51
|
Lima NS, Musayev M, Johnston TS, Wagner DA, Henry AR, Wang L, Yang ES, Zhang Y, Birungi K, Black WP, O’Dell S, Schmidt SD, Moon D, Lorang CG, Zhao B, Chen M, Boswell KL, Roberts-Torres J, Davis RL, Peyton L, Narpala SR, O’Connell S, Wang J, Schrager A, Talana CA, Leung K, Shi W, Khashab R, Biber A, Zilberman T, Rhein J, Vetter S, Ahmed A, Novik L, Widge A, Gordon I, Guech M, Teng IT, Phung E, Ruckwardt TJ, Pegu A, Misasi J, Doria-Rose NA, Gaudinski M, Koup RA, Kwong PD, McDermott AB, Amit S, Schacker TW, Levy I, Mascola JR, Sullivan NJ, Schramm CA, Douek DC. Primary exposure to SARS-CoV-2 variants elicits convergent epitope specificities, immunoglobulin V gene usage and public B cell clones. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.03.28.486152. [PMID: 35378757 PMCID: PMC8978934 DOI: 10.1101/2022.03.28.486152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An important consequence of infection with a SARS-CoV-2 variant is protective humoral immunity against other variants. The basis for such cross-protection at the molecular level is incompletely understood. Here we characterized the repertoire and epitope specificity of antibodies elicited by Beta, Gamma and ancestral variant infection and assessed their cross-reactivity to these and the more recent Delta and Omicron variants. We developed a high-throughput approach to obtain immunoglobulin sequences and produce monoclonal antibodies for functional assessment from single B cells. Infection with any variant elicited similar cross-binding antibody responses exhibiting a remarkably conserved hierarchy of epitope immunodominance. Furthermore, convergent V gene usage and similar public B cell clones were elicited regardless of infecting variant. These convergent responses despite antigenic variation may represent a general immunological principle that accounts for the continued efficacy of vaccines based on a single ancestral variant.
Collapse
Affiliation(s)
- Noemia S. Lima
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Maryam Musayev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Timothy S. Johnston
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Danielle A. Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Amy R. Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kevina Birungi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Walker P. Black
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Stephen D. Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Damee Moon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Cynthia G. Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kristin L. Boswell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Rachel L. Davis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Lowrey Peyton
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sarah O’Connell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Jennifer Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Alexander Schrager
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Rawan Khashab
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
| | - Asaf Biber
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tal Zilberman
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Joshua Rhein
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sara Vetter
- Minnesota Department of Health, St Paul, MN 55164, USA
| | - Afeefa Ahmed
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Laura Novik
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Alicia Widge
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Ingelise Gordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Mercy Guech
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Emily Phung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Nicole A. Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Martin Gaudinski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Sharon Amit
- Clinical Microbiology, Sheba Medical Center, Ramat-Gan 5262112, Israel
| | - Timothy W. Schacker
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Itzchak Levy
- Infectious Disease Unit, Sheba Medical Center, Ramat Gan 5262112, Israel
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Chaim A. Schramm
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health. Bethesda, MD 20892, USA
| |
Collapse
|
52
|
Neil JA, Griffith M, Godfrey DI, Purcell DFJ, Deliyannis G, Jackson D, Rockman S, Subbarao K, Nolan T. Nonhuman primate models for evaluation of SARS-CoV-2 vaccines. Expert Rev Vaccines 2022; 21:1055-1070. [PMID: 35652289 DOI: 10.1080/14760584.2022.2071264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Evaluation of immunogenicity and efficacy in animal models provide critical data in vaccine development. Nonhuman primates (NHPs) have been used extensively in the evaluation of SARS-CoV-2 vaccines. AREAS COVERED A critical synthesis of SARS-CoV-2 vaccine development with a focus on challenge studies in NHPs is provided. The benefits and drawbacks of the NHP models are discussed. The citations were selected by the authors based on PubMed searches of the literature, summaries from national public health bodies, and press-release information provided by vaccine developers. EXPERT OPINION We identify several aspects of NHP models that limit their usefulness for vaccine-challenge studies and numerous variables that constrain comparisons across vaccine platforms. We propose that studies conducted in NHPs for vaccine development should use a standardized protocol and, where possible, be substituted with smaller animal models. This will ensure continued rapid progression of vaccines to clinical trials without compromising assessments of safety or efficacy.
Collapse
Affiliation(s)
- Jessica A Neil
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Maryanne Griffith
- Vaccine and Immunisation Research Group (VIRGo), Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Damian F J Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Georgia Deliyannis
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - David Jackson
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia.,Seqirus, Parkville, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia.,WHO Collaborating Centre for Reference and Research on Influenza, Melbourne, Australia
| | - Terry Nolan
- Vaccine and Immunisation Research Group (VIRGo), Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Australia.,Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
53
|
Laurie MT, Liu J, Sunshine S, Peng J, Black D, Mitchell AM, Mann SA, Pilarowski G, Zorn KC, Rubio L, Bravo S, Marquez C, Sabatino JJ, Mittl K, Petersen M, Havlir D, DeRisi J. SARS-CoV-2 Variant Exposures Elicit Antibody Responses With Differential Cross-Neutralization of Established and Emerging Strains Including Delta and Omicron. J Infect Dis 2022; 225:1909-1914. [PMID: 34979030 PMCID: PMC8755395 DOI: 10.1093/infdis/jiab635] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/31/2021] [Indexed: 11/26/2022] Open
Abstract
The wide spectrum of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of immune responses to different spike protein versions. Here, we compare neutralization of variants of concern, including B.1.617.2 (delta) and B.1.1.529 (omicron), in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure, and exposure to multiple spike variants increases breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies.
