51
|
Matsuura N, Tanaka K, Yamasaki M, Yamashita K, Saito T, Makino T, Yamamoto K, Takahashi T, Kurokawa Y, Nakajima K, Eguchi H, Nakagawa H, Doki Y. NOTCH3 limits the epithelial-mesenchymal transition and predicts a favorable clinical outcome in esophageal cancer. Cancer Med 2021; 10:3986-3996. [PMID: 34042293 PMCID: PMC8209574 DOI: 10.1002/cam4.3933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the deadliest of all human squamous cell carcinomas and is characterized by chemotherapy resistance and poor prognosis associated with the epithelial-mesenchymal transition (EMT). A subset of ESCC displays loss-of-function mutations in genes encoding Notch receptor family members, including NOTCH3. Although Notch signaling regulates EMT in ESCC cells, the role of NOTCH3 in EMT and chemotherapy resistance remains elusive. This study aimed to examine the role of NOTCH3 in EMT and chemotherapy resistance, and determine whether NOTCH3 expression can be used to predict the response to chemotherapy. METHODS In vitro and in vivo assays were conducted to clarify the contribution of NOTCH3 to chemotherapy resistance. Using specimens from 120 ESCC patients treated with neoadjuvant chemotherapy, we compared the expression levels of NOTCH3 and genes involved in EMT according to the degree of chemotherapy sensitivity. RESULTS In ESCC cells, chemotherapy resistance was associated with NOTCH3 downregulation and concurrent activation of EMT. RNA interference to silence NOTCH3 resulted in induction of the EMT marker Vimentin (VIM), leading to chemotherapy resistance in ESCC cells. Conversely, ectopic expression of the activated form of NOTCH3 suppressed EMT and sensitized cells to chemotherapy. Results of chromatin immunoprecipitation assays suggested that NOTCH3 may repress transcription of the VIM. CONCLUSIONS Our findings suggest that NOTCH3 may control chemotherapy sensitivity by regulating EMT. NOTCH3 may serve as a novel biomarker to predict better clinical outcomes in ESCC patients.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/physiology
- Down-Regulation
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Esophageal Neoplasms/drug therapy
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/surgery
- Esophageal Squamous Cell Carcinoma/drug therapy
- Esophageal Squamous Cell Carcinoma/genetics
- Esophageal Squamous Cell Carcinoma/surgery
- Esophagectomy
- Female
- Fluorouracil/pharmacology
- Gene Silencing
- Humans
- Loss of Function Mutation
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Receptor, Notch3/drug effects
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Vimentin/metabolism
- Mice
Collapse
Affiliation(s)
- Norihiro Matsuura
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Koji Tanaka
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Makoto Yamasaki
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Kotaro Yamashita
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Takuro Saito
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Tomoki Makino
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Yukinori Kurokawa
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Kiyokazu Nakajima
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Hidetoshi Eguchi
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer CenterColumbia UniversityNew YorkNYUSA
| | - Yuichiro Doki
- Department of Gastroenterological SurgeryGraduate School of MedicineOsaka UniversitySuitaOsakaJapan
| |
Collapse
|
52
|
Bernardo M, Tolstykh T, Zhang YA, Bangari DS, Cao H, Heyl KA, Lee JS, Malkova NV, Malley K, Marquez E, Pollard J, Qu H, Roberts E, Ryan S, Singh K, Sun F, Wang E, Bahjat K, Wiederschain D, Wagenaar TR. An experimental model of anti-PD-1 resistance exhibits activation of TGFß and Notch pathways and is sensitive to local mRNA immunotherapy. Oncoimmunology 2021; 10:1881268. [PMID: 33796402 PMCID: PMC7971263 DOI: 10.1080/2162402x.2021.1881268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint blockade elicits durable anti-cancer responses in the clinic, however a large proportion of patients do not benefit from treatment. Several mechanisms of innate and acquired resistance to checkpoint blockade have been defined and include mutations of MHC I and IFNγ signaling pathways. However, such mutations occur in a low frequency of patients and additional mechanisms have yet to be elucidated. In an effort to better understand acquired resistance to checkpoint blockade, we generated a mouse tumor model exhibiting in vivo resistance to anti-PD-1 antibody treatment. MC38 tumors acquired resistance to PD-1 blockade following serial in vivo passaging. Lack of sensitivity to PD-1 blockade was not attributed to dysregulation of PD-L1 or β2M expression, as both were expressed at similar levels in parental and resistant cells. Similarly, IFNγ signaling and antigen processing and presentation pathways were functional in both parental and resistant cell lines. Unbiased gene expression analysis was used to further characterize potential resistance mechanisms. RNA-sequencing revealed substantial differences in global gene expression, with tumors resistant to anti-PD-1 displaying a marked reduction in expression of immune-related genes relative to parental MC38 tumors. Indeed, resistant tumors exhibited reduced immune infiltration across multiple cell types, including T and NK cells. Pathway analysis revealed activation of TGFβ and Notch signaling in anti-PD-1 resistant tumors, and activation of these pathways was associated with poorer survival in human cancer patients. While pharmacological inhibition of TGFβ and Notch in combination with PD-1 blockade decelerated tumor growth, a local mRNA-based immunotherapy potently induced regression of resistant tumors, resulting in complete tumor remission, and resensitized tumors to treatment with anti-PD-1. Overall, this study describes a novel anti-PD-1 resistant mouse tumor model and underscores the role of two well-defined signaling pathways in response to immune checkpoint blockade. Furthermore, our data highlights the potential of intratumoral mRNA therapy in overcoming acquired resistance to PD-1 blockade.
Collapse
Affiliation(s)
| | | | - Yu-An Zhang
- Sanofi Research and Development, Cambridge, MA, USA
| | | | - Hui Cao
- Sanofi Research and Development, Cambridge, MA, USA
| | - Kerstin A Heyl
- Preclinical Research and Immunotherapies, BioNTech SE, Mainz, Germany
| | | | | | - Katie Malley
- Sanofi Research and Development, Cambridge, MA, USA
| | | | - Jack Pollard
- Sanofi Research and Development, Cambridge, MA, USA
| | - Hui Qu
- Sanofi Research and Development, Cambridge, MA, USA
| | | | - Sue Ryan
- Sanofi Research and Development, Cambridge, MA, USA
| | | | - Fangxian Sun
- Sanofi Research and Development, Cambridge, MA, USA
| | - Emma Wang
- Sanofi Research and Development, Cambridge, MA, USA
| | - Keith Bahjat
- Sanofi Research and Development, Cambridge, MA, USA
| | | | | |
Collapse
|
53
|
Li Y, Elmén L, Segota I, Xian Y, Tinoco R, Feng Y, Fujita Y, Segura Muñoz RR, Schmaltz R, Bradley LM, Ramer-Tait A, Zarecki R, Long T, Peterson SN, Ronai ZA. Prebiotic-Induced Anti-tumor Immunity Attenuates Tumor Growth. Cell Rep 2021; 30:1753-1766.e6. [PMID: 32049008 PMCID: PMC7053418 DOI: 10.1016/j.celrep.2020.01.035] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/06/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
Growing evidence supports the importance of gut microbiota in the control of tumor growth and response to therapy. Here, we select prebiotics that can enrich bacterial taxa that promote anti-tumor immunity. Addition of the prebiotics inulin or mucin to the diet of C57BL/6 mice induces anti-tumor immune responses and inhibition of BRAF mutant melanoma growth in a subcutaneously implanted syngeneic mouse model. Mucin fails to inhibit tumor growth in germ-free mice, indicating that the gut microbiota is required for the activation of the anti-tumor immune response. Inulin and mucin drive distinct changes in the microbiota, as inulin, but not mucin, limits tumor growth in syngeneic mouse models of colon cancer and NRAS mutant melanoma and enhances the efficacy of a MEK inhibitor against melanoma while delaying the emergence of drug resistance. We highlight the importance of gut microbiota in anti-tumor immunity and the potential therapeutic role for prebiotics in this process.
Collapse
Affiliation(s)
- Yan Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Lisa Elmén
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Igor Segota
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yibo Xian
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Roberto Tinoco
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yongmei Feng
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yu Fujita
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rafael R Segura Muñoz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert Schmaltz
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Linda M Bradley
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Amanda Ramer-Tait
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Raphy Zarecki
- Technion Integrated Cancer Center, Faculty of Medicine, Technion, Haifa 3525433, Israel
| | - Tao Long
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Scott N Peterson
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Ze'ev A Ronai
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
54
|
Reconciling Non-Genetic Plasticity with Somatic Evolution in Cancer. Trends Cancer 2021; 7:309-322. [PMID: 33536158 DOI: 10.1016/j.trecan.2020.12.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
Abstract
Post-treatment progression of tumors is commonly explained by somatic Darwinian evolution (i.e., selection of cells carrying genetic mutations that create more aggressive cell traits). But cancer genome and transcriptome analyses now paint a picture far more complex, prompting us to see beyond the Darwinian scheme: non-genetic cell phenotype plasticity explained by alternative stable gene expression states ('attractors'), may also produce aggressive phenotypes that can be selected for, without mutations. Worse, treatment may even induce cell state transitions into more malignant attractors. We review recent evidence for non-genetic mechanisms of progression, explain the theoretical foundation of attractor transitions behind treatment-induced increase of aggressiveness, and provide a framework for unifying genetic and non-genetic dynamics in tumor progression.
Collapse
|
55
|
Expression of transgenes enriched in rare codons is enhanced by the MAPK pathway. Sci Rep 2020; 10:22166. [PMID: 33335127 PMCID: PMC7746698 DOI: 10.1038/s41598-020-78453-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
The ability to translate three nucleotide sequences, or codons, into amino acids to form proteins is conserved across all organisms. All but two amino acids have multiple codons, and the frequency that such synonymous codons occur in genomes ranges from rare to common. Transcripts enriched in rare codons are typically associated with poor translation, but in certain settings can be robustly expressed, suggestive of codon-dependent regulation. Given this, we screened a gain-of-function library for human genes that increase the expression of a GFPrare reporter encoded by rare codons. This screen identified multiple components of the mitogen activated protein kinase (MAPK) pathway enhancing GFPrare expression. This effect was reversed with inhibitors of this pathway and confirmed to be both codon-dependent and occur with ectopic transcripts naturally coded with rare codons. Finally, this effect was associated, at least in part, with enhanced translation. We thus identify a potential regulatory module that takes advantage of the redundancy in the genetic code to modulate protein expression.
Collapse
|
56
|
Zanotelli VRT, Leutenegger M, Lun X, Georgi F, de Souza N, Bodenmiller B. A quantitative analysis of the interplay of environment, neighborhood, and cell state in 3D spheroids. Mol Syst Biol 2020; 16:e9798. [PMID: 33369114 PMCID: PMC7765047 DOI: 10.15252/msb.20209798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Cells react to their microenvironment by integrating external stimuli into phenotypic decisions via an intracellular signaling network. To analyze the interplay of environment, local neighborhood, and internal cell state effects on phenotypic variability, we developed an experimental approach that enables multiplexed mass cytometric imaging analysis of up to 240 pooled spheroid microtissues. We quantified the contributions of environment, neighborhood, and intracellular state to marker variability in single cells of the spheroids. A linear model explained on average more than half of the variability of 34 markers across four cell lines and six growth conditions. The contributions of cell-intrinsic and environmental factors to marker variability are hierarchically interdependent, a finding that we propose has general implications for systems-level studies of single-cell phenotypic variability. By the overexpression of 51 signaling protein constructs in subsets of cells, we also identified proteins that have cell-intrinsic and cell-extrinsic effects. Our study deconvolves factors influencing cellular phenotype in a 3D tissue and provides a scalable experimental system, analytical principles, and rich multiplexed imaging datasets for future studies.
