion at the current time dependent on that at a previous timepoint. Using simulation data, we evaluate the performance of CYBERTRACK when estimating parameters for a multivariate Gaussian mixture distribution, tracking time-dependent transitions of mixture proportions, and detecting change-points in the overall mixture proportion. The CYBERTRACK performance is validated using two real flow cytometry datasets, which demonstrate that the population dynamics detected by CYBERTRACK are consistent with our prior knowledge of lymphocyte behavior. Conclusions Our results indicate that CYBERTRACK offers better understandings of time-dependent cell population dynamics to cytometry users by systematically analyzing time-series flow cytometry data.
Collapse
Affiliation(s)
- Kodai Minoura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan.,Division of Immunology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan
| | - Ko Abe
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan
| | - Yuka Maeda
- Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo/Chiba, 1040045/2778577, Japan
| | - Hiroyoshi Nishikawa
- Division of Immunology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan.,Division of Cancer Immunology, Research Institute/EPOC, National Cancer Center, Tokyo/Chiba, 1040045/2778577, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Trumumai-cho, Showa-ku, Nagoya, 4668550, Japan.
| |
Collapse
|
96
|
Affiliation(s)
- Haihua Qiu
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Yi He
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Fan Ouyang
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Ping Jiang
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Shuhong Guo
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| | - Yuan Guo
- Department of Cardiovascular Medicine The Affiliated Zhuzhou Hospital Xiangya Medical College Central South University Zhuzhou Hunan China
| |
Collapse
|
97
|
Wing JB, Tanaka A, Sakaguchi S. Human FOXP3 + Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. Immunity 2019; 50:302-316. [PMID: 30784578 DOI: 10.1016/j.immuni.2019.01.020] [Citation(s) in RCA: 502] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022]
Abstract
Regulatory T (Treg) cells expressing the transcription factor Foxp3 have a critical role in the maintenance of immune homeostasis and prevention of autoimmunity. Recent advances in single cell analyses have revealed a range of Treg cell activation and differentiation states in different human pathologies. Here we review recent progress in the understanding of human Treg cell heterogeneity and function. We discuss these findings within the context of concepts in Treg cell development and function derived from preclinical models and insight from approaches targeting Treg cells in clinical settings. Distinguishing functional Treg cells from other T cells and understanding the context-dependent function(s) of different Treg subsets will be crucial to the development of strategies toward the selective therapeutic manipulation of Treg cells in autoimmunity and cancer.
Collapse
Affiliation(s)
- James B Wing
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Atsushi Tanaka
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan; Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
98
|
Suboptimal stimulation by weak agonist epitope variants does not drive dysfunction of HIV-1-specific cytotoxic T lymphocyte clones. AIDS 2019; 33:1565-1574. [PMID: 31306165 DOI: 10.1097/qad.0000000000002259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To assess whether weakly recognized epitope variants induce anergy in HIV-1-specific CD8 T lymphocyte (CTL) clones as a mechanism of dysfunction. DESIGN HIV-1-specific CTL clones were exposed to suboptimally recognized epitope variants, and screened for anergy and other T-cell dysfunction markers, and subsequent capability to kill target cells bearing index epitope. METHODS In addition to the optimally recognized index epitope, two suboptimally recognized epitope variants were selected based on titration curves for killing of peptide-labeled target cells by three HIV-1-specific CTL clones targeting the epitopes SLYNTVATL (Gag 77-85, A02-restricted), RPAEPVPLQL (Rev 66-75, B07-restricted), and KRWIIMGLNK (Gag 263-272, B27-restricted). Consequences of suboptimal stimulation were assessed by cytokine secretion, gene expression, and capacity to kill index epitope-labeled target cells upon rechallenge. RESULTS Suboptimal recognition of epitope variants reduced cytokine production by CTL similarly to reduction in killing of target cells. Gene expression profiles after suboptimal stimulation demonstrated no patterns consistent with T-cell dysfunction due to anergy, exhaustion, or apoptosis. Preexposure of CTL to epitope variants had no discernable impact on their subsequent capacity to kill index epitope-bearing target cells. CONCLUSION Our data explore the hypothesis that poorly recognized epitope variants not only facilitate HIV-1 evasion of CTL recognition, but also induce CTL dysfunction through suboptimal signaling causing anergy. However, the results do not suggest that suboptimal signaling induces anergy (or exhaustion or apoptosis), indicating that the major role of CTL epitope variation is likely viral escape.
