51
|
Zhang H, Guo Y, Chen Y, Xie B, Lai S, Liu H, Hou M, Ma L, Chen X, Wong CP. Nanorobot Swarms Made with Laser-Induced Graphene@Fe 3O 4 Nanoparticles with Controllable Morphology for Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69679-69689. [PMID: 39376076 DOI: 10.1021/acsami.4c10355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Magnetic nanorobot swarms can mimic group behaviors in nature and can be flexibly controlled by programmable magnetic fields, thereby having great potential in various applications. This paper presents a novel approach for the rapid and large-scale processing of laser-induced graphene (LIG) @Fe3O4-based-nanorobot swarms utilizing one-step UV laser processing technology. The swarm is capable of forming a variety of reversible morphologies under the magnetic field, including vortex-like and strip-like, as well as the interconversion of these, demonstrating high levels of controllability and flexibility. Moreover, the maximum forward motion speed of the nanorobot swarm is up to 2165 μm/s, and the drug loading and release ability of such a nanorobot swarm is enhanced about 50 times due to the presence of graphene, enabling the nanorobot swarm to show rapid and precise targeted drug delivery. Importantly, by controllable morphology transformation to conform to the complicated requirements for the magnetic field, the drug-loaded swarm can smoothly pass through a width-varying zigzag channel while maintaining 96% of the initial drug-loading, demonstrating that LIG @Fe3O4 NPs-based nanorobot swarm can provide effective and controllable targeted drug delivery in complex passages.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanhui Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Bin Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengbao Lai
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Maoxiang Hou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li Ma
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
52
|
Han H, Ma X, Deng W, Zhang J, Tang S, Pak OS, Zhu L, Criado-Hidalgo E, Gong C, Karshalev E, Yoo J, You M, Liu A, Wang C, Shen HK, Patel PN, Hays CL, Gunnarson PJ, Li L, Zhang Y, Dabiri JO, Wang LV, Shapiro MG, Wu D, Zhou Q, Greer JR, Gao W. Imaging-guided bioresorbable acoustic hydrogel microrobots. Sci Robot 2024; 9:eadp3593. [PMID: 39661698 DOI: 10.1126/scirobotics.adp3593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Micro- and nanorobots excel in navigating the intricate and often inaccessible areas of the human body, offering immense potential for applications such as disease diagnosis, precision drug delivery, detoxification, and minimally invasive surgery. Despite their promise, practical deployment faces hurdles, including achieving stable propulsion in complex in vivo biological environments, real-time imaging and localization through deep tissue, and precise remote control for targeted therapy and ensuring high therapeutic efficacy. To overcome these obstacles, we introduce a hydrogel-based, imaging-guided, bioresorbable acoustic microrobot (BAM) designed to navigate the human body with high stability. Constructed using two-photon polymerization, a BAM comprises magnetic nanoparticles and therapeutic agents integrated into its hydrogel matrix for precision control and drug delivery. The microrobot features an optimized surface chemistry with a hydrophobic inner layer to substantially enhance microbubble retention in biofluids with multiday functionality and a hydrophilic outer layer to minimize aggregation and promote timely degradation. The dual-opening bubble-trapping cavity design enables a BAM to maintain consistent and efficient acoustic propulsion across a range of biological fluids. Under focused ultrasound stimulation, the entrapped microbubbles oscillate and enhance the contrast for real-time ultrasound imaging, facilitating precise tracking and control of BAM movement through wireless magnetic navigation. Moreover, the hydrolysis-driven biodegradability of BAMs ensures its safe dissolution after treatment, posing no risk of long-term residual harm. Thorough in vitro and in vivo experimental evidence demonstrates the promising capabilities of BAMs in biomedical applications. This approach shows promise for advancing minimally invasive medical interventions and targeted therapeutic delivery.
Collapse
Affiliation(s)
- Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Weiting Deng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
| | - Junhang Zhang
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Songsong Tang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Ernesto Criado-Hidalgo
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Chen Gong
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Emil Karshalev
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Jounghyun Yoo
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Ming You
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Ann Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Hao K Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Payal N Patel
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Claire L Hays
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Peter J Gunnarson
- Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA, USA
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lei Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Yang Zhang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - John O Dabiri
- Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA, USA
- Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Lihong V Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Mikhail G Shapiro
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, Pasadena, CA, USA
| | - Di Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Qifa Zhou
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Julia R Greer
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Kavli Nanoscience Institute, California Institute of Technology, Pasadena, CA, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
53
|
Wei W, Wang Z, Wang B, He X, Wang Y, Bai Y, Yang Q, Pang W, Duan X. Acoustofluidic manipulation for submicron to nanoparticles. Electrophoresis 2024; 45:2132-2153. [PMID: 38794970 DOI: 10.1002/elps.202400062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/27/2024]
Abstract
Particles, ranging from submicron to nanometer scale, can be broadly categorized into biological and non-biological types. Submicron-to-nanoscale bioparticles include various bacteria, viruses, liposomes, and exosomes. Non-biological particles cover various inorganic, metallic, and carbon-based particles. The effective manipulation of these submicron to nanoparticles, including their separation, sorting, enrichment, assembly, trapping, and transport, is a fundamental requirement for different applications. Acoustofluidics, owing to their distinct advantages, have emerged as a potent tool for nanoparticle manipulation over the past decade. Although recent literature reviews have encapsulated the evolution of acoustofluidic technology, there is a paucity of reports specifically addressing the acoustical manipulation of submicron to nanoparticles. This article endeavors to provide a comprehensive study of this topic, delving into the principles, apparatus, and merits of acoustofluidic manipulation of submicron to nanoparticles, and discussing the state-of-the-art developments in this technology. The discourse commences with an introduction to the fundamental theory of acoustofluidic control and the forces involved in nanoparticle manipulation. Subsequently, the working mechanism of acoustofluidic manipulation of submicron to nanoparticles is dissected into two parts, dominated by the acoustic wave field and the acoustic streaming field. A critical analysis of the advantages and limitations of different acoustofluidic platforms in nanoparticles control is presented. The article concludes with a summary of the challenges acoustofluidics face in the realm of nanoparticle manipulation and analysis, and a forecast of future development prospects.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Zhaoxun Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Bingnan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xinyuan He
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yaping Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Yang Bai
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Qingrui Yang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, P. R. China
| |
Collapse
|
54
|
Hsiao CH, Lin YW, Liu CH, Nguyen HT, Chuang AEY. Light-Driven Green-Fabricated Artificial Intelligence-Enabled Micro/Nanorobots for Multimodal Phototherapeutic Management of Bladder Cancer. Adv Healthc Mater 2024; 13:e2402864. [PMID: 39344248 DOI: 10.1002/adhm.202402864] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Combination therapy based on precise phototherapies combined with immune modulation provides successful antitumor effects. In this study, a combination therapy is designed based on phototactic, photosynthetic, and phototherapeutic Chlamydomonas Reinhardtii (CHL)-glycol chitosan (GCS)-polypyrrole (PPy) nanoparticle (NP)-enhanced immunity combined with the tumor microenvironment turnover of cytotoxic T cells and M1/M2 macrophages, which is based on photothermal GCS-PPy NPs decorated onto the phototactic and photosynthetic CHL. Phototherapy based on CHL-GCS-PPy NPs alleviates hypoxia and modulates the tumor immune microenvironment, which induces tumor cell death. In particular, the precise antitumor immune response and potent immune memory induced by combining self-navigated phototherapies significantly alleviate the progression of bladder cancer in C57BL/6 mice and effectively inhibit bladder tumor growth. Furthermore, they also potentially prevent tumor recurrence, which provides a promising therapeutic strategy for clinical tumor therapy.