Collapse
Affiliation(s)
- Vito RT Zanotelli
- Department of Quantitative BiomedicineUniversity of ZurichZürichSwitzerland
- Life Science Zürich Graduate SchoolETH Zürich and University of ZürichZürichSwitzerland
| | | | - Xiao‐Kang Lun
- Life Science Zürich Graduate SchoolETH Zürich and University of ZürichZürichSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZürichSwitzerland
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMAUSA
| | - Fanny Georgi
- Life Science Zürich Graduate SchoolETH Zürich and University of ZürichZürichSwitzerland
- Department of Molecular Life SciencesUniversity of ZurichZürichSwitzerland
| | - Natalie de Souza
- Department of Quantitative BiomedicineUniversity of ZurichZürichSwitzerland
- Institute of Molecular Systems BiologyETH ZurichZürichSwitzerland
| | - Bernd Bodenmiller
- Department of Quantitative BiomedicineUniversity of ZurichZürichSwitzerland
| |
Collapse
|
57
|
Gao L, Shen K, Yin N, Jiang M. Comprehensive Transcriptomic Analysis Reveals Dysregulated Competing Endogenous RNA Network in Endocrine Resistant Breast Cancer Cells. Front Oncol 2020; 10:600487. [PMID: 33324567 PMCID: PMC7723334 DOI: 10.3389/fonc.2020.600487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Background Tamoxifen and fulvestrant, both approved for endocrine therapy, have remarkably increased the prognosis of hormone receptor-positive breast cancer patients. However, acquired resistance to endocrine therapy greatly reduces its clinical efficacy. Accumulating evidence suggests a pivotal role of non-coding RNAs (ncRNAs) in breast cancer endocrine resistance, but the specific functions of ncRNAs in tamoxifen and fulvestrant resistance remain largely unknown. Methods Microarray analysis was performed for endocrine therapy sensitive (MCF-7), tamoxifen-resistant (LCC2), and dual tamoxifen and fulvestrant-resistant (LCC9) breast cancer cells. Gene ontology and pathway analysis were conducted for functional prediction of the unannotated differentially expressed ncRNAs. Competing endogenous RNA regulatory networks were constructed. Results We discovered a total of 3,129 long non-coding RNAs (lncRNAs), 13,556 circular RNAs (circRNAs), 132 microRNAs, and 3358 mRNAs that were significantly differentially expressed. We constructed co-expression networks for lncRNA-mRNA, circRNA-mRNA, and microRNA-mRNA. In addition, we established lncRNA-microRNA-mRNA and circRNA-microRNA-mRNA regulatory networks to depict ncRNA crosstalk and transcriptomic regulation of endocrine resistance. Conclusions Our study delineates a comprehensive profiling of ncRNAs in tamoxifen and fulvestrant resistant breast cancer cells, which enriches our understanding of endocrine resistance and sheds new light on identifying novel endocrine resistance biomarkers and potential therapeutic targets to overcome endocrine resistance.
Collapse
Affiliation(s)
- Liang Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Kunwei Shen
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ni Yin
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
58
|
Porcelli L, Mazzotta A, Garofoli M, Di Fonte R, Guida G, Guida M, Tommasi S, Azzariti A. Active notch protects MAPK activated melanoma cell lines from MEK inhibitor cobimetinib. Biomed Pharmacother 2020; 133:111006. [PMID: 33202284 DOI: 10.1016/j.biopha.2020.111006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022] Open
Abstract
The crosstalk between Notch and MAPK pathway plays a role in MEK inhibitor resistance in BRAFV600E metastatic melanoma (MM) and promotes migration in GNAQQ209L uveal melanoma (UM) cells. We determined the cytotoxicity of combinatorial inhibition of MEK and Notch by cobimetinib and γ-secretase inhibitor (GSI) nirogacestat, in BRAFV600E and BRAF wt MM and GNAQQ209L UM cells displaying different Erk1/2 and Notch activation status, with the aim to elucidate the impact of Notch signaling in the response to MEK inhibitor. Overall the combination was synergic in BRAFV600E MM and GNAQQ209L UM cells and antagonistic in BRAF wt one. Focusing on UM cells, we found that cobimetinib resulted in G0/G1 phase arrest and apoptosis induction, whereas the combination with GSI increased treatment efficacy by inducing a senescent-like state of cells and by blocking migration towards liver cancer cells. Mechanistically, this was reflected in a strong reduction of cyclin D1, in the inactivation of retinoblastoma protein and in the increase of p27KIP1 expression levels. Of note, each drug alone prevented Notch signaling activation resulting in inhibition of c-jun(Ser63) and Hes-1 expression. The combination achieved the strongest inhibition on Notch signaling and on both c-jun(Ser63) and Erk1/2 activation level. In conclusion we unveiled a coordinate action of MAPK and Notch signaling in promoting proliferation of BRAFV600E MM and GNAQQ209L UM cells. Remarkably, the simultaneous inhibition of MEK and Notch signaling highlighted a role for the second pathway in protecting cells against senescence in GNAQQ209L UM cells treated with the MEK inhibitor.
Collapse
Affiliation(s)
- Letizia Porcelli
- Experimental Pharmacology Laboratory, Italia, 70124, Bari, Italy
| | | | | | - Roberta Di Fonte
- Experimental Pharmacology Laboratory, Italia, 70124, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, P.zza Giulio Cesare 11, 70124 Bari, Italy
| | | | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit IRCCS Istituto Tumori "Giovanni Paolo II" di Bari, Italia, 70124, Bari, Italy
| | - Amalia Azzariti
- Experimental Pharmacology Laboratory, Italia, 70124, Bari, Italy.
| |
Collapse
|
59
|
Notch Signaling Function in the Angiocrine Regulation of Tumor Development. Cells 2020; 9:cells9112467. [PMID: 33198378 PMCID: PMC7697556 DOI: 10.3390/cells9112467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022] Open
Abstract
The concept of tumor growth being angiogenesis dependent had its origin in the observations of Judah Folkman in 1969 of a retinoblastoma in a child. Tumor angiogenesis is initiated when endothelial cells (ECs) respond to local stimuli and migrate towards the growing mass, which results in the formation of tubular structures surrounded by perivascular support cells that transport blood to the inner tumor. In turn, the neo-vasculature supports tumor development and eventual metastasis. This process is highly regulated by several signaling pathways. Central to this process is the Notch signaling pathway. Beyond the role of Notch signaling in tumor angiogenesis, a major hallmark of cancer development, it has also been implicated in the regulation of tumor cell proliferation and survival, in epithelial-to-mesenchymal transition, invasion and metastasis and in the regulation of cancer stem cells, in a variety of hematologic and solid malignancies. There is increasing evidence for the tumor vasculature being important in roles other than those linked to blood perfusion. Namely, endothelial cells act on and influence neighboring tumor cells by use of angiocrine factors to generate a unique cellular microenvironment, thereby regulating tumor stem-like cells’ homeostasis, modulating tumor progression, invasiveness, trafficking and metastasis. This review will focus on Notch signaling components that play a part in angiocrine signaling in a tumor setting.
Collapse
|
60
|
Anti-tumor activities of the new oral pan-RAF inhibitor, TAK-580, used as monotherapy or in combination with novel agents in multiple myeloma. Oncotarget 2020; 11:3984-3997. [PMID: 33216827 PMCID: PMC7646837 DOI: 10.18632/oncotarget.27775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022] Open
Abstract
Many RAS pathway inhibitors, including pan-RAF inhibitors, have shown significant anti-tumor activities in both solid and hematological tumors. The pan-RAF inhibitor, TAK-580, is a representative of the novel RAF inhibitors that act by disrupting RAF homo- or heterodimerization. In this study, we examined the anti-tumor effects of TAK-580 used as monotherapy or in combination with bortezomib, lenalidomide, or other novel agents in multiple myeloma (MM) cells in vitro. TAK-580 monotherapy potently targeted proteins in the RAS-RAF-MEK-ERK signaling pathway and induced potent cytotoxicity and apoptosis in MM cell lines and myeloma cells from patients with newly diagnosed and relapsed and/or refractory MM, compared with a representative RAF inhibitor, dabrafenib. Normal donor peripheral blood B lymphocytes and cord blood CD34-positive cells were not affected. Importantly, TAK-580 significantly inhibited phospho-FOXO3 and induced upregulation of BimL and BimS in a dose-dependent manner, finally leading to apoptosis in MM cells. Moreover, TAK-580 enhanced bortezomib-induced cytotoxicity and apoptosis in MM cells via the FOXO3-Bim axis and the terminal unfolded protein response. Importantly, TAK-580 also enhanced lenalidomide-induced cytotoxicity and apoptosis in MM cells. Taken together, our results provide the rationale for TAK-580 monotherapy and/or treatment in combination with novel agents to improve outcomes in patients with MM.
Collapse
|
61
|
Aiello G, Ballabio C, Ruggeri R, Fagnocchi L, Anderle M, Morassut I, Caron D, Garilli F, Gianno F, Giangaspero F, Piazza S, Romanel A, Zippo A, Tiberi L. Truncated BRPF1 Cooperates with Smoothened to Promote Adult Shh Medulloblastoma. Cell Rep 2020; 29:4036-4052.e10. [PMID: 31851932 DOI: 10.1016/j.celrep.2019.11.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 05/14/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients. Here, we found that truncated BRPF1 protein, as found in human adult patients, is able to induce medulloblastoma in adult mice upon SmoM2 activation. Indeed, postmitotic neurons re-entered the cell cycle and proliferated as a result of chromatin remodeling of neurons by BRPF1. Our model of brain cancer explains the onset of a subset of human medulloblastoma in adult individuals where granule neuron progenitors are no longer present.
Collapse
Affiliation(s)
- Giuseppe Aiello
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Claudio Ballabio
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Riccardo Ruggeri
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Fagnocchi
- Laboratory of Chromatin Biology & Epigenetics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Marica Anderle
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Ilaria Morassut
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Davide Caron
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesca Garilli
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Francesca Gianno
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Felice Giangaspero
- Department of Radiologic, Oncologic and Anatomo Pathological Sciences, University Sapienza of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Silvano Piazza
- Bioinformatics Core Facility, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessandro Romanel
- Laboratory of Bioinformatics and Computational Genomics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology & Epigenetics, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Luca Tiberi
- Armenise-Harvard Laboratory of Brain Disorders and Cancer, CIBIO, University of Trento, Via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
62
|
Duan L, Yang W, Feng W, Cao L, Wang X, Niu L, Li Y, Zhou W, Zhang Y, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Molecular mechanisms and clinical implications of miRNAs in drug resistance of colorectal cancer. Ther Adv Med Oncol 2020; 12:1758835920947342. [PMID: 32922521 PMCID: PMC7450467 DOI: 10.1177/1758835920947342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Systemic chemotherapy is identified as a curative approach to prolong the survival time of patients with colorectal cancer (CRC). Although great progress in therapeutic approaches has been achieved during the last decades, drug resistance still extensively persists and serves as a major hurdle to effective anticancer therapy for CRC. The mechanism of multidrug resistance remains unclear. Recently, mounting evidence suggests that a great number of microRNAs (miRNAs) may contribute to drug resistance in CRC. Certain of these miRNAs may thus be used as promising biomarkers for predicting drug response to chemotherapy or serve as potential targets to develop personalized therapy for patients with CRC. This review mainly summarizes recent advances in miRNAs and the molecular mechanisms underlying miRNA-mediated chemoresistance in CRC. We also discuss the potential role of drug resistance-related miRNAs as potential biomarkers (diagnostic and prognostic value) and envisage the future orientation and challenges in translating the findings on miRNA-mediated chemoresistance of CRC into clinical applications.
Collapse
Affiliation(s)
- Lili Duan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wanli Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Weibo Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Lu Cao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China
| | - Xiaoqian Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liaoran Niu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yiding Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
63
|
Zhai Z, Samson JM, Yamauchi T, Vaddi PK, Matsumoto Y, Dinarello CA, Ravindran Menon D, Fujita M. Inflammasome Sensor NLRP1 Confers Acquired Drug Resistance to Temozolomide in Human Melanoma. Cancers (Basel) 2020; 12:E2518. [PMID: 32899791 PMCID: PMC7563249 DOI: 10.3390/cancers12092518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Cancer cells gain drug resistance through a complex mechanism, in which nuclear factor-κB (NF-κB) and interleukin-1β (IL-1β) are critical contributors. Because NACHT, LRR and PYD domains-containing protein (NLRP) inflammasomes mediate IL-1β maturation and NF-κB activation, we investigated the role of inflammasome sensor NLRP1 in acquired drug resistance to temozolomide (TMZ) in melanoma. The sensitivity of melanoma cells to TMZ was negatively correlated with the expression levels of O6-methylguanine-DNA methyltransferase (MGMT), the enzyme to repair TMZ-induced DNA lesions. When MGMT-low human melanoma cells (1205Lu and HS294T) were treated with TMZ for over two months, MGMT was upregulated, and cells became resistant. However, the resistance mechanism was independent of MGMT, and the cells that acquired TMZ resistance showed increased NLRP1 expression, NLRP inflammasome activation, IL-1β secretion, and NF-κB activity, which contributed to the acquired resistance to TMZ. Finally, blocking IL-1 receptor (IL-1R) signaling with IL-1R antagonist decreased TMZ-resistant 1205Lu tumor growth in vivo. Although inflammation has been associated with drug resistance in various cancers, our paper is the first to demonstrate the involvement of NLRP in the development of acquired drug resistance. Because drug-tolerant cancer cells become cross-tolerant to other classes of cancer drugs, NLRP1 might be a suitable therapeutic target in drug-resistant melanoma, as well as in other cancers.