Collapse
|
99
|
Kochin V, Nishikawa H. <Editors' Choice> Meddling with meddlers: curbing regulatory T cells and augmenting antitumor immunity. NAGOYA JOURNAL OF MEDICAL SCIENCE 2019; 81:1-18. [PMID: 30962651 PMCID: PMC6433633 DOI: 10.18999/nagjms.81.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD4+ regulatory T cells (Tregs) expressing the transcription factor forkhead
box P3 (FoxP3) play an important role in self-tolerance and immune homeostasis. Tregs have
evolved to protect the host from aberrant immune responses against self-components and
collateral damages occurring in the process of defense against invading pathogens by
softening immune responses. However, they turned to be a scourge in malignant tumors by
not only allowing and promoting tumor growth but also suppressing effective antitumor
actions, both inherent (host’s immune surveillance) and extrinsic (anticancer therapy). An
increase in the number of Tregs infiltrating into tumor sites and a concomitant decrease
in the number of CD8+ cytotoxic T lymphocytes are associated with a poor
prognosis for various types of cancers, marking Tregs as notorious meddlers with an
effective antitumor response. Various cancer immunotherapy approaches are often dampened
by meddling Tregs, making them one of the major targets in the treatment of cancer. The
recent success of immune checkpoint inhibitors (ICIs) that target immune checkpoint
molecules expressed by Tregs or effector T cells implies, that “meddling with meddlers”
represents an effective strategy in cancer immunotherapy. However, clinical responses to
ICIs are effective and durable only in some patients with cancer, whereas more than half
of them do not show significant clinical improvement. This implies that a therapeutic
approach based on the use of a single ICI, or targeting Tregs alone, is insufficient,
highlighting the need for combinatorial approaches. With regard to antitumor immune
stimulation, several approaches, such as vaccination with peptides (or the corresponding
DNA) to stimulate antigen-presenting CD8+ T cells with tumor-specific
neoantigens, cancer/testis antigens, or cancer stem cell antigens, that eventually boost
effective cytotoxic antitumor responses are being tested. This review describes the
immunosuppressive physiology of Tregs and their meddling with the host’s antitumor
immunity; current and prospective approaches to curb Tregs; and approaches to augment
antitumor immunity.
Collapse
Affiliation(s)
- Vitaly Kochin
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Cancer Immunology, Research Institute/Exploratory Oncology Research & Clinical Trial Center (EPOC), National Cancer Center, Tokyo / Chiba, Japan
| |
Collapse
|
100
|
Whiteside TL. Human regulatory T cells (Treg) and their response to cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019; 4:215-228. [PMID: 32953989 PMCID: PMC7500484 DOI: 10.1080/23808993.2019.1634471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Regulatory T cells (Treg) and their role in health and disease is being intensively investigated. Today, human Treg emerge as a highly heterogeneous subset of CD4+ T cells which mediate immune suppression but also regulate responses of non-immune cells. In cancer, Treg occupy a critical although not yet entirely understood role. AREAS COVERED Newly acquired insights into Treg indicate a much greater plasticity and functional heterogeneity of this T cell subset than was previously known. Functional redundancy of Treg and their interactions with a variety of immune and non-immune cellular targets emphasize the central role Treg play in cancer. Treg not only regulate the host responses to cancer; they may also regulate responses to immune therapies. The impact of immune checkpoint blockade on Treg survival, stability and suppressive activity remains to be elucidated. T cell reprogramming by tumor-derived factors, including tumor-derived exosomes (TEX), plays a key role in shaping the Treg repertoire in the tumor microenvironment (TME). The reprogrammed or induced iTreg acquire capabilities to strongly down-regulate anti-tumor immune responses by mechanisms that are specific for each TME. Therapeutic silencing of such Treg calls for the discrimination of "bad" from "good" Treg subsets, an approach that remains elusive in the absence of a definitive "Treg signature." EXPERT OPINION Context-related plasticity and heterogeneity of Treg in the TME are significant barriers to selective therapeutic depletion of those Treg subsets that are reprogramed by the tumor to suppress anti-tumor immunity.
Collapse
Affiliation(s)
- Theresa L. Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| |
Collapse
|