Collapse
Affiliation(s)
- Chi-Hung Hsiao
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
| | - Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, 111 Hsing Long Road, Section 3, Taipei, 11696, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hung Liu
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, 235603, Taiwan
- Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei, 11696, Taiwan
- Precision Medicine and Translational Cancer Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
| |
Collapse
|
55
|
Zarepour A, Khosravi A, Iravani S, Zarrabi A. Biohybrid Micro/Nanorobots: Pioneering the Next Generation of Medical Technology. Adv Healthc Mater 2024; 13:e2402102. [PMID: 39373299 DOI: 10.1002/adhm.202402102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/26/2024] [Indexed: 10/08/2024]
Abstract
Biohybrid micro/nanorobots hold a great potential for advancing biomedical research. These tiny structures, designed to mimic biological organisms, offer a promising method for targeted drug delivery, tissue engineering, biosensing/imaging, and cancer therapy, among other applications. The integration of biology and robotics opens new possibilities for minimally invasive surgeries and personalized healthcare solutions. The key challenges in the development of biohybrid micro/nanorobots include ensuring biocompatibility, addressing manufacturing scalability, enhancing navigation and localization capabilities, maintaining stability in dynamic biological environments, navigating regulatory hurdles, and successfully translating these innovative technologies into clinical applications. Herein, the recent advancements, challenges, and future perspectives related to the biomedical applications of biohybrid micro/nanorobots are described. Indeed, this review sheds light on the cutting-edge developments in this field, providing researchers with an updated overview of the current potential of biohybrid micro/nanorobots in the realm of biomedical applications, and offering insights into their practical applications. Furthermore, it delves into recent advancements in the field of biohybrid micro/nanorobotics, providing a comprehensive analysis of the current state-of-the-art technologies and their future applications in the biomedical field.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkiye, 34959
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkiye, 34396
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, 320315, Taiwan
| |
Collapse
|
56
|
Selva Sharma A, Lee NY. Recent Advances in Micro- and Nanorobot-Assisted Colorimetric and Fluorescence Platforms for Biosensing Applications. MICROMACHINES 2024; 15:1454. [PMID: 39770207 PMCID: PMC11677706 DOI: 10.3390/mi15121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025]
Abstract
Micro- and nanorobots (MNRs) have attracted significant interest owing to their promising applications in various fields, including environmental monitoring, biomedicine, and microengineering. This review explores advances in the synthetic routes used for the preparation of MNRs, focusing on both top-down and bottom-up approaches. Although the top-down approach dominates the field because of its versatility in design and functionality, bottom-up strategies that utilize template-assisted electrochemical deposition and bioconjugation present unique advantages in terms of biocompatibility. This review investigates the diverse propulsion mechanisms employed in MNRs, including magnetic, electric, light, and biological forces, which enable efficient navigation in various fluidic environments. The interplay between the synthesis and propulsion mechanisms of MNRs in the development of colorimetric and fluorescence detection platforms is emphasized. Additionally, we summarize the recent advancements in MNRs as sensing and biosensing platforms, particularly focusing on colorimetric and fluorescence-based detection systems. By utilizing the controlled motion of MNRs, dynamic changes in the fluorescent signals and colorimetric responses can be achieved, thereby enhancing the sensitivity and selectivity of biomolecular detection. This review highlights the transformative potential of MNRs in sensing applications and emphasizes their role in advancing diagnostic technologies through innovative motion-driven signal transduction mechanisms. Subsequently, we provide an overview of the primary challenges currently faced in MNR research, along with our perspective on the future applications of MNR-assisted colorimetric and fluorescence biosensing in chemical and biological sensing. Moreover, issues related to enhanced stability, biocompatibility, and integration with existing detection systems are discussed.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Department of Nanoscience and Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
57
|
Zhou L, Xiong Y, Dwivedy A, Zheng M, Cooper L, Shepherd S, Song T, Hong W, Le LTP, Chen X, Umrao S, Rong L, Wang T, Cunningham BT, Wang X. Bioinspired designer DNA NanoGripper for virus sensing and potential inhibition. Sci Robot 2024; 9:eadi2084. [PMID: 39602515 PMCID: PMC11750070 DOI: 10.1126/scirobotics.adi2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
DNA has shown great biocompatibility, programmable mechanical properties, and precise structural addressability at the nanometer scale, rendering it a material for constructing versatile nanorobots for biomedical applications. Here, we present the design principle, synthesis, and characterization of a DNA nanorobotic hand, called DNA NanoGripper, that contains a palm and four bendable fingers as inspired by naturally evolved human hands, bird claws, and bacteriophages. Each NanoGripper finger consists of three phalanges connected by three rotatable joints that are bendable in response to the binding of other entities. NanoGripper functions are enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We demonstrate that the NanoGripper can be engineered to effectively interact with and capture nanometer-scale objects, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. With multiple DNA aptamer nanoswitches programmed to generate a fluorescent signal that is enhanced on a photonic crystal platform, the NanoGripper functions as a highly sensitive biosensor that selectively detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ~100 copies per milliliter, providing a sensitivity equal to that of reverse transcription quantitative polymerase chain reaction (RT-qPCR). Quantified by flow cytometry assays, we demonstrated that the NanoGripper-aptamer complex can effectively block viral entry into the host cells, suggesting its potential for inhibiting virus infections. The design, synthesis, and characterization of a sophisticated nanomachine that can be tailored for specific applications highlight a promising pathway toward feasible and efficient solutions to the detection and potential inhibition of virus infections.
Collapse
Affiliation(s)
- Lifeng Zhou
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yanyu Xiong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Abhisek Dwivedy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mengxi Zheng
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Skye Shepherd
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tingjie Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wei Hong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Linh T. P. Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- VinUni-Illinois Smart Health Center, VinUniversity, Hanoi, Vietnam
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Saurabh Umrao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tong Wang
- Advanced Science Research Center at Graduate Center, City University of New York, New York, NY 10031, USA
| | - Brian T. Cunningham
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
58
|
Ventrella FM, Boffetta G, Cencini M, De Lillo F. Modeling straight and circle swimmers: from single swimmer to collective motion. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:65. [PMID: 39551883 DOI: 10.1140/epje/s10189-024-00458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery's equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.
Collapse
Affiliation(s)
| | - Guido Boffetta
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - Massimo Cencini
- Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185, Rome, Italy
- INFN, Sezione di Roma 2 Tor Vergata, Rome, Italy
| | - Filippo De Lillo
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, Via P. Giuria 1, 10125, Torino, Italy
| |
Collapse
|
59
|
Xu M, Qin Z, Chen Z, Wang S, Peng L, Li X, Yuan Z. Nanorobots mediated drug delivery for brain cancer active targeting and controllable therapeutics. DISCOVER NANO 2024; 19:183. [PMID: 39542942 PMCID: PMC11564721 DOI: 10.1186/s11671-024-04131-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Brain cancer pose significant life-threats by destructively invading normal brain tissues, causing dysneuria, disability and death, and its therapeutics is limited by underdosage and toxicity lying in conventional drug delivery that relied on passive delivery. The application of nanorobots-based drug delivery systems is an emerging field that holds great potential for brain cancer active targeting and controllable treatment. The ability of nanorobots to encapsulate, transport, and supply therapies directly to the lesion site through blood-brain barriers makes it possible to deliver drugs to hard-to-reach areas. In order to improve the efficiency of drug delivery and problems such as precision and sustained release, nanorobots are effectively realized by converting other forms of energy into propulsion and motion, which are considered as high-efficiency methods for drug delivery. In this article, we described recent advances in the treatment of brain cancer with nanorobots mainly from three aspects: firstly, the development history and characteristics of nanorobots are reviewed; secondly, recent research progress of nanorobots in brain cancer is comprehensively investigated, like the driving mode and mechanism of nanorobots are described; thirdly, the potential translation of nanorobotics for brain diseases is discussed and the challenges and opportunities for future research are outlined.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, Center for Advanced Materials Research, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, People's Republic of China.
- Centre for Cognitive and Brain Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, People's Republic of China.
| | - Zhaoquan Qin
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China
| | - Zhichao Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Shichao Wang
- Center for Cognition and Neuroergonomics, Center for Advanced Materials Research, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, People's Republic of China.
| | - Liang Peng
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, People's Republic of China.
| | - Xiaoli Li
- Center for Cognition and Neuroergonomics, Center for Advanced Materials Research, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, People's Republic of China.
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, People's Republic of China.
| |
Collapse
|
60
|
Sui Z, Wan C, Cheng H, Yang B. Micro/nanorobots for gastrointestinal tract. Front Chem 2024; 12:1423696. [PMID: 39582767 PMCID: PMC11581860 DOI: 10.3389/fchem.2024.1423696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
The application of micro/nanomotors (MNMs) in the gastrointestinal tract has become a Frontier in the treatment of gastrointestinal diseases. These miniature robots can enter the gastrointestinal tract through oral administration, achieving precise drug delivery and therapy. They can traverse mucosal layers and tissue barriers, directly targeting tumors or other lesion sites, thereby enhancing the bioavailability and therapeutic effects of drugs. Through the application of nanotechnology, these MNMs are able to accomplish targeted medication release, regulating drug release in response to either external stimuli or the local biological milieu. This results in reduced side effects and increased therapeutic efficacy. This review summarizes the primary classifications and power sources of current MNMs, as well as their applications in the gastrointestinal tract, providing inspiration and direction for the treatment of gastrointestinal diseases with MNMs.
Collapse
Affiliation(s)
- Ziqi Sui
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chugen Wan
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Hefei Cheng
- Department of Gastroenterology, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Bin Yang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
61
|
Xu Z, Sun H, Chen Y, Yu HH, Deng CX, Xu Q. Bubble-Inspired Multifunctional Magnetic Microrobots for Integrated Multidimensional Targeted Biosensing. NANO LETTERS 2024; 24:13945-13954. [PMID: 39360805 PMCID: PMC11544691 DOI: 10.1021/acs.nanolett.4c03089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Microrobots possessing multifunctional integration are desired for therapeutics and biomedicine applications. However, existing microrobots with desired functionalities need to be fabricated through complex procedures due to their constrained volume, limited manufacturing processes, and lack of effective in vivo observation methods. Inspired by bubbles exhibiting various abilities, we report magnetic air bubble microrobots with simpler structures to simultaneously integrate multiple functions, including microcargo delivery, multimode locomotion, imaging, and biosensing. Contributed by buoyancy and magnetic actuation to overcome obstacles, flexible three-dimensional locomotion is implemented, guaranteeing the integrity of micro-objects adsorbed on the surface of the air bubble microrobot. Introducing air microbubbles enhances the ultrasound imaging capability of microrobots in the vascular system of mice in vivo, facilitating ample medical applications. Moreover, air-liquid reactions endow microrobots with rapid pH biosensing. This work provides a unique strategy to utilize relatively simple air bubbles to achieve the complex functions of microrobots for biomedical applications.