Collapse
Affiliation(s)
- Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Jenny Mae Samson
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Prasanna K. Vaddi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Yuko Matsumoto
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dinoop Ravindran Menon
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (Z.Z.); (J.M.S.); (T.Y.); (P.K.V.); (Y.M.); (D.R.M.)
- Department of Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, CO 80045, USA
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
64
|
Vaghari-Tabari M, Majidinia M, Moein S, Qujeq D, Asemi Z, Alemi F, Mohamadzadeh R, Targhazeh N, Safa A, Yousefi B. MicroRNAs and colorectal cancer chemoresistance: New solution for old problem. Life Sci 2020; 259:118255. [PMID: 32818543 DOI: 10.1016/j.lfs.2020.118255] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common gastrointestinal malignancies with a significant mortality rate. Despite the great advances in cancer treatment in the last few decades, effective treatment of CRC is still under challenge. One of the main problems associated with CRC treatment is the resistance of cancer cells to chemotherapy drugs. METHODS Many studies have been carried out to identify CRC chemoresistance mechanisms, and shed light on the role of ATP-binding cassette transporters (ABC transporters), enzymes as thymidylate synthase, some signaling pathways, and cancer stem cells (CSC) in chemoresistance and failed CRC chemotherapies. Other studies have also been recently carried out to find solutions to overcome chemoresistance. Some of these studies have identified the role of miRNAs in chemoresistance of the CRC cells and the effective use of these micro-molecules to CRC treatment. RESULTS Considering the results of these studies, more focus on miRNAs likely leads to a proper solution to overcome CRC chemoresistance. CONCLUSION The current study has reviewed the related literature while discussing the efficacy of miRNAs as potential clinical tools for overcoming CRC chemoresistance and reviewing the most important chemoresistance mechanisms in CRC cells.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Soheila Moein
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Mohamadzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nilofar Targhazeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran.
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
65
|
Ozkan-Dagliyan I, Diehl JN, George SD, Schaefer A, Papke B, Klotz-Noack K, Waters AM, Goodwin CM, Gautam P, Pierobon M, Peng S, Gilbert TSK, Lin KH, Dagliyan O, Wennerberg K, Petricoin EF, Tran NL, Bhagwat SV, Tiu RV, Peng SB, Herring LE, Graves LM, Sers C, Wood KC, Cox AD, Der CJ. Low-Dose Vertical Inhibition of the RAF-MEK-ERK Cascade Causes Apoptotic Death of KRAS Mutant Cancers. Cell Rep 2020; 31:107764. [PMID: 32553168 PMCID: PMC7393480 DOI: 10.1016/j.celrep.2020.107764] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
We address whether combinations with a pan-RAF inhibitor (RAFi) would be effective in KRAS mutant pancreatic ductal adenocarcinoma (PDAC). Chemical library and CRISPR genetic screens identify combinations causing apoptotic anti-tumor activity. The most potent combination, concurrent inhibition of RAF (RAFi) and ERK (ERKi), is highly synergistic at low doses in cell line, organoid, and rat models of PDAC, whereas each inhibitor alone is only cytostatic. Comprehensive mechanistic signaling studies using reverse phase protein array (RPPA) pathway mapping and RNA sequencing (RNA-seq) show that RAFi/ERKi induced insensitivity to loss of negative feedback and system failures including loss of ERK signaling, FOSL1, and MYC; shutdown of the MYC transcriptome; and induction of mesenchymal-to-epithelial transition. We conclude that low-dose vertical inhibition of the RAF-MEK-ERK cascade is an effective therapeutic strategy for KRAS mutant PDAC.
Collapse
Affiliation(s)
- Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel D George
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bjoern Papke
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kathleen Klotz-Noack
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany
| | - Andrew M Waters
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Sen Peng
- Departments of Cancer and Cell Biology, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Thomas S K Gilbert
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Onur Dagliyan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | | | - Ramon V Tiu
- Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | - Laura E Herring
- UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lee M Graves
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christine Sers
- Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Berlin Institute of Health (BIH), Anna-Louise-Karsch-Str. 2, 10178 Berlin, Germany
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Adrienne D Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Charité Universitätsmedizin Berlin, Institute of Pathology, Laboratory of Molecular Tumor Pathology and Systems Biology, 10117 Berlin, Germany.
| |
Collapse
|
66
|
Kharbanda A, Walter DM, Gudiel AA, Schek N, Feldser DM, Witze ES. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis. Sci Signal 2020; 13:13/621/eaax2364. [PMID: 32127496 DOI: 10.1126/scisignal.aax2364] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-small cell lung cancer (NSCLC) is often characterized by mutually exclusive mutations in the epidermal growth factor receptor (EGFR) or the guanosine triphosphatase KRAS. We hypothesized that blocking EGFR palmitoylation, previously shown to inhibit EGFR activity, might alter downstream signaling in the KRAS-mutant setting. Here, we found that blocking EGFR palmitoylation, by either knocking down the palmitoyltransferase DHHC20 or expressing a palmitoylation-resistant EGFR mutant, reduced activation of the kinase PI3K, the abundance of the transcription factor MYC, and the proliferation of cells in culture, as well as reduced tumor growth in a mouse model of KRAS-mutant lung adenocarcinoma. Knocking down DHHC20 reduced the growth of existing tumors derived from human KRAS-mutant lung cancer cells and increased the sensitivity of these cells to a PI3K inhibitor. Palmitoylated EGFR interacted with the PI3K regulatory subunit PIK3R1 (p85) and increased the recruitment of the PI3K heterodimer to the plasma membrane. Alternatively, blocking palmitoylation increased the association of EGFR with the MAPK adaptor Grb2 and decreased that with p85. This binary switching between MAPK and PI3K signaling, modulated by EGFR palmitoylation, was only observed in the presence of oncogenic KRAS. These findings suggest a mechanism whereby oncogenic KRAS saturates signaling through unpalmitoylated EGFR, reducing formation of the PI3K signaling complex. Future development of DHHC20 inhibitors to reduce EGFR-PI3K signaling could be beneficial to patients with KRAS-mutant tumors.
Collapse
Affiliation(s)
- Akriti Kharbanda
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Walter
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrea A Gudiel
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nancy Schek
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Feldser
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S Witze
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
67
|
Akiyama H, Umezawa Y, Watanabe D, Okada K, Ishida S, Nogami A, Miura O. Inhibition of USP9X Downregulates JAK2-V617F and Induces Apoptosis Synergistically with BH3 Mimetics Preferentially in Ruxolitinib-Persistent JAK2-V617F-Positive Leukemic Cells. Cancers (Basel) 2020; 12:cancers12020406. [PMID: 32050632 PMCID: PMC7072561 DOI: 10.3390/cancers12020406] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 01/17/2023] Open
Abstract
JAK2-V617F plays a key role in the pathogenesis of myeloproliferative neoplasm. However, its inhibitor ruxolitinib has shown limited clinical efficacies because of the ruxolitinib-persistent proliferation of JAK2-V617F-positive cells. We here demonstrate that the USP9X inhibitor WP1130 or EOAI3402143 (G9) inhibited proliferation and induced apoptosis more efficiently in cells dependent on JAK2-V617F than on cytokine-activated JAK2. WP1130 preferentially downregulated activated and autophosphorylated JAK2-V617F by enhancing its K63-linked polyubiquitination and inducing its aggresomal translocation to block downstream signaling. Furthermore, JAK2-V617F associated physically with USP9X in leukemic HEL cells. Induction of apoptosis by inhibition of USP9X was mediated through the intrinsic mitochondria-mediated pathway, synergistically enhanced by BH3 mimetics, prevented by overexpression of Bcl-xL, and required oxidative stress to activate stress-related MAP kinases p38 and JNK as well as DNA damage responses in HEL cells. Although autophosphorylated JAK2-V617F was resistant to WP1130 in the ruxolitinib-persistent HEL-R cells, these cells expressed Bcl-2 and Bcl-xL at lower levels and showed an increased sensitivity to WP1130 as well as BH3 mimetics as compared with ruxolitinib-naive HEL cells. Thus, USP9X represents a promising target along with anti-apoptotic Bcl-2 family members for novel therapeutic strategies against JAK2-V617F-positive myeloproliferative neoplasms, particularly under the ruxolitinib persistence conditions.
Collapse
Affiliation(s)
- Hiroki Akiyama
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Yoshihiro Umezawa
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Daisuke Watanabe
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Keigo Okada
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Shinya Ishida
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
| | - Ayako Nogami
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Department of Clinical Laboratory, Medical Hospital, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyoku, Tokyo 113-8519, Japan
| | - Osamu Miura
- Department of Hematology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; (H.A.); (Y.U.); (D.W.); (K.O.); (S.I.); (A.N.)
- Correspondence:
| |
Collapse
|
68
|
The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer. Sci Rep 2020; 10:1310. [PMID: 31992798 PMCID: PMC6987111 DOI: 10.1038/s41598-020-58211-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/09/2020] [Indexed: 01/18/2023] Open
Abstract
CD95/Fas is an apoptosis inducing death receptor. However, it also has multiple nonapoptotic activities that are tumorigenic. Chronic stimulation of CD95 on breast cancer cells can increase their cancer initiating capacity through activation of a type I interferon (IFN-I)/STAT1 pathway when caspases are inhibited. We now show that this activity relies on the canonical components of the CD95 death-inducing signaling complex, FADD and caspase-8, and on the activation of NF-κB. We identified caspase-2 as the antagonistic caspase that downregulates IFN-I production. Once produced, IFN-Is bind to their receptors activating both STAT1 and STAT2 resulting in upregulation of the double stranded (ds)RNA sensor proteins RIG-I and MDA5, and a release of a subset of endogenous retroviruses. Thus, CD95 is part of a complex cell autonomous regulatory network that involves activation of innate immune components that drive cancer stemness and contribute to therapy resistance.
Collapse
|
69
|
Li QS, Shen BN, Xu HJ, Ruan BF. Promising Strategies for Overcoming BRAF Inhibitor Resistance Based on Known Resistance Mechanisms. Anticancer Agents Med Chem 2020; 20:1415-1430. [PMID: 32321411 DOI: 10.2174/1871520620666200422073622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/23/2020] [Accepted: 02/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Almost 50% of metastatic melanomas harbor BRAF mutations. Since 2011, BRAF inhibitors have exhibited striking clinical benefits in BRAF-mutant melanoma patients. Unfortunately, their therapeutic effects are often temporary. The resistance mechanisms vary and can be broadly classified as MAPK reactivation-dependent and -independent. Elucidation of these resistance mechanisms provides new insights into strategies for overcoming resistance. Indeed, several alternative treatment strategies, including changes in the mode of administration, combinations of BRAF and MEK inhibitors, and immunotherapy have been verified as beneficial to BRAF inhibitor-resistant melanoma patients. Prospect In this review, we discuss promising strategies for overcoming drug resistance and highlighting the prospects for discovering strategies to counteract BRAF inhibitor resistance.