Collapse
Affiliation(s)
- Matthew T Laurie
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Jamin Liu
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, Berkeley, California, USA
| | - Sara Sunshine
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - James Peng
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Douglas Black
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Anthea M Mitchell
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Sabrina A Mann
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Genay Pilarowski
- The Public Health Company, Oakland, California, USA
- Unidos en Salud, San Francisco, California, USA
| | - Kelsey C Zorn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Luis Rubio
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sara Bravo
- Unidos en Salud, San Francisco, California, USA
| | - Carina Marquez
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joseph J Sabatino
- Weill Institute for Neurosciences, Department of Neurology, San Francisco, California, USA
| | - Kristen Mittl
- Weill Institute for Neurosciences, Department of Neurology, San Francisco, California, USA
| | - Maya Petersen
- Division of Biostatistics, University of California Berkeley, Berkeley, California, USA
| | - Diane Havlir
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Joseph DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
54
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. PLoS One 2022; 17:e0268767. [PMID: 35609088 PMCID: PMC9129042 DOI: 10.1371/journal.pone.0268767] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022] Open
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccine-elicited immunity, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring of vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F. Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N. Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
55
|
Desikan R, Linderman SL, Davis C, Zarnitsyna V, Ahmed H, Antia R. Modeling suggests that multiple immunizations or infections will reveal the benefits of updating SARS-CoV-2 vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.21.492928. [PMID: 35665010 PMCID: PMC9164442 DOI: 10.1101/2022.05.21.492928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
When should vaccines to evolving pathogens such as SARS-CoV-2 be updated? Our computational models address this focusing on updating SARS-CoV-2 vaccines to the currently circulating Omicron variant. Current studies typically compare the antibody titers to the new variant following a single dose of the original-vaccine versus the updated-vaccine in previously immunized individuals. These studies find that the updated-vaccine does not induce higher titers to the vaccine-variant compared with the original-vaccine, suggesting that updating may not be needed. Our models recapitulate this observation but suggest that vaccination with the updated-vaccine generates qualitatively different humoral immunity, a small fraction of which is specific for unique epitopes to the new variant. Our simulations suggest that these new variant-specific responses could dominate following subsequent vaccination or infection with either the currently circulating or future variants. We suggest a two-dose strategy for determining if the vaccine needs updating and for vaccinating high-risk individuals.
Collapse
Affiliation(s)
- Rajat Desikan
- Clinical Pharmacology Modeling & Simulation, GlaxoSmithKline (GSK), Gunnels Wood Rd, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
- These authors contributed equally
| | - Susanne L. Linderman
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Carl Davis
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Veronika Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- These authors contributed equally
| |
Collapse
|
56
|
Merkuleva IA, Shcherbakov DN, Borgoyakova MB, Isaeva AA, Nesmeyanova VS, Volkova NV, Aripov VS, Shanshin DV, Karpenko LI, Belenkaya SV, Kazachinskaia EI, Volosnikova EA, Esina TI, Sergeev AA, Titova KA, Konyakhina YV, Zaykovskaya AV, Pyankov OV, Kolosova EA, Viktorina OE, Shelemba AA, Rudometov AP, Ilyichev AA. Are Hamsters a Suitable Model for Evaluating the Immunogenicity of RBD-Based Anti-COVID-19 Subunit Vaccines? Viruses 2022; 14:1060. [PMID: 35632800 PMCID: PMC9146860 DOI: 10.3390/v14051060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments. The humoral immune response was evaluated by ELISA and virus-neutralization assays. The data obtained show hamsters to be the least suitable candidates for RBD immunogenicity testing and, hence, assessing the protective efficacy of RBD-based vaccines.
Collapse
Affiliation(s)
- Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Natalia V. Volkova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Vazirbek S. Aripov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Svetlana V. Belenkaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Elena I. Kazachinskaia
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Tatiana I. Esina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Alexandr A. Sergeev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Kseniia A. Titova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Yulia V. Konyakhina
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Evgeniia A. Kolosova
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia;
| | - Olesya E. Viktorina
- Russian-American Anti-Cancer Center, Altai State University, 656049 Barnaul, Russia;
| | - Arseniya A. Shelemba
- Federal Research Center of Fundamental and Translational Medicine, 630060 Novosibirsk, Russia;
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, World-Class Genomic Research Center for Biological Safety and Technological Independence, Federal Scientific and Technical Program on the Development of Genetic Technologies, 630559 Koltsovo, Russia; (I.A.M.); (M.B.B.); (A.A.I.); (V.S.N.); (N.V.V.); (V.S.A.); (D.V.S.); (L.I.K.); (S.V.B.); (E.I.K.); (E.A.V.); (T.I.E.); (A.A.S.); (K.A.T.); (Y.V.K.); (A.V.Z.); (O.V.P.); (E.A.K.); (A.P.R.); (A.A.I.)
| |
Collapse
|
57
|
Quadrivalent mosaic HexaPro-bearing nanoparticle vaccine protects against infection of SARS-CoV-2 variants. Nat Commun 2022; 13:2674. [PMID: 35562337 PMCID: PMC9106700 DOI: 10.1038/s41467-022-30222-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
Emerging SARS-CoV-2 variants of concern (VOCs) harboring multiple mutations in the spike protein raise concerns on effectiveness of current vaccines that rely on the ancestral spike protein. Here, we design a quadrivalent mosaic nanoparticle vaccine displaying spike proteins from the SARS-CoV-2 prototype and 3 different VOCs. The mosaic nanoparticle elicits equivalent or superior neutralizing antibodies against variant strains in mice and non-human primates with only small reduction in neutralization titers against the ancestral strain. Notably, it provides protection against infection with prototype and B.1.351 strains in mice. These results provide a proof of principle for the development of multivalent vaccines against pandemic and potential pre-emergent SARS-CoV-2 variants. Emerging SARS-CoV-2 variants with multiple mutations raise concerns on vaccine effectiveness. Here, Kang et al. report that a quadrivalent mosaic nanoparticle vaccine displaying spike proteins from the SARS-CoV-2 prototype and three different VOCs confer protection against SARS-CoV-2 variants in mice.