Collapse
Affiliation(s)
- Zichen Xu
- Department
of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Heng Sun
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Macau 999078, China
- MOE
Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Yuanhe Chen
- Department
of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Hon Ho Yu
- Department
of Gastroenterology, Kiang Wu Hospital, Est. Coelho Amaral 62, Macau, China
| | - Chu-Xia Deng
- Cancer
Center, Faculty of Health Sciences, University
of Macau, Macau 999078, China
- MOE
Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
| | - Qingsong Xu
- Department
of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| |
Collapse
|
62
|
Yang Z, Xu C, Lee JX, Lum GZ. Magnetic Miniature Soft Robot with Reprogrammable Drug-Dispensing Functionalities: Toward Advanced Targeted Combination Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408750. [PMID: 39246210 DOI: 10.1002/adma.202408750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Miniature robots are untethered actuators, which have great prospects to transform targeted drug delivery because they can potentially deliver high concentrations of medicine to the disease site(s) with minimal complications. However, existing miniature robots cannot perform advanced targeted combination therapy; majority of them can at most transport one type of drug, while those that can carry multiple drugs are unable to change their drug-dispensing sequence and dosage. Furthermore, the latter robots cannot transport more than three types of drugs, selectively dispense their drugs, maintain their mobility, or release their drugs at multiple sites. Here, a millimeter-scale soft robot is proposed, which can be actuated by alternating magnetic fields to dispense four types of drugs with reprogrammable drug-dispensing sequence and dosage (dispensing rates: 0.0992-0.231 µL h-1). This robot has six degrees-of-freedom motions, and it can deliver its drugs to multiple desired sites by rolling and two-anchor crawling across unstructured environments with negligible drug leakage. Such dexterity is highly desirable and unprecedented for miniature robots with drug-dispensing capabilities. The soft robot therefore has great potential to enable advanced targeted combination therapy, where four types of drugs must be delivered to various disease sites, each with a specific sequence and dosage of drugs.
Collapse
Affiliation(s)
- Zilin Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changyu Xu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jia Xin Lee
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Guo Zhan Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Rehabilitation Research Institute of Singapore, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
63
|
Mundaca-Uribe R, Askarinam N, Fang RH, Zhang L, Wang J. Towards multifunctional robotic pills. Nat Biomed Eng 2024; 8:1334-1346. [PMID: 37723325 DOI: 10.1038/s41551-023-01090-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023]
Abstract
Robotic pills leverage the advantages of oral pharmaceutical formulations-in particular, convenient encapsulation, high loading capacity, ease of manufacturing and high patient compliance-as well as the multifunctionality, increasing miniaturization and sophistication of microrobotic systems. In this Perspective, we provide an overview of major innovations in the development of robotic pills-specifically, oral pills embedded with robotic capabilities based on microneedles, microinjectors, microstirrers or microrockets-summarize current progress and applicational gaps of the technology, and discuss its prospects. We argue that the integration of multiple microrobotic functions within oral delivery systems alongside accurate control of the release characteristics of their payload provides a basis for realizing sophisticated multifunctional robotic pills that operate as closed-loop systems.
Collapse
Affiliation(s)
- Rodolfo Mundaca-Uribe
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Nelly Askarinam
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
64
|
Gao R, Zhang W, Chen X, Shen J, Qin Y, Wang Y, Wei X, Zou W, Jiang X, Wang Y, Huang W, Chen H, Li Z, Fan H, He B, Cheng Y. Dual Frequency-Regulated Magnetic Vortex Nanorobots Empower Nattokinase for Focalized Microvascular Thrombolysis. ACS NANO 2024; 18:29492-29506. [PMID: 39422644 DOI: 10.1021/acsnano.4c04331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Magnetic nanorobots are emerging players in thrombolytic therapy due to their noninvasive remote actuation and drug loading capabilities. Although the nanorobots with a size under 100 nm are ideal to apply in microvascular systems, the propulsion performance of nanorobots is inevitably compromised due to the limited response to magnetic fields. Here, we demonstrate a nattokinase-loaded magnetic vortex nanorobot (NK-MNR) with an average size around 70 nm and high saturation magnetization for mechanical propelling and thermal responsive thrombolysis under a magnetic field with dual frequencies. The nanorobots are stable in suspension and undergo the magneto-steered assembly into chain-like NK-MNRs, which are regulated to generate magnetic forces to mechanically damage and penetrate the thrombus by the low-frequency rotating magnetic field. Synergistically, enhanced magnetic hyperthermia is triggered by an alternating magnetic field of high frequency, enabling heat-induced NK release and fibrinolysis. In this dual frequency-regulated magnetothrombolysis (fRMT) strategy, nanorobots collaborate under the dual magnetic energy conversion model to achieve the vasculature recanalization rate of 81.0% in thrombotic mice. Overall, the nanorobot with the special magnetic vortex property and multimodel controls is a promising nanoplatform for in vivo focalized microvascular thrombolysis.
Collapse
Affiliation(s)
- Rui Gao
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Wei Zhang
- Department of Control Science and Engineering, Tongji University, Shanghai 201804, China
- The National Key Laboratory of Autonomous Intelligent Unmanned Systems, The Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 201210, China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junwu Shen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yifei Qin
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yanyun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xueyan Wei
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Wei Zou
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Xiaoyi Jiang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Yingying Wang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Wanxin Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Haotian Chen
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, China
- Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi 710069, China
| | - Bin He
- Department of Control Science and Engineering, Tongji University, Shanghai 201804, China
- The National Key Laboratory of Autonomous Intelligent Unmanned Systems, The Frontiers Science Center for Intelligent Autonomous Systems, Shanghai 201210, China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| |
Collapse
|
65
|
Wei C, Zhang Z, Wang X, Lu H, Yu J. Editorial for the Special Issue on Fundamentals and Applications of Micro/Nanorobotics. MICROMACHINES 2024; 15:1303. [PMID: 39597115 PMCID: PMC11596912 DOI: 10.3390/mi15111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
In recent years, microrobots have drawn extensive attention due to their promising potential in biomedical applications [...].
Collapse
Affiliation(s)
- Chunyun Wei
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhuoran Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| | - Xian Wang
- Department of Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Haojian Lu
- State Key Laboratory of Industrial Control and Technology, Zhejiang University, Hangzhou 310027, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China;
| |
Collapse
|
66
|
Zheng B, Li Q, Fang L, Cai X, Liu Y, Duo Y, Li B, Wu Z, Shen B, Bai Y, Cheng SX, Zhang X. Microorganism microneedle micro-engine depth drug delivery. Nat Commun 2024; 15:8947. [PMID: 39414855 PMCID: PMC11484856 DOI: 10.1038/s41467-024-53280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
As a transdermal drug delivery method, microneedles offer minimal invasiveness, painlessness, and precise in-situ treatment. However, current microneedles rely on passive diffusion, leading to uncontrollable drug penetration. To overcome this, we developed a pneumatic microneedle patch that uses live Enterobacter aerogenes as microengines to actively control drug delivery. These microbes generate gas, driving drugs into deeper tissues, with adjustable glucose concentration allowing precise control over the process. Our results showed that this microorganism-powered system increases drug delivery depth by over 200%, reaching up to 1000 μm below the skin. In a psoriasis animal model, the technology effectively delivered calcitriol into subcutaneous tissues, offering rapid symptom relief. This innovation addresses the limitations of conventional microneedles, enhancing drug efficiency, transdermal permeability, and introducing a creative paradigm for on-demand controlled drug delivery.
Collapse
Affiliation(s)
- Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China.
| | - Qiuya Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Laiping Fang
- Guangdong Second Provincial General Hospital, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaolu Cai
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Yanhong Duo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Zhengyu Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Boxi Shen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yang Bai
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, China.
| | - Shi-Xiang Cheng
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, TANGYI Biomedicine (Tianjin) Co. Ltd (TBMed), Tianjin, China.
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
67
|
Wang G, Bickerdike A, Liu Y, Ferreira A. Analytical solution of a microrobot-blood vessel interaction model. NONLINEAR DYNAMICS 2024; 113:2091-2109. [PMID: 39678828 PMCID: PMC11638467 DOI: 10.1007/s11071-024-10318-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/08/2024] [Indexed: 12/17/2024]
Abstract
This study develops a dynamics model of a microrobot vibrating in a blood vessel aiming to detect potential cancer metastasis. We derive an analytical solution for microrobot's motion, considering interactions with the vessel walls modelled by a linear spring-dashpot and a constant damping value for blood viscosity. The model facilitates instantaneous state transitions of the microrobot, such as contact with the vessel wall and free motion within the fluid. Amplitudes and phase angles from the transient solutions of dynamics model of the microrobot are solved at arbitrary moments, providing insights into its transient dynamics. The analytical solution of the proposed system is validated by experimental data, serving as a benchmark to examine the influence of pertinent parameters on microrobot's dynamic response. It is found that the contact force transmitted to the vessel wall, assessed by system's transmissibility function dependent on damping and frequency ratios, decreases with increasing damping ratio and intensifies when the frequency ratio is below 2 . At the frequency ratio is equal to 1, resonance phenomenon is dominated by the magnification factor linked to the damping ratio, increasing the amplitude of resonance as damping decreases. Finally, different sets of system parameters, including excitation frequency and magnitude, fluid damping, vessel wall's stiffness and damping, reveal multi-periodic motions and fake collision of the microrobot with the vessel wall. Simulation results imply that these phenomena are minimally affected by vessel wall's stiffness but are significantly influenced by other parameters, such as fluid damping coefficient and damping coefficient of the blood vessel wall. This research provides a robust theoretical foundation for developing control strategies for microrobots aimed at detecting cancer metastasis.
