51
|
Bell M, Lange S, Sejdiu BI, Ibanez J, Shi H, Sun X, Meng X, Nguyen P, Sutton M, Wagner J, Kc A, Langfitt D, Patil SL, Tan H, Pandey RV, Li Y, Yuan ZF, Anido AA, Ho M, Sheppard H, Vogel P, Yu J, Peng J, Chi H, Babu MM, Krenciute G, Gottschalk S. Modular chimeric cytokine receptors with leucine zippers enhance the antitumour activity of CAR T cells via JAK/STAT signalling. Nat Biomed Eng 2024; 8:380-396. [PMID: 38036617 PMCID: PMC11587785 DOI: 10.1038/s41551-023-01143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
The limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor. Here we show that replacement of the extracellular domains of heterodimeric cytokine receptors in T cells with two leucine zipper motifs provides optimal Janus kinase/signal transducer and activator of transcription signalling. Such chimeric cytokine receptors, which can be generated for common γ-chain receptors, interleukin-10 and -12 receptors, enabled T cells to survive cytokine starvation without induction of autonomous cell growth, and augmented the effector function of CAR T cells in vitro in the setting of chronic antigen exposure and in human tumour xenografts in mice. As a modular design, leucine zippers can be used to generate constitutively active cytokine receptors in effector immune cells.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon Lange
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Besian I Sejdiu
- Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jorge Ibanez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Morgan Sutton
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sagar L Patil
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ram Vinay Pandey
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alejandro Allo Anido
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
52
|
Tuomela K, Levings MK. Genetic engineering of regulatory T cells for treatment of autoimmune disorders including type 1 diabetes. Diabetologia 2024; 67:611-622. [PMID: 38236408 DOI: 10.1007/s00125-023-06076-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/07/2023] [Indexed: 01/19/2024]
Abstract
Suppression of pathogenic immune responses is a major goal in the prevention and treatment of type 1 diabetes. Adoptive cell therapy using regulatory T cells (Tregs), a naturally suppressive immune subset that is often dysfunctional in type 1 diabetes, is a promising approach to achieving localised and specific immune suppression in the pancreas or site of islet transplant. However, clinical trials testing administration of polyclonal Tregs in recent-onset type 1 diabetes have observed limited efficacy despite an excellent safety profile. Several barriers to efficacy have been identified, including lack of antigen specificity, low cell persistence post-administration and difficulty in generating sufficient cell numbers. Fortunately, the emergence of advanced gene editing techniques has opened the door to new strategies to engineer Tregs with improved specificity and function. These strategies include the engineering of FOXP3 expression to produce a larger source of suppressive cells for infusion, expressing T cell receptors or chimeric antigen receptors to generate antigen-specific Tregs and improving Treg survival by targeting cytokine pathways. Although these approaches are being applied in a variety of autoimmune and transplant contexts, type 1 diabetes presents unique opportunities and challenges for the genetic engineering of Tregs for adoptive cell therapy. Here we discuss the role of Tregs in type 1 diabetes pathogenesis and the application of Treg engineering in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada.
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
53
|
Hardtke-Wolenski M, Landwehr-Kenzel S. Tipping the balance in autoimmunity: are regulatory t cells the cause, the cure, or both? Mol Cell Pediatr 2024; 11:3. [PMID: 38507159 PMCID: PMC10954601 DOI: 10.1186/s40348-024-00176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Regulatory T cells (Tregs) are a specialized subgroup of T-cell lymphocytes that is crucial for maintaining immune homeostasis and preventing excessive immune responses. Depending on their differentiation route, Tregs can be subdivided into thymically derived Tregs (tTregs) and peripherally induced Tregs (pTregs), which originate from conventional T cells after extrathymic differentiation at peripheral sites. Although the regulatory attributes of tTregs and pTregs partially overlap, their modes of action, protein expression profiles, and functional stability exhibit specific characteristics unique to each subset. Over the last few years, our knowledge of Treg differentiation, maturation, plasticity, and correlations between their phenotypes and functions has increased. Genetic and functional studies in patients with numeric and functional Treg deficiencies have contributed to our mechanistic understanding of immune dysregulation and autoimmune pathologies. This review provides an overview of our current knowledge of Treg biology, discusses monogenetic Treg pathologies and explores the role of Tregs in various other autoimmune disorders. Additionally, we discuss novel approaches that explore Tregs as targets or agents of innovative treatment options.
Collapse
Affiliation(s)
- Matthias Hardtke-Wolenski
- Hannover Medical School, Department of Gastroenterology Hepatology, Infectious Diseases and Endocrinology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany
- University Hospital Essen, Institute of Medical Microbiology, University Duisburg-Essen, Hufelandstraße 55, Essen, 45122, Germany
| | - Sybille Landwehr-Kenzel
- Hannover Medical School, Department of Pediatric Pneumology, Allergology and Neonatology, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
- Hannover Medical School, Institute of Transfusion Medicine and Transplant Engineering, Carl-Neuberg-Str. 1, Hannover, 30625, Germany.
| |
Collapse
|
54
|
Zama N, Toda S. Designer cell therapy for tissue regeneration. Inflamm Regen 2024; 44:15. [PMID: 38491394 PMCID: PMC10941617 DOI: 10.1186/s41232-024-00327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/06/2024] [Indexed: 03/18/2024] Open
Abstract
Cancer cell therapy, particularly chimeric antigen receptor (CAR) T-cell therapy for blood cancers, has emerged as a powerful new modality for cancer treatment. Therapeutic cells differ significantly from conventional drugs, such as small molecules and biologics, as they possess cellular information processing abilities to recognize and respond to abnormalities in the body. This capability enables the targeted delivery of therapeutic factors to specific locations and times. Various types of designer cells have been developed and tested to overcome the shortcomings of CAR T cells and expand their functions in the treatment of solid tumors. In particular, synthetic receptor technologies are a key to designing therapeutic cells that specifically improve tumor microenvironment. Such technologies demonstrate great potential for medical applications to regenerate damaged tissues as well that are difficult to cure with conventional drugs. In this review, we introduce recent developments in next-generation therapeutic cells for cancer treatment and discuss the application of designer therapeutic cells for tissue regeneration.
Collapse
Affiliation(s)
- Noyuri Zama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa , 920-1192, Japan
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa , 920-1192, Japan
| | - Satoshi Toda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa , 920-1192, Japan.
| |
Collapse
|
55
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
56
|
Kann MC, Schneider EM, Almazan AJ, Lane IC, Bouffard AA, Supper VM, Takei HN, Tepper A, Leick MB, Larson RC, Ebert BL, Maus MV, Jan M. Chemical genetic control of cytokine signaling in CAR-T cells using lenalidomide-controlled membrane-bound degradable IL-7. Leukemia 2024; 38:590-600. [PMID: 38123696 PMCID: PMC11774338 DOI: 10.1038/s41375-023-02113-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.
Collapse
Affiliation(s)
- Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio J Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel C Lane
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Valentina M Supper
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hana N Takei
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Tepper
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Blood and Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin L Ebert
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
57
|
Ji C, Kuang B, Buetow BS, Vitsky A, Xu Y, Huang TH, Chaparro-Riggers J, Kraynov E, Matsumoto D. Pharmacokinetics, pharmacodynamics, and toxicity of a PD-1-targeted IL-15 in cynomolgus monkeys. PLoS One 2024; 19:e0298240. [PMID: 38315680 PMCID: PMC10843171 DOI: 10.1371/journal.pone.0298240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
PF-07209960 is a novel bispecific fusion protein composed of an anti-PD-1 antibody and engineered IL-15 cytokine mutein with reduced binding affinity to its receptors. The pharmacokinetics (PK), pharmacodynamics (PD), and toxicity of PF-07209960 were evaluated following once every other week subcutaneous (SC) or intravenous (IV) administration to cynomolgus monkeys in a repeat-dose PKPD (0.01-0.3 mg/kg/dose) and GLP toxicity study (0.1-3 mg/kg/dose). PF-07209960 showed dose dependent pharmacokinetics with a terminal T1/2 of 8 and 13 hours following IV administration at 0.03 and 0.1 mg/kg, respectively. The clearance is faster than a typical IgG1 antibody. Slightly faster clearance was also observed following the second dose, likely due to increased target pool and formation of anti-drug antibodies (ADA). Despite a high incidence rate of ADA (92%) observed in GLP toxicity study, PD-1 receptor occupancy, IL-15 signaling (STAT5 phosphorylation) and T cell expansion were comparable following the first and second doses. Activation and proliferation of T cells were observed with largest increase in cell numbers found in gamma delta T cells, followed by CD4+ and CD8+ T cells, and then NK cells. Release of cytokines IL-6, IFNγ, and IL-10 were detected, which peaked at 72 hours postdose. There was PF-07209960-related mortality at ≥1 mg/kg. At scheduled necropsy, microscopic findings were generalized mononuclear infiltration in various tissues. Both the no observed adverse effect level (NOAEL) and the highest non severely toxic dose (HNSTD) were determined to be 0.3 mg/kg/dose, which corresponded to mean Cmax and AUC48 values of 1.15 μg/mL and 37.9 μg*h/mL, respectively.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Bing Kuang
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Bernard S. Buetow
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Allison Vitsky
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Yuanming Xu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | | | - Eugenia Kraynov
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Diane Matsumoto
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| |
Collapse
|
58
|
Castillo JG, DeBarge R, Mende A, Tenvooren I, Marquez DM, Straub A, Busch DH, Spitzer MH, DuPage M. A mass cytometry approach to track the evolution of T cell responses during infection and immunotherapy by paired T cell receptor repertoire and T cell differentiation state analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575237. [PMID: 38260336 PMCID: PMC10802618 DOI: 10.1101/2024.01.11.575237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
T cell receptor (TCR) recognition followed by clonal expansion is a fundamental feature of adaptive immune responses. Here, we developed a mass cytometric (CyTOF) approach combining antibodies specific for different TCR Vα- and Vβ-chains with antibodies against T cell activation and differentiation proteins to identify antigen-specific expansions of T cell subsets and assess aspects of cellular function. This strategy allowed for the identification of expansions of specific Vβ and Vα chain expressing CD8+ and CD4+ T cells with varying differentiation states in response to Listeria monocytogenes, tumors, and respiratory influenza infection. Expanded Vβ chain expressing T cells could be directly linked to the recognition of specific antigens from Listeria, tumor cells, or influenza. In the setting of influenza infection, we showed that the common therapeutic approaches of intramuscular vaccination or convalescent serum transfer altered the clonal diversity and differentiation state of responding T cells. Thus, we present a new method to monitor broad changes in TCR specificity paired with T cell differentiation during adaptive immune responses.