Collapse
|
58
|
Vashishtha VM, Kumar P. Responding to new challenges: is there a need to relook and revise our COVID-19 vaccination strategy? Expert Rev Vaccines 2022; 21:1015-1018. [PMID: 35545076 DOI: 10.1080/14760584.2022.2077196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Vipin M Vashishtha
- Director and Consultant Pediatrician, Department of Pediatrics, Mangla Hospital & Research Center, Shakti Chowk, Bijnor-246701-Uttar Pradesh, India
| | | |
Collapse
|
59
|
Mohapatra RK, Kuppili S, Kumar Suvvari T, Kandi V, Behera A, Verma S, Kudrat‐E‐Zahan, Biswal SK, Al‐Noor TH, El‐ajaily MM, Sarangi A, Dhama K. SARS-CoV-2 and its variants of concern including Omicron: A never ending pandemic. Chem Biol Drug Des 2022; 99:769-788. [PMID: 35184391 PMCID: PMC9111768 DOI: 10.1111/cbdd.14035] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 is associated with high morbidity and mortality. This zoonotic virus has emerged in Wuhan of China in December 2019 from bats and pangolins probably and continuing the human-to-human transmission globally since last two years. As there is no efficient approved treatment, a number of vaccines were developed at an unprecedented speed to counter the pandemic. Moreover, vaccine hesitancy is observed that may be another possible reason for this never ending pandemic. In the meantime, several variants and mutations were identified and causing multiple waves globally. Now the safety and efficacy of these vaccines are debatable and recommended to determine whether vaccines are able to interrupt transmission of SARS-CoV-2 variant of concern (VOC). Moreover, the VOCs continue to emerge that appear more transmissible and less sensitive to virus-specific immune responses. In this overview, we have highlighted various drugs and vaccines used to counter this pandemic along with their reported side effects. Moreover, the preliminary data for the novel VOC "Omicron" are discussed with the existing animal models.
Collapse
Affiliation(s)
| | | | | | - Venkataramana Kandi
- Department of MicrobiologyPrathima Institute of Medical SciencesKarimnagarTelanganaIndia
| | - Ajit Behera
- Department of Metallurgical & Materials EngineeringNational Institute of TechnologyRourkelaIndia
| | - Sarika Verma
- Council of Scientific and Industrial Research‐Advanced Materials and Processes Research InstituteBhopalMPIndia
- Academy of council Scientific and Industrial Research ‐ Advanced Materials and Processes Research Institute (AMPRI)BhopalMPIndia
| | - Kudrat‐E‐Zahan
- Department of ChemistryRajshahi UniversityRajshahiBangladesh
| | - Susanta K. Biswal
- Department of ChemistrySchool of Applied SciencesCenturion University of Technology and ManagementOdishaIndia
| | - Taghreed H. Al‐Noor
- Chemistry DepartmentIbn‐Al‐Haithem College of Education for Pure ScienceBaghdad UniversityBaghdadIraq
| | | | - Ashish K. Sarangi
- Department of ChemistrySchool of Applied SciencesCenturion University of Technology and ManagementOdishaIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteUttar PradeshBareillyIndia
| |
Collapse
|
60
|
DeGrace MM, Ghedin E, Frieman MB, Krammer F, Grifoni A, Alisoltani A, Alter G, Amara RR, Baric RS, Barouch DH, Bloom JD, Bloyet LM, Bonenfant G, Boon ACM, Boritz EA, Bratt DL, Bricker TL, Brown L, Buchser WJ, Carreño JM, Cohen-Lavi L, Darling TL, Davis-Gardner ME, Dearlove BL, Di H, Dittmann M, Doria-Rose NA, Douek DC, Drosten C, Edara VV, Ellebedy A, Fabrizio TP, Ferrari G, Fischer WM, Florence WC, Fouchier RAM, Franks J, García-Sastre A, Godzik A, Gonzalez-Reiche AS, Gordon A, Haagmans BL, Halfmann PJ, Ho DD, Holbrook MR, Huang Y, James SL, Jaroszewski L, Jeevan T, Johnson RM, Jones TC, Joshi A, Kawaoka Y, Kercher L, Koopmans MPG, Korber B, Koren E, Koup RA, LeGresley EB, Lemieux JE, Liebeskind MJ, Liu Z, Livingston B, Logue JP, Luo Y, McDermott AB, McElrath MJ, Meliopoulos VA, Menachery VD, Montefiori DC, Mühlemann B, Munster VJ, Munt JE, Nair MS, Netzl A, Niewiadomska AM, O'Dell S, Pekosz A, Perlman S, Pontelli MC, Rockx B, Rolland M, Rothlauf PW, Sacharen S, Scheuermann RH, Schmidt SD, Schotsaert M, Schultz-Cherry S, Seder RA, Sedova M, Sette A, Shabman RS, Shen X, Shi PY, Shukla M, Simon V, Stumpf S, Sullivan NJ, Thackray LB, Theiler J, et alDeGrace MM, Ghedin E, Frieman MB, Krammer F, Grifoni A, Alisoltani A, Alter G, Amara RR, Baric RS, Barouch DH, Bloom JD, Bloyet LM, Bonenfant G, Boon ACM, Boritz EA, Bratt DL, Bricker TL, Brown L, Buchser WJ, Carreño JM, Cohen-Lavi L, Darling TL, Davis-Gardner ME, Dearlove BL, Di H, Dittmann M, Doria-Rose NA, Douek DC, Drosten C, Edara VV, Ellebedy A, Fabrizio TP, Ferrari G, Fischer WM, Florence WC, Fouchier RAM, Franks J, García-Sastre A, Godzik A, Gonzalez-Reiche AS, Gordon A, Haagmans BL, Halfmann PJ, Ho DD, Holbrook MR, Huang Y, James SL, Jaroszewski L, Jeevan T, Johnson RM, Jones TC, Joshi A, Kawaoka Y, Kercher L, Koopmans MPG, Korber B, Koren E, Koup RA, LeGresley EB, Lemieux JE, Liebeskind MJ, Liu Z, Livingston B, Logue JP, Luo Y, McDermott AB, McElrath MJ, Meliopoulos VA, Menachery VD, Montefiori DC, Mühlemann B, Munster VJ, Munt JE, Nair MS, Netzl A, Niewiadomska AM, O'Dell S, Pekosz A, Perlman S, Pontelli MC, Rockx B, Rolland M, Rothlauf PW, Sacharen S, Scheuermann RH, Schmidt SD, Schotsaert M, Schultz-Cherry S, Seder RA, Sedova M, Sette A, Shabman RS, Shen X, Shi PY, Shukla M, Simon V, Stumpf S, Sullivan NJ, Thackray LB, Theiler J, Thomas PG, Trifkovic S, Türeli S, Turner SA, Vakaki MA, van Bakel H, VanBlargan LA, Vincent LR, Wallace ZS, Wang L, Wang M, Wang P, Wang W, Weaver SC, Webby RJ, Weiss CD, Wentworth DE, Weston SM, Whelan SPJ, Whitener BM, Wilks SH, Xie X, Ying B, Yoon H, Zhou B, Hertz T, Smith DJ, Diamond MS, Post DJ, Suthar MS. Defining the risk of SARS-CoV-2 variants on immune protection. Nature 2022; 605:640-652. [PMID: 35361968 PMCID: PMC9345323 DOI: 10.1038/s41586-022-04690-5] [Show More Authors] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022]
Abstract
The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.