Collapse
Affiliation(s)
- Qing-Shan Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Bang-Nian Shen
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| | - Ban-Feng Ruan
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230601, China
| |
Collapse
|
70
|
Jackett LA, Scolyer RA. A Review of Key Biological and Molecular Events Underpinning Transformation of Melanocytes to Primary and Metastatic Melanoma. Cancers (Basel) 2019; 11:cancers11122041. [PMID: 31861163 PMCID: PMC6966527 DOI: 10.3390/cancers11122041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a major public health concern that is responsible for significant morbidity and mortality, particularly in countries such as New Zealand and Australia where it is the commonest cause of cancer death in young adults. Until recently, there were no effective drug therapies for patients with advanced melanoma however significant advances in our understanding of the biological and molecular basis of melanoma in recent decades have led to the development of revolutionary treatments, including targeted molecular therapy and immunotherapy. This review summarizes our current understanding of the key events in the pathway of melanomagenesis and discusses the role of genomic analysis as a potential tool for improved diagnostic evaluation, prognostication and treatment strategies. Ultimately, it is hoped that a continued deeper understanding of the mechanisms of melanomagenesis will lead to the development of even more effective treatments that continue to provide better outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Louise A. Jackett
- Melanoma Institute Australia, 2065 Sydney, Australia;
- Sydney Medical School, The University of Sydney, 2050 Sydney, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, 2050 Sydney, Australia
- Department of Anatomical Pathology, Austin Hospital, 3084 Melbourne, Australia
| | - Richard A. Scolyer
- Melanoma Institute Australia, 2065 Sydney, Australia;
- Sydney Medical School, The University of Sydney, 2050 Sydney, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, 2050 Sydney, Australia
- Correspondence: ; Tel.: +61-299117200; Fax: +61-299549290
| |
Collapse
|
71
|
Wang Y, Xia Y, Hu K, Zeng M, Zhi C, Lai M, Wu L, Liu S, Zeng S, Huang Z, Ma S, Yuan Z. MKK7 transcription positively or negatively regulated by SP1 and KLF5 depends on HDAC4 activity in glioma. Int J Cancer 2019; 145:2496-2508. [PMID: 30963560 DOI: 10.1002/ijc.32321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
JNK activity has been implicated in the malignant proliferation, invasion and drug-resistance of glioma cells (GCs), but the molecular mechanisms underlying JNK activation are currently unknown. Here, we reported that MKK7, not MKK4, directly activates JNK in GCs and exerts oncogenic effects on tumor formation. Notably, MKK7 expression in glioma tissues was closely correlated with the grade of the glioma and JNK/c-Jun activation. Mechanistically, MKK7 transcription critically depends on the complexes formed by HDAC4 and the transcriptional factors SP1 and Krüppel-like factor-5 (KLF5), wherein HDAC4 directly deacetylates both SP1 and KLF5 and synergistically upregulates MKK7 transcription through two SP1 sites located on its promoter. In contrast, the increases in acetylated-SP1 and acetylated-KLF5 after HDAC4 inhibition switched to transcriptionally suppress MKK7. Selective inhibition of HDAC4 by LMK235, siRNAs or blockage of SP1 and KLF5 by the ectopic dominant-negative SP1 greatly reduced the malignant capacity of GCs. Furthermore, suppression of both MKK7 expression and JNK/c-Jun activities was involved in the tumor-growth inhibitory effects induced by LMK235 in U87-xenograft mice. Interestingly, HDAC4 is highly expressed in glioma tissues, and the rate of HDAC4 nuclear import is closely correlated with glioma grade, as well as with MKK7 expression. Collectively, these findings demonstrated that highly expressed MKK7 contributes to JNK/c-Jun signaling-mediated glioma formation. MKK7 transcription, regulated by SP1 and KLF5, critically depends on HDAC4 activity, and inhibition of HDAC4 presents a potential strategy for suppressing the oncogenic roles of MKK7/JNK/c-Jun signaling in GCs.
Collapse
Affiliation(s)
- Yezhong Wang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Yong Xia
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Minling Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaoling Lai
- Department of Pathology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liqiang Wu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Ziyan Huang
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery and Neurosurgical Disease Research Centre, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Neurosciences of Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
72
|
Cocce KJ, Jasper JS, Desautels TK, Everett L, Wardell S, Westerling T, Baldi R, Wright TM, Tavares K, Yllanes A, Bae Y, Blitzer JT, Logsdon C, Rakiec DP, Ruddy DA, Jiang T, Broadwater G, Hyslop T, Hall A, Laine M, Phung L, Greene GL, Martin LA, Pancholi S, Dowsett M, Detre S, Marks JR, Crawford GE, Brown M, Norris JD, Chang CY, McDonnell DP. The Lineage Determining Factor GRHL2 Collaborates with FOXA1 to Establish a Targetable Pathway in Endocrine Therapy-Resistant Breast Cancer. Cell Rep 2019; 29:889-903.e10. [PMID: 31644911 PMCID: PMC6874102 DOI: 10.1016/j.celrep.2019.09.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 07/02/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022] Open
Abstract
Notwithstanding the positive clinical impact of endocrine therapies in estrogen receptor-alpha (ERα)-positive breast cancer, de novo and acquired resistance limits the therapeutic lifespan of existing drugs. Taking the position that resistance is nearly inevitable, we undertook a study to identify and exploit targetable vulnerabilities that were manifest in endocrine therapy-resistant disease. Using cellular and mouse models of endocrine therapy-sensitive and endocrine therapy-resistant breast cancer, together with contemporary discovery platforms, we identified a targetable pathway that is composed of the transcription factors FOXA1 and GRHL2, a coregulated target gene, the membrane receptor LYPD3, and the LYPD3 ligand, AGR2. Inhibition of the activity of this pathway using blocking antibodies directed against LYPD3 or AGR2 inhibits the growth of endocrine therapy-resistant tumors in mice, providing the rationale for near-term clinical development of humanized antibodies directed against these proteins.
Collapse
Affiliation(s)
- Kimberly J Cocce
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jeff S Jasper
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Taylor K Desautels
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Logan Everett
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Suzanne Wardell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas Westerling
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Robert Baldi
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tricia M Wright
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kendall Tavares
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alex Yllanes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yeeun Bae
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Craig Logsdon
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Daniel P Rakiec
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA 02139, USA
| | - David A Ruddy
- Novartis Institutes for Biomedical Research, Oncology Disease Area, Cambridge, MA 02139, USA
| | - Tiancong Jiang
- Department of Biostatistics, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gloria Broadwater
- Department of Biostatistics, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Terry Hyslop
- Department of Biostatistics, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Allison Hall
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Muriel Laine
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Linda Phung
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Geoffrey L Greene
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA
| | - Lesley-Ann Martin
- Breast Cancer Now, Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Sunil Pancholi
- Breast Cancer Now, Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | - Mitch Dowsett
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital NHS Trust, London, SW3 6JJ, UK
| | - Simone Detre
- Ralph Lauren Centre for Breast Cancer Research, Royal Marsden Hospital NHS Trust, London, SW3 6JJ, UK
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gregory E Crawford
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - John D Norris
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ching-Yi Chang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
73
|
Manzari MT, Anderson GR, Lin KH, Soderquist RS, Çakir M, Zhang M, Moore CE, Skelton RN, Fèvre M, Li X, Bellucci JJ, Wardell SE, Costa SA, Wood KC, Chilkoti A. Genomically informed small-molecule drugs overcome resistance to a sustained-release formulation of an engineered death receptor agonist in patient-derived tumor models. SCIENCE ADVANCES 2019; 5:eaaw9162. [PMID: 31517048 PMCID: PMC6726446 DOI: 10.1126/sciadv.aaw9162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/06/2019] [Indexed: 05/22/2023]
Abstract
Extrinsic pathway agonists have failed repeatedly in the clinic for three core reasons: Inefficient ligand-induced receptor multimerization, poor pharmacokinetic properties, and tumor intrinsic resistance. Here, we address these factors by (i) using a highly potent death receptor agonist (DRA), (ii) developing an injectable depot for sustained DRA delivery, and (iii) leveraging a CRISPR-Cas9 knockout screen in DRA-resistant colorectal cancer (CRC) cells to identify functional drivers of resistance. Pharmacological blockade of XIAP and BCL-XL by targeted small-molecule drugs strongly enhanced the antitumor activity of DRA in CRC cell lines. Recombinant fusion of the DRA to a thermally responsive elastin-like polypeptide (ELP) creates a gel-like depot upon subcutaneous injection that abolishes tumors in DRA-sensitive Colo205 mouse xenografts. Combination of ELPdepot-DRA with BCL-XL and/or XIAP inhibitors led to tumor growth inhibition and extended survival in DRA-resistant patient-derived xenografts. This strategy provides a precision medicine approach to overcome similar challenges with other protein-based cancer therapies.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Grace R. Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Kevin H. Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan S. Soderquist
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Merve Çakir
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Mitchell Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Chandler E. Moore
- Department of Neuroscience, Duke University, Durham, NC 27710, USA
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Rachel N. Skelton
- Department of Neuroscience, Duke University, Durham, NC 27710, USA
- Duke Global Health Institute, Duke University, Durham, NC 27710, USA
| | - Maréva Fèvre
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Joseph J. Bellucci
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Suzanne E. Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Simone A. Costa
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
| | - Kris C. Wood
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Corresponding author. (K.C.W.); (A.C.)
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA
- Corresponding author. (K.C.W.); (A.C.)
| |
Collapse
|
74
|
Yang J, Zheng W, Xu Z, Chen J. MAP3K1 rs889312 genotypes influence survival outcomes of Chinese gastric cancer patients who received adjuvant chemotherapy based on platinum and fluorouracil regimes. Onco Targets Ther 2019; 12:6843-6855. [PMID: 31686841 PMCID: PMC6709816 DOI: 10.2147/ott.s205438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background For patients with gastric cancer (GC), adjuvant chemotherapy is a standard therapy. However, the responses to the treatment are quite different. Mitogen-activated protein kinase (MAPK) pathway is a core pathway that modulates the efficacy of anticancer drugs. The purpose of our study was to investigate the clinical significance of one pivotal functional gene polymorphism in the MAPK pathway – MAP3K1 rs889312 – in patients with stage II GC to stage III GC. Methods The genotypes of MAP3K1 rs889312 were analyzed in 591 GC patients enrolled in this study who had received radical gastrectomy. Among them, 204 patients accepted adjuvant chemotherapy based on platinum and fluorouracil (PF) regimens after an operation. Cox regression analysis, log-rank test and Kaplan–Meier method were used to explore the link between MAP3K1 rs889312 variant and overall survival (OS) of GC. Results Compared with the AA genotype (mean OS of 68.12 months), MAP3K1 rs889312 AC/CC significantly reduced the mean OS of 56.83 months in patients who received adjuvant chemotherapy only. In addition, AC/CC genotype had a negative impact on OS of patients who received oxaliplatin-based therapy (HR, 8.253; 95% CI: 1.119–60.853, log-rank p=0.013). Stratification analysis showed that MAP3K1 rs889312 AC/CC significantly reduced OS of patients with tumors smaller than or equal to 5 cm in size (HR, 3.706; 95% CI: 1.329–10.335, p=0.012), poorly differentiated tumors (HR, 3.002; 95% CI: 1.076–8.377, p=0.036) and intestinal tumors (HR, 4.780; 95% CI: 1.138–20.073, p=0.033). Conclusion Our findings suggested that MAP3K1 rs889312 single-nucleotide polymorphism may be considered as a biomarker for adjuvant chemotherapy reaction and can predict prognosis of GC patients who received PF-based therapy.