Collapse
Affiliation(s)
- Jesse Garcia Castillo
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Rachel DeBarge
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Abigail Mende
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Iliana Tenvooren
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Diana M Marquez
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adrian Straub
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany; Partner site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Matthew H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| |
Collapse
|
59
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
60
|
Albelda SM. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 2024; 21:47-66. [PMID: 37904019 DOI: 10.1038/s41571-023-00832-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.
Collapse
Affiliation(s)
- Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
61
|
Baron KJ, Turnquist HR. Clinical Manufacturing of Regulatory T Cell Products For Adoptive Cell Therapy and Strategies to Improve Therapeutic Efficacy. Organogenesis 2023; 19:2164159. [PMID: 36681905 PMCID: PMC9870008 DOI: 10.1080/15476278.2022.2164159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Based on successes in preclinical animal transplant models, adoptive cell therapy (ACT) with regulatory T cells (Tregs) is a promising modality to induce allograft tolerance or reduce the use of immunosuppressive drugs to prevent rejection. Extensive work has been done in optimizing the best approach to manufacture Treg cell products for testing in transplant recipients. Collectively, clinical evaluations have demonstrated that large numbers of Tregs can be expanded ex vivo and infused safely. However, these trials have failed to induce robust drug-free tolerance and/or significantly reduce the level of immunosuppression needed to prevent solid organ transplant (SOTx) rejection. Improving Treg therapy effectiveness may require increasing Treg persistence or orchestrating Treg migration to secondary lymphatic tissues or places of inflammation. In this review, we describe current clinical Treg manufacturing methods used for clinical trials. We also highlight current strategies being implemented to improve delivered Treg ACT persistence and migration in preclinical studies.
Collapse
Affiliation(s)
- Kassandra J. Baron
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Infectious Disease and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Departments of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA,CONTACT Hēth R. Turnquist Departments of Surgery, University of Pittsburgh School of Medicine, Thomas E. Starzl Transplantation Institute 200 Lothrop Street, BST W1542, PittsburghPA 15213, USA
| |
Collapse
|
62
|
Christofi P, Pantazi C, Psatha N, Sakellari I, Yannaki E, Papadopoulou A. Promises and Pitfalls of Next-Generation Treg Adoptive Immunotherapy. Cancers (Basel) 2023; 15:5877. [PMID: 38136421 PMCID: PMC10742252 DOI: 10.3390/cancers15245877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.
Collapse
Affiliation(s)
- Panayiota Christofi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- University General Hospital of Patras, 26504 Rio, Greece
| | - Chrysoula Pantazi
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Institute of Applied Biosciences (INAB), Centre for Research and Technology Hellas (CERTH), 57001 Thessaloniki, Greece
| | - Nikoleta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioanna Sakellari
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
- Department of Medicine, University of Washington, Seattle, WA 98195-7710, USA
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematopoietic Cell Transplantation Unit, Hematology Department, George Papanikolaou Hospital, 57010 Thessaloniki, Greece; (P.C.); (C.P.); (I.S.); (E.Y.)
| |
Collapse
|
63
|
Beltra JC, Abdel-Hakeem MS, Manne S, Zhang Z, Huang H, Kurachi M, Su L, Picton L, Ngiow SF, Muroyama Y, Casella V, Huang YJ, Giles JR, Mathew D, Belman J, Klapholz M, Decaluwe H, Huang AC, Berger SL, Garcia KC, Wherry EJ. Stat5 opposes the transcription factor Tox and rewires exhausted CD8 + T cells toward durable effector-like states during chronic antigen exposure. Immunity 2023; 56:2699-2718.e11. [PMID: 38091951 PMCID: PMC10752292 DOI: 10.1016/j.immuni.2023.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Rewiring exhausted CD8+ T (Tex) cells toward functional states remains a therapeutic challenge. Tex cells are epigenetically programmed by the transcription factor Tox. However, epigenetic remodeling occurs as Tex cells transition from progenitor (Texprog) to intermediate (Texint) and terminal (Texterm) subsets, suggesting development flexibility. We examined epigenetic transitions between Tex cell subsets and revealed a reciprocally antagonistic circuit between Stat5a and Tox. Stat5 directed Texint cell formation and re-instigated partial effector biology during this Texprog-to-Texint cell transition. Constitutive Stat5a activity antagonized Tox and rewired CD8+ T cells from exhaustion to a durable effector and/or natural killer (NK)-like state with superior anti-tumor potential. Temporal induction of Stat5 activity in Tex cells using an orthogonal IL-2:IL2Rβ-pair fostered Texint cell accumulation, particularly upon PD-L1 blockade. Re-engaging Stat5 also partially reprogrammed the epigenetic landscape of exhaustion and restored polyfunctionality. These data highlight therapeutic opportunities of manipulating the IL-2-Stat5 axis to rewire Tex cells toward more durably protective states.
Collapse
Affiliation(s)
- Jean-Christophe Beltra
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Mohamed S Abdel-Hakeem
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo 11562, Egypt
| | - Sasikanth Manne
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hua Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Makoto Kurachi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Leon Su
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lora Picton
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shin Foong Ngiow
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Muroyama
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Valentina Casella
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Yinghui J Huang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Belman
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Klapholz
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hélène Decaluwe
- Cytokines and Adaptive Immunity Laboratory, Sainte-Justine University Hospital Research Center, Montreal, QC, Canada; Department of Microbiology and Immunology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada; Immunology and Rheumatology Division, Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Alexander C Huang
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Epigenetics Institute, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, Suite D3500, San Francisco, CA 94129, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - E John Wherry
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
64
|
Luo M, Gong W, Zhang Y, Li H, Ma D, Wu K, Gao Q, Fang Y. New insights into the stemness of adoptively transferred T cells by γc family cytokines. Cell Commun Signal 2023; 21:347. [PMID: 38049832 PMCID: PMC10694921 DOI: 10.1186/s12964-023-01354-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 12/06/2023] Open
Abstract
T cell-based adoptive cell therapy (ACT) has exhibited excellent antitumoral efficacy exemplified by the clinical breakthrough of chimeric antigen receptor therapy (CAR-T) in hematologic malignancies. It relies on the pool of functional T cells to retain the developmental potential to serially kill targeted cells. However, failure in the continuous supply and persistence of functional T cells has been recognized as a critical barrier to sustainable responses. Conferring stemness on infused T cells, yielding stem cell-like memory T cells (TSCM) characterized by constant self-renewal and multilineage differentiation similar to pluripotent stem cells, is indeed necessary and promising for enhancing T cell function and sustaining antitumor immunity. Therefore, it is crucial to identify TSCM cell induction regulators and acquire more TSCM cells as resource cells during production and after infusion to improve antitumoral efficacy. Recently, four common cytokine receptor γ chain (γc) family cytokines, encompassing interleukin-2 (IL-2), IL-7, IL-15, and IL-21, have been widely used in the development of long-lived adoptively transferred TSCM in vitro. However, challenges, including their non-specific toxicities and off-target effects, have led to substantial efforts for the development of engineered versions to unleash their full potential in the induction and maintenance of T cell stemness in ACT. In this review, we summarize the roles of the four γc family cytokines in the orchestration of adoptively transferred T cell stemness, introduce their engineered versions that modulate TSCM cell formation and demonstrate the potential of their various combinations. Video Abstract.
Collapse
Affiliation(s)
- Mengshi Luo
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjian Gong
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuewen Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
65
|
Kizerwetter M, Pietz K, Tomasovic LM, Spangler JB. Empowering gene delivery with protein engineering platforms. Gene Ther 2023; 30:775-782. [PMID: 36529795 PMCID: PMC10277311 DOI: 10.1038/s41434-022-00379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The repertoire of therapeutic proteins has been substantially augmented by molecular engineering approaches, which have seen remarkable advancement in recent years. In particular, advances in directed evolution technologies have empowered the development of custom-designed proteins with novel and disease-relevant functions. Whereas engineered proteins have typically been administered through systemic injection of the purified molecule, exciting progress in gene delivery affords the opportunity to elicit sustained production of the engineered proteins by targeted cells in the host organism. Combining developments at the leading edge of protein engineering and gene delivery has catapulted a new wave of molecular and cellular therapy approaches, which harbor great promise for personalized and precision medicine. This mini-review outlines currently used display platforms for protein evolution and describes recent examples of how the resulting engineered proteins have been incorporated into DNA- and cell-based therapeutic platforms, both in vitro and in vivo. Collectively, the strategies detailed herein provide a framework for synthesizing molecular engineering workflows with gene therapy systems for a breadth of applications in research and medicine.