Collapse
Affiliation(s)
- Gengxiang Wang
- Exeter Small-Scale Robotics Laboratory, Engineering Department, University of Exeter, Exeter, EX4 4QF UK
- School of Mechanical and Electrical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055 Shaanxi China
| | - Andrew Bickerdike
- Exeter Small-Scale Robotics Laboratory, Engineering Department, University of Exeter, Exeter, EX4 4QF UK
| | - Yang Liu
- Exeter Small-Scale Robotics Laboratory, Engineering Department, University of Exeter, Exeter, EX4 4QF UK
| | - Antoine Ferreira
- Laboratoire PRISME, INSA Centre Val de Loire, 18000 Bourges, France
| |
Collapse
|
68
|
Kalawatia M. Nanotechnology in neurosurgery: enhancing precision and therapeutic potential. Neurosurg Rev 2024; 47:733. [PMID: 39367167 DOI: 10.1007/s10143-024-02968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Affiliation(s)
- Mihit Kalawatia
- Rajarshi Chhatrapati Shahu Maharaj Government Medical College, Kolhapur, India.
| |
Collapse
|
69
|
Ding P, Lu M, Lu L, Wen J, Gong X, Zheng H, Chen H. Direction-switchable transverse optical torque on a dipolar phase-change nanoparticle. OPTICS LETTERS 2024; 49:5655-5658. [PMID: 39353030 DOI: 10.1364/ol.532684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
We propose that a transition from positive optical torque (OT) to negative OT occurs in a dipolar nanoparticle subjected to a simple optical field composed of two circularly polarized plane waves. This phenomenon can be observed in a phase-change nanoparticle comprising insulating and metallic phases. The analytical expression based on the multipole expansion theory reveals that the positive OT in the metallic phase originates from the electric response during light-matter interaction. However, in the insulating phase, the magnetic response is excited, leading to a significant negative OT due to the contribution of the magnetic field-magnetic dipole interaction. It is noted that the phenomenon of reversible transverse OT is robust to the angle between two constituent plane waves, ensuring its practical application.
Collapse
|
70
|
Mu Y, Tran HH, Xiang Z, Majumder A, Hsu E, Steager E, Koo H, Lee D. Spiky Magnetic Microparticles Synthesized from Microrod-Stabilized Pickering Emulsion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402292. [PMID: 38864236 DOI: 10.1002/smll.202402292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet-chemical method is introduced for spiky magnetic particles that are templated from microrod-stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil-water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline-based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.
Collapse
Affiliation(s)
- Yijiang Mu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hong-Huy Tran
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhenting Xiang
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Anirban Majumder
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emery Hsu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward Steager
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyun Koo
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
71
|
Goswami K, Cherstvy AG, Godec A, Metzler R. Anomalous diffusion of active Brownian particles in responsive elastic gels: Nonergodicity, non-Gaussianity, and distributions of trapping times. Phys Rev E 2024; 110:044609. [PMID: 39562954 DOI: 10.1103/physreve.110.044609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
Understanding actual transport mechanisms of self-propelled particles (SPPs) in complex elastic gels-such as in the cell cytoplasm, in in vitro networks of chromatin or of F-actin fibers, or in mucus gels-has far-reaching consequences. Implications beyond biology/biophysics are in engineering and medicine, with a particular focus on microrheology and on targeted drug delivery. Here, we examine via extensive computer simulations the dynamics of SPPs in deformable gellike structures responsive to thermal fluctuations. We treat tracer particles comparable to and larger than the mesh size of the gel. We observe distinct trapping events of active tracers at relatively short times, leading to subdiffusion; it is followed by an escape from meshwork-induced traps due to the flexibility of the network, resulting in superdiffusion. We thus find crossovers between different transport regimes. We also find pronounced nonergodicity in the dynamics of SPPs and non-Gaussianity at intermediate times. The distributions of trapping times of the tracers escaping from "cages" in our quasiperiodic gel often reveal the existence of two distinct timescales in the dynamics. At high activity of the tracers these timescales become comparable. Furthermore, we find that the mean waiting time exhibits a power-law dependence on the activity of SPPs (in terms of their Péclet number). Our results additionally showcase both exponential and nonexponential trapping events at high activities. Extensions of this setup are possible, with the factors such as anisotropy of the particles, different topologies of the gel network, and various interactions between the particles (also of a nonlocal nature) to be considered.
Collapse
|
72
|
Wang C, Lam WS, Huang H, Zhao H, Zhang C, Sun D. Illumination-adjustable photoacoustic and harmonic ultrasound for tracking magnetically driven microrobots. BIOMEDICAL OPTICS EXPRESS 2024; 15:5790-5802. [PMID: 39421791 PMCID: PMC11482187 DOI: 10.1364/boe.535028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 10/19/2024]
Abstract
The development of microrobots for biomedical applications has enabled tasks such as targeted drug delivery, minimally invasive surgeries, and precise diagnostics. However, effective in vivo navigation and control remain challenging due to their small size and complex body environment. Photoacoustic (PA) and ultrasound (US) imaging techniques, which offer high contrast, high resolution, and deep tissue penetration, are integrated to enhance microrobot visualization and tracking. Traditional imaging systems have a narrow effective illumination area, suffer from severe reflection artifacts, and are affected by strong electromagnetic fields. To address this, we present an illumination-adjustable PA and harmonic US imaging system with a customized pushrod mechanism for real-time focus adjustment. Experiments demonstrate high-resolution imaging and accurate microrobot positioning, showcasing the potential for biomedical applications, especially in minimally invasive procedures.
Collapse
Affiliation(s)
- Chongyun Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Wah Shing Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Hanjin Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Han Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chunqi Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Center of Robotics and Automation, Shenzhen Research Institute, Shenzhen, Guangdong 518000, China
| |
Collapse
|
73
|
Nie D, Zhang K, Lin J. Enhanced speed of microswimmers adjacent to a rough surface. Phys Rev E 2024; 110:045101. [PMID: 39562938 DOI: 10.1103/physreve.110.045101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/20/2024] [Indexed: 11/21/2024]
Abstract
Increased speed is not only the goal of human sports but also the aim we seek to achieve for artificial microswimmers. Microswimmers driven by various power mechanisms have shown unrivaled advantages in drug delivery and cancer therapy. Attaining high mobility with limited power has been a never-ending motive for researchers. We show the speed of squirmer-type microswimmers can be noticeably enhanced as they are released to move along the surface of a pillar array, which is constructed of multiple pillars of equal sizes and spacing. An additional pressure force arising from the significant low pressure between the swimmers and the surface is likely behind this enhancement. According to their polarity strengths, the speed of the microswimmers can be double or triple (or even more) compared with that in an unbounded environment. In particular, for systems requiring microswimmers moving along a complex path, the transport rate, instead of being slowed down, may be increased owing to the curvatures of the path constructed by the pillar arrays. We reveal two types of motion for microswimmers after increasing the pillar gap: free and forced oscillating. Our study sheds light on the hydrodynamic interactions between squirmer-type microswimmers and a rough wall.
Collapse
|
74
|
Yang C, Liu X, Song X, Zhang L. Design and batch fabrication of anisotropic microparticles toward small-scale robots using microfluidics: recent advances. LAB ON A CHIP 2024; 24:4514-4535. [PMID: 39206574 DOI: 10.1039/d4lc00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Small-scale robots with shape anisotropy have garnered significant scientific interest due to their enhanced mobility and precise control in recent years. Traditionally, these miniature robots are manufactured using established techniques such as molding, 3D printing, and microfabrication. However, the advent of microfluidics in recent years has emerged as a promising manufacturing technology, capitalizing on the precise and dynamic manipulation of fluids at the microscale to fabricate various complex-shaped anisotropic particles. This offers a versatile and controlled platform, enabling the efficient fabrication of small-scale robots with tailored morphologies and advanced functionalities from the microfluidic-derived anisotropic microparticles at high throughput. This review highlights the recent advances in the microfluidic fabrication of anisotropic microparticles and their potential applications in small-scale robots. In this review, the term 'small-scale robots' broadly encompasses micromotors endowed with capabilities for locomotion and manipulation. Firstly, the fundamental strategies for liquid template formation and the methodologies for generating anisotropic microparticles within the microfluidic system are briefly introduced. Subsequently, the functionality of shape-anisotropic particles in forming components for small-scale robots and actuation mechanisms are emphasized. Attention is then directed towards the diverse applications of these microparticle-derived microrobots in a variety of fields, including pollution remediation, cell microcarriers, drug delivery, and biofilm eradication. Finally, we discuss future directions for the fabrication and development of miniature robots from microfluidics, shedding light on the evolving landscape of this field.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xin Song
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| |
Collapse
|
75
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
76
|
Havenhill EC, Ghosh S. Optimization-based synthesis with directed cell migration. Comput Biol Med 2024; 180:108915. [PMID: 39079415 DOI: 10.1016/j.compbiomed.2024.108915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024]
Abstract
Collective behavior of biological agents from cells to herds of organisms is a fundamental feature in systems biology and in the emergence of new phenomena in the biological environment. Collective cell migration (CCM) under a physical or chemical cue is an example of this fundamental phenomenon where the individual migration of a cell is driven by the collective behavior of the neighboring cells and vice versa. The goal of this research is to discover the mathematical rules of collective cell migration with dynamic mode decomposition (DMD) with the use of experimental data and to test the predictive nature of the models with independent experimental data sets subject to Dirichlet, Neumann, and mixed boundary conditions. Both single and multi-cellular systems are investigated in this process. Additionally, the goal of this research is to create an optimal trajectory for microscopic robots in the presence of an obstacle course made of both static and dynamic obstacles. Such an optimization is made possible by synthesizing the discovered dynamics for cell migration with a numerical approach to dynamic optimization known as collocation by augmenting the discovered dynamics to the constraint equations. The optimal trajectory results presented in silico have potential design applications for the path planning of microrobots for therapeutic purposes such as cancer cell drug delivery, microsurgery, microsensing for early disease detection, and cleaning of toxic substances.
Collapse
Affiliation(s)
- Eric C Havenhill
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80521, USA; Translational Medicine Institute, Colorado State University, Fort Collins, CO, 80521, USA.
| | - Soham Ghosh
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, 80521, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, 80523, USA; Translational Medicine Institute, Colorado State University, Fort Collins, CO, 80521, USA; Cell and Molecular Biology, Colorado State University, Fort Collins, CO, 80524, USA.
| |
Collapse
|
77
|
Lou H, Wang Y, Sheng Y, Zhu H, Zhu S, Yu J, Zhang Q. Water-Induced Shape-Locking Magnetic Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405021. [PMID: 39073727 PMCID: PMC11423202 DOI: 10.1002/advs.202405021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Untethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water-induced, shape-locking magnetic robots with magnetically controlled shape change and water-induced shape-locking are introduced. The water-induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self-healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on-demand deformation and subsequent water-induced stiffening. Moreover, a water-stiffening magnetic stent is developed, and its precise delivery and water-induced shape-locking are demonstrated in a vascular phantom. The combination of untethered delivery, on-demand shape change, and water-induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.