Collapse
Affiliation(s)
- Jian Yang
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,Department of Oncology, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, People's Republic of China
| | - Wei Zheng
- Department of General Surgery, The Affiliated Yixing Hospital of Jiangsu University, Yixing 214200, People's Republic of China
| | - Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,ICR Medical Affairs, ICON Plc, Shanghai 200003, People's Republic of China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, People's Republic of China.,Cancer Center, TaiKang Xianlin Drum Tower Hospital, Nanjing University School of Medicine, Nanjing 210046, People's Republic of China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 210006, People's Republic of China
| |
Collapse
|
75
|
Panda M, Biswal BK. Cell signaling and cancer: a mechanistic insight into drug resistance. Mol Biol Rep 2019; 46:5645-5659. [PMID: 31280421 DOI: 10.1007/s11033-019-04958-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Drug resistance is a major setback for advanced therapeutics in multiple cancers. The increasing prevalence of this resistance is a growing concern and bitter headache for the researchers since a decade. Hence, it is essential to revalidate the existing strategies available for cancer treatment and to look after a novel therapeutic approach for target based killing of cancer cells at the genetic level. This review outlines the different mechanisms enabling resistance including drug efflux, drug target alternation, alternative splicing, the release of the extracellular vesicle, tumor heterogeneity, epithelial-mesenchymal transition, tumor microenvironment, the secondary mutation in the receptor, epigenetic alternation, heterodimerization of receptors, amplification of target and amplification of components rather than the target. Furthermore, existing evidence and the role of various signaling pathways like EGFR, Ras, PI3K/Akt, Wnt, Notch, TGF-β, Integrin-ECM signaling in drug resistance are explained. Lastly, the prevention of this resistance by a contemporary therapeutic strategy, i.e., a combination of specific signaling pathway inhibitors and the cocktail of a cancer drug is summarized showing the new treatment strategies.
Collapse
Affiliation(s)
- Munmun Panda
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology, Sundargarh, Rourkela, Odisha, 769008, India.
| |
Collapse
|
76
|
Abstract
RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.
Collapse
|
77
|
Shih JC, Lin HH, Hsiao AC, Su YT, Tsai S, Chien CL, Kung HN. Unveiling the role of microRNA-7 in linking TGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion. FASEB J 2019; 33:6281-6295. [PMID: 30789794 DOI: 10.1096/fj.201801898rr] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Several pregnancy complications result from abnormal trophoblast invasion. The dichotomous effect of TGF-β on epithelial-mesenchymal transition (EMT) between trophoblast invasion and cancer progression remains unknown and a critical concern. We attenuated the expression of TGF-β type 1 receptor (coding by TGFBR1) with RNA interference in trophoblastic cells and significantly enhanced the trophoblastic invasion. Analysis of microRNA profiles in trophoblasts indicated microRNA-7 as a key molecule linking TGF-β with the negative regulation of trophoblast invasion. We then attenuated TGFBR1 and miR-7 transcription by transducing either short hairpin RNA targeting TGFBR1 or anti-miR-7-locked nucleonic acid, and we observed an up-regulation of EMT-related transcription factors (TFs) and their downstream effectors, causing a mesenchymal transition of trophoblasts. Conversely, overexpression of TGFBR1 or miR-7 led to the epithelial transition of trophoblasts. Our results showed that TGF-β-induced miR-7 expression negatively modulated the TGF-β-SMAD family member 2-mediated EMT pathway via targeting EMT-related TFs and down-regulating their mesenchymal markers. These findings possibly explain, at least in part, why TGF-β exerts an opposite effect on EMT during trophoblast invasion and cancer progression.-Shih, J.-C., Lin, H.-H., Hsiao, A.-C., Su, Y.-T., Tsai, S., Chien, C.-L., Kung, H.-N. Unveiling the role of microRNA-7 in linking TGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion.
Collapse
Affiliation(s)
- Jin-Chung Shih
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hua-Heng Lin
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - An-Che Hsiao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Su
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shawn Tsai
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Liang Chien
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Ni Kung
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
78
|
Fortini F, Vieceli Dalla Sega F, Caliceti C, Lambertini E, Pannuti A, Peiffer DS, Balla C, Rizzo P. Estrogen-mediated protection against coronary heart disease: The role of the Notch pathway. J Steroid Biochem Mol Biol 2019; 189:87-100. [PMID: 30817989 DOI: 10.1016/j.jsbmb.2019.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Estrogen regulates a plethora of biological processes, under physiological and pathological conditions, by affecting key pathways involved in the regulation of cell proliferation, fate, survival and metabolism. The Notch receptors are mediators of communication between adjacent cells and are key determinants of cell fate during development and in postnatal life. Crosstalk between estrogen and the Notch pathway intervenes in many processes underlying the development and maintenance of the cardiovascular system. The identification of molecular mechanisms underlying the interaction between these types of endocrine and juxtacrine signaling are leading to a deeper understanding of physiological conditions regulated by these steroid hormones and, potentially, to novel therapeutic approaches to prevent pathologies linked to reduced levels of estrogen, such as coronary heart disease, and cardiotoxicity caused by hormone therapy for estrogen-receptor-positive breast cancer.
Collapse
Affiliation(s)
| | | | - Cristiana Caliceti
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Antonio Pannuti
- University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - Daniel S Peiffer
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA; Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois, USA
| | - Cristina Balla
- Cardiovascular Center, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, RA, Italy; Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy; Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
79
|
Hu HL, Shiflett LA, Kobayashi M, Chao MV, Wilson AC, Mohr I, Huang TT. TOP2β-Dependent Nuclear DNA Damage Shapes Extracellular Growth Factor Responses via Dynamic AKT Phosphorylation to Control Virus Latency. Mol Cell 2019; 74:466-480.e4. [PMID: 30930055 DOI: 10.1016/j.molcel.2019.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/10/2019] [Accepted: 02/21/2019] [Indexed: 12/17/2022]
Abstract
The mTOR pathway integrates both extracellular and intracellular signals and serves as a central regulator of cell metabolism, growth, survival, and stress responses. Neurotropic viruses, such as herpes simplex virus-1 (HSV-1), also rely on cellular AKT-mTORC1 signaling to achieve viral latency. Here, we define a novel genotoxic response whereby spatially separated signals initiated by extracellular neurotrophic factors and nuclear DNA damage are integrated by the AKT-mTORC1 pathway. We demonstrate that endogenous DNA double-strand breaks (DSBs) mediated by Topoisomerase 2β-DNA cleavage complex (TOP2βcc) intermediates are required to achieve AKT-mTORC1 signaling and maintain HSV-1 latency in neurons. Suppression of host DNA-repair pathways that remove TOP2βcc trigger HSV-1 reactivation. Moreover, perturbation of AKT phosphorylation dynamics by downregulating the PHLPP1 phosphatase led to AKT mis-localization and disruption of DSB-induced HSV-1 reactivation. Thus, the cellular genome integrity and environmental inputs are consolidated and co-opted by a latent virus to balance lifelong infection with transmission.
Collapse
Affiliation(s)
- Hui-Lan Hu
- Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Lora A Shiflett
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Mariko Kobayashi
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Moses V Chao
- Skirball Institute of Biomolecular Medicine, Departments of Cell Biology, Physiology & Neuroscience and Psychiatry, NYU School of Medicine, New York, NY 10016, USA; NYU Neuroscience Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Angus C Wilson
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
80
|
Oliver-De La Cruz J, Nardone G, Vrbsky J, Pompeiano A, Perestrelo AR, Capradossi F, Melajová K, Filipensky P, Forte G. Substrate mechanics controls adipogenesis through YAP phosphorylation by dictating cell spreading. Biomaterials 2019; 205:64-80. [PMID: 30904599 DOI: 10.1016/j.biomaterials.2019.03.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
Abstract
The mechanoregulated proteins YAP/TAZ are involved in the adipogenic/osteogenic switch of mesenchymal stem cells (MSCs). MSC fate decision can be unbalanced by controlling substrate mechanics, in turn altering the transmission of tension through cell cytoskeleton. MSCs have been proposed for orthopedic and reconstructive surgery applications. Thus, a tight control of their adipogenic potential is required in order to avoid their drifting towards fat tissue. Substrate mechanics has been shown to drive MSC commitment and to regulate YAP/TAZ protein shuttling and turnover. The mechanism by which YAP/TAZ co-transcriptional activity is mechanically regulated during MSC fate acquisition is still debated. Here, we design few bioengineering tools suited to disentangle the contribution of mechanical from biological stimuli to MSC adipogenesis. We demonstrate that the mechanical repression of YAP happens through its phosphorylation, is purely mediated by cell spreading downstream of substrate mechanics as dictated by dimensionality. YAP repression is sufficient to prompt MSC adipogenesis, regardless of a permissive biological environment, TEAD nuclear presence or focal adhesion stabilization. Finally, by harnessing the potential of YAP mechanical regulation, we propose a practical example of the exploitation of adipogenic transdifferentiation in tumors.
Collapse
Affiliation(s)
- Jorge Oliver-De La Cruz
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic
| | - Giorgia Nardone
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Vrbsky
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Antonio Pompeiano
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Ana Rubina Perestrelo
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Francesco Capradossi
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - Katarína Melajová
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | | | - Giancarlo Forte
- International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital, Brno, Czech Republic; Competence Center for Mechanobiology in Regenerative Medicine, INTERREG ATCZ133, Brno, Czech Republic; Department of Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland.
| |
Collapse
|
81
|
Wind TT, Jalving M, de Haan JJ, de Vries EGE, van Vugt MATM, Reijngoud DJ, van Rijn RS, Haanen JBAG, Blank CU, Hospers GAP, Fehrmann RSN. A large pooled analysis refines gene expression-based molecular subclasses in cutaneous melanoma. Oncoimmunology 2019; 8:1558664. [PMID: 30723592 PMCID: PMC6350693 DOI: 10.1080/2162402x.2018.1558664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 11/07/2022] Open
Abstract
This study aimed to establish the number of expression-based molecular subclasses in cutaneous melanoma, identify their dominant biological pathways and evaluate their clinical relevance. To this end, consensus clustering was performed separately on two independent datasets (n = 405 and n = 473) composed of publicly available cutaneous melanoma expression profiles from previous studies. Four expression-based molecular subclasses were identified and labelled ‘Oxidative phosphorylation’, ‘Oestrogen response/p53-pathway’, ‘Immune’ and ‘Cell cycle’, based on their dominantly expressed biological pathways determined by gene set enrichment analysis. Multivariate survival analysis revealed shorter overall survival in the ‘Oxidative phosphorylation’ subclass compared to the other subclasses. This was validated in a third independent dataset (n = 214). Finally, in a pooled cohort of 76 patients treated with anti-PD-1 therapy a trend towards a difference in response rates between subclasses was observed (‘Immune’ subclass: 65% responders, ‘Oxidative Phosphorylation’ subclass: 60% responders, other subclasses: <50% responders). These findings support the stratification of cutaneous melanoma in four expression-based molecular subclasses.
Collapse
Affiliation(s)
- Thijs T Wind
- Comprehensive Cancer Centre, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Mathilde Jalving
- Comprehensive Cancer Centre, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Jacco J de Haan
- Comprehensive Cancer Centre, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Comprehensive Cancer Centre, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Comprehensive Cancer Centre, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Section of Systems Medicine and Metabolic Signaling, Laboratory of Pediatrics, Department of Pediatrics, Center of Liver, Digestive and Metabolic Diseases, University Medical Center Groningen.,European Research Institute of the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - John B A G Haanen
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Christian U Blank
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Geke A P Hospers
- Comprehensive Cancer Centre, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| | - Rudolf S N Fehrmann
- Comprehensive Cancer Centre, University Medical Centre Groningen and University of Groningen, Groningen, The Netherlands
| |
Collapse
|
82
|
Zinger L, Merenbakh-Lamin K, Klein A, Elazar A, Journo S, Boldes T, Pasmanik-Chor M, Spitzer A, Rubinek T, Wolf I. Ligand-binding Domain–activating Mutations of ESR1 Rewire Cellular Metabolism of Breast Cancer Cells. Clin Cancer Res 2019; 25:2900-2914. [DOI: 10.1158/1078-0432.ccr-18-1505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/18/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
|
83
|
Mikheil DM, Prabhakar K, Arshad A, Rodriguez CI, Newton MA, Setaluri V. Notch signaling activation induces cell death in MAPKi-resistant melanoma cells. Pigment Cell Melanoma Res 2019; 32:528-539. [PMID: 30614626 DOI: 10.1111/pcmr.12764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Abstract
The role of Notch signaling in melanoma drug resistance is not well understood. In this study, we show that although NOTCH proteins are upregulated in metastatic melanoma cell lines, Notch signaling inhibition had no effect on cell survival, growth, migration or the sensitivity of BRAFV600E-melanoma cells to MAPK inhibition (MAPKi). We found that NOTCH1 is downregulated in melanoma cell lines with intrinsic and acquired resistance to MAPKi. Forced expression of NICD1, the active form of Notch1, caused apoptosis of the NOTCHlo , MAPKi-resistant cells, but not the NOTCHhi , MAPKi-sensitive melanoma cell lines. Whole transcriptome-sequencing analyses of NICD1-transduced MAPKi-sensitive and MAPKi-resistant cells revealed differential regulation of endothelin 1 (EDN1) by NICD1, that is, downregulation in MAPKi-resistant cells and upregulation in MAPKi-sensitive cells. Knockdown of EDN1 partially mimicked the effect of NICD1 on the survival of MAPKi-resistant cells. We show that the opposite regulation of EDN1 by Notch signaling is mediated by the differential regulation of c-JUN by NICD1. Our data show that MAPKi-resistant melanoma cells acquire vulnerability to Notch signaling activation and suggest that Notch-c-JUN-EDN1 axis is a potential therapeutic target in MAPKi-resistant melanoma.