Collapse
Affiliation(s)
- Monika Kizerwetter
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Kevin Pietz
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Luke M Tomasovic
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA.
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
66
|
Caldara R, Tomajer V, Monti P, Sordi V, Citro A, Chimienti R, Gremizzi C, Catarinella D, Tentori S, Paloschi V, Melzi R, Mercalli A, Nano R, Magistretti P, Partelli S, Piemonti L. Allo Beta Cell transplantation: specific features, unanswered questions, and immunological challenge. Front Immunol 2023; 14:1323439. [PMID: 38077372 PMCID: PMC10701551 DOI: 10.3389/fimmu.2023.1323439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Type 1 diabetes (T1D) presents a persistent medical challenge, demanding innovative strategies for sustained glycemic control and enhanced patient well-being. Beta cells are specialized cells in the pancreas that produce insulin, a hormone that regulates blood sugar levels. When beta cells are damaged or destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell Transplantation has emerged as a promising therapeutic avenue, with the goal of reinstating glucose regulation and insulin production in T1D patients. However, the path to success in this approach is fraught with complex immunological hurdles that demand rigorous exploration and resolution for enduring therapeutic efficacy. This exploration focuses on the distinct immunological characteristics inherent to Allo Beta Cell Transplantation. An understanding of these unique challenges is pivotal for the development of effective therapeutic interventions. The critical role of glucose regulation and insulin in immune activation is emphasized, with an emphasis on the intricate interplay between beta cells and immune cells. The transplantation site, particularly the liver, is examined in depth, highlighting its relevance in the context of complex immunological issues. Scrutiny extends to recipient and donor matching, including the utilization of multiple islet donors, while also considering the potential risk of autoimmune recurrence. Moreover, unanswered questions and persistent gaps in knowledge within the field are identified. These include the absence of robust evidence supporting immunosuppression treatments, the need for reliable methods to assess rejection and treatment protocols, the lack of validated biomarkers for monitoring beta cell loss, and the imperative need for improved beta cell imaging techniques. In addition, attention is drawn to emerging directions and transformative strategies in the field. This encompasses alternative immunosuppressive regimens and calcineurin-free immunoprotocols, as well as a reevaluation of induction therapy and recipient preconditioning methods. Innovative approaches targeting autoimmune recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the potential of stem stealth cells, tissue engineering, and encapsulation to overcome the risk of graft rejection. In summary, this review provides a comprehensive overview of the inherent immunological obstacles associated with Allo Beta Cell Transplantation. It offers valuable insights into emerging strategies and directions that hold great promise for advancing the field and ultimately improving outcomes for individuals living with diabetes.
Collapse
Affiliation(s)
- Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raniero Chimienti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Gremizzi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Catarinella
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tentori
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Paloschi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
67
|
Makri Pistikou AM, Cremers GAO, Nathalia BL, Meuleman TJ, Bögels BWA, Eijkens BV, de Dreu A, Bezembinder MTH, Stassen OMJA, Bouten CCV, Merkx M, Jerala R, de Greef TFA. Engineering a scalable and orthogonal platform for synthetic communication in mammalian cells. Nat Commun 2023; 14:7001. [PMID: 37919273 PMCID: PMC10622552 DOI: 10.1038/s41467-023-42810-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
The rational design and implementation of synthetic mammalian communication systems can unravel fundamental design principles of cell communication circuits and offer a framework for engineering of designer cell consortia with potential applications in cell therapeutics. Here, we develop the foundations of an orthogonal, and scalable mammalian synthetic communication platform that exploits the programmability of synthetic receptors and selective affinity and tunability of diffusing coiled-coil peptides. Leveraging the ability of coiled-coils to exclusively bind to a cognate receptor, we demonstrate orthogonal receptor activation and Boolean logic operations at the receptor level. We show intercellular communication based on synthetic receptors and secreted multidomain coiled-coils and demonstrate a three-cell population system that can perform AND gate logic. Finally, we show CC-GEMS receptor-dependent therapeutic protein expression. Our work provides a modular and scalable framework for the engineering of complex cell consortia, with the potential to expand the aptitude of cell therapeutics and diagnostics.
Collapse
Affiliation(s)
- Anna-Maria Makri Pistikou
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Glenn A O Cremers
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bryan L Nathalia
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Theodorus J Meuleman
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Bas W A Bögels
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bruno V Eijkens
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten T H Bezembinder
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Oscar M J A Stassen
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn C V Bouten
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Tom F A de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Laboratory for Cell and Tissue Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Center for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands.
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
68
|
Niederlova V, Tsyklauri O, Kovar M, Stepanek O. IL-2-driven CD8 + T cell phenotypes: implications for immunotherapy. Trends Immunol 2023; 44:890-901. [PMID: 37827864 PMCID: PMC7615502 DOI: 10.1016/j.it.2023.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
The therapeutic potential of interleukin (IL)-2 in cancer treatment has been known for decades, yet its widespread adoption in clinical practice remains limited. Recently, chimeric proteins of an anti-PD-1 antibody and suboptimal IL-2 variants were shown to stimulate potent antitumor and antiviral immunity by inducing unique effector CD8+ T cells in mice. A similar subset of cytotoxic T cells is induced by depletion of regulatory T cells (Tregs), suggesting IL-2 sequestration as a major mechanism through which regulatory T cells suppress activated CD8+ T cells. Here, we present our view of how IL-2-based biologicals can boost the antitumor response at a cellular level, and propose that the role of Tregs following such treatments may have been previously overestimated.
Collapse
Affiliation(s)
- Veronika Niederlova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oksana Tsyklauri
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marek Kovar
- Laboratory of Tumor Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
69
|
Quixabeira DCA, Jirovec E, Pakola S, Havunen R, Basnet S, Santos JM, Kudling TV, Clubb JHA, Haybout L, Arias V, Grönberg-Vähä-Koskela S, Cervera-Carrascon V, Pasanen A, Anttila M, Tapper J, Kanerva A, Hemminki A. Improving the cytotoxic response of tumor-infiltrating lymphocytes towards advanced stage ovarian cancer with an oncolytic adenovirus expressing a human vIL-2 cytokine. Cancer Gene Ther 2023; 30:1543-1553. [PMID: 37666898 PMCID: PMC10645590 DOI: 10.1038/s41417-023-00658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
While the presence of tumor-infiltrating lymphocytes (TILs) associates with improved survival prognosis in ovarian cancer (OvCa) patients, TIL therapy benefit is limited. Here, we evaluated an oncolytic adenovirus coding for a human variant IL-2 (vIL-2) cytokine, Ad5/3-E2F-d24-vIL2 (vIL-2 virus), also known as TILT-452, as an immunotherapeutic strategy to enhance TIL responsiveness towards advanced stage OvCa tumors. Fragments of resected human OvCa tumors were processed into single-cell suspensions, and autologous TILs were expanded from said samples. OvCa tumor specimens were co-cultured with TILs plus vIL-2 virus, and cell killing was assessed in real time through cell impedance measurement. Combination therapy was further evaluated in vivo through a patient-derived xenograft (PDX) ovarian cancer murine model. The combination of vIL-2 virus plus TILs had best cancer cell killing ex vivo compared to TILs monotherapy. These results were supported by an in vivo experiment, where the best OvCa tumor control was obtained when vIL-2 virus was added to TIL therapy. Furthermore, the proposed therapy induced a highly cytotoxic phenotype demonstrated by increased granzyme B intensity in NK cells, CD4+ T, and CD8+ T cells in treated tumors. Our results demonstrate that Ad5/3-E2F-d24-vIL2 therapy consistently improved TILs therapy cytotoxicity in treated human OvCa tumors.
Collapse
Affiliation(s)
- D C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - E Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - S Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - T V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J H A Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - L Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - V Arias
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - S Grönberg-Vähä-Koskela
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - V Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki, Finland
| | - A Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - M Anttila
- Pathology, Finnish Food Authority, Helsinki, Finland
| | - J Tapper
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - A Kanerva
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - A Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- TILT Biotherapeutics Ltd, Helsinki, Finland.
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
70
|
Tang L, Pan S, Wei X, Xu X, Wei Q. Arming CAR-T cells with cytokines and more: Innovations in the fourth-generation CAR-T development. Mol Ther 2023; 31:3146-3162. [PMID: 37803832 PMCID: PMC10638038 DOI: 10.1016/j.ymthe.2023.09.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/11/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) therapy has shown great potential in tumor treatment. However, many factors impair the efficacy of CAR-T therapy, such as antigenic heterogeneity and loss, limited potency and persistence, poor infiltration capacity, and a suppressive tumor microenvironment. To overcome these obstacles, recent studies have reported a new generation of CAR-T cells expressing cytokines called armored CAR-T, TRUCK-T, or the fourth-generation CAR-T. Here we summarize the strategies of arming CAR-T cells with natural or synthetic cytokine signals to enhance their anti-tumor capacity. Moreover, we summarize the advances in CAR-T cells expressing non-cytokine proteins, such as membrane receptors, antibodies, enzymes, co-stimulatory molecules, and transcriptional factors. Furthermore, we discuss several prospective strategies for armored CAR-T therapy development. Altogether, these ideas may provide new insights for the innovations of the next-generation CAR-T therapy.