Collapse
Affiliation(s)
- He Lou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Yibin Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Yifeng Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, 518172, China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
78
|
Jeong M, Tan X, Fischer F, Qiu T. A Convoy of Magnetic Millirobots Transports Endoscopic Instruments for Minimally-Invasive Surgery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308382. [PMID: 38946679 DOI: 10.1002/advs.202308382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/13/2024] [Indexed: 07/02/2024]
Abstract
Small-scale robots offer significant potential in minimally invasive medical procedures. Due to the nature of soft biological tissues, however, robots are exposed to complex environments with various challenges in locomotion, which is essential to overcome for useful medical tasks. A single mini-robot often provides insufficient force on slippery biological surfaces to carry medical instruments, such as a fluid catheter or an electrical wire. Here, for the first time, a team of millirobots (TrainBot) is reported to generate around two times higher actuating force than a TrainBot unit by forming a convoy to collaboratively carry long and heavy cargos. The feet of each unit are optimized to increase the propulsive force around three times so that it can effectively crawl on slippery biological surfaces. A human-scale permanent magnetic set-up is developed to wirelessly actuate and control the TrainBot to transport heavy and lengthy loads through narrow biological lumens, such as the intestine and the bile duct. The first electrocauterization performed by the TrainBot is demonstrated to relieve a biliary obstruction and open a tunnel for fluid drainage and drug delivery. The developed technology sheds light on the collaborative strategy of small-scale robots for future minimally invasive surgical procedures.
Collapse
Affiliation(s)
- Moonkwang Jeong
- Cyber Valley group - Biomedical Microsystems, Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Xiangzhou Tan
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Felix Fischer
- Division of Smart Technologies for Tumor Therapy, German Cancer Research Center (DKFZ) Site Dresden, Blasewitzer Str. 80, 01307, Dresden, Germany
- Faculty of Engineering Sciences, University of Heidelberg, 69120, Heidelberg, Germany
| | - Tian Qiu
- Division of Smart Technologies for Tumor Therapy, German Cancer Research Center (DKFZ) Site Dresden, Blasewitzer Str. 80, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Dresden University of Technology, 01307, Dresden, Germany
- Faculty of Electrical and Computer Engineering, Dresden University of Technology, 01069, Dresden, Germany
| |
Collapse
|
79
|
Wang J, Zhou Q, Dong Q, Shen J, Hao J, Li D, Xu T, Cai X, Bai W, Ying T, Li Y, Zhang L, Zhu Y, Wang L, Wu J, Zheng Y. Nanoarchitectonic Engineering of Thermal-Responsive Magnetic Nanorobot Collectives for Intracranial Aneurysm Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400408. [PMID: 38709208 DOI: 10.1002/smll.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Stent-assisted coiling is a main treatment modality for intracranial aneurysms (IAs) in clinics, but critical challenges remain to be overcome, such as exogenous implant-induced stenosis and reliance on antiplatelet agents. Herein, an endovascular approach is reported for IA therapy without stent grafting or microcatheter shaping, enabled by active delivery of thrombin (Th) to target aneurysms using innovative phase-change material (PCM)-coated magnetite-thrombin (Fe3O4-Th@PCM) FTP nanorobots. The nanorobots are controlled by an integrated actuation system of dynamic torque-force hybrid magnetic fields. With robust intravascular navigation guided by real-time ultrasound imaging, nanorobotic collectives can effectively accumulate and retain in model aneurysms constructed in vivo, followed by controlled release of the encapsulated Th for rapid occlusion of the aneurysm upon melting the protective PCM (thermally responsive in a tunable manner) through focused magnetic hyperthermia. Complete and stable aneurysm embolization is confirmed by postoperative examination and 2-week postembolization follow-up using digital subtraction angiography (DSA), contrast-enhanced ultrasound (CEUS), and histological analysis. The safety of the embolization therapy is assessed through biocompatibility evaluation and histopathology assays. This strategy, seamlessly integrating secure drug packaging, agile magnetic actuation, and clinical interventional imaging, avoids possible exogenous implant rejection, circumvents cumbersome microcatheter shaping, and offers a promising option for IA therapy.
Collapse
Affiliation(s)
- Jienan Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Qi Zhou
- School of Engineering, The University of Edinburgh, Edinburgh, EH9 3FB, UK
| | - Qi Dong
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
- Department of Ultrasound, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200002, P. R. China
| | - Jian Shen
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Dong Li
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Tiantian Xu
- Guangdong Provincial Key Laboratory of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Wenkun Bai
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuehua Li
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Yueqi Zhu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Longchen Wang
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Institute of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, P. R. China
| |
Collapse
|
80
|
Zhu R, Shen T, Gu Z, Shi Z, Dou L, Liu Y, Zhuang S, Gu F. Amphibious Hybrid Laser Tweezers for Fluid and Solid Domains. ACS NANO 2024; 18:23232-23242. [PMID: 39145514 DOI: 10.1021/acsnano.4c05970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Optical trapping is a potent tool for achieving precise and noninvasive manipulation of small objects in a vacuum and liquids. However, due to the substantial disparity between optical forces and interfacial adhesion, target objects should be suspended in fluid environments, rendering solid contact surfaces a restricted area for conventional optical tweezers. In this work, by relying on a single continuous wave (CW) laser, we demonstrate an optical manipulation system applicable for both fluid and solid domains, namely, amphibious hybrid laser tweezers. The key to our system lies in modulating the intensity of the CW laser with duration shorter than the dynamic thermal equilibrium time within objects, wherein strong thermal gradient forces with ∼6 orders of magnitude higher than the forces in optical tweezers are produced, enabling moving and trapping micro/nano-objects on solid interfaces. Thereby, CW laser-based optical tweezers and pulsed laser-based photothermal shock tweezers are seamlessly fused with the advantages of cost-effectiveness and simplicity. Our concept breaks the stereotype that CW lasers are limited to generating tiny forces and instead achieve ultrawide force generation spanning from femto-newtons (10-15 N) to (10-6 N). Our work expands the horizon of optical manipulation by seamlessly bridging its applications in fluid and solid environments and holds promise for inspiring optical manipulation techniques to perform more challenging tasks, which may unearth application scenarios in diverse fields such as fundamental physical research, nanofabrication, micro/nanorobotics, biomedicine, and cytology.
Collapse
Affiliation(s)
- Runlin Zhu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Tianci Shen
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhaoqi Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhangxing Shi
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Dou
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yifei Liu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songlin Zhuang
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fuxing Gu
- Laboratory of Integrated Opto-Mechanics and Electronics, Shanghai Key Laboratory of Modern Optical System, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
81
|
Zeng Y, Gao Y, He L, Ge W, Wang X, Ma T, Xie X. Smart delivery vehicles for cancer: categories, unique roles and therapeutic strategies. NANOSCALE ADVANCES 2024; 6:4275-4308. [PMID: 39170969 PMCID: PMC11334973 DOI: 10.1039/d4na00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 08/23/2024]
Abstract
Chemotherapy and surgery remain the primary treatment modalities for cancers; however, these techniques have drawbacks, such as cancer recurrence and toxic side effects, necessitating more efficient cancer treatment strategies. Recent advancements in research and medical technology have provided novel insights and expanded our understanding of cancer development; consequently, scholars have investigated several delivery vehicles for cancer therapy to improve the efficiency of cancer treatment and patient outcomes. Herein, we summarize several types of smart therapeutic carriers and elaborate on the mechanism underlying drug delivery. We reveal the advantages of smart therapeutic carriers for cancer treatment, focus on their effectiveness in cancer immunotherapy, and discuss the application of smart cancer therapy vehicles in combination with other emerging therapeutic strategies for cancer treatment. Finally, we summarize the bottlenecks encountered in the development of smart cancer therapeutic vehicles and suggest directions for future research. This review will promote progress in smart cancer therapy and facilitate related research.
Collapse
Affiliation(s)
- Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Liming He
- Department of Stomatology, Changsha Stomatological Hospital Changsha 410004 P. R. China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xinying Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Tao Ma
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University Changsha 410011 P. R. China
| |
Collapse
|
82
|
Wang S, Li S, Zhao W, Zhou Y, Wang L, Aizenberg J, Zhu P. Programming hierarchical anisotropy in microactuators for multimodal actuation. LAB ON A CHIP 2024; 24:4073-4084. [PMID: 39115160 DOI: 10.1039/d4lc00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Microactuators, capable of executing tasks typically repetitive, hazardous, or impossible for humans, hold great promise across fields such as precision medicine, environmental remediation, and swarm intelligence. However, intricate motions of microactuators normally require high complexity in design, making it increasingly challenging to realize at small scales using existing fabrication techniques. Taking inspiration from the hierarchical-anisotropy principle found in nature, we program liquid crystalline elastomer (LCE) microactuators with multimodal actuation tailored to their molecular, shape, and architectural anisotropies at (sub)nanometer, micrometer, and (sub)millimeter scales, respectively. Our strategy enables diverse deformations with individual LCE microstructures, including expanding, contracting, twisting, bending, and unwinding, as well as re-programmable shape transformations of assembled LCE architectures with negative Poisson's ratios, locally adjustable actuation, and changing from two-dimensional (2D) to three-dimensional (3D) structures. Furthermore, we design tetrahedral microactuators with well-controlled mobility and precise manipulation of both solids and liquids in various environments. This study provides a paradigm shift in the development of microactuators, unlocking a vast array of complexities achievable through manipulation at each hierarchical level of anisotropy.