Collapse
Affiliation(s)
- Marciela M DeGrace
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Elodie Ghedin
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Systems Genomics Section, Laboratory of Parasitic Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jesse D Bloom
- Fred Hutch Cancer Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaston Bonenfant
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Eli A Boritz
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Debbie L Bratt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- CAMRIS, Contractor for NIAID, Bethesda, MD, USA
| | - Traci L Bricker
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Liliana Brown
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - William J Buchser
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liel Cohen-Lavi
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Tamarand L Darling
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Meredith E Davis-Gardner
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bethany L Dearlove
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Han Di
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meike Dittmann
- Microbiology Department, New York University Grossman School of Medicine, New York, NY, USA
| | - Nicole A Doria-Rose
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Daniel C Douek
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
| | - Venkata-Viswanadh Edara
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Thomas P Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Will M Fischer
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - William C Florence
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | - John Franks
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Godzik
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Bart L Haagmans
- Department Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Michael R Holbrook
- National Institute of Allergy and Infectious Diseases Integrated Research Facility, Frederick, MD, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Sarah L James
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Lukasz Jaroszewski
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Trushar Jeevan
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert M Johnson
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Terry C Jones
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Astha Joshi
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| | - Lisa Kercher
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Bette Korber
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Eilay Koren
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Richard A Koup
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Eric B LeGresley
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Mariel J Liebeskind
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - James P Logue
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yang Luo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Adrian B McDermott
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | | | - Victoria A Meliopoulos
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Barbara Mühlemann
- Institute of Virology, Charité-Universitätsmedizin and German Center for Infection Research (DZIF), Berlin, Germany
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jenny E Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manoj S Nair
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Sijy O'Dell
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Marjorie C Pontelli
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Barry Rockx
- Department Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Morgane Rolland
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sinai Sacharen
- National Institute for Biotechnology in the Negev, Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | - Stephen D Schmidt
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert A Seder
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Mayya Sedova
- University of California Riverside School of Medicine, Riverside, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Reed S Shabman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maulik Shukla
- University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Spencer Stumpf
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Nancy J Sullivan
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Vaccine Research Center, Bethesda, MD, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - James Theiler
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sanja Trifkovic
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Sina Türeli
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Samuel A Turner
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Maria A Vakaki
- High Throughput Screening Center, Washington University School of Medicine, St Louis, MO, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura A VanBlargan
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Leah R Vincent
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Zachary S Wallace
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Li Wang
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maple Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Pengfei Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, Institute for Human Infection and Immunity, World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - David E Wentworth
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stuart M Weston
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Bradley M Whitener
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, New Mexico Consortium, Los Alamos, NM, USA
| | - Bin Zhou
- CDC COVID-19 Emergency Response, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Tomer Hertz
- Department of Microbiology, Immunology and Genetics Faculty of Health Sciences Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK.
| | - Michael S Diamond
- Department of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| | - Diane J Post
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
- Division of Microbiology and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Mehul S Suthar
- Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Department of Pediatrics, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
61
|
Gruell H, Vanshylla K, Weber T, Barnes CO, Kreer C, Klein F. Antibody-Mediated Neutralization of SARS-CoV-2. Immunity 2022; 55:925-944. [PMID: 35623355 PMCID: PMC9118976 DOI: 10.1016/j.immuni.2022.05.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Neutralizing antibodies can block infection, clear pathogens, and are essential to provide long-term immunity. Since the onset of the pandemic, SARS-CoV-2 neutralizing antibodies have been comprehensively investigated and critical information on their development, function, and potential use to prevent and treat COVID-19 have been revealed. With the emergence of SARS-CoV-2 immune escape variants, humoral immunity is being challenged, and a detailed understanding of neutralizing antibodies is essential to guide vaccine design strategies as well as antibody-mediated therapies. In this review, we summarize some of the key findings on SARS-CoV-2 neutralizing antibodies, with a focus on their clinical application.