Collapse
Affiliation(s)
- Lin Tang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Sheng Pan
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Qiang Wei
- Zhejiang University School of Medicine, Hangzhou 310058, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
71
|
Tuomela K, Salim K, Levings MK. Eras of designer Tregs: Harnessing synthetic biology for immune suppression. Immunol Rev 2023; 320:250-267. [PMID: 37522861 DOI: 10.1111/imr.13254] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Since their discovery, CD4+ CD25hi FOXP3hi regulatory T cells (Tregs) have been firmly established as a critical cell type for regulating immune homeostasis through a plethora of mechanisms. Due to their immunoregulatory power, delivery of polyclonal Tregs has been explored as a therapy to dampen inflammation in the settings of transplantation and autoimmunity. Evidence shows that Treg therapy is safe and well-tolerated, but efficacy remains undefined and could be limited by poor persistence in vivo and lack of antigen specificity. With the advent of new genetic engineering tools, it is now possible to create bespoke "designer" Tregs that not only overcome possible limitations of polyclonal Tregs but also introduce new features. Here, we review the development of designer Tregs through the perspective of three 'eras': (1) the era of FOXP3 engineering, in which breakthroughs in the biological understanding of this transcription factor enabled the conversion of conventional T cells to Tregs; (2) the antigen-specificity era, in which transgenic T-cell receptors and chimeric antigen receptors were introduced to create more potent and directed Treg therapies; and (3) the current era, which is harnessing advanced genome-editing techniques to introduce and refine existing and new engineering approaches. The year 2022 marked the entry of "designer" Tregs into the clinic, with exciting potential for application and efficacy in a wide variety of immune-mediated diseases.
Collapse
Affiliation(s)
- Karoliina Tuomela
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Salim
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan K Levings
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
72
|
Santollani L, Wittrup KD. Spatiotemporally programming cytokine immunotherapies through protein engineering. Immunol Rev 2023; 320:10-28. [PMID: 37409481 DOI: 10.1111/imr.13234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Cytokines have long been considered promising cancer immunotherapy agents due to their endogenous role in activating and proliferating lymphocytes. However, since the initial FDA approvals of Interleukin-2 (IL-2) and Interferon-ɑ (IFNɑ) for oncology over 30 years ago, cytokines have achieved little success in the clinic due to narrow therapeutic windows and dose-limiting toxicities. This is attributable to the discrepancy between the localized, regulated manner in which cytokines are deployed endogenously versus the systemic, untargeted administration used to date in most exogenous cytokine therapies. Furthermore, cytokines' ability to stimulate multiple cell types, often with paradoxical effects, may present significant challenges for their translation into effective therapies. Recently, protein engineering has emerged as a tool to address the shortcomings of first-generation cytokine therapies. In this perspective, we contextualize cytokine engineering strategies such as partial agonism, conditional activation and intratumoral retention through the lens of spatiotemporal regulation. By controlling the time, place, specificity, and duration of cytokine signaling, protein engineering can allow exogenous cytokine therapies to more closely approach their endogenous exposure profile, ultimately moving us closer to unlocking their full therapeutic potential.
Collapse
Affiliation(s)
- Luciano Santollani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
73
|
Singh N, Maus MV. Synthetic manipulation of the cancer-immunity cycle: CAR-T cell therapy. Immunity 2023; 56:2296-2310. [PMID: 37820585 DOI: 10.1016/j.immuni.2023.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
Synthetic immunity to cancer has been pioneered by the application of chimeric antigen receptor (CAR) engineering into autologous T cells. CAR T cell therapy is highly amenable to molecular engineering to bypass barriers of the cancer immunity cycle, such as endogenous antigen presentation, immune priming, and natural checkpoints that constrain immune responses. Here, we review CAR T cell design and the mechanisms that drive sustained CAR T cell effector activity and anti-tumor function. We discuss engineering approaches aimed at improving anti-tumor function through a variety of mechanistic interventions for both hematologic and solid tumors. The ability to engineer T cells in such a variety of ways, including by modifying their trafficking, antigen recognition, costimulation, and addition of synthetic genes, circuits, knockouts and base edits to finely tune complex functions, is arguably the most powerful way to manipulate the cancer immunity cycle in patients.
Collapse
Affiliation(s)
- Nathan Singh
- Division of Oncology, Washington University in St Louis School of Medicine, St. Louis, MO 63110, USA.
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
74
|
Leonard WJ, Lin JX. Strategies to therapeutically modulate cytokine action. Nat Rev Drug Discov 2023; 22:827-854. [PMID: 37542128 DOI: 10.1038/s41573-023-00746-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 08/06/2023]
Abstract
Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
75
|
Shin H, Kang S, Won C, Min DH. Enhanced Local Delivery of Engineered IL-2 mRNA by Porous Silica Nanoparticles to Promote Effective Antitumor Immunity. ACS NANO 2023; 17:17554-17567. [PMID: 37643221 DOI: 10.1021/acsnano.3c06733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Localized expression of immunomodulatory molecules can stimulate immune responses against tumors in the tumor microenvironment while avoiding toxicities associated with systemic administration. In this study, we developed a polyethylenimine-modified porous silica nanoparticle (PPSN)-based delivery platform carrying cytokine mRNA for local immunotherapy in vivo. Our delivery platform was significantly more efficient than FDA-approved lipid nanoparticles for localized mRNA translation. We observed no off-target translation of mRNA in any organs and no evidence of systemic toxicity. Intratumoral injection of cytokine mRNA-loaded PPSNs led to high-level expression of protein within the tumor and stimulated immunogenic cancer cell death. Additionally, combining cytokine mRNA with an immune checkpoint inhibitor enhanced anticancer responses in several murine cancer models and enabled the inhibition of distant metastatic tumors. Our results demonstrate the potential of PPSNs-mediated mRNA delivery as a specific, effective, and safe platform for mRNA-based therapeutics in cancer immunotherapy.
Collapse
Affiliation(s)
- Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheolhee Won
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
76
|
Yadav M, Uikey BN, Rathore SS, Gupta P, Kashyap D, Kumar C, Shukla D, Vijayamahantesh, Chandel AS, Ahirwar B, Singh AK, Suman SS, Priyadarshi A, Amit A. Role of cytokine in malignant T-cell metabolism and subsequent alternation in T-cell tumor microenvironment. Front Oncol 2023; 13:1235711. [PMID: 37746258 PMCID: PMC10513393 DOI: 10.3389/fonc.2023.1235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
T cells are an important component of adaptive immunity and T-cell-derived lymphomas are very complex due to many functional sub-types and functional elasticity of T-cells. As with other tumors, tissues specific factors are crucial in the development of T-cell lymphomas. In addition to neoplastic cells, T- cell lymphomas consist of a tumor micro-environment composed of normal cells and stroma. Numerous studies established the qualitative and quantitative differences between the tumor microenvironment and normal cell surroundings. Interaction between the various component of the tumor microenvironment is crucial since tumor cells can change the microenvironment and vice versa. In normal T-cell development, T-cells must respond to various stimulants deferentially and during these courses of adaptation. T-cells undergo various metabolic alterations. From the stage of quiescence to attention of fully active form T-cells undergoes various stage in terms of metabolic activity. Predominantly quiescent T-cells have ATP-generating metabolism while during the proliferative stage, their metabolism tilted towards the growth-promoting pathways. In addition to this, a functionally different subset of T-cells requires to activate the different metabolic pathways, and consequently, this regulation of the metabolic pathway control activation and function of T-cells. So, it is obvious that dynamic, and well-regulated metabolic pathways are important for the normal functioning of T-cells and their interaction with the microenvironment. There are various cell signaling mechanisms of metabolism are involved in this regulation and more and more studies have suggested the involvement of additional signaling in the development of the overall metabolic phenotype of T cells. These important signaling mediators include cytokines and hormones. The impact and role of these mediators especially the cytokines on the interplay between T-cell metabolism and the interaction of T-cells with their micro-environments in the context of T-cells lymphomas are discussed in this review article.
Collapse
Affiliation(s)
- Megha Yadav
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Blessi N. Uikey
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Priyanka Gupta
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Diksha Kashyap
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Chanchal Kumar
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Vijayamahantesh
- Department of Immunology and Microbiology, University of Missouri, Columbia, SC, United States
| | - Arvind Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Bharti Ahirwar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | | | - Shashi Shekhar Suman
- Department of Zoology, Udayana Charya (UR) College, Lalit Narayan Mithila University, Darbhanga, India
| | - Amit Priyadarshi
- Department of Zoology, Veer Kunwar Singh University, Arrah, India
| | - Ajay Amit
- Department of Forensic Science, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| |
Collapse
|
77
|
Neeser A, Ramasubramanian R, Wang C, Ma L. Engineering enhanced chimeric antigen receptor-T cell therapy for solid tumors. IMMUNO-ONCOLOGY TECHNOLOGY 2023; 19:100385. [PMID: 37483659 PMCID: PMC10362352 DOI: 10.1016/j.iotech.2023.100385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The early clinical success and subsequent US Food and Drug Administration approval of chimeric antigen receptor (CAR)-T cell therapy for leukemia and lymphoma affirm that engineered T cells can be a powerful treatment for hematologic malignancies. Yet this success has not been replicated in solid tumors. Numerous challenges emerged from clinical experience and well-controlled preclinical animal models must be met to enable safe and efficacious CAR-T cell therapy in solid tumors. Here, we review recent advances in bioengineering strategies developed to enhance CAR-T cell therapy in solid tumors, focusing on targeted single-gene perturbation, genetic circuits design, cytokine engineering, and interactive biomaterials. These bioengineering approaches present a unique set of tools that synergize with CAR-T cells to overcome obstacles in solid tumors and achieve robust and long-lasting therapeutic efficacy.