Collapse
Affiliation(s)
- Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shucong Li
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenchang Zhao
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ying Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Joanna Aizenberg
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China
| |
Collapse
|
83
|
Zhang J, Qu Q, Chen X. Potential field mechanisms and distributed learning for enhancing the navigation of micro/nanorobot in biomedical environments. Heliyon 2024; 10:e35328. [PMID: 39170358 PMCID: PMC11336596 DOI: 10.1016/j.heliyon.2024.e35328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
In complex systems, single micro/nanorobots encounter challenges related to limited loading capacity and navigation, hindering their effective utilization in targeted therapy and drug delivery. To solve these challenges, this paper explores potential field mechanisms as a means to simulate natural collective behavior. This approach aims to enhance the navigation and efficiency of micro/nanorobots in high-demand therapeutic areas. The mechanism enables micro/nanorobots to dynamically adapt to environmental gradients, minimizing off-target effects while maximizing therapeutic efficacy and enhancing robustness through redundancy. Additionally, this study introduces innovative distributed learning and cooperative control strategies. Each micro/nanorobot updates its navigation strategy through local interactions and influences with the dynamic environment. This allows micro/nanorobots to share information and improve their navigation toward therapeutic targets. The simulation results demonstrate that collective behavior and potential field mechanisms can enhance the precision and efficiency of targeted therapy and drug delivery in dynamically changing environments. In conclusion, the proposed approach can improve the limitations of single micro/nanobot, offering new possibilities for the development of advanced therapeutics and drug delivery systems.
Collapse
Affiliation(s)
- Junqiao Zhang
- School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Qiang Qu
- School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Xuebo Chen
- School of Electronics and Information Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| |
Collapse
|
84
|
Sun M, Wu Y, Zhang J, Zhang H, Liu Z, Li M, Wang C, Sitti M. Versatile, modular, and customizable magnetic solid-droplet systems. Proc Natl Acad Sci U S A 2024; 121:e2405095121. [PMID: 39088393 PMCID: PMC11317579 DOI: 10.1073/pnas.2405095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/21/2024] [Indexed: 08/03/2024] Open
Abstract
Magnetic miniature robotic systems have attracted broad research interest because of their precise maneuverability in confined spaces and adaptability to diverse environments, holding significant promise for applications in both industrial infrastructures and biomedical fields. However, the predominant construction methodology involves the preprogramming of magnetic components into the system's structure. While this approach allows for intricate shape transformations, it exhibits limited flexibility in terms of reconfiguration and presents challenges when adapting to diverse materials, combining, and decoupling multiple functionalities. Here, we propose a construction strategy that facilitates the on-demand assembly of magnetic components, integrating ferrofluid droplets with the system's structural body. This approach enables the creation of complex solid-droplet robotic systems across a spectrum of length scales, ranging from 0.8 mm to 1.5 cm. It offers a diverse selection of materials and structural configurations, akin to assembling components like building blocks, thus allowing for the seamless integration of various functionalities. Moreover, it incorporates decoupling mechanisms to enable selective control over multiple functions, leveraging the fluidity, fission/fusion, and magneto-responsiveness properties inherent in the ferrofluid. Various solid-droplet systems have validated the feasibility of this strategy. This study advances the complexity and functionality achievable in small-scale magnetic robots, augmenting their potential for future biomedical and other applications.
Collapse
Affiliation(s)
- Mengmeng Sun
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Yingdan Wu
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin150001, China
| | - Jianhua Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Hongchuan Zhang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Zemin Liu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Mingtong Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
| | - Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart70569, Germany
- School of Medicine and College of Engineering, Koç University, Istanbul34450, Türkiye
| |
Collapse
|
85
|
Gao R, Wang W, Wang Z, Fan Y, Zhang L, Sun J, Hong M, Pan M, Wu J, Mei Q, Wang Y, Qiao L, Liu J, Tong F. Hibernating/Awakening Nanomotors Promote Highly Efficient Cryopreservation by Limiting Ice Crystals. Adv Healthc Mater 2024:e2401833. [PMID: 39101314 DOI: 10.1002/adhm.202401833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Indexed: 08/06/2024]
Abstract
The disruptions caused by ice crystal formation during the cryopreservation of cells and tissues can cause cell and tissue damage. Thus, preventing such damage during cryopreservation is an important but challenging goal. Here, a hibernating/awakening nanomotor with magnesium/palladium covering one side of a silica platform (Mg@Pd@SiO2) is proposed. This nanomotor is used in the cultivation of live NCM460 cells to demonstrate a new method to actively limit ice crystal formation and enable highly efficient cryopreservation. Cooling Mg@Pd@SiO2 in solution releases Mg2+/H2 and promotes the adsorption of H2 at multiple Pd binding sites on the cell surface to inhibit ice crystal formation and cell/tissue damage; additionally, the Pd adsorbs and stores H2 to form a hibernating nanomotor. During laser-mediated heating, the hibernating nanomotor is activated (awakened) and releases H2, which further suppresses recrystallization and decreases cell/tissue damage. These hibernating/awakening nanomotors have great potential for promoting highly efficient cryopreservation by inhibiting ice crystal formation.
Collapse
Affiliation(s)
- Rui Gao
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Weixin Wang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Zhongchao Wang
- Institute of Cardiovascular Disease, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Yapeng Fan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Lin Zhang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jiahui Sun
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Miaofang Hong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Min Pan
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jianming Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Qibing Mei
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Yini Wang
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Lingyan Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Fei Tong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| |
Collapse
|
86
|
Wang L, Sheng M, Chen L, Yang F, Li C, Li H, Nie P, Lv X, Guo Z, Cao J, Wang X, Li L, Hu AL, Guan D, Du J, Cui H, Zheng X. Sub-Nanogram Resolution Measurement of Inertial Mass and Density Using Magnetic-Field-Guided Bubble Microthruster. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403867. [PMID: 38773950 PMCID: PMC11304303 DOI: 10.1002/advs.202403867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/12/2024] [Indexed: 05/24/2024]
Abstract
Artificial micro/nanomotors using active particles hold vast potential in applications such as drug delivery and microfabrication. However, upgrading them to micro/nanorobots capable of performing precise tasks with sophisticated functions remains challenging. Bubble microthruster (BMT) is introduced, a variation of the bubble-driven microrobot, which focuses the energy from a collapsing microbubble to create an inertial impact on nearby target microparticles. Utilizing ultra-high-speed imaging, the microparticle mass and density is determined with sub-nanogram resolution based on the relaxation time characterizing the microparticle's transient response. Master curves of the BMT method are shown to be dependent on the viscosity of the solution. The BMT, controlled by a gamepad with magnetic-field guidance, precisely manipulates target microparticles, including bioparticles. Validation involves measuring the polystyrene microparticle mass and hollow glass microsphere density, and assessing the mouse embryo mass densities. The BMT technique presents a promising chip-free, real-time, highly maneuverable strategy that integrates bubble microrobot-based manipulation with precise bioparticle mass and density detection, which can facilitate microscale bioparticle characterizations such as embryo growth monitoring.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Minjia Sheng
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Li Chen
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Fengchang Yang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Chenlu Li
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Hangyu Li
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Pengcheng Nie
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xinxin Lv
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Zheng Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Jialing Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Xiaohuan Wang
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Long Li
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| | - Anthony L. Hu
- The High School Affiliated to Renmin University of ChinaBeijing100080China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
- School of Engineering ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of EducationBeijing Advanced Innovation Center for Biomedical EngineeringSchool of Biological Science and Medical EngineeringBeihang UniversityBeijing100083China
| | - Haihang Cui
- School of Building Services Science and EngineeringXi'an University of Architecture and TechnologyXi'an710055China
| | - Xu Zheng
- State Key Laboratory of Nonlinear MechanicsBeijing Key Laboratory of Engineered Construction and MechanobiologyInstitute of MechanicsChinese Academy of SciencesBeijing100190China
| |
Collapse
|
87
|
Li W, Liu B, Ou L, Li G, Lei D, Xiong Z, Xu H, Wang J, Tang J, Li D. Arbitrary Construction of Versatile NIR-Driven Microrobots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402482. [PMID: 38940072 DOI: 10.1002/adma.202402482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Emerging light-driven micro/nanorobots (LMNRs) showcase profound potential for sophisticated manipulation and various applications. However, the realization of a versatile and straightforward fabrication technique remains a challenging pursuit. This study introduces an innovative bulk heterojunction organic semiconductor solar cell (OSC)-based spin-coating approach, aiming to facilitate the arbitrary construction of LMNRs. Leveraging the distinctive properties of a near-infrared (NIR)-responsive organic semiconductor heterojunction solution, this technique enables uniform coating across various dimensional structures (0D, 1D, 2D, 3D) to be LMNRs, denoted as "motorization." The film, with a slender profile measuring ≈140 nm in thickness, effectively preserves the original morphology of objects while imparting actuation capabilities exceeding hundreds of times their own weight. The propelled motion of these microrobots is realized through NIR-driven photoelectrochemical reaction-induced self-diffusiophoresis, showcasing a versatile array of controllable motion profiles. The strategic customization of arbitrary microrobot construction addresses specific applications, ranging from 0D microrobots inducing living crystal formation to intricate, multidimensional structures designed for tasks such as microplastic extraction, cargo delivery, and phototactic precise maneuvers. This study advances user-friendly and versatile LMNR technologies, unlocking new possibilities for various applications, signaling a transformative era in multifunctional micro/nanorobot technologies.