Collapse
Affiliation(s)
- Dareen M Mikheil
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| | | | - Ayyan Arshad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | | | - Michael A Newton
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
84
|
Hartman ML, Sztiller-Sikorska M, Czyz M. Whole-exome sequencing reveals novel genetic variants associated with diverse phenotypes of melanoma cells. Mol Carcinog 2019; 58:588-602. [DOI: 10.1002/mc.22953] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Mariusz L. Hartman
- Department of Molecular Biology of Cancer; Medical University of Lodz; Lodz Poland
| | | | - Malgorzata Czyz
- Department of Molecular Biology of Cancer; Medical University of Lodz; Lodz Poland
| |
Collapse
|
85
|
Taylor DL, Gough A, Schurdak ME, Vernetti L, Chennubhotla CS, Lefever D, Pei F, Faeder JR, Lezon TR, Stern AM, Bahar I. Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. Handb Exp Pharmacol 2019; 260:327-367. [PMID: 31201557 PMCID: PMC6911651 DOI: 10.1007/164_2019_239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two technologies that have emerged in the last decade offer a new paradigm for modern pharmacology, as well as drug discovery and development. Quantitative systems pharmacology (QSP) is a complementary approach to traditional, target-centric pharmacology and drug discovery and is based on an iterative application of computational and systems biology methods with multiscale experimental methods, both of which include models of ADME-Tox and disease. QSP has emerged as a new approach due to the low efficiency of success in developing therapeutics based on the existing target-centric paradigm. Likewise, human microphysiology systems (MPS) are experimental models complementary to existing animal models and are based on the use of human primary cells, adult stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues and organ functions/structures involved in disease and ADME-Tox. Human MPS experimental models have been developed to address the relatively low concordance of human disease and ADME-Tox with engineered, experimental animal models of disease. The integration of the QSP paradigm with the use of human MPS has the potential to enhance the process of drug discovery and development.
Collapse
Affiliation(s)
- D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chakra S Chennubhotla
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
| | - Fen Pei
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Faeder
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Lezon
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M Stern
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ivet Bahar
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
86
|
Vaseva AV, Blake DR, Gilbert TSK, Ng S, Hostetter G, Azam SH, Ozkan-Dagliyan I, Gautam P, Bryant KL, Pearce KH, Herring LE, Han H, Graves LM, Witkiewicz AK, Knudsen ES, Pecot CV, Rashid N, Houghton PJ, Wennerberg K, Cox AD, Der CJ. KRAS Suppression-Induced Degradation of MYC Is Antagonized by a MEK5-ERK5 Compensatory Mechanism. Cancer Cell 2018; 34:807-822.e7. [PMID: 30423298 PMCID: PMC6321749 DOI: 10.1016/j.ccell.2018.10.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Our recent ERK1/2 inhibitor analyses in pancreatic ductal adenocarcinoma (PDAC) indicated ERK1/2-independent mechanisms maintaining MYC protein stability. To identify these mechanisms, we determined the signaling networks by which mutant KRAS regulates MYC. Acute KRAS suppression caused rapid proteasome-dependent loss of MYC protein, through both ERK1/2-dependent and -independent mechanisms. Surprisingly, MYC degradation was independent of PI3K-AKT-GSK3β signaling and the E3 ligase FBWX7. We then established and applied a high-throughput screen for MYC protein degradation and performed a kinome-wide proteomics screen. We identified an ERK1/2-inhibition-induced feedforward mechanism dependent on EGFR and SRC, leading to ERK5 activation and phosphorylation of MYC at S62, preventing degradation. Concurrent inhibition of ERK1/2 and ERK5 disrupted this mechanism, synergistically causing loss of MYC and suppressing PDAC growth.
Collapse
Affiliation(s)
- Angelina V Vaseva
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Devon R Blake
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas S K Gilbert
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Serina Ng
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, The Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Salma H Azam
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Irem Ozkan-Dagliyan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Prson Gautam
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Michael Hooker Proteomics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haiyong Han
- Molecular Medicine Division, Translational Genomic Research Institute, Phoenix, AZ 85004, USA
| | - Lee M Graves
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Erik S Knudsen
- Department of Molecular and Cellular Biology, Roswell Park Cancer Center, Buffalo, NY 14203, USA
| | - Chad V Pecot
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter J Houghton
- The Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
87
|
Fremd C, Jaeger D, Schneeweiss A. Targeted and immuno-biology driven treatment strategies for triple-negative breast cancer: current knowledge and future perspectives. Expert Rev Anticancer Ther 2018; 19:29-42. [PMID: 30351981 DOI: 10.1080/14737140.2019.1537785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Accounting for about 15% of breast cancer patients, triple-negative breast cancer (TNBC) is responsible for 25% of disease related deaths, more frequent distant spread and visceral metastasis. However, improving survival in TNBC failed and primary resistance, immunological ignorance and tumor heterogeneity limit clinical activity of novel therapies. In view of recent molecular, genetic and immunologic insights, this review aims to describe the current status of immunological and targeted treatments from a hypothesis driven perspective. Areas covered: Recent preclinical studies and ongoing clinical trials for immune directed and targeted treatments of TNBC are summarized, including immune-checkpoint blockade, resistance mechanisms, inhibition of poly (ADP-ribose) polymerase (PARP), combinatorial strategies as well as preclinical, hypothesis generating studies. Expert commentary: Sustained responses have been observed with immune-checkpoint blockade and PARP inhibitors demonstrated remarkable efficacy in germline BRCA mutated TNBC. In order to generate clinical success of many other, to date ineffective, targeted and immune therapies, the integration of multidimensional, large amounts of data, will be essential and likely accelerate treatment progress of TNBC.
Collapse
Affiliation(s)
- Carlo Fremd
- a National Center for Tumor Diseases, Department of Medical Oncology , University of Heidelberg , Heidelberg , Germany
| | - Dirk Jaeger
- a National Center for Tumor Diseases, Department of Medical Oncology , University of Heidelberg , Heidelberg , Germany
| | - Andreas Schneeweiss
- a National Center for Tumor Diseases, Department of Medical Oncology , University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
88
|
Adhikari H, Counter CM. Interrogating the protein interactomes of RAS isoforms identifies PIP5K1A as a KRAS-specific vulnerability. Nat Commun 2018; 9:3646. [PMID: 30194290 PMCID: PMC6128905 DOI: 10.1038/s41467-018-05692-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
In human cancers, oncogenic mutations commonly occur in the RAS genes KRAS, NRAS, or HRAS, but there are no clinical RAS inhibitors. Mutations are more prevalent in KRAS, possibly suggesting a unique oncogenic activity mediated by KRAS-specific interaction partners, which might be targeted. Here, we determine the specific protein interactomes of each RAS isoform by BirA proximity-dependent biotin identification. The combined interactomes are screened by CRISPR-Cas9 loss-of-function assays for proteins required for oncogenic KRAS-dependent, NRAS-dependent, or HRAS-dependent proliferation and censored for druggable proteins. Using this strategy, we identify phosphatidylinositol phosphate kinase PIP5K1A as a KRAS-specific interactor and show that PIP5K1A binds to a unique region in KRAS. Furthermore, PIP5K1A depletion specifically reduces oncogenic KRAS signaling and proliferation, and sensitizes pancreatic cancer cell lines to a MAPK inhibitor. These results suggest PIP5K1A as a potential target in KRAS signaling for the treatment of KRAS-mutant cancers. RAS isoforms are frequently mutated in cancer but their inhibition remains challenging. By comparing the protein interactomes of the highly similar isoforms HRAS, NRAS and KRAS, the authors here identify PIP5K1A as a KRAS-specific interactor and a target to inhibit KRAS-driven cell growth.
Collapse
Affiliation(s)
- Hema Adhikari
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, DUMC-3813, Durham, NC, 27713, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, DUMC-3813, Durham, NC, 27713, USA. .,Department of Radiation Oncology, Duke University Medical Center, DUMC-3813, Durham, NC, 27713, USA.
| |
Collapse
|
89
|
Soderquist RS, Crawford L, Liu E, Lu M, Agarwal A, Anderson GR, Lin KH, Winter PS, Cakir M, Wood KC. Systematic mapping of BCL-2 gene dependencies in cancer reveals molecular determinants of BH3 mimetic sensitivity. Nat Commun 2018; 9:3513. [PMID: 30158527 PMCID: PMC6115427 DOI: 10.1038/s41467-018-05815-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Abstract
While inhibitors of BCL-2 family proteins (BH3 mimetics) have shown promise as anti-cancer agents, the various dependencies or co-dependencies of diverse cancers on BCL-2 genes remain poorly understood. Here we develop a drug screening approach to define the sensitivity of cancer cells from ten tissue types to all possible combinations of selective BCL-2, BCL-XL, and MCL-1 inhibitors and discover that most cell lines depend on at least one combination for survival. We demonstrate that expression levels of BCL-2 genes predict single mimetic sensitivity, whereas EMT status predicts synergistic dependence on BCL-XL+MCL-1. Lastly, we use a CRISPR/Cas9 screen to discover that BFL-1 and BCL-w promote resistance to all tested combinations of BCL-2, BCL-XL, and MCL-1 inhibitors. Together, these results provide a roadmap for rationally targeting BCL-2 family dependencies in diverse human cancers and motivate the development of selective BFL-1 and BCL-w inhibitors to overcome intrinsic resistance to BH3 mimetics. Dependency of diverse cancers on specific BCL-2 family members and their combinations is unknown. Here they perform drug screening and find most cell lines to be dependent on at least one combination of BCL-2 family members, and using a CRISPR screen find BCL-w and BFL-1 to mediate resistance to BH3 mimetics
Collapse
Affiliation(s)
- Ryan S Soderquist
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Lorin Crawford
- Department of Statistics, Duke University, Durham, NC, 27710, USA.,Department of Biostatistics, Brown University School of Public Health, Providence, RI, 02903, USA
| | - Esther Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Min Lu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Anika Agarwal
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Grace R Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Peter S Winter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Merve Cakir
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
90
|
Grimes M, Hall B, Foltz L, Levy T, Rikova K, Gaiser J, Cook W, Smirnova E, Wheeler T, Clark NR, Lachmann A, Zhang B, Hornbeck P, Ma'ayan A, Comb M. Integration of protein phosphorylation, acetylation, and methylation data sets to outline lung cancer signaling networks. Sci Signal 2018; 11:eaaq1087. [PMID: 29789295 PMCID: PMC6822907 DOI: 10.1126/scisignal.aaq1087] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein posttranslational modifications (PTMs) have typically been studied independently, yet many proteins are modified by more than one PTM type, and cell signaling pathways somehow integrate this information. We coupled immunoprecipitation using PTM-specific antibodies with tandem mass tag (TMT) mass spectrometry to simultaneously examine phosphorylation, methylation, and acetylation in 45 lung cancer cell lines compared to normal lung tissue and to cell lines treated with anticancer drugs. This simultaneous, large-scale, integrative analysis of these PTMs using a cluster-filtered network (CFN) approach revealed that cell signaling pathways were outlined by clustering patterns in PTMs. We used the t-distributed stochastic neighbor embedding (t-SNE) method to identify PTM clusters and then integrated each with known protein-protein interactions (PPIs) to elucidate functional cell signaling pathways. The CFN identified known and previously unknown cell signaling pathways in lung cancer cells that were not present in normal lung epithelial tissue. In various proteins modified by more than one type of PTM, the incidence of those PTMs exhibited inverse relationships, suggesting that molecular exclusive "OR" gates determine a large number of signal transduction events. We also showed that the acetyltransferase EP300 appears to be a hub in the network of pathways involving different PTMs. In addition, the data shed light on the mechanism of action of geldanamycin, an HSP90 inhibitor. Together, the findings reveal that cell signaling pathways mediated by acetylation, methylation, and phosphorylation regulate the cytoskeleton, membrane traffic, and RNA binding protein-mediated control of gene expression.
