51
|
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab 2022; 33:218-229. [PMID: 35065875 DOI: 10.1016/j.tem.2021.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
52
|
CRISPR Interference Reveals That All- Trans-Retinoic Acid Promotes Macrophage Control of Mycobacterium tuberculosis by Limiting Bacterial Access to Cholesterol and Propionyl Coenzyme A. mBio 2022; 13:e0368321. [PMID: 35038923 PMCID: PMC8764544 DOI: 10.1128/mbio.03683-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophages are a protective replicative niche for Mycobacterium tuberculosis (Mtb) but can kill the infecting bacterium when appropriately activated. To identify mechanisms of clearance, we compared levels of bacterial restriction by human macrophages after treatment with 26 compounds, including some currently in clinical trials for tuberculosis. All-trans-retinoic acid (ATRA), an active metabolite of vitamin A, drove the greatest increase in Mtb control. Bacterial clearance was transcriptionally and functionally associated with changes in macrophage cholesterol trafficking and lipid metabolism. To determine how these macrophage changes affected bacterial control, we performed the first Mtb CRISPR interference screen in an infection model, identifying Mtb genes specifically required to survive in ATRA-activated macrophages. These data showed that ATRA treatment starves Mtb of cholesterol and the downstream metabolite propionyl coenzyme A (propionyl-CoA). Supplementation with sources of propionyl-CoA, including cholesterol, abrogated the restrictive effect of ATRA. This work demonstrates that targeting the coupled metabolism of Mtb and the macrophage improves control of infection and that it is possible to genetically map the mode of bacterial death using CRISPR interference. IMPORTANCE Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is a leading cause of death due to infectious disease. Improving the immune response to tuberculosis holds promise for fighting the disease but is limited by our lack of knowledge as to how the immune system kills M. tuberculosis. Our research identifies a potent way to make relevant immune cells more effective at fighting M. tuberculosis and then uses paired human and bacterial genomic methods to determine the mechanism of that improved bacterial clearance.
Collapse
|
53
|
Zhao P, Jin Y, Wu X, Huang J, Chen L, Tan Y, Yuan H, Wu J, Ren Z. Artificial Lipid Droplets: Novel Effective Biomaterials to Protect Cells against Oxidative Stress and Lipotoxicity. NANOMATERIALS 2022; 12:nano12040672. [PMID: 35215001 PMCID: PMC8879118 DOI: 10.3390/nano12040672] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023]
Abstract
Lipid droplets (LDs) play an important role in the regulation of cellular stress. This suggests LDs can be applied as safe and effective biomaterials to alleviate cellular stress and lipotoxicity. Here, we constructed a convenient method to generate stable and pure artificial lipid droplets (aLDs). aLDs can maintain their biological function by incubating LD-associated proteins or organelles in vitro. It was validated that perilipin-coated aLDs could be uptaken by cells, significantly reducing hydrogen peroxide-induced reactive oxidative species (ROS) and alleviating cellular lipotoxicity caused by excess fatty acid. Our work demonstrated a direct role of LDs in regulating cellular stress levels, providing methods and potential value for future research and medical applications of LDs.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Xiang Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Jin Huang
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China;
| | - Jian Wu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Y.J.); (X.W.); (J.H.); (L.C.); (Y.T.); (J.W.)
- Hubei Hongshan Laboratory, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
54
|
Urbaniec J, Xu Y, Hu Y, Hingley-Wilson S, McFadden J. Phenotypic heterogeneity in persisters: a novel 'hunker' theory of persistence. FEMS Microbiol Rev 2022; 46:fuab042. [PMID: 34355746 PMCID: PMC8767447 DOI: 10.1093/femsre/fuab042] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Persistence has been linked to treatment failure since its discovery over 70 years ago and understanding formation, nature and survival of this key antibiotic refractory subpopulation is crucial to enhancing treatment success and combatting the threat of antimicrobial resistance (AMR). The term 'persistence' is often used interchangeably with other terms such as tolerance or dormancy. In this review we focus on 'antibiotic persistence' which we broadly define as a feature of a subpopulation of bacterial cells that possesses the non-heritable character of surviving exposure to one or more antibiotics; and persisters as cells that possess this characteristic. We discuss novel molecular mechanisms involved in persister cell formation, as well as environmental factors which can contribute to increased antibiotic persistence in vivo, highlighting recent developments advanced by single-cell studies. We also aim to provide a comprehensive model of persistence, the 'hunker' theory which is grounded in intrinsic heterogeneity of bacterial populations and a myriad of 'hunkering down' mechanisms which can contribute to antibiotic survival of the persister subpopulation. Finally, we discuss antibiotic persistence as a 'stepping-stone' to AMR and stress the urgent need to develop effective anti-persister treatment regimes to treat this highly clinically relevant bacterial sub-population.
Collapse
Affiliation(s)
- J Urbaniec
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Ye Xu
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Y Hu
- Farnborough Sensonic limited, Farnborough road, GU14 7NA, UK
| | - S Hingley-Wilson
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
| | - J McFadden
- Department of Microbial Sciences and University of Surrey, Guildford, Surrey, GU27XH, UK
- Quantum biology doctoral training centre, University of Surrey, Guildford, Surrey, GU27XH, UK
| |
Collapse
|
55
|
Abstract
High-resolution imaging with secondary ion mass spectrometry (nanoSIMS) has become a standard method in systems biology and environmental biogeochemistry and is broadly used to decipher ecophysiological traits of environmental microorganisms, metabolic processes in plant and animal tissues, and cross-kingdom symbioses. When combined with stable isotope-labeling-an approach we refer to as nanoSIP-nanoSIMS imaging offers a distinctive means to quantify net assimilation rates and stoichiometry of individual cell-sized particles in both low- and high-complexity environments. While the majority of nanoSIP studies in environmental and microbial biology have focused on nitrogen and carbon metabolism (using 15N and 13C tracers), multiple advances have pushed the capabilities of this approach in the past decade. The development of a high-brightness oxygen ion source has enabled high-resolution metal analyses that are easier to perform, allowing quantification of metal distribution in cells and environmental particles. New preparation methods, tools for automated data extraction from large data sets, and analytical approaches that push the limits of sensitivity and spatial resolution have allowed for more robust characterization of populations ranging from marine archaea to fungi and viruses. NanoSIMS studies continue to be enhanced by correlation with orthogonal imaging and 'omics approaches; when linked to molecular visualization methods, such as in situ hybridization and antibody labeling, these techniques enable in situ function to be linked to microbial identity and gene expression. Here we present an updated description of the primary materials, methods, and calculations used for nanoSIP, with an emphasis on recent advances in nanoSIMS applications, key methodological steps, and potential pitfalls.
Collapse
Affiliation(s)
- Jennifer Pett-Ridge
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| | - Peter K Weber
- Lawrence Livermore National Lab, Physical and Life Science Directorate, Livermore, CA, USA.
| |
Collapse
|
56
|
Song L, Merceron R, Hulpia F, Lucía A, Gracia B, Jian Y, Risseeuw MDP, Verstraelen T, Cos P, Aínsa JA, Boshoff HI, Munier-Lehmann H, Savvides SN, Van Calenbergh S. Structure-aided optimization of non-nucleoside M. tuberculosis thymidylate kinase inhibitors. Eur J Med Chem 2021; 225:113784. [PMID: 34450493 PMCID: PMC10500704 DOI: 10.1016/j.ejmech.2021.113784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/14/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis thymidylate kinase (MtTMPK) has emerged as an attractive target for rational drug design. We recently investigated new families of non-nucleoside MtTMPK inhibitors in an effort to diversify MtTMPK inhibitor chemical space. We here report a new series of MtTMPK inhibitors by combining the Topliss scheme with rational drug design approaches, fueled by two co-crystal structures of MtTMPK in complex with developed inhibitors. These efforts furnished the most potent MtTMPK inhibitors in our assay, with two analogues displaying low micromolar MIC values against H37Rv Mtb. Prepared inhibitors address new sub-sites in the MtTMPK nucleotide binding pocket, thereby offering new insights into its druggability. We studied the role of efflux pumps as well as the impact of cell wall permeabilizers for selected compounds to potentially provide an explanation for the lack of correlation between potent enzyme inhibition and whole-cell activity.