Collapse
Affiliation(s)
- Wanyuan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Baiyao Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Leyan Ou
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Gangzhou Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Dapeng Lei
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Huihua Xu
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jizhuang Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, P. R. China
- Guangdong Provincial Key Laboratory of Supramolecular Coordination Chemistry, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
88
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
89
|
Zhou C, Tang X, Shi R, Liu C, Zhu P, Wang L. All-Aqueous Soft Milli-swimmers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39042714 DOI: 10.1021/acsami.4c05914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Microscale swimmers are attractive for targeted drug delivery, noninvasive microsurgery and environmental remediation at different length scales, among which, Marangoni-based swimmers have garnered considerable attention due to their independence of external energy supply. However, applications of most existing chemical swimmers are limited by complex fabrication, high cost, utilization of organic (or even toxic) solvents, poor motility performance, and lack of controllability. To address these challenges, we propose an approach for all-aqueous soft milli-swimmers that utilizes biodegradable hydrogels and biocompatible fuels. This innovative method achieves swimmer body generation and fuel loading in one step by simply dripping one aqueous solution into another, saving fabrication time and minimizing fuel loss during transfer. These all-aqueous soft milli-swimmers have rove beetle-like self-propulsion, which stores low-surface-energy compounds within their body for propulsion on liquid surfaces. Isotropic and anisotropic all-aqueous soft milli-swimmers are formed with precise control over their dimension, morphology, and movement velocity. Through their motion within engineered channels, intricate labyrinths, dynamic air-liquid interfaces, and collective self-assemblies, their remarkable adaptability in complex aqueous environments is demonstrated. Furthermore, the integration of functional nanoparticles endows these all-aqueous milli-swimmers with multifunctionality, expanding their applications in cargo transportation, sensing, and environmental remediation.
Collapse
Affiliation(s)
- Chunmei Zhou
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xin Tang
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Rui Shi
- College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Caihong Liu
- Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
90
|
Tang S, Tang D, Zhou H, Li Y, Zhou D, Peng X, Ren C, Su Y, Zhang S, Zheng H, Wan F, Yoo J, Han H, Ma X, Gao W, Wu S. Bacterial outer membrane vesicle nanorobot. Proc Natl Acad Sci U S A 2024; 121:e2403460121. [PMID: 39008666 PMCID: PMC11287275 DOI: 10.1073/pnas.2403460121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Autonomous nanorobots represent an advanced tool for precision therapy to improve therapeutic efficacy. However, current nanorobotic designs primarily rely on inorganic materials with compromised biocompatibility and limited biological functions. Here, we introduce enzyme-powered bacterial outer membrane vesicle (OMV) nanorobots. The immobilized urease on the OMV membrane catalyzes the decomposition of bioavailable urea, generating effective propulsion for nanorobots. This OMV nanorobot preserves the unique features of OMVs, including intrinsic biocompatibility, immunogenicity, versatile surface bioengineering for desired biofunctionalities, capability of cargo loading and protection. We present OMV-based nanorobots designed for effective tumor therapy by leveraging the membrane properties of OMVs. These involve surface bioengineering of robotic body with cell-penetrating peptide for tumor targeting and penetration, which is further enhanced by active propulsion of nanorobots. Additionally, OMV nanorobots can effectively safeguard the loaded gene silencing tool, small interfering RNA (siRNA), from enzymatic degradation. Through systematic in vitro and in vivo studies using a rodent model, we demonstrate that these OMV nanorobots substantially enhanced siRNA delivery and immune stimulation, resulting in the utmost effectiveness in tumor suppression when juxtaposed with static groups, particularly evident in the orthotopic bladder tumor model. This OMV nanorobot opens an inspiring avenue to design advanced medical robots with expanded versatility and adaptability, broadening their operation scope in practical biomedical domains.
Collapse
Affiliation(s)
- Songsong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Daitian Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| | - Houhong Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- Department of General Surgery, Shenzhen Samii Medical Center, Shenzhen518118, People’s Republic of China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Dewang Zhou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Xiqi Peng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| | - Chunyu Ren
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Yilin Su
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| | - Shaohua Zhang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
| | - Haoxiang Zheng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
| | - Fangchen Wan
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
| | - Jounghyun Yoo
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen518000, People’s Republic of China
- South China Hospital, Health Science Center, Shenzhen University, Shenzhen518116, People’s Republic of China
- Luohu Clinical Institute of Shantou University Medical College, Shantou University Medical College, Shantou515000, People’s Republic of China
| |
Collapse
|
91
|
Zhao L, Li W, Liu Y, Qi Y, An N, Yan M, Wang Z, Zhou M, Yang S. Designing Fast-Moving Antibacterial Microtorpedoes to Treat Lethal Bacterial Biofilm Infections. ACS NANO 2024. [PMID: 39023225 DOI: 10.1021/acsnano.4c04995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Engineering fast-moving microrobot swarms that can physically disassemble bacterial biofilms and kill the bacteria released from the biofilms is a promising way to combat bacterial biofilm infections. Here, we report electrochemical design of Ag7O8NO3 microtorpedoes with outstanding antibacterial performance and meanwhile capable of moving at speeds of hundreds of body lengths per second in clinically used H2O2 aqueous solutions. These fast-moving antibacterial Ag7O8NO3 microtorpedoes could penetrate into and disintegrate the bacterial biofilms and, in turn, kill the bacteria released from the biofilms. Based on the understanding of the growth behavior of the microtorpedoes, we could fine-tune the morphology of the microtorpedoes to accelerate the moving speed and increase their penetration depth into the biofilms simply via controlling the potential waveforms. We further developed an automatic shaking method to selectively peel off the uniformly structured microtorpedoes from the electrode surface, realizing continuous electrochemical production of the microtorpedoes. Animal experiments proved that the microtorpedo swarms greatly increased the survival rate of the mice infected by lethal biofilms to >90%. We used the electrochemical method to design and massively produce uniformly structured fast-moving antibacterial microtorpedo swarms with application potentials in treatment of lethal bacterial biofilm infections.
Collapse
Affiliation(s)
- Liyan Zhao
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wanlin Li
- Eye Center & Key Laboratory of Cancer Prevention and Intervention, MOE, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yue Liu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuchen Qi
- Eye Center & Key Laboratory of Cancer Prevention and Intervention, MOE, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Ning An
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Mi Yan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institution of Rare Earths, Baotou 014030, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Min Zhou
- Eye Center & Key Laboratory of Cancer Prevention and Intervention, MOE, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310029, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining 314400, China
- State Key Laboratory (SKL) of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou 310027, China
| | - Shikuan Yang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institution of Rare Earths, Baotou 014030, China
| |
Collapse
|
92
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
93
|
Dong C, Carnicer-Lombarte A, Bonafè F, Huang B, Middya S, Jin A, Tao X, Han S, Bance M, Barone DG, Fraboni B, Malliaras GG. Electrochemically actuated microelectrodes for minimally invasive peripheral nerve interfaces. NATURE MATERIALS 2024; 23:969-976. [PMID: 38671159 PMCID: PMC11230894 DOI: 10.1038/s41563-024-01886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/31/2024] [Indexed: 04/28/2024]
Abstract
Electrode arrays that interface with peripheral nerves are used in the diagnosis and treatment of neurological disorders; however, they require complex placement surgeries that carry a high risk of nerve injury. Here we leverage recent advances in soft robotic actuators and flexible electronics to develop highly conformable nerve cuffs that combine electrochemically driven conducting-polymer-based soft actuators with low-impedance microelectrodes. Driven with applied voltages as small as a few hundreds of millivolts, these cuffs allow active grasping or wrapping around delicate nerves. We validate this technology using in vivo rat models, showing that the cuffs form and maintain a self-closing and reliable bioelectronic interface with the sciatic nerve of rats without the use of surgical sutures or glues. This seamless integration of soft electrochemical actuators with neurotechnology offers a path towards minimally invasive intraoperative monitoring of nerve activity and high-quality bioelectronic interfaces.
Collapse
Affiliation(s)
- Chaoqun Dong
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | | | - Filippo Bonafè
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Botian Huang
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Sagnik Middya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Amy Jin
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Xudong Tao
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Sanggil Han
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Nano-Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Manohar Bance
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damiano G Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
94
|
Miyabe S, Fujinaga Y, Tsuchiya H, Fujimoto S. TiO 2 nanotubes with customized diameters for local drug delivery systems. J Biomed Mater Res B Appl Biomater 2024; 112:e35445. [PMID: 38946669 DOI: 10.1002/jbm.b.35445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/02/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
In this study, we evaluated the drug release behavior of diameter customized TiO2 nanotube layers fabricated by anodization with various applied voltage sequences: conventional constant applied potentials of 20 V (45 nm) and 60 V (80 nm), a 20/60 V stepped potential (50 nm [two-diameter]), and a 20-60 V swept potential (49 nm [full-tapered]) (values in parentheses indicate the inner tube diameter at the top part of nanotube layers). The structures of the 50 nm (two-diameter) and 49 nm (full-tapered) samples had smaller inner diameters at the top part of nanotube layers than that of the 80 nm sample, while the outer diameters at the bottom part of nanotube layers were almost the same size as the 80 nm sample. The 80 nm sample, which had the largest nanotube diameter and length, exhibited the greatest burst release, followed by the 50 nm (two-diameter), 49 nm (full-tapered), and 45 nm samples. The initial burst released drug amounts and release rates from the 50 nm (two-diameter) and 49 nm (full-tapered) samples were significantly suppressed by the smaller tube top. On the other hand, the largest proportion of the slow released drug amount to the total released drug amount was observed for the 50 nm (two-diameter) sample. Thus, 50 nm (two-diameter) achieved suppressed initial burst release and large storage capacity. Therefore, this study has, for the first time, applied TiO2 nanotube layers with modulated diameters (two-diameter and full-tapered) to the realization of a localized drug delivery system (LDDS) with customized drug release properties.