Collapse
Affiliation(s)
- A. Neeser
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia
| | - R. Ramasubramanian
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia
| | - C. Wang
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia
| | - L. Ma
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
78
|
Wobma H, Kapadia M, Kim HT, Alvarez-Calderon F, Baumeister SHC, Duncan C, Forrest S, Gorfinkel L, Huang J, Lehmann LE, Li H, Schwartz M, Koreth J, Ritz J, Kean LS, Whangbo JS. Real-world experience with low-dose IL-2 for children and young adults with refractory chronic graft-versus-host disease. Blood Adv 2023; 7:4647-4657. [PMID: 37603347 PMCID: PMC10448423 DOI: 10.1182/bloodadvances.2023009729] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
The majority of patients with chronic graft-versus-host disease (cGVHD) are steroid refractory (SR), creating a need for safe and effective therapies. Subcutaneous low-dose interleukin-2 (LD IL-2), which preferentially expands CD4+ regulatory T cells (Tregs), has been evaluated in 5 clinical trials at our center with partial responses (PR) in ∼50% of adults and 82% of children by week 8. We now report additional real-world experience with LD IL-2 in 15 children and young adults. We conducted a retrospective chart review of patients with SR-cGVHD at our center who received LD IL-2 from August 2016 to July 2022 not on a research trial. The median age at start of LD IL-2 was 10.4 years (range, 1.2-23.2 years) at a median of 234 days from cGVHD diagnosis (range, 11-542 days). Patients had a median of 2.5 (range, 1-3) active organs at LD IL-2 start and received a median of 3 (range, 1-5) prior therapies. The median duration of LD IL-2 therapy was 462 days (range, 8-1489 days). Most patients received 1 × 106 IU/m2 per day. There were no serious adverse effects. The overall response rate in 13 patients who received >4 weeks of therapy was 85% (complete response, n = 5; PR, n = 6) with responses in diverse organs. Most patients significantly weaned corticosteroids. Tregs preferentially expanded with a median peak fold increase of 2.8 in the ratio of Tregs to CD4+ conventional T cells (range, 2.0-19.8) by 8 weeks on therapy. LD IL-2 is a well-tolerated, steroid-sparing agent with a high response rate in children and young adults with SR-cGVHD.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Malika Kapadia
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Haesook T. Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Francesca Alvarez-Calderon
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Susanne H. C. Baumeister
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Christine Duncan
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Suzanne Forrest
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lev Gorfinkel
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer Huang
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Leslie E. Lehmann
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hojun Li
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marc Schwartz
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Leslie S. Kean
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer S. Whangbo
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
79
|
Lin RJ, Sutton J, Bentley T, Vargas-Inchaustegui DA, Nguyen D, Cheng HY, Yoon H, Van Blarcom TJ, Sasu BJ, Panowski SH, Sommer C. Constitutive Turbodomains enhance expansion and antitumor activity of allogeneic BCMA CAR T cells in preclinical models. SCIENCE ADVANCES 2023; 9:eadg8694. [PMID: 37540748 PMCID: PMC10403208 DOI: 10.1126/sciadv.adg8694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The magnitude of CAR T cell expansion has been associated with clinical efficacy. Although cytokines can augment CAR T cell proliferation, systemically administered cytokines can result in toxicities. To gain the benefits of cytokine signaling while mitigating toxicities, we designed constitutively active synthetic cytokine receptor chimeras (constitutive Turbodomains) that signal in a CAR T cell-specific manner. The modular design of Turbodomains enables diverse cytokine signaling outputs from a single homodimeric receptor chimera and allows multiplexing of different cytokine signals. Turbodomains containing an IL-2/15Rβ-derived signaling domain closely mimicked IL-15 signaling and enhanced CAR T cell potency. Allogeneic TurboCAR T cells targeting BCMA showed no evidence of aberrant proliferation yet displayed enhanced expansion and antitumor activity, prolonging survival and preventing extramedullary relapses in mouse models. These results illustrate the potential of constitutive Turbodomains to achieve selective potentiation of CAR T cells and demonstrate the safety and efficacy of allogeneic BCMA TurboCAR T cells, supporting clinical evaluation in multiple myeloma.
Collapse
Affiliation(s)
- Regina J. Lin
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Janette Sutton
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Trevor Bentley
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | | | - Duy Nguyen
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Hsin-Yuan Cheng
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Hayung Yoon
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | | | - Barbra J. Sasu
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Siler H. Panowski
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| | - Cesar Sommer
- Allogene Therapeutics Inc., 210 E. Grand Avenue, South San Francisco, CA 94080, USA
| |
Collapse
|
80
|
Zhu I, Piraner DI, Roybal KT. Synthesizing a Smarter CAR T Cell: Advanced Engineering of T-cell Immunotherapies. Cancer Immunol Res 2023; 11:1030-1043. [PMID: 37429007 PMCID: PMC10527511 DOI: 10.1158/2326-6066.cir-22-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/15/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023]
Abstract
The immune system includes an array of specialized cells that keep us healthy by responding to pathogenic cues. Investigations into the mechanisms behind immune cell behavior have led to the development of powerful immunotherapies, including chimeric-antigen receptor (CAR) T cells. Although CAR T cells have demonstrated efficacy in treating blood cancers, issues regarding their safety and potency have hindered the use of immunotherapies in a wider spectrum of diseases. Efforts to integrate developments in synthetic biology into immunotherapy have led to several advancements with the potential to expand the range of treatable diseases, fine-tune the desired immune response, and improve therapeutic cell potency. Here, we examine current synthetic biology advances that aim to improve on existing technologies and discuss the promise of the next generation of engineered immune cell therapies.
Collapse
Affiliation(s)
- Iowis Zhu
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Dan I. Piraner
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- These authors contributed equally
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA 8Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Gladstone UCSF Institute for Genetic Immunology, San Francisco, CA 94107, USA
- UCSF Cell Design Institute, San Francisco, CA 94158, USA
| |
Collapse
|
81
|
Cook PJ, Yang SJ, Uenishi GI, Grimm A, West SE, Wang LJ, Jacobs C, Repele A, Drow T, Boukhris A, Dahl NP, Sommer K, Scharenberg AM, Rawlings DJ. A chemically inducible IL-2 receptor signaling complex allows for effective in vitro and in vivo selection of engineered CD4+ T cells. Mol Ther 2023; 31:2472-2488. [PMID: 37147803 PMCID: PMC10421999 DOI: 10.1016/j.ymthe.2023.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Engineered T cells represent an emerging therapeutic modality. However, complex engineering strategies can present a challenge for enriching and expanding therapeutic cells at clinical scale. In addition, lack of in vivo cytokine support can lead to poor engraftment of transferred T cells, including regulatory T cells (Treg). Here, we establish a cell-intrinsic selection system that leverages the dependency of primary T cells on IL-2 signaling. FRB-IL2RB and FKBP-IL2RG fusion proteins were identified permitting selective expansion of primary CD4+ T cells in rapamycin supplemented medium. This chemically inducible signaling complex (CISC) was subsequently incorporated into HDR donor templates designed to drive expression of the Treg master regulator FOXP3. Following editing of CD4+ T cells, CISC+ engineered Treg (CISC EngTreg) were selectively expanded using rapamycin and maintained Treg activity. Following transfer into immunodeficient mice treated with rapamycin, CISC EngTreg exhibited sustained engraftment in the absence of IL-2. Furthermore, in vivo CISC engagement increased the therapeutic activity of CISC EngTreg. Finally, an editing strategy targeting the TRAC locus permitted generation and selective enrichment of CISC+ functional CD19-CAR-T cells. Together, CISC provides a robust platform to achieve both in vitro enrichment and in vivo engraftment and activation, features likely beneficial across multiple gene-edited T cell applications.
Collapse
Affiliation(s)
- Peter J Cook
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Su Jung Yang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Gene I Uenishi
- GentiBio, Inc., 150 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Annaiz Grimm
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Samuel E West
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Li-Jie Wang
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Chester Jacobs
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Andrea Repele
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Travis Drow
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Ahmad Boukhris
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Noelle P Dahl
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA
| | - Andrew M Scharenberg
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA; Department of Pediatrics, University of Washington, Seattle WA 98101, USA; Department of Immunology, University of Washington, Seattle WA 98101, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and the Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle WA 98101, USA; Department of Pediatrics, University of Washington, Seattle WA 98101, USA; Department of Immunology, University of Washington, Seattle WA 98101, USA.
| |
Collapse
|
82
|
Zhang XE, Liu C, Dai J, Yuan Y, Gao C, Feng Y, Wu B, Wei P, You C, Wang X, Si T. Enabling technology and core theory of synthetic biology. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1742-1785. [PMID: 36753021 PMCID: PMC9907219 DOI: 10.1007/s11427-022-2214-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 02/09/2023]
Abstract
Synthetic biology provides a new paradigm for life science research ("build to learn") and opens the future journey of biotechnology ("build to use"). Here, we discuss advances of various principles and technologies in the mainstream of the enabling technology of synthetic biology, including synthesis and assembly of a genome, DNA storage, gene editing, molecular evolution and de novo design of function proteins, cell and gene circuit engineering, cell-free synthetic biology, artificial intelligence (AI)-aided synthetic biology, as well as biofoundries. We also introduce the concept of quantitative synthetic biology, which is guiding synthetic biology towards increased accuracy and predictability or the real rational design. We conclude that synthetic biology will establish its disciplinary system with the iterative development of enabling technologies and the maturity of the core theory.
Collapse
Affiliation(s)
- Xian-En Zhang
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chenli Liu
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Junbiao Dai
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bian Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ping Wei
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics; Center for Synthetic and Systems Biology; Bioinformatics Division, Beijing National Research Center for Information Science and Technology; Department of Automation, Tsinghua University, Beijing, 100084, China.
| | - Tong Si
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, 518055, China.