Collapse
Affiliation(s)
- Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Timm Weber
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
62
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
63
|
Gagne M, Moliva JI, Foulds KE, Andrew SF, Flynn BJ, Werner AP, Wagner DA, Teng IT, Lin BC, Moore C, Jean-Baptiste N, Carroll R, Foster SL, Patel M, Ellis M, Edara VV, Maldonado NV, Minai M, McCormick L, Honeycutt CC, Nagata BM, Bock KW, Dulan CNM, Cordon J, Flebbe DR, Todd JPM, McCarthy E, Pessaint L, Van Ry A, Narvaez B, Valentin D, Cook A, Dodson A, Steingrebe K, Nurmukhambetova ST, Godbole S, Henry AR, Laboune F, Roberts-Torres J, Lorang CG, Amin S, Trost J, Naisan M, Basappa M, Willis J, Wang L, Shi W, Doria-Rose NA, Zhang Y, Yang ES, Leung K, O'Dell S, Schmidt SD, Olia AS, Liu C, Harris DR, Chuang GY, Stewart-Jones G, Renzi I, Lai YT, Malinowski A, Wu K, Mascola JR, Carfi A, Kwong PD, Edwards DK, Lewis MG, Andersen H, Corbett KS, Nason MC, McDermott AB, Suthar MS, Moore IN, Roederer M, Sullivan NJ, Douek DC, Seder RA. mRNA-1273 or mRNA-Omicron boost in vaccinated macaques elicits similar B cell expansion, neutralizing responses, and protection from Omicron. Cell 2022; 185:1556-1571.e18. [PMID: 35447072 PMCID: PMC8947944 DOI: 10.1016/j.cell.2022.03.038] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 01/06/2023]
Abstract
SARS-CoV-2 Omicron is highly transmissible and has substantial resistance to neutralization following immunization with ancestral spike-matched vaccines. It is unclear whether boosting with Omicron-matched vaccines would enhance protection. Here, nonhuman primates that received mRNA-1273 at weeks 0 and 4 were boosted at week 41 with mRNA-1273 or mRNA-Omicron. Neutralizing titers against D614G were 4,760 and 270 reciprocal ID50 at week 6 (peak) and week 41 (preboost), respectively, and 320 and 110 for Omicron. 2 weeks after the boost, titers against D614G and Omicron increased to 5,360 and 2,980 for mRNA-1273 boost and 2,670 and 1,930 for mRNA-Omicron, respectively. Similar increases against BA.2 were observed. Following either boost, 70%-80% of spike-specific B cells were cross-reactive against WA1 and Omicron. Equivalent control of virus replication in lower airways was observed following Omicron challenge 1 month after either boost. These data show that mRNA-1273 and mRNA-Omicron elicit comparable immunity and protection shortly after the boost.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Moore
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nazaire Jean-Baptiste
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephanie L Foster
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mit Patel
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Madison Ellis
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Venkata-Viswanadh Edara
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nahara Vargas Maldonado
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Caitlyn N M Dulan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jamilet Cordon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shivani Amin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Trost
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manjula Basappa
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacquelyn Willis
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | - Kai Wu
- Moderna Inc., Cambridge, MA 02139, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Kizzmekia S Corbett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ian N Moore
- Division of Pathology, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
64
|
Wang Z, Yang X, Mei X, Zhou Y, Tang Z, Li G, Zhong J, Yu M, Huang M, Su X, Lin B, Cao P, Yang J, Ran P. SARS-CoV-2-specific CD4 + T cells are associated with long-term persistence of neutralizing antibodies. Signal Transduct Target Ther 2022; 7:132. [PMID: 35461307 PMCID: PMC9034077 DOI: 10.1038/s41392-022-00978-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 12/11/2022] Open
Abstract
Understanding the decay and maintenance of long-term SARS-CoV-2 neutralizing antibodies in infected or vaccinated people and how vaccines protect against other SARS-CoV-2 variants is critical for assessing public vaccination plans. Here, we measured different plasm antibody levels 2 and 12 months after disease onset, including anti-RBD, anti-N, total neutralizing antibodies, and two neutralizing-antibody clusters. We found that total neutralizing antibodies declined more slowly than total anti-RBD and anti-N IgG, and the two neutralizing-antibody clusters decayed even more slowly than total neutralizing antibodies. Interestingly, the level of neutralizing antibodies at 12 months after disease onset was significantly lower than that at 2 months but more broadly neutralized SARS-CoV-2 variants, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Lambda (C.37). Significant immune escape by the Omicron variant (B.1.1.529) was also observed 2 months post-recovery. Furthermore, we revealed that a high percentage of virus-specific CD4+ T cells and cTfh1 were associated with a slower decline in humoral immunity, accompanied by higher levels of CXCR3 ligands such as CXCL9 and CXCL10, higher frequency of cTfh1, and lower levels of cTfh2 and cTfh17. Our data highlight the importance of coordinating T-cell and humoral immunity to achieve long-term protective immunity.
Collapse
Affiliation(s)
- Zhongfang Wang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyun Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xinyue Mei
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhiqiang Tang
- The Second People's Hospital of Changde, Hunan, China
| | - Guichang Li
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jiaying Zhong
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mengqiu Yu
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Mingzhu Huang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaoling Su
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Bijia Lin
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pengxing Cao
- School of mathematics and Statistics, University of Melbourne, Melbourne, VIC, Australia
| | - Ji Yang
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
65
|
Zhou T, Wang L, Misasi J, Pegu A, Zhang Y, Harris DR, Olia AS, Talana CA, Yang ES, Chen M, Choe M, Shi W, Teng IT, Creanga A, Jenkins C, Leung K, Liu T, Stancofski ESD, Stephens T, Zhang B, Tsybovsky Y, Graham BS, Mascola JR, Sullivan NJ, Kwong PD. Structural basis for potent antibody neutralization of SARS-CoV-2 variants including B.1.1.529. Science 2022; 376:eabn8897. [PMID: 35324257 PMCID: PMC9580340 DOI: 10.1126/science.abn8897] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/19/2022] [Indexed: 12/14/2022]
Abstract
The rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (Omicron) variant and its resistance to neutralization by vaccinee and convalescent sera are driving a search for monoclonal antibodies with potent neutralization. To provide insight into effective neutralization, we determined cryo-electron microscopy structures and evaluated receptor binding domain (RBD) antibodies for their ability to bind and neutralize B.1.1.529. Mutations altered 16% of the B.1.1.529 RBD surface, clustered on an RBD ridge overlapping the angiotensin-converting enzyme 2 (ACE2)-binding surface and reduced binding of most antibodies. Substantial inhibitory activity was retained by select monoclonal antibodies-including A23-58.1, B1-182.1, COV2-2196, S2E12, A19-46.1, S309, and LY-CoV1404-that accommodated these changes and neutralized B.1.1.529. We identified combinations of antibodies with synergistic neutralization. The analysis revealed structural mechanisms for maintenance of potent neutralization against emerging variants.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Darcy R. Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chloe Adrienna Talana
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Claudia Jenkins
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kwanyee Leung
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erik-Stephane D. Stancofski
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
66
|
Pavot V, Berry C, Kishko M, Anosova NG, Huang D, Tibbitts T, Raillard A, Gautheron S, Gutzeit C, Koutsoukos M, Chicz RM, Lecouturier V. Protein-based SARS-CoV-2 spike vaccine booster increases cross-neutralization against SARS-CoV-2 variants of concern in non-human primates. Nat Commun 2022; 13:1699. [PMID: 35361754 PMCID: PMC8971430 DOI: 10.1038/s41467-022-29219-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/04/2022] [Indexed: 11/09/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that partly evade neutralizing antibodies raises concerns of reduced vaccine effectiveness and increased infection. We previously demonstrated that the SARS-CoV-2 spike protein vaccine adjuvanted with AS03 (CoV2 preS dTM-AS03) elicits robust neutralizing antibody responses in naïve subjects. Here we show that, in macaques primed with mRNA or protein-based subunit vaccine candidates, one booster dose of CoV2 preS dTM-AS03 (monovalent D614 or B.1.351, or bivalent D614 + B.1.351 formulations), significantly boosts the pre-existing neutralizing antibodies against the parental strain from 177- to 370-fold. Importantly, the booster dose elicits high and persistent cross-neutralizing antibodies covering five former or current SARS-CoV-2 variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and, unexpectedly, SARS-CoV-1. Interestingly, we show that the booster specifically increases the functional antibody responses as compared to the receptor binding domain (RBD)-specific responses. Our findings show that these vaccine candidates, when used as a booster, have the potential to offer cross-protection against a broad spectrum of variants. This has important implications for vaccine control of SARS-CoV-2 variants of concern and informs on the benefit of a booster with the vaccine candidates currently under evaluation in clinical trials.
Collapse
|
67
|
Baron F, Canti L, Ariën KK, Kemlin D, Desombere I, Gerbaux M, Pannus P, Beguin Y, Marchant A, Humblet-Baron S. Insights From Early Clinical Trials Assessing Response to mRNA SARS-CoV-2 Vaccination in Immunocompromised Patients. Front Immunol 2022; 13:827242. [PMID: 35309332 PMCID: PMC8931657 DOI: 10.3389/fimmu.2022.827242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/04/2022] [Indexed: 12/25/2022] Open
Abstract
It is critical to protect immunocompromised patients against COVID-19 with effective SARS-CoV-2 vaccination as they have an increased risk of developing severe disease. This is challenging, however, since effective mRNA vaccination requires the successful cooperation of several components of the innate and adaptive immune systems, both of which can be severely affected/deficient in immunocompromised people. In this article, we first review current knowledge on the immunobiology of SARS-COV-2 mRNA vaccination in animal models and in healthy humans. Next, we summarize data from early trials of SARS-COV-2 mRNA vaccination in patients with secondary or primary immunodeficiency. These early clinical trials identified common predictors of lower response to the vaccine such as anti-CD19, anti-CD20 or anti-CD38 therapies, low (naive) CD4+ T-cell counts, genetic or therapeutic Bruton tyrosine kinase deficiency, treatment with antimetabolites, CTLA4 agonists or JAK inhibitors, and vaccination with BNT162b2 versus mRNA1273 vaccine. Finally, we review the first data on third dose mRNA vaccine administration in immunocompromised patients and discuss recent strategies of temporarily holding/pausing immunosuppressive medication during vaccination.
Collapse
Affiliation(s)
- Frédéric Baron
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
- Department of Medicine, Division of Hematology, Centre Hospitalier Universitaire (CHU) of Liège, Liège, Belgium
| | - Lorenzo Canti
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
| | - Kevin K. Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Delphine Kemlin
- Department of Nephrology, Dialysis and Renal Transplantation, Hôpital Erasme, Université libre de Bruxelles, Brussels, Belgium
| | - Isabelle Desombere
- Scientific Directorate Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Margaux Gerbaux
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Pieter Pannus
- Scientific Directorate Infectious Diseases in Humans, Sciensano, Brussels, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA-I3, University of Liege and Centre Hospitalier Universitaire (CHU) of Liège, Liege, Belgium
- Department of Medicine, Division of Hematology, Centre Hospitalier Universitaire (CHU) of Liège, Liège, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology and ULB Center for Research in Immunology (U-CRI), Université libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stéphanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| |
Collapse
|
68
|
Spencer AJ, Morris S, Ulaszewska M, Powers C, Kailath R, Bissett C, Truby A, Thakur N, Newman J, Allen ER, Rudiansyah I, Liu C, Dejnirattisai W, Mongkolsapaya J, Davies H, Donnellan FR, Pulido D, Peacock TP, Barclay WS, Bright H, Ren K, Screaton G, McTamney P, Bailey D, Gilbert SC, Lambe T. The ChAdOx1 vectored vaccine, AZD2816, induces strong immunogenicity against SARS-CoV-2 beta (B.1.351) and other variants of concern in preclinical studies. EBioMedicine 2022; 77:103902. [PMID: 35228013 PMCID: PMC8881183 DOI: 10.1016/j.ebiom.2022.103902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. METHODS In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.1.351). FINDINGS We demonstrate that AZD2816 is immunogenic after a single dose. When AZD2816 is used as a booster dose in animals primed with a vaccine encoding the original spike protein (ChAdOx1 nCoV-19/ [AZD1222]), an increase in binding and neutralising antibodies against Beta (B.1.351), Gamma (P.1) and Delta (B.1.617.2) is observed following each additional dose. In addition, a strong and polyfunctional T cell response was measured all booster regimens. INTERPRETATION Real world data is demonstrating that one or more doses of licensed SARS-CoV-2 vaccines confer reduced protection against hospitalisation and deaths caused by divergent VoC, including Omicron. Our data support the ongoing clinical development and testing of booster vaccines to increase immunity against highly mutated VoC. FUNDING This research was funded by AstraZeneca with supporting funds from MRC and BBSRC.