Collapse
Affiliation(s)
- Sayaka Miyabe
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yushi Fujinaga
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Hiroaki Tsuchiya
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Shinji Fujimoto
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| |
Collapse
|
95
|
Quan K, Mao Z, Lu Y, Qin Y, Wang S, Yu C, Bi X, Tang H, Ren X, Chen D, Cheng Y, Wang Y, Zheng Y, Xia D. Composited silk fibroins ensured adhesion stability and magnetic controllability of Fe 3O 4-nanoparticle coating on implant for biofilm treatment. MATERIALS HORIZONS 2024; 11:3157-3165. [PMID: 38629215 DOI: 10.1039/d4mh00097h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Magnetic propulsion of nano-/micro-robots is an effective way to treat implant-associated infections by physically destroying biofilm structures to enhance antibiotic killing. However, it is hard to precisely control the propulsion in vivo. Magnetic-nanoparticle coating that can be magnetically pulled off does not need precise control, but the requirement of adhesion stability on an implant surface restricts its magnetic responsiveness. Moreover, whether the coating has been fully pulled-off or not is hard to ensure in real-time in vivo. Herein, composited silk fibroins (SFMA) are optimized to stabilize Fe3O4 nanoparticles on a titanium surface in a dry environment; while in an aqueous environment, the binding force of SFMA on titanium is significantly reduced due to hydrophilic interaction, making the coating magnetically controllable by an externally-used magnet but still stable in the absence of a magnet. The maximum working distance of the magnet can be calculated using magnetomechanical simulation in which the yielding magnetic traction force is strong enough to pull Fe3O4 nanoparticles off the surface. The pulling-off removes the biofilms that formed on the coating and enhances antibiotic killing both in vitro and in a rat sub-cutaneous implant model by up to 100 fold. This work contributes to the practical knowledge of magnetic propulsion for biofilm treatment.
Collapse
Affiliation(s)
- Kecheng Quan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Zhinan Mao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yupu Lu
- Department of Dental Materials, Peking University School and Hospital of Stomatology, & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Shuren Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Chunhao Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Xuewei Bi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Hao Tang
- Department of Dental Materials, Peking University School and Hospital of Stomatology, & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, China.
| | - Yan Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Yong Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology, & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing 100081, China.
| |
Collapse
|
96
|
Hu X, Kim K, Ali A, Kim H, Kang Y, Yoon J, Torati SR, Reddy V, Im MY, Lim B, Kim C. Magnetically Selective Versatile Transport of Microrobotic Carriers. SMALL METHODS 2024; 8:e2301495. [PMID: 38308323 DOI: 10.1002/smtd.202301495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Indexed: 02/04/2024]
Abstract
Field-driven transport systems offer great promise for use as biofunctionalized carriers in microrobotics, biomedicine, and cell delivery applications. Despite the construction of artificial microtubules using several micromagnets, which provide a promising transport pathway for the synchronous delivery of microrobotic carriers to the targeted location inside microvascular networks, the selective transport of different microrobotic carriers remains an unexplored challenge. This study demonstrated the selective manipulation and transport of microrobotics along a patterned micromagnet using applied magnetic fields. Owing to varied field strengths, the magnetic beads used as the microrobotic carriers with different sizes revealed varied locomotion, including all of them moving along the same direction, selective rotation, bidirectional locomotion, and all of them moving in a reversed direction. Furthermore, cells immobilized with magnetic beads and nanoparticles also revealed varied locomotion. It is expected that such steering strategies of microrobotic carriers can be used in microvascular channels for the targeted delivery of drugs or cells in an organized manner.
Collapse
Affiliation(s)
- Xinghao Hu
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Mi-Young Im
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for X-ray Optics, Lawrence Berkeley National Laboratory Berkeley, Berkeley, CA, 94720, USA
| | - Byeonghwa Lim
- Department of Smart Sensor Engineering, Andong National University, Andong, 36729, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
97
|
Babeer A, Bukhari S, Alrehaili R, Karabucak B, Koo H. Microrobotics in endodontics: A perspective. Int Endod J 2024; 57:861-871. [PMID: 38761098 PMCID: PMC11324335 DOI: 10.1111/iej.14082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
Microorganisms are the primary aetiological factor of apical periodontitis. The goal of endodontic treatment is to prevent and eliminate the infection by removing the microorganisms. However, microbial biofilms and the complex root canal anatomy impair the disinfection process. Effective and precise endodontic therapy could potentially be achieved using advanced multifunctional technologies that have the ability to access hard-to-reach surfaces and perform simultaneous biofilm killing, removal, and detection of microorganisms. Advances in microrobotics are providing novel therapeutic and diagnostic opportunities with high precision and efficacy to address current biofilm-related challenges in biomedicine. Concurrently, multifunctional magnetic microrobots have been developed to overcome the disinfection challenges of current approaches to disrupt, kill, and retrieve biofilms with the goal of enhancing the efficacy and precision of endodontic therapy. This article reviews the recent advances of microrobotics in healthcare and particularly advances to overcome disinfection challenges in endodontics, and provides perspectives for future research in the field.
Collapse
Affiliation(s)
- Alaa Babeer
- Department of Oral Biology, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Bukhari
- Department of Endodontics, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rayan Alrehaili
- Department of Endodontics, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Bekir Karabucak
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyun Koo
- Biofilm Research Labs, Department of Orthodontics, Divisions of Pediatric Dentistry and Community of Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation and Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
98
|
Li Z, Duan Y, Zhang F, Luan H, Shen WT, Yu Y, Xian N, Guo Z, Zhang E, Yin L, Fang RH, Gao W, Zhang L, Wang J. Biohybrid microrobots regulate colonic cytokines and the epithelium barrier in inflammatory bowel disease. Sci Robot 2024; 9:eadl2007. [PMID: 38924422 DOI: 10.1126/scirobotics.adl2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Cytokines have been identified as key contributors to the development of inflammatory bowel disease (IBD), yet conventional treatments often prove inadequate and carry substantial side effects. Here, we present an innovative biohybrid robotic system, termed "algae-MΦNP-robot," for addressing IBD by actively neutralizing colonic cytokine levels. Our approach combines moving green microalgae with macrophage membrane-coated nanoparticles (MΦNPs) to efficiently capture proinflammatory cytokines "on the fly." The dynamic algae-MΦNP-robots outperformed static counterparts by enhancing cytokine removal through continuous movement, better distribution, and extended retention in the colon. This system is encapsulated in an oral capsule, which shields it from gastric acidity and ensures functionality upon reaching the targeted disease site. The resulting algae-MΦNP-robot capsule effectively regulated cytokine levels, facilitating the healing of damaged epithelial barriers. It showed markedly improved prevention and treatment efficacy in a mouse model of IBD and demonstrated an excellent biosafety profile. Overall, our biohybrid algae-MΦNP-robot system offers a promising and efficient solution for IBD, addressing cytokine-related inflammation effectively.
Collapse
Affiliation(s)
- Zhengxing Li
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaou Duan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Fangyu Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hao Luan
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Wei-Ting Shen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiyan Yu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nianfei Xian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhongyuan Guo
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Edward Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lu Yin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
99
|
Zhang F, Guo Z, Li Z, Luan H, Yu Y, Zhu AT, Ding S, Gao W, Fang RH, Zhang L, Wang J. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. SCIENCE ADVANCES 2024; 10:eadn6157. [PMID: 38865468 PMCID: PMC11168470 DOI: 10.1126/sciadv.adn6157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Lung metastasis poses a formidable challenge in the realm of cancer treatment, with conventional chemotherapy often falling short due to limited targeting and low accumulation in the lungs. Here, we show a microrobot approach using motile algae for localized delivery of drug-loaded nanoparticles to address lung metastasis challenges. The biohybrid microrobot [denoted "algae-NP(DOX)-robot"] combines green microalgae with red blood cell membrane-coated nanoparticles containing doxorubicin, a representative chemotherapeutic drug. Microalgae provide autonomous propulsion in the lungs, leveraging controlled drug release and enhanced drug dispersion to exert antimetastatic effects. Upon intratracheal administration, algae-NP(DOX)-robots efficiently transport their drug payload deep into the lungs while maintaining continuous motility. This strategy leads to rapid drug distribution, improved tissue accumulation, and prolonged retention compared to passive drug-loaded nanoparticles and free drug controls. In a melanoma lung metastasis model, algae-NP(DOX)-robots exhibit substantial improvement in therapeutic efficacy, reducing metastatic burden and extending survival compared to control groups.
Collapse
Affiliation(s)
| | | | | | - Hao Luan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Audrey T. Zhu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Shichao Ding
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Joseph Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
100
|
Wang W, Fu R, Gao R, Luo L, Wang Z, Xue Y, Sun J, Pan M, Hong M, Qiao L, Qiao W, Mei Q, Wu J, Wang Y, Zhong Y, Liu J, Tong F. H 2S-Powered Nanomotors for Active Therapy of Tumors by Inducing Ferroptosis and Lactate-Pyruvate Axis Disorders. ACS Biomater Sci Eng 2024; 10:3994-4008. [PMID: 38736179 DOI: 10.1021/acsbiomaterials.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Renquan Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Rui Gao
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Lei Luo
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongchao Wang
- Institute of Cardiovascular Disease, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yingli Xue
- Xi'an Medical University, Xi'an, 710000, PR China
| | - Jiahui Sun
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Min Pan
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Miaofang Hong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Lingyan Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Weiwei Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Qibing Mei
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yini Wang
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Yali Zhong
- Southwest University of Science and Technology, 621000 Mianyang, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Fei Tong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- School of Medicine, Zhejiang University, 310000 Hangzhou, China
| |
Collapse
|