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
83
|
Moreno Ayala MA, Campbell TF, Zhang C, Dahan N, Bockman A, Prakash V, Feng L, Sher T, DuPage M. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8 + T cell antitumor immunity. Immunity 2023; 56:1613-1630.e5. [PMID: 37392735 PMCID: PMC10752240 DOI: 10.1016/j.immuni.2023.06.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
Infiltration of regulatory T (Treg) cells, an immunosuppressive population of CD4+ T cells, into solid cancers represents a barrier to cancer immunotherapy. Chemokine receptors are critical for Treg cell recruitment and cell-cell interactions in inflamed tissues, including cancer, and thus are an ideal therapeutic target. Here, we show in multiple cancer models that CXCR3+ Treg cells were increased in tumors compared with lymphoid tissues, exhibited an activated phenotype, and interacted preferentially with CXCL9-producing BATF3+ dendritic cells (DCs). Genetic ablation of CXCR3 in Treg cells disrupted DC1-Treg cell interactions and concomitantly increased DC-CD8+ T cell interactions. Mechanistically, CXCR3 ablation in Treg cells increased tumor antigen-specific cross-presentation by DC1s, increasing CD8+ T cell priming and reactivation in tumors. This ultimately impaired tumor progression, especially in combination with anti-PD-1 checkpoint blockade immunotherapy. Overall, CXCR3 is shown to be a critical chemokine receptor for Treg cell accumulation and immune suppression in tumors.
Collapse
Affiliation(s)
- Mariela A Moreno Ayala
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Timothy F Campbell
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Chenyu Zhang
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noa Dahan
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alissa Bockman
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Varsha Prakash
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lawrence Feng
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Theo Sher
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michel DuPage
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
84
|
Baker DJ, Arany Z, Baur JA, Epstein JA, June CH. CAR T therapy beyond cancer: the evolution of a living drug. Nature 2023; 619:707-715. [PMID: 37495877 DOI: 10.1038/s41586-023-06243-w] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 07/28/2023]
Abstract
Engineering a patient's own T cells to selectively target and eliminate tumour cells has cured patients with untreatable haematologic cancers. These results have energized the field to apply chimaeric antigen receptor (CAR) T therapy throughout oncology. However, evidence from clinical and preclinical studies underscores the potential of CAR T therapy beyond oncology in treating autoimmunity, chronic infections, cardiac fibrosis, senescence-associated disease and other conditions. Concurrently, the deployment of new technologies and platforms provides further opportunity for the application of CAR T therapy to noncancerous pathologies. Here we review the rationale behind CAR T therapy, current challenges faced in oncology, a synopsis of preliminary reports in noncancerous diseases, and a discussion of relevant emerging technologies. We examine potential applications for this therapy in a wide range of contexts. Last, we highlight concerns regarding specificity and safety and outline the path forward for CAR T therapy beyond cancer.
Collapse
Affiliation(s)
- Daniel J Baker
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Zoltan Arany
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan A Epstein
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
85
|
Abhiraman GC, Bruun TUJ, Caveney NA, Su LL, Saxton RA, Yin Q, Tang S, Davis MM, Jude KM, Garcia KC. A structural blueprint for interleukin-21 signal modulation. Cell Rep 2023; 42:112657. [PMID: 37339051 PMCID: PMC10320830 DOI: 10.1016/j.celrep.2023.112657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Interleukin-21 (IL-21) plays a critical role in generating immunological memory by promoting the germinal center reaction, yet clinical use of IL-21 remains challenging because of its pleiotropy and association with autoimmune disease. To better understand the structural basis of IL-21 signaling, we determine the structure of the IL-21-IL-21R-γc ternary signaling complex by X-ray crystallography and a structure of a dimer of trimeric complexes using cryo-electron microscopy. Guided by the structure, we design analogs of IL-21 by introducing substitutions to the IL-21-γc interface. These IL-21 analogs act as partial agonists that modulate downstream activation of pS6, pSTAT3, and pSTAT1. These analogs exhibit differential activity on T and B cell subsets and modulate antibody production in human tonsil organoids. These results clarify the structural basis of IL-21 signaling and offer a potential strategy for tunable manipulation of humoral immunity.
Collapse
Affiliation(s)
- Gita C Abhiraman
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Theodora U J Bruun
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Nathanael A Caveney
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Leon L Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Robert A Saxton
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Qian Yin
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Shaogeng Tang
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Jude
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
86
|
Xiao M, Tang Q, Zeng S, Yang Q, Yang X, Tong X, Zhu G, Lei L, Li S. Emerging biomaterials for tumor immunotherapy. Biomater Res 2023; 27:47. [PMID: 37194085 PMCID: PMC10189985 DOI: 10.1186/s40824-023-00369-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/23/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND The immune system interacts with cancer cells in various intricate ways that can protect the individual from overproliferation of cancer cells; however, these interactions can also lead to malignancy. There has been a dramatic increase in the application of cancer immunotherapy in the last decade. However, low immunogenicity, poor specificity, weak presentation efficiency, and off-target side effects still limit its widespread application. Fortunately, advanced biomaterials effectively contribute immunotherapy and play an important role in cancer treatment, making it a research hotspot in the biomedical field. MAIN BODY This review discusses immunotherapies and the development of related biomaterials for application in the field. The review first summarizes the various types of tumor immunotherapy applicable in clinical practice as well as their underlying mechanisms. Further, it focuses on the types of biomaterials applied in immunotherapy and related research on metal nanomaterials, silicon nanoparticles, carbon nanotubes, polymer nanoparticles, and cell membrane nanocarriers. Moreover, we introduce the preparation and processing technologies of these biomaterials (liposomes, microspheres, microneedles, and hydrogels) and summarize their mechanisms when applied to tumor immunotherapy. Finally, we discuss future advancements and shortcomings related to the application of biomaterials in tumor immunotherapy. CONCLUSION Research on biomaterial-based tumor immunotherapy is booming; however, several challenges remain to be overcome to transition from experimental research to clinical application. Biomaterials have been optimized continuously and nanotechnology has achieved continuous progression, ensuring the development of more efficient biomaterials, thereby providing a platform and opportunity for breakthroughs in tumor immunotherapy.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
87
|
Liu H, Baeumler TA, Nakamura K, Okada Y, Cho S, Eguchi A, Kuroda D, Tsumoto K, Ueki R, Sando S. An Engineered Synthetic Receptor-Aptamer Pair for an Artificial Signal Transduction System. ACS NANO 2023; 17:9039-9048. [PMID: 37154259 DOI: 10.1021/acsnano.2c11744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell membrane receptors regulate cellular responses through sensing extracellular environmental signals and subsequently transducing them. Receptor engineering provides a means of directing cells to react to a designated external cue and exert programmed functions. However, rational design and precise modulation of receptor signaling activity remain challenging. Here, we report an aptamer-based signal transduction system and its applications in controlling and customizing the functions of engineered receptors. A previously reported membrane receptor-aptamer pair was used to design a synthetic receptor system that transduces cell signaling depending on exogenous aptamer input. To eliminate the cross-reactivity of the receptor with its native ligand, the extracellular domain of the receptor was engineered to ensure that the receptor was solely activated by the DNA aptamer. The present system features tunability in the signaling output level using aptamer ligands with different receptor dimerization propensities. In addition, the functional programmability of DNA aptamers enables the modular sensing of extracellular molecules without the need for genetic engineering of the receptor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daisuke Kuroda
- Research Center for Drug and Vaccine Development National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
88
|
Kao CY, Mills JA, Burke CJ, Morse B, Marques BF. Role of Cytokines and Growth Factors in the Manufacturing of iPSC-Derived Allogeneic Cell Therapy Products. BIOLOGY 2023; 12:biology12050677. [PMID: 37237491 DOI: 10.3390/biology12050677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
Cytokines and other growth factors are essential for cell expansion, health, function, and immune stimulation. Stem cells have the additional reliance on these factors to direct differentiation to the appropriate terminal cell type. Successful manufacturing of allogeneic cell therapies from induced pluripotent stem cells (iPSCs) requires close attention to the selection and control of cytokines and factors used throughout the manufacturing process, as well as after administration to the patient. This paper employs iPSC-derived natural killer cell/T cell therapeutics to illustrate the use of cytokines, growth factors, and transcription factors at different stages of the manufacturing process, ranging from the generation of iPSCs to controlling of iPSC differentiation into immune-effector cells through the support of cell therapy after patient administration.
Collapse
Affiliation(s)
- Chen-Yuan Kao
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Jason A Mills
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Carl J Burke
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Barry Morse
- Research and Development, Century Therapeutics, Philadelphia, PA 19104, USA
| | - Bruno F Marques
- Process and Product Development, Century Therapeutics, Philadelphia, PA 19104, USA
| |
Collapse
|
89
|
Corria-Osorio J, Carmona SJ, Stefanidis E, Andreatta M, Ortiz-Miranda Y, Muller T, Rota IA, Crespo I, Seijo B, Castro W, Jimenez-Luna C, Scarpellino L, Ronet C, Spill A, Lanitis E, Romero P, Luther SA, Irving M, Coukos G. Orthogonal cytokine engineering enables novel synthetic effector states escaping canonical exhaustion in tumor-rejecting CD8 + T cells. Nat Immunol 2023; 24:869-883. [PMID: 37081150 PMCID: PMC10154250 DOI: 10.1038/s41590-023-01477-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 03/01/2023] [Indexed: 04/22/2023]
Abstract
To date, no immunotherapy approaches have managed to fully overcome T-cell exhaustion, which remains a mandatory fate for chronically activated effector cells and a major therapeutic challenge. Understanding how to reprogram CD8+ tumor-infiltrating lymphocytes away from exhausted effector states remains an elusive goal. Our work provides evidence that orthogonal gene engineering of T cells to secrete an interleukin (IL)-2 variant binding the IL-2Rβγ receptor and the alarmin IL-33 reprogrammed adoptively transferred T cells to acquire a novel, synthetic effector state, which deviated from canonical exhaustion and displayed superior effector functions. These cells successfully overcame homeostatic barriers in the host and led-in the absence of lymphodepletion or exogenous cytokine support-to high levels of engraftment and tumor regression. Our work unlocks a new opportunity of rationally engineering synthetic CD8+ T-cell states endowed with the ability to avoid exhaustion and control advanced solid tumors.