Collapse
Affiliation(s)
- Alexandra J Spencer
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom.
| | - Susan Morris
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Claire Powers
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Reshma Kailath
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Cameron Bissett
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Adam Truby
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Nazia Thakur
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Joseph Newman
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Elizabeth R Allen
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Indra Rudiansyah
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Chang Liu
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| | - Wanwisa Dejnirattisai
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Juthathip Mongkolsapaya
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Hannah Davies
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Francesca R Donnellan
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - David Pulido
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Helen Bright
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Kuishu Ren
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Gavin Screaton
- The Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Patrick McTamney
- Virology and Vaccine Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD United States
| | - Dalan Bailey
- The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Sarah C Gilbert
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Teresa Lambe
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, United Kingdom
| |
Collapse
|
69
|
Burckhardt RM, Dennehy JJ, Poon LLM, Saif LJ, Enquist LW. Are COVID-19 Vaccine Boosters Needed? The Science behind Boosters. J Virol 2022; 96:e0197321. [PMID: 34817198 PMCID: PMC8827020 DOI: 10.1128/jvi.01973-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Waning vaccine-induced immunity coupled with the emergence of SARS-CoV-2 variants has led to increases in breakthrough infections, prompting consideration for vaccine booster doses. Boosters have been reported to be safe and increase SARS-CoV-2-specific neutralizing antibody levels, but how these doses impact the trajectory of the global pandemic and herd immunity is unknown. Information on immunology, epidemiology, and equitable vaccine distribution should be considered when deciding the timing and eligibility for COVID-19 vaccine boosters.
Collapse
Affiliation(s)
| | - John J. Dennehy
- Biology Department, Queens College and The Graduate Center of The City University of New York, New York, New York, USA
| | - Leo L. M. Poon
- School of Public Health & HKU-Pasteur Research Pole, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, OARDC, The Ohio State University, Wooster, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
70
|
Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, Berrios C, Ofoman O, Chang CC, Hauser BM, Feldman J, Roederer AL, Gregory DJ, Poznansky MC, Schmidt AG, Iafrate AJ, Naranbhai V, Balazs AB. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022; 185:457-466.e4. [PMID: 34995482 PMCID: PMC8733787 DOI: 10.1016/j.cell.2021.12.033] [Citation(s) in RCA: 759] [Impact Index Per Article: 253.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/09/2023]
Abstract
Recent surveillance has revealed the emergence of the SARS-CoV-2 Omicron variant (BA.1/B.1.1.529) harboring up to 36 mutations in spike protein, the target of neutralizing antibodies. Given its potential to escape vaccine-induced humoral immunity, we measured the neutralization potency of sera from 88 mRNA-1273, 111 BNT162b, and 40 Ad26.COV2.S vaccine recipients against wild-type, Delta, and Omicron SARS-CoV-2 pseudoviruses. We included individuals that received their primary series recently (<3 months), distantly (6-12 months), or an additional "booster" dose, while accounting for prior SARS-CoV-2 infection. Remarkably, neutralization of Omicron was undetectable in most vaccinees. However, individuals boosted with mRNA vaccines exhibited potent neutralization of Omicron, only 4-6-fold lower than wild type, suggesting enhanced cross-reactivity of neutralizing antibody responses. In addition, we find that Omicron pseudovirus infects more efficiently than other variants tested. Overall, this study highlights the importance of additional mRNA doses to broaden neutralizing antibody responses against highly divergent SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wilfredo F Garcia-Beltran
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.
| | - Kerri J St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Angelique Hoelzemer
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Centre Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Site Hamburg-Lübeck-Borstel-Riems, Germany; Research Department Virus Immunology, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Adam D Nitido
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Maegan L Sheehan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Cristhian Berrios
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Onosereme Ofoman
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Christina C Chang
- Alfred Hospital, Central Clinical School, Monash University, Victoria 3181, Australia; Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Blake M Hauser
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Ph.D. Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - David J Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vivek Naranbhai
- Center for the AIDS Programme of Research in South Africa, Durban 4001, South Africa; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA; Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
71
|
Yang F, Liu L, Neuenschwander PF, Idell S, Vankayalapati R, Jain KG, Du K, Ji H, Yi G. Phage Display-Derived Peptide for the Specific Binding of SARS-CoV-2. ACS OMEGA 2022; 7:3203-3211. [PMID: 35128233 PMCID: PMC8751651 DOI: 10.1021/acsomega.1c04873] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/06/2021] [Indexed: 05/10/2023]
Abstract
Beginning from the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic swept all over the world and is still afflicting the whole global population. Given that the vaccine-manufacturing ability is limited and the virus can evolve quickly, vaccination alone may not be able to end the pandemic, thus developing fast and accurate diagnoses and effective therapeutics will always be unmet needs. Phage display peptide library has been used in screening antigen-specific peptides for the invention of novel mimic receptors/ligands. Here, we report that a 12-mer phage display peptide library has been screened against the SARS-CoV-2 receptor-binding domain (RBD), and five of the screened peptides show binding ability with the RBD protein by the enzyme-linked immune sorbent assay. The surface plasmon resonance assay further demonstrates that peptide no. 1 can specifically bind to SARS-CoV-2 RBD with a binding affinity constant (K d) of 5.8 μM. Transmission electron microscopy coupled with a magnetic bead assay further confirms that the screened peptide can specifically bind the inactivated SARS-CoV-2 virus. This SARS-CoV-2-specific peptide holds great promise as a new bioreceptor/ligand for the rapid and accurate detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Fan Yang
- Department
of Pulmonary Immunology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Li Liu