Collapse
Affiliation(s)
- Lijun Song
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; 3M, Zwijndrecht, Belgium
| | - Romain Merceron
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium; Eurofins Group, Poitiers, France
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium; Janssen Pharmaceutica, Beerse, Belgium
| | - Ainhoa Lucía
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Begoña Gracia
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Yanlin Jian
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Martijn D P Risseeuw
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium
| | - Toon Verstraelen
- Center for Melecular Modeling, Ghent University, Zwijnaarde, Ghent, 9052, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Department of Pharmaceutical Sciences, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610, Antwerpen, Belgium
| | - José A Aínsa
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Facultad de Medicina, and BIFI, Universidad de Zaragoza, Zaragoza, Spain; CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Helena I Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, United States
| | - Hélène Munier-Lehmann
- CNRS UMR3523, Department of Structural Biology and Chemistry, Institut Pasteur, 75724, Paris Cedex 15, France
| | - Savvas N Savvides
- VIB Center for Inflammation Research, Zwijnaarde, Ghent, 9052, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark 927, 9052, Zwijnaarde, Ghent, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (FFW), Ghent University, Tergestensis 460, B-9000, Gent, Belgium.
| |
Collapse
|
57
|
Emerging technologies and infection models in cellular microbiology. Nat Commun 2021; 12:6764. [PMID: 34799563 PMCID: PMC8604907 DOI: 10.1038/s41467-021-26641-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
The field of cellular microbiology, rooted in the co-evolution of microbes and their hosts, studies intracellular pathogens and their manipulation of host cell machinery. In this review, we highlight emerging technologies and infection models that recently promoted opportunities in cellular microbiology. We overview the explosion of microscopy techniques and how they reveal unprecedented detail at the host-pathogen interface. We discuss the incorporation of robotics and artificial intelligence to image-based screening modalities, biochemical mapping approaches, as well as dual RNA-sequencing techniques. Finally, we describe chips, organoids and animal models used to dissect biophysical and in vivo aspects of the infection process. As our knowledge of the infected cell improves, cellular microbiology holds great promise for development of anti-infective strategies with translational applications in human health.
Collapse
|
58
|
Remm S, Earp JC, Dick T, Dartois V, Seeger MA. Critical discussion on drug efflux in Mycobacterium tuberculosis. FEMS Microbiol Rev 2021; 46:6391500. [PMID: 34637511 PMCID: PMC8829022 DOI: 10.1093/femsre/fuab050] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can withstand months of antibiotic treatment. An important goal of tuberculosis research is to shorten the treatment to reduce the burden on patients, increase adherence to the drug regimen and thereby slow down the spread of drug resistance. Inhibition of drug efflux pumps by small molecules has been advocated as a promising strategy to attack persistent Mtb and shorten therapy. Although mycobacterial drug efflux pumps have been broadly investigated, mechanistic studies are scarce. In this critical review, we shed light on drug efflux in its larger mechanistic context by considering the intricate interplay between membrane transporters annotated as drug efflux pumps, membrane energetics, efflux inhibitors and cell wall biosynthesis processes. We conclude that a great wealth of data on mycobacterial transporters is insufficient to distinguish by what mechanism they contribute to drug resistance. Recent studies suggest that some drug efflux pumps transport structural lipids of the mycobacterial cell wall and that the action of certain drug efflux inhibitors involves dissipation of the proton motive force, thereby draining the energy source of all active membrane transporters. We propose recommendations on the generation and interpretation of drug efflux data to reduce ambiguities and promote assigning novel roles to mycobacterial membrane transporters.
Collapse
Affiliation(s)
- Sille Remm
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Jennifer C Earp
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA.,Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zürich, Switzerland
| |
Collapse
|
59
|
Pharmacokinetics and Target Attainment of SQ109 in Plasma and Human-Like Tuberculosis Lesions in Rabbits. Antimicrob Agents Chemother 2021; 65:e0002421. [PMID: 34228540 PMCID: PMC8370215 DOI: 10.1128/aac.00024-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
SQ109 is a novel well-tolerated drug candidate in clinical development for the treatment of drug-resistant tuberculosis (TB). It is the only inhibitor of the MmpL3 mycolic acid transporter in clinical development. No SQ109-resistant mutant has been directly isolated thus far in vitro, in mice, or in patients, which is tentatively attributed to its multiple targets. It is considered a potential replacement for poorly tolerated components of multidrug-resistant TB regimens. To prioritize SQ109-containing combinations with the best potential for cure and treatment shortening, one must understand its contribution against different bacterial populations in pulmonary lesions. Here, we have characterized the pharmacokinetics of SQ109 in the rabbit model of active TB and its penetration at the sites of disease—lung tissue, cellular and necrotic lesions, and caseum. A two-compartment model with first-order absorption and elimination described the plasma pharmacokinetics. At the human-equivalent dose, parameter estimates fell within the ranges published for preclinical species. Tissue concentrations were modeled using an “effect” compartment, showing high accumulation in lung and cellular lesion areas with penetration coefficients in excess of 1,000 and lower passive diffusion in caseum after 7 daily doses. These results, together with the hydrophobic nature and high nonspecific caseum binding of SQ109, suggest that multiweek dosing would be required to reach steady state in caseum and poorly vascularized compartments, similar to bedaquiline. Linking lesion pharmacokinetics to SQ109 potency in assays against replicating, nonreplicating, and intracellular M. tuberculosis showed SQ109 concentrations markedly above pharmacokinetic-pharmacodynamic targets in lung and cellular lesions throughout the dosing interval.
Collapse
|
60
|
Abstract
Lipid droplets (LDs) are endoplasmic reticulum-derived organelles that consist of a core of neutral lipids encircled by a phospholipid monolayer decorated with proteins. As hubs of cellular lipid and energy metabolism, LDs are inherently involved in the etiology of prevalent metabolic diseases such as obesity and nonalcoholic fatty liver disease. The functions of LDs are regulated by a unique set of associated proteins, the LD proteome, which includes integral membrane and peripheral proteins. These proteins control key activities of LDs such as triacylglycerol synthesis and breakdown, nutrient sensing and signal integration, and interactions with other organelles. Here we review the mechanisms that regulate the composition of the LD proteome, such as pathways that mediate selective and bulk LD protein degradation and potential connections between LDs and cellular protein quality control.
Collapse
Affiliation(s)
- Melissa A Roberts
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA;
| | - James A Olzmann
- Department of Molecular and Cell Biology and Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA; .,Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
61
|
Relationship between plasma and intracellular concentrations of bedaquiline and its M2 metabolite in South African patients with rifampin-resistant TB. Antimicrob Agents Chemother 2021; 65:e0239920. [PMID: 34370588 PMCID: PMC8522761 DOI: 10.1128/aac.02399-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bedaquiline is recommended for the treatment of all patients with rifampin-resistant tuberculosis (RR-TB). Bedaquiline accumulates within cells, but its intracellular pharmacokinetics have not been characterized, which may have implications for dose optimization. We developed a novel assay using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to measure the intracellular concentrations of bedaquiline and its primary metabolite M2 in patients with RR-TB in South Africa. Twenty-one participants were enrolled and underwent sparse sampling of plasma and peripheral blood mononuclear cells (PBMCs) at months 1, 2, and 6 of treatment and at 3 and 6 months after bedaquiline treatment completion. Intensive sampling was performed at month 2. We used noncompartmental analysis to describe plasma and intracellular exposures and a population pharmacokinetic model to explore the relationship between plasma and intracellular pharmacokinetics and the effects of key covariates. Bedaquiline concentrations from month 1 to month 6 of treatment ranged from 94.7 to 2,540 ng/ml in plasma and 16.2 to 5,478 ng/ml in PBMCs, and concentrations of M2 over the 6-month treatment period ranged from 34.3 to 496 ng/ml in plasma and 109.2 to 16,764 ng/ml in PBMCs. Plasma concentrations of bedaquiline were higher than those of M2, but intracellular concentrations of M2 were considerably higher than those of bedaquiline. In the pharmacokinetic modeling, we estimated a linear increase in the intracellular-plasma accumulation ratio for bedaquiline and M2, reaching maximum effect after 2 months of treatment. The typical intracellular-plasma ratios 1 and 2 months after start of treatment were 0.61 (95% confidence interval [CI]: 0.42 to 0.92) and 1.10 (95% CI: 0.74 to 1.63) for bedaquiline and 12.4 (95% CI: 8.8 to 17.8) and 22.2 (95% CI: 15.6 to 32.3) for M2. The intracellular-plasma ratios for both bedaquiline and M2 were decreased by 54% (95% CI: 24 to 72%) in HIV-positive patients compared to HIV-negative patients. Bedaquiline and M2 were detectable in PBMCs 6 months after treatment discontinuation. M2 accumulated at higher concentrations intracellularly than bedaquiline, supporting in vitro evidence that M2 is the main inducer of phospholipidosis.
Collapse
|
62
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
63
|
Growth of Mycobacterium tuberculosis at acidic pH depends on lipid assimilation and is accompanied by reduced GAPDH activity. Proc Natl Acad Sci U S A 2021; 118:2024571118. [PMID: 34341117 DOI: 10.1073/pnas.2024571118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acidic pH arrests the growth of Mycobacterium tuberculosis in vitro (pH < 5.8) and is thought to significantly contribute to the ability of macrophages to control M. tuberculosis replication. However, this pathogen has been shown to survive and even slowly replicate within macrophage phagolysosomes (pH 4.5 to 5) [M. S. Gomes et al., Infect. Immun. 67, 3199-3206 (1999)] [S. Levitte et al., Cell Host Microbe 20, 250-258 (2016)]. Here, we demonstrate that M. tuberculosis can grow at acidic pH, as low as pH 4.5, in the presence of host-relevant lipids. We show that lack of phosphoenolpyruvate carboxykinase and isocitrate lyase, two enzymes necessary for lipid assimilation, is cidal to M. tuberculosis in the presence of oleic acid at acidic pH. Metabolomic analysis revealed that M. tuberculosis responds to acidic pH by altering its metabolism to preferentially assimilate lipids such as oleic acid over carbohydrates such as glycerol. We show that the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is impaired in acid-exposed M. tuberculosis likely contributing to a reduction in glycolytic flux. The generation of endogenous reactive oxygen species at acidic pH is consistent with the inhibition of GAPDH, an enzyme well-known to be sensitive to oxidation. This work shows that M. tuberculosis alters its carbon diet in response to pH and provides a greater understanding of the physiology of this pathogen during acid stress.