Collapse
Affiliation(s)
- Mark Grimes
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA.
| | | | - Lauren Foltz
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Tyler Levy
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Jeremiah Gaiser
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - William Cook
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Ekaterina Smirnova
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Travis Wheeler
- Division of Biological Sciences, and Department of Computer Science, Department of Mathematical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Neil R Clark
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS (Big Data to Knowledge Library of Integrated Network-based Cellular Signatures) Data Coordination and Integration Center, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Alexander Lachmann
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS (Big Data to Knowledge Library of Integrated Network-based Cellular Signatures) Data Coordination and Integration Center, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Bin Zhang
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Avi Ma'ayan
- Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, BD2K-LINCS (Big Data to Knowledge Library of Integrated Network-based Cellular Signatures) Data Coordination and Integration Center, Icahn School of Medicine, Mount Sinai, New York, NY 10029, USA
| | - Michael Comb
- Cell Signaling Technology, Danvers, MA 01923, USA
| |
Collapse
|
91
|
Anderson GR, Winter PS, Lin KH, Nussbaum DP, Cakir M, Stein EM, Soderquist RS, Crawford L, Leeds JC, Newcomb R, Stepp P, Yip C, Wardell SE, Tingley JP, Ali M, Xu M, Ryan M, McCall SJ, McRee AJ, Counter CM, Der CJ, Wood KC. A Landscape of Therapeutic Cooperativity in KRAS Mutant Cancers Reveals Principles for Controlling Tumor Evolution. Cell Rep 2018; 20:999-1015. [PMID: 28746882 DOI: 10.1016/j.celrep.2017.07.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/06/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022] Open
Abstract
Combinatorial inhibition of effector and feedback pathways is a promising treatment strategy for KRAS mutant cancers. However, the particular pathways that should be targeted to optimize therapeutic responses are unclear. Using CRISPR/Cas9, we systematically mapped the pathways whose inhibition cooperates with drugs targeting the KRAS effectors MEK, ERK, and PI3K. By performing 70 screens in models of KRAS mutant colorectal, lung, ovarian, and pancreas cancers, we uncovered universal and tissue-specific sensitizing combinations involving inhibitors of cell cycle, metabolism, growth signaling, chromatin regulation, and transcription. Furthermore, these screens revealed secondary genetic modifiers of sensitivity, yielding a SRC inhibitor-based combination therapy for KRAS/PIK3CA double-mutant colorectal cancers (CRCs) with clinical potential. Surprisingly, acquired resistance to combinations of growth signaling pathway inhibitors develops rapidly following treatment, but by targeting signaling feedback or apoptotic priming, it is possible to construct three-drug combinations that greatly delay its emergence.
Collapse
Affiliation(s)
- Grace R Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Peter S Winter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | - Merve Cakir
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Elizabeth M Stein
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan S Soderquist
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Lorin Crawford
- Department of Statistics, Duke University, Durham, NC 27710, USA
| | - Jim C Leeds
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Rachel Newcomb
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Priya Stepp
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Catherine Yip
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer P Tingley
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Moiez Ali
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Mengmeng Xu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Meagan Ryan
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Autumn J McRee
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Channing J Der
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
92
|
Nedungadi P, Iyer A, Gutjahr G, Bhaskar J, Pillai AB. Data-Driven Methods for Advancing Precision Oncology. CURRENT PHARMACOLOGY REPORTS 2018; 4:145-156. [PMID: 33520605 PMCID: PMC7845924 DOI: 10.1007/s40495-018-0127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW This article discusses the advances, methods, challenges, and future directions of data-driven methods in advancing precision oncology for biomedical research, drug discovery, clinical research, and practice. RECENT FINDINGS Precision oncology provides individually tailored cancer treatment by considering an individual's genetic makeup, clinical, environmental, social, and lifestyle information. Challenges include voluminous, heterogeneous, and disparate data generated by different technologies with multiple modalities such as Omics, electronic health records, clinical registries and repositories, medical imaging, demographics, wearables, and sensors. Statistical and machine learning methods have been continuously adapting to the ever-increasing size and complexity of data. Precision Oncology supportive analytics have improved turnaround time in biomarker discovery and time-to-application of new and repurposed drugs. Precision oncology additionally seeks to identify target patient populations based on genomic alterations that are sensitive or resistant to conventional or experimental treatments. Predictive models have been developed for cancer progression and survivorship, drug sensitivity and resistance, and identification of the most suitable combination treatments for individual patient scenarios. In the future, clinical decision support systems need to be revamped to better incorporate knowledge from precision oncology, thus enabling clinical practitioners to provide precision cancer care. SUMMARY Open Omics datasets, machine learning algorithms, and predictive models have enabled the advancement of precision oncology. Clinical decision support systems with integrated electronic health record and Omics data are needed to provide data-driven recommendations to assist clinicians in disease prevention, early identification, and individualized treatment. Additionally, as cancer is a constantly evolving disorder, clinical decision systems will need to be continually updated based on more recent knowledge and datasets.
Collapse
Affiliation(s)
- Prema Nedungadi
- Center for Research in Analytics & Technology in Education, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
- Department of Computer Science, School of Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Akshay Iyer
- Center for Research in Analytics & Technology in Education, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Georg Gutjahr
- Center for Research in Analytics & Technology in Education, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Jasmine Bhaskar
- Center for Research in Analytics & Technology in Education, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
- Department of Computer Science, School of Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India
| | - Asha B. Pillai
- Division of Pediatric Hematology/Oncology, Departments of Pediatrics and Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
93
|
Liu Y, Wang SQ, Long YH, Chen S, Li YF, Zhang JH. KRASG12 mutant induces the release of the WSTF/NRG3 complex, and contributes to an oncogenic paracrine signaling pathway. Oncotarget 2018; 7:53153-53164. [PMID: 27449290 PMCID: PMC5288175 DOI: 10.18632/oncotarget.10625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
It remains unclear how the signals of mutant KRASG12 in the transformed cells spread to the surrounding non-mutated cells and changes the microenvironment to promote tumor formation. We identified that Williams–Beuren syndrome transcription factor (WSTF), a non-secretory protein, was released in complex with secretory protein-neuregulin-3 (NRG3). The KRASG12 mutant activates the transcription of NRG3. The WSTF/NRG3 in extracellular space could activate oncogenic pathways in normal colon cells carrying wild type KRAS and endow them with the ability to express NRG3 and release WSTF/NRG3. Extracellular WSTF/NRG3 promotes the formation of colon tumors. Blockade of extracellular WSTF could restore cetuximab sensitivity of colon cancer cells with mutant KRAS. The appearance of WSTF/NRG3 in serum and urine correlates with a colon tumor carrying a KRASG12 mutant. In summary, our demonstration provides a new pathway to our understanding of the biological development of complex diseases.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Science, North China University of Science and Technology, Tangshan, 063000, China.,Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
| | - Shu-Qing Wang
- Hospital of The North China University of Science and Technology, Tangshan, 063000, China.,Department of Nephrology, Affiliated Kailuan General Hospital of North China University of Science and Technology, Tangshan, 063000, China
| | - Yue-Hong Long
- College of Life Science, North China University of Science and Technology, Tangshan, 063000, China
| | - Su Chen
- School of Life Sciences and Technology, Department of Breast Surgery of Yangpu Hospital, Research Center for Translational Medicine at East Hospital, Tongji University, Shanghai, 200092, China
| | - Yu-Feng Li
- Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
| | - Jing-Hua Zhang
- Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
| |
Collapse
|
94
|
Zhang L, Yang Z, Granieri L, Pasculescu A, Datti A, Asa SL, Xu Z, Ezzat S. High-throughput drug library screening identifies colchicine as a thyroid cancer inhibitor. Oncotarget 2018; 7:19948-59. [PMID: 26942566 PMCID: PMC4991430 DOI: 10.18632/oncotarget.7890] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 12/12/2022] Open
Abstract
We employed a high-throughput drug library screening platform to identify novel agents affecting thyroid cancer cells. We used human thyroid cancer cell lines to screen a collection of approximately 5200 small molecules with biological and/or pharmacologial properties. Parallel primary screens yielded a number of hits differentially active between thyroid and melanoma cells. Amongst compounds specifically targeting thyroid cancer cells, colchicine emerged as an effective candidate. Colchicine inhibited cell growth which correlated with G2 cell cycle arrest and apoptosis. These effects were hampered through inhibition of MEK1/2 and JNK. In contrast, inhibition of p38-MAPK had little effect, and AKT had no impact on colchicine action. Systemic colchicine inhibited thyroid cancer progression in xenografted mice. These findings demonstrate that our screening platform is an effective vehicle for drug reposition and show that colchicine warrants further attention in well-defined clinical niches such as thyroid cancer.
Collapse
Affiliation(s)
- Le Zhang
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, P.R. China.,Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, P.R. China.,Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Letizia Granieri
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | - Adrian Pasculescu
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada
| | - Alessandro Datti
- SMART Laboratory for High-Throughput Screening Programs, Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, ON, Canada.,Department of Agricultural, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Sylvia L Asa
- Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, Toronto, ON, Canada
| | - Zheli Xu
- Department of Breast Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, P.R. China.,Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada
| | - Shereen Ezzat
- Ontario Cancer Institute and The Endocrine Oncology Site Group, Princess Margaret Hospital, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
95
|
Jia S, Miedel MT, Ngo M, Hessenius R, Chen N, Wang P, Bahreini A, Li Z, Ding Z, Shun TY, Zuckerman DM, Taylor DL, Puhalla SL, Lee AV, Oesterreich S, Stern AM. Clinically Observed Estrogen Receptor Alpha Mutations within the Ligand-Binding Domain Confer Distinguishable Phenotypes. Oncology 2018; 94:176-189. [PMID: 29306943 DOI: 10.1159/000485510] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Twenty to fifty percent of estrogen receptor-positive (ER+) metastatic breast cancers express mutations within the ER ligand-binding domain. While most studies focused on the constitutive ER signaling activity commonly engendered by these mutations selected during estrogen deprivation therapy, our study was aimed at investigating distinctive phenotypes conferred by different mutations within this class. METHODS We examined the two most prevalent mutations, D538G and Y537S, employing corroborative genome-edited and lentiviral-transduced ER+ T47D cell models. We used a luciferase-based reporter and endogenous phospho-ER immunoblot analysis to characterize the estrogen response of ER mutants and determined their resistance to known ER antagonists. RESULTS Consistent with their selection during estrogen deprivation therapy, these mutants conferred constitutive ER activity. While Y537S mutants showed no estrogen dependence, D538G mutants demonstrated an enhanced estrogen-dependent response. Both mutations conferred resistance to ER antagonists that was overcome at higher doses acting specifically through their ER target. CONCLUSIONS These observations provide a tenable hypothesis for how D538G ESR1-expressing clones can contribute to shorter progression-free survival observed in the exemestane arm of the BOLERO-2 study. Thus, in those patients with dominant D538G-expressing clones, longitudinal analysis for this mutation in circulating free DNA may prove beneficial for informing more optimal therapeutic regimens.