Collapse
Affiliation(s)
- Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland.
- AGORA Cancer Research Center, Lausanne, Switzerland.
| | - Santiago J Carmona
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Evangelos Stefanidis
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - Massimo Andreatta
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Yaquelin Ortiz-Miranda
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Tania Muller
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Ioanna A Rota
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Wilson Castro
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Cristina Jimenez-Luna
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | | | - Catherine Ronet
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Aodrenn Spill
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Evripidis Lanitis
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
- AGORA Cancer Research Center, Lausanne, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne; and Department of Oncology, Lausanne University Hospital, Epalinges, Switzerland.
- AGORA Cancer Research Center, Lausanne, Switzerland.
| |
Collapse
|
90
|
Bittner S, Hehlgans T, Feuerer M. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol 2023; 44:468-483. [PMID: 37100644 DOI: 10.1016/j.it.2023.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/28/2023]
Abstract
Regulatory T (Treg) cells ensure tolerance against self-antigens, limit excessive inflammation, and support tissue repair processes. Therefore, Treg cells are currently attractive candidates for the treatment of certain inflammatory diseases, autoimmune disorders, or transplant rejection. Early clinical trials have proved the safety and efficacy of certain Treg cell therapies in inflammatory diseases. We summarize recent advances in engineering Treg cells, including the concept of biosensors for inflammation. We assess Treg cell engineering possibilities for novel functional units, including Treg cell modifications influencing stability, migration, and tissue adaptation. Finally, we outline perspectives of engineered Treg cells going beyond inflammatory diseases by using custom-designed receptors and read-out systems, aiming to use Treg cells as in vivo diagnostic tools and drug delivery vehicles.
Collapse
Affiliation(s)
- Sebastian Bittner
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany
| | - Thomas Hehlgans
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Feuerer
- Leibniz Institute for Immunotherapy, Division of Immunology, 93053 Regensburg, Germany; Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
91
|
Li X, Chen W, Martin BK, Calderon D, Lee C, Choi J, Chardon FM, McDiarmid T, Kim H, Lalanne JB, Nathans JF, Shendure J. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536587. [PMID: 37090511 PMCID: PMC10120711 DOI: 10.1101/2023.04.12.536587] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Prime editing is a powerful means of introducing precise changes to specific locations in mammalian genomes. However, the widely varying efficiency of prime editing across target sites of interest has limited its adoption in the context of both basic research and clinical settings. Here, we set out to exhaustively characterize the impact of the cis- chromatin environment on prime editing efficiency. Using a newly developed and highly sensitive method for mapping the genomic locations of a randomly integrated "sensor", we identify specific epigenetic features that strongly correlate with the highly variable efficiency of prime editing across different genomic locations. Next, to assess the interaction of trans -acting factors with the cis -chromatin environment, we develop and apply a pooled genetic screening approach with which the impact of knocking down various DNA repair factors on prime editing efficiency can be stratified by cis -chromatin context. Finally, we demonstrate that we can dramatically modulate the efficiency of prime editing through epigenome editing, i.e. altering chromatin state in a locus-specific manner in order to increase or decrease the efficiency of prime editing at a target site. Looking forward, we envision that the insights and tools described here will broaden the range of both basic research and therapeutic contexts in which prime editing is useful.
Collapse
|
92
|
Quijano-Rubio A, Bhuiyan AM, Yang H, Leung I, Bello E, Ali LR, Zhangxu K, Perkins J, Chun JH, Wang W, Lajoie MJ, Ravichandran R, Kuo YH, Dougan SK, Riddell SR, Spangler JB, Dougan M, Silva DA, Baker D. A split, conditionally active mimetic of IL-2 reduces the toxicity of systemic cytokine therapy. Nat Biotechnol 2023; 41:532-540. [PMID: 36316485 PMCID: PMC10110466 DOI: 10.1038/s41587-022-01510-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
The therapeutic potential of recombinant cytokines has been limited by the severe side effects of systemic administration. We describe a strategy to reduce the dose-limiting toxicities of monomeric cytokines by designing two components that require colocalization for activity and that can be independently targeted to restrict activity to cells expressing two surface markers. We demonstrate the approach with a previously designed mimetic of cytokines interleukin-2 and interleukin-15-Neoleukin-2/15 (Neo-2/15)-both for trans-activating immune cells surrounding targeted tumor cells and for cis-activating directly targeted immune cells. In trans-activation mode, tumor antigen targeting of the two components enhanced antitumor activity and attenuated toxicity compared with systemic treatment in syngeneic mouse melanoma models. In cis-activation mode, immune cell targeting of the two components selectively expanded CD8+ T cells in a syngeneic mouse melanoma model and promoted chimeric antigen receptor T cell activation in a lymphoma xenograft model, enhancing antitumor efficacy in both cases.
Collapse
Affiliation(s)
- Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Monod Bio, Inc., Seattle, WA, USA
| | - Aladdin M Bhuiyan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Isabel Leung
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Elisa Bello
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lestat R Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Zhangxu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jilliane Perkins
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jung-Ho Chun
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Wentao Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Marc J Lajoie
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
- Outpace Bio, Seattle, WA, USA
| | - Rashmi Ravichandran
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stanley R Riddell
- Fred Hutchinson Cancer Research Center, Clinical Research Division, Seattle, WA, USA
| | - Jamie B Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Michael Dougan
- Department of Medicine, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel-Adriano Silva
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Monod Bio, Inc., Seattle, WA, USA.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
93
|
Gene-based delivery of immune-activating cytokines for cancer treatment. Trends Mol Med 2023; 29:329-342. [PMID: 36828711 DOI: 10.1016/j.molmed.2023.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Tumors evolve together with the tumor microenvironment (TME) and reshape it towards immunosuppression. Immunostimulating cytokines can be used to revert this state leading to effective antitumor immune responses, but their exploitation as anticancer drugs has been hampered by severe toxicity associated with systemic administration. Local, TME-targeted delivery of immune activating cytokines can deploy their antitumoral function more effectively than systemic administration while, at the same time, avoiding exposure of healthy organs and limiting toxicity. Here, we review different gene and cell therapy platforms developed for tumor-directed cytokine delivery highlighting their potential for clinical translation.
Collapse
|
94
|
Wolf D. GVHD prophylaxis: use an ortho IL-2/IL-2Rβ Treg system! Blood 2023; 141:1246-1247. [PMID: 36929438 DOI: 10.1182/blood.2023019711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
95
|
Ramos TL, Bolivar-Wagers S, Jin S, Thangavelu G, Simonetta F, Lin PY, Hirai T, Saha A, Koehn B, Su LL, Picton LK, Baker J, Lohmeyer JK, Riddle M, Eide C, Tolar J, Panoskaltsis-Mortari A, Wagner JE, Garcia KC, Negrin RS, Blazar BR. Prevention of acute GVHD using an orthogonal IL-2/IL-2Rβ system to selectively expand regulatory T cells in vivo. Blood 2023; 141:1337-1352. [PMID: 36564052 PMCID: PMC10082364 DOI: 10.1182/blood.2022018440] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 12/01/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative option for patients with hematological disorders and bone marrow (BM) failure syndromes. Graft-versus-host disease (GVHD) remains a leading cause of morbidity posttransplant. Regulatory T cell (Treg) therapies are efficacious in ameliorating GVHD but limited by variable suppressive capacities and the need for a high therapeutic dose. Here, we sought to expand Treg in vivo by expressing an orthogonal interleukin 2 receptor β (oIL-2Rβ) that would selectively interact with oIL-2 cytokine and not wild-type (WT) IL-2. To test whether the orthogonal system would preferentially drive donor Treg expansion, we used a murine major histocompatibility complex-disparate GVHD model of lethally irradiated BALB/c mice given T cell-depleted BM from C57BL/6 (B6) mice alone or together with B6Foxp3+GFP+ Treg or oIL-2Rβ-transduced Treg at low cell numbers that typically do not control GVHD with WT Treg. On day 2, B6 activated T cells (Tcons) were injected to induce GVHD. Recipients were treated with phosphate-buffered saline (PBS) or oIL-2 daily for 14 days, then 3 times weekly for an additional 14 days. Mice treated with oIL-2Rβ Treg and oIL-2 compared with those treated with PBS had enhanced GVHD survival, in vivo selective expansion of Tregs, and greater suppression of Tcon expansion in secondary lymphoid organs and intestines. Importantly, oIL-2Rβ Treg maintained graft-versus-tumor (GVT) responses in 2 distinct tumor models (A20 and MLL-AF9). These data demonstrate a novel approach to enhance the efficacy of Treg therapy in allo-HSCT using an oIL-2/oIL-2Rβ system that allows for selective in vivo expansion of Treg leading to GVHD protection and GVT maintenance.