Collapse
|
64
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
65
|
Mishra R, Yadav V, Guha M, Singh A. Heterogeneous Host-Pathogen Encounters Coordinate Antibiotic Resilience in Mycobacterium tuberculosis. Trends Microbiol 2021; 29:606-620. [PMID: 33309526 PMCID: PMC7611257 DOI: 10.1016/j.tim.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
Successful treatment of tuberculosis (TB) depends on the eradication of its causative agent Mycobacterium tuberculosis (Mtb) in the host. However, the emergence of phenotypically drug-resistant Mtb in the host environment tempers the ability of antibiotics to cure disease. Host immunity produces diverse microenvironmental niches that are exploited by Mtb to mobilize adaptation programs. Such differential interactions amplify pre-existing heterogeneity in the host-pathogen milieu to influence disease pathology and therapy outcome. Therefore, comprehending the intricacies of phenotypic heterogeneity can be an empirical step forward in potentiating drug action. With this goal, we review the interconnectedness of the lesional, cellular, and bacterial heterogeneity underlying phenotypic drug resistance. Based on this information, we anticipate the development of new therapeutic strategies targeting host-pathogen heterogeneity to cure TB.
Collapse
Affiliation(s)
- Richa Mishra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Vikas Yadav
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Madhura Guha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru-560012, India; Centre for Infectious Disease and Research (CIDR), Indian Institute of Science, Bengaluru-560012, India.
| |
Collapse
|
66
|
Santucci P, Greenwood DJ, Fearns A, Chen K, Jiang H, Gutierrez MG. Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nat Commun 2021; 12:3816. [PMID: 34155215 PMCID: PMC8217510 DOI: 10.1038/s41467-021-24127-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
To be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.
Collapse
Affiliation(s)
- Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Daniel J Greenwood
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.,Institute of Molecular Systems Biology, ETH, Zurich, Switzerland
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth, AU, Australia
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, AU, Australia. .,Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
67
|
Tounta V, Liu Y, Cheyne A, Larrouy-Maumus G. Metabolomics in infectious diseases and drug discovery. Mol Omics 2021; 17:376-393. [PMID: 34125125 PMCID: PMC8202295 DOI: 10.1039/d1mo00017a] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Metabolomics has emerged as an invaluable tool that can be used along with genomics, transcriptomics and proteomics to understand host-pathogen interactions at small-molecule levels. Metabolomics has been used to study a variety of infectious diseases and applications. The most common application of metabolomics is for prognostic and diagnostic purposes, specifically the screening of disease-specific biomarkers by either NMR-based or mass spectrometry-based metabolomics. In addition, metabolomics is of great significance for the discovery of druggable metabolic enzymes and/or metabolic regulators through the use of state-of-the-art flux analysis, for example, via the elucidation of metabolic mechanisms. This review discusses the application of metabolomics technologies to biomarker screening, the discovery of drug targets in infectious diseases such as viral, bacterial and parasite infections and immunometabolomics, highlights the challenges associated with accessing metabolite compartmentalization and discusses the available tools for determining local metabolite concentrations.
Collapse
Affiliation(s)
- Vivian Tounta
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Ashleigh Cheyne
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| |
Collapse
|
68
|
Optimized protocol for the identification of lipid droplet proteomes using proximity labeling proteomics in cultured human cells. STAR Protoc 2021; 2:100579. [PMID: 34151299 PMCID: PMC8190507 DOI: 10.1016/j.xpro.2021.100579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Lipid droplets are endoplasmic reticulum-derived neutral lipid storage organelles that play critical roles in cellular lipid and energy homeostasis. Here, we present a protocol for the identification of high-confidence lipid droplet proteomes in a cell culture model. This approach overcomes limitations associated with standard biochemical fractionation techniques, employing an engineered ascorbate peroxidase (APEX2) to biotinylate endogenous lipid droplet proteins in living cells for subsequent purification and identification by proteomics. For complete details on the use and execution of this protocol, please refer to Bersuker et al. (2018). Protocol for the identification of high-confidence lipid droplet proteomes Biotinylation of lipid droplet proteins using APEX2 targeted to lipid droplets Purification of biotinylated lipid droplet proteins from buoyant fractions Label-free quantitative proteomics to define lipid droplet proteomes
Collapse
|
69
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
70
|
Abstract
High-content imaging (HCI) is a technique for screening multiple cells in high resolution to detect subtle morphological and phenotypic variation. The method has been commonly deployed on model eukaryotic cellular systems, often for screening new drugs and targets. HCI is not commonly utilized for studying bacterial populations but may be a powerful tool in understanding and combatting antimicrobial resistance. Consequently, we developed a high-throughput method for phenotyping bacteria under antimicrobial exposure at the scale of individual bacterial cells. Imaging conditions were optimized on an Opera Phenix confocal microscope (Perkin Elmer), and novel analysis pipelines were established for both Gram-negative bacilli and Gram-positive cocci. The potential of this approach was illustrated using isolates of Klebsiella pneumoniae, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus HCI enabled the detection and assessment of subtle morphological characteristics, undetectable through conventional phenotypical methods, that could reproducibly distinguish between bacteria exposed to different classes of antimicrobials with distinct modes of action (MOAs). In addition, distinctive responses were observed between susceptible and resistant isolates. By phenotyping single bacterial cells, we observed intrapopulation differences, which may be critical in identifying persistence or emerging resistance during antimicrobial treatment. The work presented here outlines a comprehensive method for investigating morphological changes at scale in bacterial populations under specific perturbation.IMPORTANCE High-content imaging (HCI) is a microscopy technique that permits the screening of multiple cells simultaneously in high resolution to detect subtle morphological and phenotypic variation. The power of this methodology is that it can generate large data sets comprised of multiple parameters taken from individual cells subjected to a range of different conditions. We aimed to develop novel methods for using HCI to study bacterial cells exposed to a range of different antibiotic classes. Using an Opera Phenix confocal microscope (Perkin Elmer) and novel analysis pipelines, we created a method to study the morphological characteristics of Klebsiella pneumoniae, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus when exposed to antibacterial drugs with differing modes of action. By imaging individual bacterial cells at high resolution and scale, we observed intrapopulation differences associated with different antibiotics. The outlined methods are highly relevant for how we begin to better understand and combat antimicrobial resistance.
Collapse
|
71
|
Luk CH, Valenzuela C, Gil M, Swistak L, Bomme P, Chang YY, Mallet A, Enninga J. Salmonella enters a dormant state within human epithelial cells for persistent infection. PLoS Pathog 2021; 17:e1009550. [PMID: 33930101 PMCID: PMC8115778 DOI: 10.1371/journal.ppat.1009550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/12/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Salmonella Typhimurium (S. Typhimurium) is an enteric bacterium capable of invading a wide range of hosts, including rodents and humans. It targets different host cell types showing different intracellular lifestyles. S. Typhimurium colonizes different intracellular niches and is able to either actively divide at various rates or remain dormant to persist. A comprehensive tool to determine these distinct S. Typhimurium lifestyles remains lacking. Here we developed a novel fluorescent reporter, Salmonella INtracellular Analyzer (SINA), compatible for fluorescence microscopy and flow cytometry in single-bacterium level quantification. This identified a S. Typhimurium subpopulation in infected epithelial cells that exhibits a unique phenotype in comparison to the previously documented vacuolar or cytosolic S. Typhimurium. This subpopulation entered a dormant state in a vesicular compartment distinct from the conventional Salmonella-containing vacuoles (SCV) as well as the previously reported niche of dormant S. Typhimurium in macrophages. The dormant S. Typhimurium inside enterocytes were viable and expressed Salmonella Pathogenicity Island 2 (SPI-2) virulence factors at later time points. We found that the formation of these dormant S. Typhimurium is not triggered by the loss of SPI-2 effector secretion but it is regulated by (p)ppGpp-mediated stringent response through RelA and SpoT. We predict that intraepithelial dormant S. Typhimurium represents an important pathogen niche and provides an alternative strategy for S. Typhimurium pathogenicity and its persistence. Salmonella Typhimurium is a clinically relevant bacterial pathogen that causes Salmonellosis. It can actively or passively invade various host cell types and reside in a Salmonella-containing vacuole (SCV) within host cells. The SCV can be remodeled into a replicative niche with the aid of Salmonella Type III Secretion System 2 (T3SS2) effectors or else, the SCV is ruptured for the access of the nutrient-rich host cytosol. Depending on the infected host cell type, S. Typhimurium undertake different lifestyles that are distinct by their subcellular localization, replication rate and metabolic rate. We present here a novel fluorescent reporter system that rapidly detects S. Typhimurium lifestyles using fluorescence microscopy and flow cytometry. We identified a dormant S. Typhimurium population within enterocyte that displays capacities in host cell persistence, dormancy exit and antibiotic tolerance. We deciphered the (p)ppGpp stringent response pathway that suppresses S. Typhimurium dormancy in enterocytes while promoting dormancy in macrophages, pinpointing a divergent physiological consequence regulated by the same set of S. Typhimurium molecular mediators. Altogether, our work demonstrated the potential of fluorescent reporters in facile bacterial characterization, and revealed a dormant S. Typhimurium population in human enterocytes that are phenotypically distinct from that observed in macrophages and fibroblasts.