- Department
of Microsystems Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
| | - Pierre Fernand Neuenschwander
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Steven Idell
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Ramakrishna Vankayalapati
- Department
of Pulmonary Immunology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Krishan Gopal Jain
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Ke Du
- Department
of Microsystems Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
- Department
of Mechanical Engineering, Rochester Institute
of Technology, Rochester, New York 14623-5603, United States
| | - Honglong Ji
- Department
of Cellular and Molecular Biology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| | - Guohua Yi
- Department
of Pulmonary Immunology, The University
of Texas Health Science Center at Tyler, Tyler, Texas 75708-3154, United States
| |
Collapse
|
72
|
Gagne M, Corbett KS, Flynn BJ, Foulds KE, Wagner DA, Andrew SF, Todd JPM, Honeycutt CC, McCormick L, Nurmukhambetova ST, Davis-Gardner ME, Pessaint L, Bock KW, Nagata BM, Minai M, Werner AP, Moliva JI, Tucker C, Lorang CG, Zhao B, McCarthy E, Cook A, Dodson A, Teng IT, Mudvari P, Roberts-Torres J, Laboune F, Wang L, Goode A, Kar S, Boyoglu-Barnum S, Yang ES, Shi W, Ploquin A, Doria-Rose N, Carfi A, Mascola JR, Boritz EA, Edwards DK, Andersen H, Lewis MG, Suthar MS, Graham BS, Roederer M, Moore IN, Nason MC, Sullivan NJ, Douek DC, Seder RA. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell 2022; 185:113-130.e15. [PMID: 34921774 PMCID: PMC8639396 DOI: 10.1016/j.cell.2021.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
73
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.29.474491. [PMID: 35018379 PMCID: PMC8750702 DOI: 10.1101/2021.12.29.474491] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F. Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N. Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J. Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
74
|
Teng IT, Nazzari AF, Choe M, Liu T, Oliveira de Souza M, Petrova Y, Tsybovsky Y, Wang S, Zhang B, Artamonov M, Madan B, Huang A, Lopez Acevedo SN, Pan X, Ruckwardt TJ, DeKosky BJ, Mascola JR, Misasi J, Sullivan NJ, Zhou T, Kwong PD. Molecular probes of spike ectodomain and its subdomains for SARS-CoV-2 variants, Alpha through Omicron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.29.474491. [PMID: 35018379 DOI: 10.1101/2021.01.18.426999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, widespread infections have allowed SARS-CoV-2 to evolve in human, leading to the emergence of multiple circulating variants. Some of these variants show increased resistance to vaccines, convalescent plasma, or monoclonal antibodies. In particular, mutations in the SARS-CoV-2 spike have drawn attention. To facilitate the isolation of neutralizing antibodies and the monitoring the vaccine effectiveness against these variants, we designed and produced biotin-labeled molecular probes of variant SARS-CoV-2 spikes and their subdomains, using a structure-based construct design that incorporated an N-terminal purification tag, a specific amino acid sequence for protease cleavage, the variant spike-based region of interest, and a C-terminal sequence targeted by biotin ligase. These probes could be produced by a single step using in-process biotinylation and purification. We characterized the physical properties and antigenicity of these probes, comprising the N-terminal domain (NTD), the receptor-binding domain (RBD), the RBD and subdomain 1 (RBD-SD1), and the prefusion-stabilized spike ectodomain (S2P) with sequences from SARS-CoV-2 variants of concern or of interest, including variants Alpha, Beta, Gamma, Epsilon, Iota, Kappa, Delta, Lambda, Mu, and Omicron. We functionally validated probes by using yeast expressing a panel of nine SARS-CoV-2 spike-binding antibodies and confirmed sorting capabilities of variant probes using yeast displaying libraries of plasma antibodies from COVID-19 convalescent donors. We deposited these constructs to Addgene to enable their dissemination. Overall, this study describes a matrix of SARS-CoV-2 variant molecular probes that allow for assessment of immune responses, identification of serum antibody specificity, and isolation and characterization of neutralizing antibodies.
Collapse
Affiliation(s)
- I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Yuliya Petrova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Mykhaylo Artamonov
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Sheila N Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
| | - Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brandon J DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas, United States of America
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, The University of Kansas, Lawrence, Kansas, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - John Misasi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| |
Collapse
|
75
|
SARS-CoV-2 variant exposures elicit antibody responses with differential cross-neutralization of established and emerging strains including Delta and Omicron. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.09.08.21263095. [PMID: 34981075 PMCID: PMC8722618 DOI: 10.1101/2021.09.08.21263095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The wide spectrum of SARS-CoV-2 variants with phenotypes impacting transmission and antibody sensitivity necessitates investigation of the immune response to different spike protein versions. Here, we compare the neutralization of variants of concern, including B.1.617.2 (Delta) and B.1.1.529 (Omicron) in sera from individuals exposed to variant infection, vaccination, or both. We demonstrate that neutralizing antibody responses are strongest against variants sharing certain spike mutations with the immunizing exposure. We also observe that exposure to multiple spike variants increases the breadth of variant cross-neutralization. These findings contribute to understanding relationships between exposures and antibody responses and may inform booster vaccination strategies. SUMMARY This study characterizes neutralization of eight different SARS-CoV-2 variants, including Delta and Omicron, with respect to nine different prior exposures, including vaccination, booster, and infections with Delta, Epsilon, and others. Different exposures were found to confer substantially differing neutralization specificity.
Collapse
|
76
|
Abstract
Exceptional efforts have been undertaken to shed light into the biology of adaptive immune responses to SARS-CoV-2. T cells occupy a central role in adaptive immunity to mediate helper functions to different arms of the immune system and are fundamental to mediate protection, control, and clearance of most viral infections. Even though many questions remain unsolved, there is a growing literature linking specific T cell characteristics to differential COVID-19 severity and vaccine outcome. In this review, we summarize our current understanding of CD4+ and CD8+ T cell responses in acute and convalescent COVID-19. Further, we discuss the T cell literature coupled to pre-existing immunity and vaccines and highlight the need to look beyond blood to fully understand how T cells function in the tissue space.
Collapse
Affiliation(s)
- Julia Niessl
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Takuya Sekine
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|