Collapse
Affiliation(s)
- Teresa L. Ramos
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Sara Bolivar-Wagers
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Sujeong Jin
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Federico Simonetta
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
- Translational Research Center for Oncohematology, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Po-Yu Lin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Toshihito Hirai
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
- Department of Urology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Asim Saha
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Brent Koehn
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Leon L. Su
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Lora K. Picton
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Jeanette Baker
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Juliane K. Lohmeyer
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Megan Riddle
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Cindy Eide
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - John E. Wagner
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology, Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University, Stanford, CA
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapy, Department of Pediatrics and the Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| |
Collapse
|
96
|
Steiner R, Pilat N. The potential for Treg-enhancing therapies in transplantation. Clin Exp Immunol 2023; 211:122-137. [PMID: 36562079 PMCID: PMC10019131 DOI: 10.1093/cei/uxac118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of regulatory T cells (Tregs) as crucial regulators of immune tolerance against self-antigens, these cells have become a promising tool for the induction of donor-specific tolerance in transplantation medicine. The therapeutic potential of increasing in vivoTreg numbers for a favorable Treg to Teff cell ratio has already been demonstrated in several sophisticated pre-clinical models and clinical pilot trials. In addition to improving cell quantity, enhancing Treg function utilizing engineering techniques led to encouraging results in models of autoimmunity and transplantation. Here we aim to discuss the most promising approaches for Treg-enhancing therapies, starting with adoptive transfer approaches and ex vivoexpansion cultures (polyclonal vs. antigen specific), followed by selective in vivostimulation methods. Furthermore, we address next generation concepts for Treg function enhancement (CARs, TRUCKs, BARs) as well as the advantages and caveats inherit to each approach. Finally, this review will discuss the clinical experience with Treg therapy in ongoing and already published clinical trials; however, data on long-term results and efficacy are still very limited and many questions that might complicate clinical translation remain open. Here, we discuss the hurdles for clinical translation and elaborate on current Treg-based therapeutic options as well as their potencies for improving long-term graft survival in transplantation.
Collapse
Affiliation(s)
- Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Nina Pilat
- Correspondence: Nina Pilat, PhD, Department of Cardiac Surgery, Center for Biomedical Research, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
97
|
Garfall AL, Cohen AD, Susanibar-Adaniya SP, Hwang WT, Vogl DT, Waxman AJ, Lacey SF, Gonzalez VE, Fraietta JA, Gupta M, Kulikovskaya I, Tian L, Chen F, Koterba N, Bartoszek RL, Patchin M, Xu R, Plesa G, Siegel DL, Brennan A, Nelson AM, Ferthio R, Cosey A, Shea KM, Leskowitz R, Four M, Wilson WV, Miao F, Lancaster E, Carreno BM, Linette GP, Hexner EO, Young RM, Bu D, Mansfield KG, Brogdon JL, June CH, Milone MC, Stadtmauer EA. Anti-BCMA/CD19 CAR T Cells with Early Immunomodulatory Maintenance for Multiple Myeloma Responding to Initial or Later-Line Therapy. Blood Cancer Discov 2023; 4:118-133. [PMID: 36413381 PMCID: PMC9975770 DOI: 10.1158/2643-3230.bcd-22-0074] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/16/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
We conducted a phase I clinical trial of anti-BCMA chimeric antigen receptor T cells (CART-BCMA) with or without anti-CD19 CAR T cells (huCART19) in multiple myeloma (MM) patients responding to third- or later-line therapy (phase A, N = 10) or high-risk patients responding to first-line therapy (phase B, N = 20), followed by early lenalidomide or pomalidomide maintenance. We observed no high-grade cytokine release syndrome (CRS) and only one instance of low-grade neurologic toxicity. Among 15 subjects with measurable disease, 10 exhibited partial response (PR) or better; among 26 subjects responding to prior therapy, 9 improved their response category and 4 converted to minimal residual disease (MRD)-negative complete response/stringent complete response. Early maintenance therapy was safe, feasible, and coincided in some patients with CAR T-cell reexpansion and late-onset, durable clinical response. Outcomes with CART-BCMA + huCART19 were similar to CART-BCMA alone. Collectively, our results demonstrate favorable safety, pharmacokinetics, and antimyeloma activity of dual-target CAR T-cell therapy in early lines of MM treatment. SIGNIFICANCE CAR T cells in early lines of MM therapy could be safer and more effective than in the advanced setting, where prior studies have focused. We evaluated the safety, pharmacokinetics, and efficacy of CAR T cells in patients with low disease burden, responding to current therapy, combined with standard maintenance therapy. This article is highlighted in the In This Issue feature, p. 101.
Collapse
Affiliation(s)
- Alfred L. Garfall
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam D. Cohen
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandra P. Susanibar-Adaniya
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wei-Ting Hwang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dan T. Vogl
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam J. Waxman
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon F. Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vanessa E. Gonzalez
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph A. Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Minnal Gupta
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lifeng Tian
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fang Chen
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Natalka Koterba
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert L. Bartoszek
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Margaret Patchin
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rong Xu
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabriela Plesa
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Don L. Siegel
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea Brennan
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anne Marie Nelson
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Regina Ferthio
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela Cosey
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kim-Marie Shea
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rachel Leskowitz
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan Four
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Wesley V. Wilson
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Fei Miao
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beatriz M. Carreno
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gerald P. Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth O. Hexner
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Regina M. Young
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dexiu Bu
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | | | | | - Carl H. June
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael C. Milone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward A. Stadtmauer
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
98
|
Tas L, Jedema I, Haanen JB. Novel strategies to improve efficacy of treatment with tumor-infiltrating lymphocytes (TILs) for patients with solid cancers. Curr Opin Oncol 2023; 35:107-113. [PMID: 36607824 PMCID: PMC9894146 DOI: 10.1097/cco.0000000000000925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE OF REVIEW Treatment with tumor-infiltrating lymphocytes (TILs) has shown remarkable clinical responses in patients with advanced solid tumors. Although the TIL production process is very robust, the original protocol stems from the early nineties and lacks effective selection for tumor-reactivity and functional activity. In this review we highlight the limitations of the current production process and give an overview of improvements that can be made to increase TIL efficacy. RECENT FINDINGS With the recent advances in single cell sequencing technologies, our understanding of the composition and phenotype of TILs in the tumor micro environment has majorly increased, which forms the basis for the development of new strategies to improve the TIL production process. Strategies involve selection for neoantigen-reactive TILs by cell sorting or selective expansion strategies. Furthermore, gene editing strategies like Clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas9) can be used to increase TIL functionality. SUMMARY Although combining all the possible improvements into a next generation TIL product might be challenging, it is highly likely that those techniques will increase the clinical value of TIL therapy in the coming years.
Collapse
Affiliation(s)
- Liselotte Tas
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Inge Jedema
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - John B.A.G. Haanen
- Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Oncology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
99
|
Thomas S, Abken H. CAR T cell therapy becomes CHIC: "cytokine help intensified CAR" T cells. Front Immunol 2023; 13:1090959. [PMID: 36700225 PMCID: PMC9869021 DOI: 10.3389/fimmu.2022.1090959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Chimeric antigen receptors (CARs) in the canonical "second generation" format provide two signals for inducing T cell effector functions; the primary "signal-1" is provided through the TCR CD3ζ chain and the "signal-2" through a linked costimulatory domain to augment activation. While therapy with second generation CAR T cells can induce remissions of leukemia/lymphoma in a spectacular fashion, CAR T cell persistence is frequently limited which is thought to be due to timely limited activation. Following the "three-signal" dogma for inducing a sustained T cell response, cytokines were supplemented to provide "signal-3" to CAR T cells. Recent progress in the understanding of structural biology and receptor signaling has allowed to engineer cytokines for more selective, fine-tuned stimulation of CAR T cells including an artificial autocrine loop of a transgenic cytokine, a cytokine anchored to the CAR T cell membrane or inserted into the extracellular CAR domain, and a cytokine receptor signaling moiety co-expressed with the CAR or inserted into the CAR endodomain. Here we discuss the recent strategies and options for engineering such "cytokine help intensified CAR" (CHIC) T cells for use in adoptive cell therapy.
Collapse
Affiliation(s)
- Simone Thomas
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, Germany,Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Div. Genetic Immunotherapy, Regensburg, Germany,Chair for Genetic Immunotherapy, University Regensburg, Regensburg, Germany,*Correspondence: Hinrich Abken,
| |
Collapse
|
100
|
Deckers J, Anbergen T, Hokke AM, de Dreu A, Schrijver DP, de Bruin K, Toner YC, Beldman TJ, Spangler JB, de Greef TFA, Grisoni F, van der Meel R, Joosten LAB, Merkx M, Netea MG, Mulder WJM. Engineering cytokine therapeutics. NATURE REVIEWS BIOENGINEERING 2023; 1:286-303. [PMID: 37064653 PMCID: PMC9933837 DOI: 10.1038/s44222-023-00030-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential.
Collapse
Affiliation(s)
- Jeroen Deckers
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Tom Anbergen
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ayla M. Hokke
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anne de Dreu
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - David P. Schrijver
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Koen de Bruin
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Yohana C. Toner
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Thijs J. Beldman
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Tom F. A. de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Francesca Grisoni
- Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Centre for Living Technologies, Alliance Eindhoven University of Technology, Wageningen University & Research, Utrecht University and University Medical Center Utrecht (EWUU), Utrecht, Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Medical Genetics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maarten Merkx
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Centre, Nijmegen, Netherlands
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Willem J. M. Mulder
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Medical Centre, Nijmegen, Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Present Address: Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|