Collapse
Affiliation(s)
- Chak Hon Luk
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Camila Valenzuela
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Magdalena Gil
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Léa Swistak
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
| | - Perrine Bomme
- Ultrastructural Bioimaging UTechS, C2RT, Institut Pasteur, Paris, France
| | - Yuen-Yan Chang
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
| | - Adeline Mallet
- Ultrastructural Bioimaging UTechS, C2RT, Institut Pasteur, Paris, France
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France
- Université de Paris, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
72
|
Goswami A, Sharma PR, Agarwal R. Combatting intracellular pathogens using bacteriophage delivery. Crit Rev Microbiol 2021; 47:461-478. [PMID: 33818246 DOI: 10.1080/1040841x.2021.1902266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracellular pathogens reside in specialised compartments within the host cells restricting the access of antibiotics. Insufficient intracellular delivery of antibiotics along with several other resistance mechanisms weaken the efficacy of current therapies. An alternative to antibiotic therapy could be bacteriophage (phage) therapy. Although phage therapy has been in practice for a century against various bacterial infections, the efficacy of phages against intracellular bacteria is still being explored. In this review, we will discuss the advancement and challenges in phage therapy, particularly against intracellular bacterial pathogens. Finally, we will highlight the uptake mechanisms and approaches to overcome the challenges to phage therapy against intracellular bacteria.
Collapse
Affiliation(s)
- Avijit Goswami
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Pallavi Raj Sharma
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
73
|
Cahill C, O’Connell F, Gogan KM, Cox DJ, Basdeo SA, O’Sullivan J, Gordon SV, Keane J, Phelan JJ. The Iron Chelator Desferrioxamine Increases the Efficacy of Bedaquiline in Primary Human Macrophages Infected with BCG. Int J Mol Sci 2021; 22:ijms22062938. [PMID: 33805837 PMCID: PMC8001338 DOI: 10.3390/ijms22062938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
For over 50 years, patients with drug-sensitive and drug-resistant tuberculosis have undergone long, arduous, and complex treatment processes with several antimicrobials. With the prevalence of drug-resistant strains on the rise and new therapies for tuberculosis urgently required, we assessed whether manipulating iron levels in macrophages infected with mycobacteria offered some insight into improving current antimicrobials that are used to treat drug-resistant tuberculosis. We investigated if the iron chelator, desferrioxamine, can support the function of human macrophages treated with an array of second-line antimicrobials, including moxifloxacin, bedaquiline, amikacin, clofazimine, linezolid and cycloserine. Primary human monocyte-derived macrophages were infected with Bacillus Calmette-Guérin (BCG), which is pyrazinamide-resistant, and concomitantly treated for 5 days with desferrioxamine in combination with each one of the second-line tuberculosis antimicrobials. Our data indicate that desferrioxamine used as an adjunctive treatment to bedaquiline significantly reduced the bacterial load in human macrophages infected with BCG. Our findings also reveal a link between enhanced bactericidal activity and increases in specific cytokines, as the addition of desferrioxamine increased levels of IFN-γ, IL-6, and IL-1β in BCG-infected human monocyte-derived macrophages (hMDMs) treated with bedaquiline. These results provide insight, and an in vitro proof-of-concept, that iron chelators may prove an effective adjunctive therapy in combination with current tuberculosis antimicrobials.
Collapse
Affiliation(s)
- Christina Cahill
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Fiona O’Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (F.O.); (J.O.)
| | - Karl M. Gogan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Donal J. Cox
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Sharee A. Basdeo
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - Jacintha O’Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (F.O.); (J.O.)
| | - Stephen V. Gordon
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, 4 Dublin, Ireland;
| | - Joseph Keane
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
| | - James J. Phelan
- TB Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James’s Hospital, 8 Dublin, Ireland; (C.C.); (K.M.G.); (D.J.C.); (S.A.B.); (J.K.)
- Correspondence: ; Tel.: +353-18963265
| |
Collapse
|
74
|
Jaber QZ, Fridman M. Fresh Molecular Concepts to Extend the Lifetimes of Old Antimicrobial Drugs. CHEM REC 2021; 21:631-645. [PMID: 33605532 DOI: 10.1002/tcr.202100014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Antimicrobial drug development generally initiates with target identification and mode of action studies. Often, emergence of resistance and/or undesired side effects that are discovered only after prolonged clinical use, result in discontinuation of clinical use. Since the cost and time required for improvement of existing drugs are considerably lower than those required for the development of novel drugs, academic and pharmaceutical company researchers pursue this direction. In this account we describe selected examples of how chemical probes generated from antimicrobial drugs and chemical and enzymatic modifications of these drugs have been used to modify modes of action, block mechanisms of resistance, or reduce side effects, improving performance. These examples demonstrate how new and comprehensive mechanistic insights can be translated into fresh concepts for development of next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
75
|
Chang DPS, Guan XL. Metabolic Versatility of Mycobacterium tuberculosis during Infection and Dormancy. Metabolites 2021; 11:88. [PMID: 33540752 PMCID: PMC7913082 DOI: 10.3390/metabo11020088] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a highly successful intracellular pathogen with the ability to withstand harsh conditions and reside long-term within its host. In the dormant and persistent states, the bacterium tunes its metabolism and is able to resist the actions of antibiotics. One of the main strategies Mtb adopts is through its metabolic versatility-it is able to cometabolize a variety of essential nutrients and direct these nutrients simultaneously to multiple metabolic pathways to facilitate the infection of the host. Mtb further undergo extensive remodeling of its metabolic pathways in response to stress and dormancy. In recent years, advancement in systems biology and its applications have contributed substantially to a more coherent view on the intricate metabolic networks of Mtb. With a more refined appreciation of the roles of metabolism in mycobacterial infection and drug resistance, and the success of drugs targeting metabolism, there is growing interest in further development of anti-TB therapies that target metabolism, including lipid metabolism and oxidative phosphorylation. Here, we will review current knowledge revolving around the versatility of Mtb in remodeling its metabolism during infection and dormancy, with a focus on central carbon metabolism and lipid metabolism.
Collapse
Affiliation(s)
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore;
| |
Collapse
|
76
|
He C, Migawa MT, Chen K, Weston TA, Tanowitz M, Song W, Guagliardo P, Iyer KS, Bennett CF, Fong LG, Seth PP, Young SG, Jiang H. High-resolution visualization and quantification of nucleic acid-based therapeutics in cells and tissues using Nanoscale secondary ion mass spectrometry (NanoSIMS). Nucleic Acids Res 2021; 49:1-14. [PMID: 33275144 PMCID: PMC7797060 DOI: 10.1093/nar/gkaa1112] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 01/19/2023] Open
Abstract
Nucleic acid therapeutics (NATs) have proven useful in promoting the degradation of specific transcripts, modifying gene expression, and regulating mRNA splicing. In each situation, efficient delivery of nucleic acids to cells, tissues and intracellular compartments is crucial—both for optimizing efficacy and reducing side effects. Despite successes in NATs, our understanding of their cellular uptake and distribution in tissues is limited. Current methods have yielded insights into distribution of NATs within cells and tissues, but the sensitivity and resolution of these approaches are limited. Here, we show that nanoscale secondary ion mass spectrometry (NanoSIMS) imaging can be used to define the distribution of 5-bromo-2′-deoxythymidine (5-BrdT) modified antisense oligonucleotides (ASO) in cells and tissues with high sensitivity and spatial resolution. This approach makes it possible to define ASO uptake and distribution in different subcellular compartments and to quantify the impact of targeting ligands designed to promote ASO uptake by cells. Our studies showed that phosphorothioate ASOs are associated with filopodia and the inner nuclear membrane in cultured cells, and also revealed substantial cellular and subcellular heterogeneity of ASO uptake in mouse tissues. NanoSIMS imaging represents a significant advance in visualizing uptake and distribution of NATs; this approach will be useful in optimizing efficacy and delivery of NATs for treating human disease.