Collapse
|
96
|
FRA1 promotes squamous cell carcinoma growth and metastasis through distinct AKT and c-Jun dependent mechanisms. Oncotarget 2018; 7:34371-83. [PMID: 27144339 PMCID: PMC5085162 DOI: 10.18632/oncotarget.9110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
FRA1 (Fos-like antigen 1) is highly expressed in many epithelial cancers including squamous cell carcinoma of the skin (cSCC) and head and neck (HNSCC). However, the functional importance and the mechanisms mediating FRA1 function in these cancers are not fully understood. Here, we demonstrate that FRA1 gene silencing in HNSCC and cSCC cells resulted in two consequences – impaired cell proliferation and migration. FRA1 regulation of cell growth was distinct from that of c-Jun, a prominent Jun group AP-1 factor. While c-Jun was required for the expression of the G1/S phase cell cycle promoter CDK4, FRA1 was essential for AKT activation and AKT-dependent expression of CyclinB1, a molecule required for G2-M progression. Exogenous expression of a constitutively active form of AKT rescued cancer cell growth defect caused by FRA1-loss. Additionally, FRA1 knockdown markedly slowed cell adhesion and migration, and conversely expression of an active FRA1 mutant (FRA1DD) expedited these processes in a JNK/c-Jun-dependent manner. Through protein and ChIP-PCR analyses, we identified KIND1, a cytoskeletal regulator of the cell adhesion molecule β1-integrin, as a novel FRA1 transcriptional target. Restoring KIND1 expression rescued migratory defects induced by FRA1 loss. In agreement with these in vitro data, HNSCC cells with FRA1 loss displayed markedly reduced rates of subcutaneous tumor growth and pulmonary metastasis. Together, these results indicate that FRA1 promotes cancer growth through AKT, and enhances cancer cell migration through JNK/c-Jun, pinpointing FRA1 as a key integrator of JNK and AKT signaling pathways and a potential therapeutic target for cSCC and HNSCC.
Collapse
|
97
|
Anderson GR, Wardell SE, Cakir M, Crawford L, Leeds JC, Nussbaum DP, Shankar PS, Soderquist RS, Stein EM, Tingley JP, Winter PS, Zieser-Misenheimer EK, Alley HM, Yllanes A, Haney V, Blackwell KL, McCall SJ, McDonnell DP, Wood KC. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation. Sci Transl Med 2017; 8:369ra175. [PMID: 27974663 DOI: 10.1126/scitranslmed.aae0348] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/06/2016] [Accepted: 10/05/2016] [Indexed: 12/23/2022]
Abstract
Therapies that efficiently induce apoptosis are likely to be required for durable clinical responses in patients with solid tumors. Using a pharmacological screening approach, we discovered that combined inhibition of B cell lymphoma-extra large (BCL-XL) and the mammalian target of rapamycin (mTOR)/4E-BP axis results in selective and synergistic induction of apoptosis in cellular and animal models of PIK3CA mutant breast cancers, including triple-negative tumors. Mechanistically, inhibition of mTOR/4E-BP suppresses myeloid cell leukemia-1 (MCL-1) protein translation only in PIK3CA mutant tumors, creating a synthetic dependence on BCL-XL This dual dependence on BCL-XL and MCL-1, but not on BCL-2, appears to be a fundamental property of diverse breast cancer cell lines, xenografts, and patient-derived tumors that is independent of the molecular subtype or PIK3CA mutational status. Furthermore, this dependence distinguishes breast cancers from normal breast epithelial cells, which are neither primed for apoptosis nor dependent on BCL-XL/MCL-1, suggesting a potential therapeutic window. By tilting the balance of pro- to antiapoptotic signals in the mitochondria, dual inhibition of MCL-1 and BCL-XL also sensitizes breast cancer cells to standard-of-care cytotoxic and targeted chemotherapies. Together, these results suggest that patients with PIK3CA mutant breast cancers may benefit from combined treatment with inhibitors of BCL-XL and the mTOR/4E-BP axis, whereas alternative methods of inhibiting MCL-1 and BCL-XL may be effective in tumors lacking PIK3CA mutations.
Collapse
Affiliation(s)
- Grace R Anderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Suzanne E Wardell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Merve Cakir
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.,Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA
| | - Lorin Crawford
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.,Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Jim C Leeds
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Daniel P Nussbaum
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.,Department of Surgery, Duke University, Durham, NC 27710, USA
| | - Pallavi S Shankar
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Ryan S Soderquist
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Elizabeth M Stein
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer P Tingley
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Peter S Winter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.,Program in Genetics and Genomics, Duke University, Durham, NC 27710, USA
| | | | - Holly M Alley
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Alexander Yllanes
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Victoria Haney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | | | | | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
98
|
Pei F, Li H, Henderson MJ, Titus SA, Jadhav A, Simeonov A, Cobanoglu MC, Mousavi SH, Shun T, McDermott L, Iyer P, Fioravanti M, Carlisle D, Friedlander RM, Bahar I, Taylor DL, Lezon TR, Stern AM, Schurdak ME. Connecting Neuronal Cell Protective Pathways and Drug Combinations in a Huntington's Disease Model through the Application of Quantitative Systems Pharmacology. Sci Rep 2017; 7:17803. [PMID: 29259176 PMCID: PMC5736652 DOI: 10.1038/s41598-017-17378-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/22/2017] [Indexed: 12/25/2022] Open
Abstract
Quantitative Systems Pharmacology (QSP) is a drug discovery approach that integrates computational and experimental methods in an iterative way to gain a comprehensive, unbiased understanding of disease processes to inform effective therapeutic strategies. We report the implementation of QSP to Huntington’s Disease, with the application of a chemogenomics platform to identify strategies to protect neuronal cells from mutant huntingtin induced death. Using the STHdhQ111 cell model, we investigated the protective effects of small molecule probes having diverse canonical modes-of-action to infer pathways of neuronal cell protection connected to drug mechanism. Several mechanistically diverse protective probes were identified, most of which showed less than 50% efficacy. Specific combinations of these probes were synergistic in enhancing efficacy. Computational analysis of these probes revealed a convergence of pathways indicating activation of PKA. Analysis of phospho-PKA levels showed lower cytoplasmic levels in STHdhQ111 cells compared to wild type STHdhQ7 cells, and these levels were increased by several of the protective compounds. Pharmacological inhibition of PKA activity reduced protection supporting the hypothesis that protection may be working, in part, through activation of the PKA network. The systems-level studies described here can be broadly applied to any discovery strategy involving small molecule modulation of disease phenotype.
Collapse
Affiliation(s)
- Fen Pei
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA
| | - Hongchun Li
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Steven A Titus
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Murat Can Cobanoglu
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA
| | - Seyed H Mousavi
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St., UPMC Presbyterian, Suite B-400, Pittsburgh, PA, 15261, USA
| | - Tongying Shun
- University of Pittsburgh Drug Discovery Institute, 200 Lothrop St., W950 Biomedical Science Tower Pittsburgh, PA, 15261, USA
| | - Lee McDermott
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA, 15261, USA
| | - Prema Iyer
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA, 15261, USA
| | - Michael Fioravanti
- Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace St., Pittsburgh, PA, 15261, USA
| | - Diane Carlisle
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St., UPMC Presbyterian, Suite B-400, Pittsburgh, PA, 15261, USA
| | - Robert M Friedlander
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop St., UPMC Presbyterian, Suite B-400, Pittsburgh, PA, 15261, USA.,University of Pittsburgh Brain Institute, 3501 Fifth Ave., 4074 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA.,University of Pittsburgh Drug Discovery Institute, 200 Lothrop St., W950 Biomedical Science Tower Pittsburgh, PA, 15261, USA
| | - D Lansing Taylor
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA.,University of Pittsburgh Drug Discovery Institute, 200 Lothrop St., W950 Biomedical Science Tower Pittsburgh, PA, 15261, USA.,University of Pittsburgh Brain Institute, 3501 Fifth Ave., 4074 Biomedical Science Tower 3, Pittsburgh, PA, 15261, USA
| | - Timothy R Lezon
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA.,University of Pittsburgh Drug Discovery Institute, 200 Lothrop St., W950 Biomedical Science Tower Pittsburgh, PA, 15261, USA
| | - Andrew M Stern
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA.,University of Pittsburgh Drug Discovery Institute, 200 Lothrop St., W950 Biomedical Science Tower Pittsburgh, PA, 15261, USA
| | - Mark E Schurdak
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave, Suite 3064, Biomedical Science Tower 3, Pittsburgh, PA, 15260, USA. .,University of Pittsburgh Drug Discovery Institute, 200 Lothrop St., W950 Biomedical Science Tower Pittsburgh, PA, 15261, USA.
| |
Collapse
|
99
|
Díaz-Martínez M, Benito-Jardón L, Alonso L, Koetz-Ploch L, Hernando E, Teixidó J. miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res 2017; 78:1017-1030. [PMID: 29229605 DOI: 10.1158/0008-5472.can-17-1318] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/03/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022]
Abstract
Melanoma treatment with the BRAF V600E inhibitor vemurafenib provides therapeutic benefits but the common emergence of drug resistance remains a challenge. We generated A375 melanoma cells resistant to vemurafenib with the goal of investigating changes in miRNA expression patterns that might contribute to resistance. Increased expression of miR-204-5p and miR-211-5p occurring in vemurafenib-resistant cells was determined to impact vemurafenib response. Their expression was rapidly affected by vemurafenib treatment through RNA stabilization. Similar effects were elicited by MEK and ERK inhibitors but not AKT or Rac inhibitors. Ectopic expression of both miRNA in drug-naïve human melanoma cells was sufficient to confer vemurafenib resistance and more robust tumor growth in vivo Conversely, silencing their expression in resistant cells inhibited cell growth. Joint overexpression of miR-204-5p and miR-211-5p durably stimulated Ras and MAPK upregulation after vemurafenib exposure. Overall, our findings show how upregulation of miR-204-5p and miR-211-5p following vemurafenib treatment enables the emergence of resistance, with potential implications for mechanism-based strategies to improve vemurafenib responses.Significance: Identification of miRNAs that enable resistance to BRAF inhibitors in melanoma suggests a mechanism-based strategy to limit resistance and improve clinical outcomes. Cancer Res; 78(4); 1017-30. ©2017 AACR.
Collapse
Affiliation(s)
- Marta Díaz-Martínez
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lucía Benito-Jardón
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lola Alonso
- Bioinformatics and Biostatistics Unit, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Lisa Koetz-Ploch
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center, New York, NY
| | - Joaquin Teixidó
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
100
|
Singleton KR, Crawford L, Tsui E, Manchester HE, Maertens O, Liu X, Liberti MV, Magpusao AN, Stein EM, Tingley JP, Frederick DT, Boland GM, Flaherty KT, McCall SJ, Krepler C, Sproesser K, Herlyn M, Adams DJ, Locasale JW, Cichowski K, Mukherjee S, Wood KC. Melanoma Therapeutic Strategies that Select against Resistance by Exploiting MYC-Driven Evolutionary Convergence. Cell Rep 2017; 21:2796-2812. [PMID: 29212027 PMCID: PMC5728698 DOI: 10.1016/j.celrep.2017.11.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/02/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Diverse pathways drive resistance to BRAF/MEK inhibitors in BRAF-mutant melanoma, suggesting that durable control of resistance will be a challenge. By combining statistical modeling of genomic data from matched pre-treatment and post-relapse patient tumors with functional interrogation of >20 in vitro and in vivo resistance models, we discovered that major pathways of resistance converge to activate the transcription factor, c-MYC (MYC). MYC expression and pathway gene signatures were suppressed following drug treatment, and then rebounded during progression. Critically, MYC activation was necessary and sufficient for resistance, and suppression of MYC activity using genetic approaches or BET bromodomain inhibition was sufficient to resensitize cells and delay BRAFi resistance. Finally, MYC-driven, BRAFi-resistant cells are hypersensitive to the inhibition of MYC synthetic lethal partners, including SRC family and c-KIT tyrosine kinases, as well as glucose, glutamine, and serine metabolic pathways. These insights enable the design of combination therapies that select against resistance evolution.
Collapse
Affiliation(s)
- Katherine R Singleton
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Lorin Crawford
- Department of Statistical Science, Duke University, Durham, NC 27708, USA
| | - Elizabeth Tsui
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Haley E Manchester
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ophelia Maertens
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Maria V Liberti
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA; Department of Molecular Biology and Genetics, Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Anniefer N Magpusao
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Elizabeth M Stein
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jennifer P Tingley
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Dennie T Frederick
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Genevieve M Boland
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Keith T Flaherty
- Harvard Medical School, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | | | - Clemens Krepler
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Katrin Sproesser
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Drew J Adams
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Karen Cichowski
- Genetics Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Boston, MA 02115, USA
| | - Sayan Mukherjee
- Department of Statistical Science, Duke University, Durham, NC 27708, USA; Departments of Mathematics and Computer Science, Duke University, Durham, NC 27708, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|