Collapse
Affiliation(s)
- Cuiwen He
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Wenxin Song
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Paul Guagliardo
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth 6009, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| | | | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, CA 92010, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Human Genetics, University of California, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia.,Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
77
|
Jagatia H, Tsolaki AG. The Role of Complement System and the Immune Response to Tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:84. [PMID: 33498555 PMCID: PMC7909539 DOI: 10.3390/medicina57020084] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
The complement system orchestrates a multi-faceted immune response to the invading pathogen, Mycobacterium tuberculosis. Macrophages engulf the mycobacterial bacilli through bacterial cell surface proteins or secrete proteins, which activate the complement pathway. The classical pathway is activated by C1q, which binds to antibody antigen complexes. While the alternative pathway is constitutively active and regulated by properdin, the direct interaction of properdin is capable of complement activation. The lectin-binding pathway is activated in response to bacterial cell surface carbohydrates such as mannose, fucose, and N-acetyl-d-glucosamine. All three pathways contribute to mounting an immune response for the clearance of mycobacteria. However, the bacilli can reside, persist, and evade clearance by the immune system once inside the macrophages using a number of mechanisms. The immune system can compartmentalise the infection into a granulomatous structure, which contains heterogenous sub-populations of M. tuberculosis. The granuloma consists of many types of immune cells, which aim to clear and contain the infection whilst sacrificing the affected host tissue. The full extent of the involvement of the complement system during infection with M. tuberculosis is not fully understood. Therefore, we reviewed the available literature on M. tuberculosis and other mycobacterial literature to understand the contribution of the complement system during infection.
Collapse
Affiliation(s)
- Heena Jagatia
- Department for Respiratory Sciences, University of Leicester, Leicester LE1 9HN, UK
| | - Anthony G. Tsolaki
- Department of Life Sciences, College of Health and Life Sciences, Brunel University of London, Uxbridge UB8 3PN, UK;
| |
Collapse
|
78
|
Atterbury RJ, Tyson J. Predatory bacteria as living antibiotics - where are we now? MICROBIOLOGY-SGM 2021; 167. [PMID: 33465024 DOI: 10.1099/mic.0.001025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Antimicrobial resistance (AMR) is a global health and economic crisis. With too few antibiotics in development to meet current and anticipated needs, there is a critical need for new therapies to treat Gram-negative infections. One potential approach is the use of living predatory bacteria, such as Bdellovibrio bacteriovorus (small Gram-negative bacteria that naturally invade and kill Gram-negative pathogens of humans, animals and plants). Moving toward the use of Bdellovibrio as a 'living antibiotic' demands the investigation and characterization of these bacterial predators in biologically relevant systems. We review the fundamental science supporting the feasibility of predatory bacteria as alternatives to antibiotics.
Collapse
Affiliation(s)
- Robert J Atterbury
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Jess Tyson
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
79
|
Correlative light electron ion microscopy reveals in vivo localisation of bedaquiline in Mycobacterium tuberculosis-infected lungs. PLoS Biol 2020; 18:e3000879. [PMID: 33382684 PMCID: PMC7810513 DOI: 10.1371/journal.pbio.3000879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/15/2021] [Accepted: 12/22/2020] [Indexed: 12/26/2022] Open
Abstract
Correlative light, electron, and ion microscopy (CLEIM) offers huge potential to track the intracellular fate of antibiotics, with organelle-level resolution. However, a correlative approach that enables subcellular antibiotic visualisation in pathogen-infected tissue is lacking. Here, we developed correlative light, electron, and ion microscopy in tissue (CLEIMiT) and used it to identify the cell type–specific accumulation of an antibiotic in lung lesions of mice infected with Mycobacterium tuberculosis. Using CLEIMiT, we found that the anti-tuberculosis (TB) drug bedaquiline (BDQ) is localised not only in foamy macrophages in the lungs during infection but also accumulate in polymorphonuclear (PMN) cells. This study uses correlative light, electron and ion microscopy (CLEIM) in vivo to reveal the intracellular fate of an antibiotic in lung lesions of mice infected with Mycobacterium tuberculosis, with organelle-level resolution.
Collapse
|
80
|
Bakkum T, Heemskerk MT, Bos E, Groenewold M, Oikonomeas-Koppasis N, Walburg KV, van Veen S, van der Lienden MJC, van Leeuwen T, Haks MC, Ottenhoff THM, Koster AJ, van Kasteren SI. Bioorthogonal Correlative Light-Electron Microscopy of Mycobacterium tuberculosis in Macrophages Reveals the Effect of Antituberculosis Drugs on Subcellular Bacterial Distribution. ACS CENTRAL SCIENCE 2020; 6:1997-2007. [PMID: 33274277 PMCID: PMC7706097 DOI: 10.1021/acscentsci.0c00539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 05/07/2023]
Abstract
Bioorthogonal correlative light-electron microscopy (B-CLEM) can give a detailed overview of multicomponent biological systems. It can provide information on the ultrastructural context of bioorthogonal handles and other fluorescent signals, as well as information about subcellular organization. We have here applied B-CLEM to the study of the intracellular pathogen Mycobacterium tuberculosis (Mtb) by generating a triply labeled Mtb through combined metabolic labeling of the cell wall and the proteome of a DsRed-expressing Mtb strain. Study of this pathogen in a B-CLEM setting was used to provide information about the intracellular distribution of the pathogen, as well as its in situ response to various clinical antibiotics, supported by flow cytometric analysis of the bacteria, after recovery from the host cell (ex cellula). The RNA polymerase-targeting drug rifampicin displayed the most prominent effect on subcellular distribution, suggesting the most direct effect on pathogenicity and/or viability, while the cell wall synthesis-targeting drugs isoniazid and ethambutol effectively rescued bacterial division-induced loss of metabolic labels. The three drugs combined did not give a more pronounced effect but rather an intermediate response, whereas gentamicin displayed a surprisingly strong additive effect on subcellular distribution.
Collapse
Affiliation(s)
- Thomas Bakkum
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Matthias T. Heemskerk
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Erik Bos
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Mirjam Groenewold
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Nikolaos Oikonomeas-Koppasis
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Kimberley V. Walburg
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Suzanne van Veen
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Martijn J. C. van der Lienden
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Tyrza van Leeuwen
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| | - Marielle C. Haks
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Tom H. M. Ottenhoff
- Department
of Infectious Diseases, Leiden University
Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands
| | - Abraham J. Koster
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Sander I. van Kasteren
- Leiden
Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Einsteinweg 55, Leiden 2300 RA, The Netherlands
| |
Collapse
|
81
|
van Wijk RC, Hu W, Dijkema SM, van den Berg DJ, Liu J, Bahi R, Verbeek FJ, Simonsson USH, Spaink HP, van der Graaf PH, Krekels EHJ. Anti-tuberculosis effect of isoniazid scales accurately from zebrafish to humans. Br J Pharmacol 2020; 177:5518-5533. [PMID: 32860631 PMCID: PMC7707096 DOI: 10.1111/bph.15247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background and Purpose There is a clear need for innovation in anti‐tuberculosis drug development. The zebrafish larva is an attractive disease model in tuberculosis research. To translate pharmacological findings to higher vertebrates, including humans, the internal exposure of drugs needs to be quantified and linked to observed response. Experimental Approach In zebrafish studies, drugs are usually dissolved in the external water, posing a challenge to quantify internal exposure. We developed experimental methods to quantify internal exposure, including nanoscale blood sampling, and to quantify the bacterial burden, using automated fluorescence imaging analysis, with isoniazid as the test compound. We used pharmacokinetic–pharmacodynamic modelling to quantify the exposure–response relationship responsible for the antibiotic response. To translate isoniazid response to humans, quantitative exposure–response relationships in zebrafish were linked to simulated concentration–time profiles in humans, and two quantitative translational factors on sensitivity to isoniazid and stage of infection were included. Key Results Blood concentration was only 20% of the external drug concentration. The bacterial burden increased exponentially, and an isoniazid dose corresponding to 15 mg·L−1 internal concentration (minimum inhibitory concentration) leads to bacteriostasis of the mycobacterial infection in the zebrafish. The concentration–effect relationship was quantified, and based on that relationship and the translational factors, the isoniazid response was translated to humans, which correlated well with observed data. Conclusions and Implications This proof of concept study confirmed the potential of zebrafish larvae as tuberculosis disease models in translational pharmacology and contributes to innovative anti‐tuberculosis drug development, which is very clearly needed.
Collapse
Affiliation(s)
- Rob C van Wijk
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Wanbin Hu
- Division of Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sharka M Dijkema
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Dirk-Jan van den Berg
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jeremy Liu
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rida Bahi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Fons J Verbeek
- Imaging and Bioinformatics Group, Leiden Institute of Advanced Computer Science, Leiden University, Leiden, The Netherlands
| | | | - Herman P Spaink
- Division of Animal Sciences and Health, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Piet H van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,QSP, Certara, Canterbury, UK
| | - Elke H J Krekels
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
82
|
Jin Y, Tan Y, Zhao P, Ren Z. SEIPIN: A Key Factor for Nuclear Lipid Droplet Generation and Lipid Homeostasis. Int J Mol Sci 2020; 21:ijms21218208. [PMID: 33147895 PMCID: PMC7663086 DOI: 10.3390/ijms21218208] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Lipid homeostasis is essential for normal cell physiology. Generally, lipids are stored in a lipid droplet (LD), a ubiquitous organelle consisting of a neutral lipid core and a single layer of phospholipid membrane. It is thought that LDs are generated from the endoplasmic reticulum and then released into the cytosol. Recent studies indicate that LDs can exist in the nucleus, where they play an important role in the maintenance of cell phospholipid homeostasis. However, the details of nuclear lipid droplet (nLD) generation have not yet been clearly characterized. SEIPIN is a nonenzymatic protein encoded by the Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) gene. It is associated with lipodystrophy diseases. Many recent studies have indicated that SEIPIN is essential for LDs generation. Here, we review much of this research in an attempt to explain the role of SEIPIN in nLD generation. From an integrative perspective, we conclude by proposing a theoretical model to explain how SEIPIN might participate in maintaining homeostasis of lipid metabolism.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan 250014, Shandong, China
| | - Pengxiang Zhao
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of the Ministry of Education & Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Affairs, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China; (Y.J.); (Y.T.); (P.Z.)
- Bio-Medical Center of Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Correspondence:
| |
Collapse
|
83
|
Bosch M, Sánchez-Álvarez M, Fajardo A, Kapetanovic R, Steiner B, Dutra F, Moreira L, López JA, Campo R, Marí M, Morales-Paytuví F, Tort O, Gubern A, Templin RM, Curson JEB, Martel N, Català C, Lozano F, Tebar F, Enrich C, Vázquez J, Del Pozo MA, Sweet MJ, Bozza PT, Gross SP, Parton RG, Pol A. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 2020; 370:370/6514/eaay8085. [PMID: 33060333 DOI: 10.1126/science.aay8085] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/29/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.
Collapse
Affiliation(s)
- Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). 28029, Madrid, Spain
| | - Alba Fajardo
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bernhard Steiner
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Filipe Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Luciana Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Juan Antonio López
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Rocío Campo
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-CSIC, Barcelona, Spain.,Hepatocellular Signaling and Cancer Team, IDIBAPS, 08036, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Olivia Tort
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Albert Gubern
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Rachel M Templin
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - James E B Curson
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cristina Català
- Immunoreceptors of the Innate and Adaptive System Team, IDIBAPS, 08036, Barcelona, Spain
| | - Francisco Lozano
- Immunoreceptors of the Innate and Adaptive System Team, IDIBAPS, 08036, Barcelona, Spain
| | - Francesc Tebar
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Carlos Enrich
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Vascular Pathophysiology Area, CNIC, Instituto de Salud Carlos III 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III 28029, Madrid, Spain
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC). 28029, Madrid, Spain
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia.,IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, CEP 21.040-900, Brazil
| | - Steven P Gross
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), University of Queensland, Brisbane, Queensland 4072, Australia. .,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain. .,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
84
|
Do chance encounters between heterogeneous cells shape the outcome of tuberculosis infections? Curr Opin Microbiol 2020; 59:72-78. [PMID: 33049596 DOI: 10.1016/j.mib.2020.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/24/2022]
Abstract
The sum of all of the interactions between single bacteria and host cells determines if an infection is cleared, controlled, or progresses at the whole host-organism level. These individual interactions have independent trajectories defined by diverse and dynamic host-cell and bacterial responses. Focusing on Mycobacterium tuberculosis infection, we discuss how advances in single-cell technologies allow investigation of heterogeneity in host-pathogen interactions and how different layers of heterogeneity in the host affect disease outcome. At late stages of infection, many single interactions co-exist and different outcomes depend on inter-granuloma and intra-granuloma heterogeneity. However, during bottleneck events involving small numbers of bacteria, random events, such as chance interactions with more or less permissive host cells, play a decisive role and may explain why some exposed individuals never develop the disease.
Collapse
|
85
|
Dai T, Xie J, Zhu Q, Kamariza M, Jiang K, Bertozzi CR, Rao J. A Fluorogenic Trehalose Probe for Tracking Phagocytosed Mycobacterium tuberculosis. J Am Chem Soc 2020; 142:15259-15264. [DOI: 10.1021/jacs.0c07700] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tingting Dai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Qihua Zhu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Mireille Kamariza
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Ke Jiang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| | - Jianghong Rao
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
86
|
Fenaroli F, Robertson JD, Scarpa E, Gouveia VM, Di Guglielmo C, De Pace C, Elks PM, Poma A, Evangelopoulos D, Canseco JO, Prajsnar TK, Marriott HM, Dockrell DH, Foster SJ, McHugh TD, Renshaw SA, Martí JS, Battaglia G, Rizzello L. Polymersomes Eradicating Intracellular Bacteria. ACS NANO 2020; 14:8287-8298. [PMID: 32515944 DOI: 10.1021/acsnano.0c01870] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mononuclear phagocytes such as monocytes, tissue-specific macrophages, and dendritic cells are primary actors in both innate and adaptive immunity. These professional phagocytes can be parasitized by intracellular bacteria, turning them from housekeepers to hiding places and favoring chronic and/or disseminated infection. One of the most infamous is the bacteria that cause tuberculosis (TB), which is the most pandemic and one of the deadliest diseases, with one-third of the world's population infected and an average of 1.8 million deaths/year worldwide. Here we demonstrate the effective targeting and intracellular delivery of antibiotics to infected macrophages both in vitro and in vivo, using pH-sensitive nanoscopic polymersomes made of PMPC-PDPA block copolymer. Polymersomes showed the ability to significantly enhance the efficacy of the antibiotics killing Mycobacterium bovis, Mycobacterium tuberculosis, and another established intracellular pathogen, Staphylococcus aureus. Moreover, they demonstrated to easily access TB-like granuloma tissues-one of the harshest environments to penetrate-in zebrafish models. We thus successfully exploited this targeting for the effective eradication of several intracellular bacteria, including M. tuberculosis, the etiological agent of human TB.
Collapse
Affiliation(s)
| | - James D Robertson
- Department of Biomedical Science, University of Sheffield, S10 2TN Sheffield, U.K
- The Bateson Centre, University of Sheffield, Firth Court, S10 2TN Sheffield, U.K
| | - Edoardo Scarpa
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Virginia M Gouveia
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
| | - Claudia Di Guglielmo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Cesare De Pace
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- The EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, WC1H 0AJ London, U.K
| | - Philip M Elks
- Department of Biomedical Science, University of Sheffield, S10 2TN Sheffield, U.K
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
| | - Alessandro Poma
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, WC1X 8LD London, U.K
| | - Dimitrios Evangelopoulos
- Department of Clinical Microbiology, University College London, Royal Free Hospital, NW3 2PF London, U.K
| | - Julio Ortiz Canseco
- Department of Clinical Microbiology, University College London, Royal Free Hospital, NW3 2PF London, U.K
| | - Tomasz K Prajsnar
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN Sheffield, U.K
| | - Helen M Marriott
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
| | - David H Dockrell
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
| | - Simon J Foster
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
- Department of Molecular Biology and Biotechnology, University of Sheffield, S10 2TN Sheffield, U.K
| | - Timothy D McHugh
- Department of Clinical Microbiology, University College London, Royal Free Hospital, NW3 2PF London, U.K
| | - Stephen A Renshaw
- The Bateson Centre, University of Sheffield, Firth Court, S10 2TN Sheffield, U.K
- Department of Infection, Immunity, and Cardiovascular Disease, University of Sheffield Medical School, S10 2JF Sheffield, U.K
- The Florey Institute, University of Sheffield, S10 2TN Sheffield, U.K
| | - Josep Samitier Martí
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, 08028 Barcelona, Spain
- Networking Biomedical Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- The EPSRC/Jeol Centre for Liquid Phase Electron Microscopy, University College London, WC1H 0AJ London, U.K
- Institute for Physics of Living System, University College London, WC1E 6BT London, U.K
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Loris Rizzello
- Department of Chemistry, University College London, WC1H 0AJ London, U.K
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milano, Italy
| |
Collapse
|
87
|
Maes M, Dyson ZA, Smith SE, Goulding DA, Ludden C, Baker S, Kellam P, Reece ST, Dougan G, Bartholdson Scott J. A novel therapeutic antibody screening method using bacterial high-content imaging reveals functional antibody binding phenotypes of Escherichia coli ST131. Sci Rep 2020; 10:12414. [PMID: 32709982 PMCID: PMC7382476 DOI: 10.1038/s41598-020-69300-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/26/2020] [Indexed: 01/28/2023] Open
Abstract
The increase of antimicrobial resistance (AMR), and lack of new classes of licensed antimicrobials, have made alternative treatment options for AMR pathogens increasingly attractive. Recent studies have demonstrated anti-bacterial efficacy of a humanised monoclonal antibody (mAb) targeting the O25b O-antigen of Escherichia coli ST131. To evaluate the phenotypic effects of antibody binding to diverse clinical E. coli ST131 O25b bacterial isolates in high-throughput, we designed a novel mAb screening method using high-content imaging (HCI) and image-based morphological profiling to screen a mAb targeting the O25b O-antigen. Screening the antibody against a panel of 86 clinical E. coli ST131 O25:H4 isolates revealed 4 binding phenotypes: no binding (18.60%), weak binding (4.65%), strong binding (69.77%) and strong agglutinating binding (6.98%). Impaired antibody binding could be explained by the presence of insertion sequences or mutations in O-antigen or lipopolysaccharide core biosynthesis genes, affecting the amount, structure or chain length of the O-antigen. The agglutinating binding phenotype was linked with lower O-antigen density, enhanced antibody-mediated phagocytosis and increased serum susceptibly. This study highlights the need to screen candidate mAbs against large panels of clinically relevant isolates, and that HCI can be used to evaluate mAb binding affinity and potential functional efficacy against AMR bacteria.
Collapse
Affiliation(s)
- Mailis Maes
- Department of Medicine, Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Zoe A Dyson
- Department of Medicine, Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | - Stephen Baker
- Department of Medicine, Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Paul Kellam
- Kymab Ltd, Babraham Research Campus, Cambridge, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Gordon Dougan
- Department of Medicine, Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK
| | - Josefin Bartholdson Scott
- Department of Medicine, Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge, Cambridge, UK.
| |
Collapse
|
88
|
Agarwal P, Combes TW, Shojaee-Moradie F, Fielding B, Gordon S, Mizrahi V, Martinez FO. Foam Cells Control Mycobacterium tuberculosis Infection. Front Microbiol 2020; 11:1394. [PMID: 32754123 PMCID: PMC7381311 DOI: 10.3389/fmicb.2020.01394] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects macrophages and macrophage-derived foam cells, a hallmark of granulomata in tuberculous lesions. We analyzed the effects of lipid accumulation in human primary macrophages and quantified strong triglyceride and phospholipid remodeling which depended on the dietary fatty acid used for the assay. The enrichment of >70% in triglyceride and phospholipids can alter cell membrane properties, signaling and phagocytosis in macrophages. In conventional macrophage cultures, cells are heterogeneous, small or large macrophages. In foam cells, a third population of 30% of cells with increased granularity can be detected. We found that foam cell formation is heterogenous and that lipid accumulation and foam cell formation reduces the phagocytosis of Mtb. Under the conditions tested, cell death was highly prevalent in macrophages, whereas foam cells were largely protected from this effect. Foam cells also supported slower Mtb replication, yet this had no discernible impact on the intracellular efficacy of four different antitubercular drugs. Foam cell formation had a significant impact in the inflammatory potential of the cells. TNF-α, IL-1β, and prototypical chemokines were increased. The ratio of inflammatory IL-1β, TNF-α, and IL-6 vs. anti-inflammatory IL-10 was significantly higher in response to Mtb vs. LPS, and was increased in foam cells compared to macrophages, suggestive of increased pro-inflammatory properties. Cytokine production correlated with NF-κB activation in our models. We conclude that foam cell formation reduces the host cell avidity for, and phagocytosis of, Mtb while protecting the cells from death. This protective effect is associated with enhanced inflammatory potential of foam cells and restricted intracellular growth of Mtb.
Collapse
Affiliation(s)
- Pooja Agarwal
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town, Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Department of Pathology, Department of Science and Innovation/National Research Foundation, Centre of Excellence for Biomedical TB Research and Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Theo W Combes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Barbara Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Valerie Mizrahi
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town, Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Department of Pathology, Department of Science and Innovation/National Research Foundation, Centre of Excellence for Biomedical TB Research and Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
89
|
Ganeva I, Kukulski W. Membrane Architecture in the Spotlight of Correlative Microscopy. Trends Cell Biol 2020; 30:577-587. [DOI: 10.1016/j.tcb.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
|
90
|
Haake K, Lachmann N. New Drugs for an Old Foe: Mycobacterium tuberculosis Meets PSC-Derived Macrophages. Stem Cell Reports 2020; 13:957-959. [PMID: 31951563 PMCID: PMC6915800 DOI: 10.1016/j.stemcr.2019.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Infections with Mycobacterium tuberculosis (Mtb) are still among the top 10 causes of death worldwide, highlighting the utmost need for new forms of medical treatments. In this issue of Stem Cell Reports, Han et al. (2019) describe a technique to screen therapeutically active compounds targeting Mtb using pluripotent stem cell-derived macrophages.
Collapse
Affiliation(s)
- Kathrin Haake
- Institute of Experimental Hematology, RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover, Germany; REBIRTH - Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, RG Translational Hematology of Congenital Diseases, Hannover Medical School, Hannover, Germany; REBIRTH - Research Center for Translational and Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
91
|
Schrader SM, Vaubourgeix J, Nathan C. Biology of antimicrobial resistance and approaches to combat it. Sci Transl Med 2020; 12:eaaz6992. [PMID: 32581135 PMCID: PMC8177555 DOI: 10.1126/scitranslmed.aaz6992] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Insufficient development of new antibiotics and the rising resistance of bacteria to those that we have are putting the world at risk of losing the most widely curative class of medicines currently available. Preventing deaths from antimicrobial resistance (AMR) will require exploiting emerging knowledge not only about genetic AMR conferred by horizontal gene transfer or de novo mutations but also about phenotypic AMR, which lacks a stably heritable basis. This Review summarizes recent advances and continuing limitations in our understanding of AMR and suggests approaches for combating its clinical consequences, including identification of previously unexploited bacterial targets, new antimicrobial compounds, and improved combination drug regimens.
Collapse
Affiliation(s)
- Sarah M Schrader
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Julien Vaubourgeix
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
92
|
Chen L, Ma WL, Cheng WC, Yang JC, Wang HC, Su YT, Ahmad A, Hung YC, Chang WC. Targeting lipid droplet lysophosphatidylcholine for cisplatin chemotherapy. J Cell Mol Med 2020; 24:7187-7200. [PMID: 32543783 PMCID: PMC7339169 DOI: 10.1111/jcmm.15218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/21/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
This study aims to explore lipidic mechanism towards low‐density lipoprotein receptor (LDLR)‐mediated platinum chemotherapy resistance. By using the lipid profiling technology, LDLR knockdown was found to increase lysosomal lipids and decrease membranous lipid levels in EOC cells. LDLR knockdown also down‐regulated ether‐linked phosphatidylethanolamine (PE‐O, lysosomes or peroxisomes) and up‐regulated lysophosphatidylcholine [LPC, lipid droplet (LD)]. This implies that the manner of using Lands cycle (conversion of lysophospholipids) for LDs might affect cisplatin sensitivity. The bioinformatics analyses illustrated that LDLR‐related lipid entry into LD, rather than an endogenous lipid resource (eg Kennedy pathway), controls the EOC prognosis of platinum chemotherapy patients. Moreover, LDLR knockdown increased the number of platinum‐DNA adducts and reduced the LD platinum amount. By using a manufactured LPC‐liposome‐cisplatin (LLC) drug, the number of platinum‐DNA adducts increased significantly in LLC‐treated insensitive cells. Moreover, the cisplatin content in LDs increased upon LLC treatment. Furthermore, lipid profiles of 22 carcinoma cells with differential cisplatin sensitivity (9 sensitive vs 13 insensitive) were acquired. These profiles revealed low storage lipid levels in insensitive cells. This result recommends that LD lipidome might be a common pathway in multiple cancers for platinum sensitivity in EOC. Finally, LLC suppressed both cisplatin‐insensitive human carcinoma cell training and testing sets. Thus, LDLR‐platinum insensitivity can be due to a defective Lands cycle that hinders LPC production in LDs. Using lipidome assessment with the newly formulated LLC can be a promising cancer chemotherapy method.
Collapse
Affiliation(s)
- Lumin Chen
- Department of OBS & GYN, BenQ Medical Center, Suzhou, China.,Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Lung Ma
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Hsiao-Ching Wang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ting Su
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Azaj Ahmad
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Yao-Ching Hung
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Chun Chang
- Department of OBS & GYN, Sex Hormone Research Center, Research Center for Tumor Medicine, Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, Graduate Institution of Cancer Biology, Graduate Institute of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
93
|
Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites 2020; 10:metabo10060231. [PMID: 32503331 PMCID: PMC7345237 DOI: 10.3390/metabo10060231] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, high-throughput lipid profiling has contributed to understand the biological, physiological and pathological roles of lipids in living organisms. Across all kingdoms of life, important cell and systemic processes are mediated by lipids including compartmentalization, signaling and energy homeostasis. Despite important advances in liquid chromatography and mass spectrometry, sample extraction procedures remain a bottleneck in lipidomic studies, since the wide structural diversity of lipids imposes a constrain in the type and amount of lipids extracted. Differences in extraction yield across lipid classes can induce a bias on down-stream analysis and outcomes. This review aims to summarize current lipid extraction techniques used for untargeted and targeted studies based on mass spectrometry. Considerations, applications, and limitations of these techniques are discussed when used to extract lipids in complex biological matrices, such as tissues, biofluids, foods, and microorganisms.
Collapse
|
94
|
Walther TC, Farese RV. Un-phased: Lipid Droplets Modulate the Bioavailability of Antibiotics. Dev Cell 2020; 50:530-532. [PMID: 31505174 DOI: 10.1016/j.devcel.2019.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a paper recently published in Science (Greenwood et al., 2019), Greenwood and colleagues now describe a fascinating example of how partitioning of a small lipophilic molecule into a phase-separated cellular constituent, the lipid droplet (LD), contributes to its antibacterial action against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| | - Robert V Farese
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
95
|
Giraud-Gatineau A, Coya JM, Maure A, Biton A, Thomson M, Bernard EM, Marrec J, Gutierrez MG, Larrouy-Maumus G, Brosch R, Gicquel B, Tailleux L. The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. eLife 2020; 9:e55692. [PMID: 32369020 PMCID: PMC7200153 DOI: 10.7554/elife.55692] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are widely used in the treatment of bacterial infections. Although known for their microbicidal activity, antibiotics may also interfere with the host's immune system. Here, we analyzed the effects of bedaquiline (BDQ), an inhibitor of the mycobacterial ATP synthase, on human macrophages. Genome-wide gene expression analysis revealed that BDQ reprogramed cells into potent bactericidal phagocytes. We found that 579 and 1,495 genes were respectively differentially expressed in naive- and M. tuberculosis-infected macrophages incubated with the drug, with an over-representation of lysosome-associated genes. BDQ treatment triggered a variety of antimicrobial defense mechanisms, including phagosome-lysosome fusion, and autophagy. These effects were associated with activation of transcription factor EB, involved in the transcription of lysosomal genes, resulting in enhanced intracellular killing of different bacterial species that were naturally insensitive to BDQ. Thus, BDQ could be used as a host-directed therapy against a wide range of bacterial infections.
Collapse
Affiliation(s)
- Alexandre Giraud-Gatineau
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Université Paris Diderot, Sorbonne Paris Cité, Cellule PasteurParisFrance
| | | | - Alexandra Maure
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Université Paris Diderot, Sorbonne Paris Cité, Cellule PasteurParisFrance
| | - Anne Biton
- Bioinformatics and Biostatistics, Department of Computational Biology, USR 3756 CNRS, Institut PasteurParisFrance
| | - Michael Thomson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUnited Kingdom
| | - Elliott M Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Jade Marrec
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Gérald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUnited Kingdom
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
| | - Brigitte Gicquel
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Center for Chronic Disease ControlShenzhenChina
| | - Ludovic Tailleux
- Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR 3525, Institut PasteurParisFrance
- Mycobacterial Genetics Unit, Institut PasteurParisFrance
| |
Collapse
|
96
|
Ding M, Rexrode KM. A Review of Lipidomics of Cardiovascular Disease Highlights the Importance of Isolating Lipoproteins. Metabolites 2020; 10:metabo10040163. [PMID: 32340170 PMCID: PMC7240942 DOI: 10.3390/metabo10040163] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Cutting-edge lipidomic profiling measures hundreds or even thousands of lipids in plasma and is increasingly used to investigate mechanisms of cardiovascular disease (CVD). In this review, we introduce lipidomic techniques, describe distributions of lipids across lipoproteins, and summarize findings on the association of lipids with CVD based on lipidomics. The main findings of 16 cohort studies were that, independent of total and high-density lipoprotein cholesterol (HDL-c), ceramides (d18:1/16:0, d18:1/18:0, and d18:1/24:1) and phosphatidylcholines (PCs) containing saturated and monounsaturated fatty acyl chains are positively associated with risks of CVD outcomes, while PCs containing polyunsaturated fatty acyl chains (PUFA) are inversely associated with risks of CVD outcomes. Lysophosphatidylcholines (LPCs) may be positively associated with risks of CVD outcomes. Interestingly, the distributions of the identified lipids vary across lipoproteins: LPCs are primarily contained in HDLs, ceramides are mainly contained in low-density lipoproteins (LDLs), and PCs are distributed in both HDLs and LDLs. Thus, the potential mechanism behind previous findings may be related to the effect of the identified lipids on the biological functions of HDLs and LDLs. Only eight studies on the lipidomics of HDL and non-HDL particles and CVD outcomes have been conducted, which showed that higher triglycerides (TAGs), lower PUFA, lower phospholipids, and lower sphingomyelin content in HDLs might be associated with a higher risk of coronary heart disease (CHD). However, the generalizability of these studies is a major concern, given that they used case-control or cross-sectional designs in hospital settings, included a very small number of participants, and did not correct for multiple testing or adjust for blood lipids such as HDL-c, low-density lipoprotein cholesterol (LDL-c), or TAGs. Overall, findings from the literature highlight the importance of research on lipidomics of lipoproteins to enhance our understanding of the mechanism of the association between the identified lipids and the risk of CVD and allow the identification of novel lipid biomarkers in HDLs and LDLs, independent of HDL-c and LDL-c. Lipidomic techniques show the feasibility of this exciting research direction, and the lack of high-quality epidemiological studies warrants well-designed prospective cohort studies.
Collapse
Affiliation(s)
- Ming Ding
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
- Correspondence:
| | - Kathryn M. Rexrode
- Division of Women’s Health, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
97
|
Roque NR, Lage SL, Navarro R, Fazolini N, Maya-Monteiro CM, Rietdorf J, Melo RCN, D'Avila H, Bozza PT. Rab7 controls lipid droplet-phagosome association during mycobacterial infection. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158703. [PMID: 32229179 DOI: 10.1016/j.bbalip.2020.158703] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Lipid droplets (LDs) are organelles that have multiple roles in inflammatory and infectious diseases. LD act as essential platforms for immunometabolic regulation, including as sites for lipid storage and metabolism, inflammatory lipid mediator production, and signaling pathway compartmentalization. Accumulating evidence indicates that intracellular pathogens may exploit host LDs as source of nutrients and as part of their strategy to promote immune evasion. Notably, numerous studies have demonstrated the interaction between LDs and pathogen-containing phagosomes. However, the mechanism involved in this phenomenon remains elusive. Here, we observed LDs and PLIN2 surrounding M. bovis BCG-containing phagosomes, which included observations of a bacillus cell surrounded by lipid content inside a phagosome and LAM from mycobacteria co-localizing with LDs; these results were suggestive of exchange of contents between these compartments. By using beads coated with M.tb lipids, we demonstrated that LD-phagosome associations are regulated through the mycobacterial cell wall components LAM and PIM. In addition, we demonstrated that Rab7 and RILP, but not Rab5, localizes to LDs of infected macrophages and observed the presence of Rab7 at the site of interaction with an infected phagosome. Moreover, treatment of macrophages with the Rab7 inhibitor CID1067700 significantly inhibited the association between LDs and LAM-coated beads. Altogether, our data demonstrate that LD-phagosome interactions are controlled by mycobacterial cell wall components and Rab7, which enables the exchange of contents between LDs and phagosomes and may represent a fundamental aspect of bacterial pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Natalia R Roque
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Silvia L Lage
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Roberta Navarro
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Narayana Fazolini
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Clarissa M Maya-Monteiro
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Jens Rietdorf
- Centro de Desenvolvimento Tecnológico em Saúde, CDTS, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Rossana C N Melo
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, MG, Brazil
| | - Heloisa D'Avila
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, MG, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil.
| |
Collapse
|
98
|
Renne MF, Klug YA, Carvalho P. Lipid droplet biogenesis: A mystery "unmixing"? Semin Cell Dev Biol 2020; 108:14-23. [PMID: 32192830 DOI: 10.1016/j.semcdb.2020.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/19/2022]
Abstract
Lipid droplets (LDs) are versatile organelles with central roles in lipid and energy metabolism in all eukaryotes. They primarily buffer excess fatty acids by storing them as neutral lipids, mainly triglycerides and steryl esters. The neutral lipids form a core, surrounded by a unique phospholipid monolayer coated with a defined set of proteins. Thus, the architecture of LDs sets them apart from all other membrane-bound organelles. The origin of LDs remained controversial for a long time. However, it has become clear that their biogenesis occurs at the endoplasmic reticulum (ER) and is a lipid driven process. LD formation is intiatied by the demixing of neutral lipids from membrane phospholipids, leading to the formation of a neutral lipid "lens" like structure between the leaflets of the ER bilayer. As this lens grows, it buds out of the membrane towards the cytosol to give rise to a LD. Recent biophysical and cell biological experiments indicate that LD biogenesis occurs at specific ER domains. These domains are enriched in various proteins required for normal LD formation and possibly have a lipid composition distinct from the remaining ER membrane. Here, we describe the prevailing model for LD formation and discuss recent insights on how proteins organize ER domains involved in LD biogenesis.
Collapse
Affiliation(s)
- Mike F Renne
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Yoel A Klug
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
99
|
Mycobacterium tuberculosis Shikimate Pathway Enzymes as Targets for the Rational Design of Anti-Tuberculosis Drugs. Molecules 2020; 25:molecules25061259. [PMID: 32168746 PMCID: PMC7144000 DOI: 10.3390/molecules25061259] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Roughly a third of the world’s population is estimated to have latent Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant M. tuberculosis strains, there is a clear and urgent need for the development of new and more efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment. The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent in humans, stand as attractive and potential targets for the development of new drugs to treat TB. This review gives an update on published work on the enzymes of the shikimate pathway and some insight on what can be potentially explored towards selective drug development.
Collapse
|
100
|
Subcellular Chemical Imaging: New Avenues in Cell Biology. Trends Cell Biol 2020; 30:173-188. [DOI: 10.1016/j.tcb.2019.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022]
|