51
|
Song Y, Shan L, Gbyli R, Liu W, Strowig T, Patel A, Fu X, Wang X, Xu ML, Gao Y, Qin A, Bruscia EM, Tebaldi T, Biancon G, Mamillapalli P, Urbonas D, Eynon E, Gonzalez DG, Chen J, Krause DS, Alderman J, Halene S, Flavell RA. Combined liver-cytokine humanization comes to the rescue of circulating human red blood cells. Science 2021; 371:1019-1025. [PMID: 33674488 DOI: 10.1126/science.abe2485] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
In vivo models that recapitulate human erythropoiesis with persistence of circulating red blood cells (RBCs) have remained elusive. We report an immunodeficient murine model in which combined human liver and cytokine humanization confer enhanced human erythropoiesis and RBC survival in the circulation. We deleted the fumarylacetoacetate hydrolase (Fah) gene in MISTRG mice expressing several human cytokines in place of their murine counterparts. Liver humanization by intrasplenic injection of human hepatocytes (huHep) eliminated murine complement C3 and reduced murine Kupffer cell density. Engraftment of human sickle cell disease (SCD)-derived hematopoietic stem cells in huHepMISTRGFah -/- mice resulted in vaso-occlusion that replicated acute SCD pathology. Combined liver-cytokine-humanized mice will facilitate the study of diseases afflicting RBCs, including bone marrow failure, hemoglobinopathies, and malaria, and also preclinical testing of therapies.
Collapse
Affiliation(s)
- Yuanbin Song
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Liang Shan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Department of Medicine, Pathology and Immunology, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Rana Gbyli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Liu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Till Strowig
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Amisha Patel
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Xiaoying Fu
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiaman Wang
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Hematology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yimeng Gao
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Ashley Qin
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Toma Tebaldi
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Padmavathi Mamillapalli
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - David Urbonas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Eynon
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Gonzalez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Jie Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Alderman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA. .,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. .,Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
52
|
Neves Borgheti-Cardoso L, San Anselmo M, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, Fernàndez-Busquets X, Sierra T. Promising nanomaterials in the fight against malaria. J Mater Chem B 2021; 8:9428-9448. [PMID: 32955067 DOI: 10.1039/d0tb01398f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For more than one hundred years, several treatments against malaria have been proposed but they have systematically failed, mainly due to the occurrence of drug resistance in part resulting from the exposure of the parasite to low drug doses. Several factors are behind this problem, including (i) the formidable barrier imposed by the Plasmodium life cycle with intracellular localization of parasites in hepatocytes and red blood cells, (ii) the adverse fluidic conditions encountered in the blood circulation that affect the interaction of molecular components with target cells, and (iii) the unfavorable physicochemical characteristics of most antimalarial drugs, which have an amphiphilic character and can be widely distributed into body tissues after administration and rapidly metabolized in the liver. To surpass these drawbacks, rather than focusing all efforts on discovering new drugs whose efficacy is quickly decreased by the parasite's evolution of resistance, the development of effective drug delivery carriers is a promising strategy. Nanomaterials have been investigated for their capacity to effectively deliver antimalarial drugs at local doses sufficiently high to kill the parasites and avoid drug resistance evolution, while maintaining a low overall dose to prevent undesirable toxic side effects. In recent years, several nanostructured systems such as liposomes, polymeric nanoparticles or dendrimers have been shown to be capable of improving the efficacy of antimalarial therapies. In this respect, nanomaterials are a promising drug delivery vehicle and can be used in therapeutic strategies designed to fight the parasite both in humans and in the mosquito vector of the disease. The chemical analyses of these nanomaterials are essential for the proposal and development of effective anti-malaria therapies. This review is intended to analyze the application of nanomaterials to improve the drug efficacy on different stages of the malaria parasites in both the human and mosquito hosts.
Collapse
Affiliation(s)
- Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - María San Anselmo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Alexandre Lancelot
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - José Luis Serrano
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain. and ARAID Foundation, Government of Aragón, Zaragoza 50018, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
53
|
Metelmann S, Liu X, Lu L, Caminade C, Liu K, Cao L, Medlock JM, Baylis M, Morse AP, Liu Q. Assessing the suitability for Aedes albopictus and dengue transmission risk in China with a delay differential equation model. PLoS Negl Trop Dis 2021; 15:e0009153. [PMID: 33770107 PMCID: PMC7996998 DOI: 10.1371/journal.pntd.0009153] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
Dengue is considered non-endemic to mainland China. However, travellers frequently import the virus from overseas and local mosquito species can then spread the disease in the population. As a consequence, mainland China still experiences large dengue outbreaks. Temperature plays a key role in these outbreaks: it affects the development and survival of the vector and the replication rate of the virus. To better understand its implication in the transmission risk of dengue, we developed a delay differential equation model that explicitly simulates temperature-dependent development periods and tested it with collected field data for the Asian tiger mosquito, Aedes albopictus. The model predicts mosquito occurrence locations with a high accuracy (Cohen's κ of 0.78) and realistically replicates mosquito population dynamics. Analysing the infection dynamics during the 2014 dengue outbreak that occurred in Guangzhou showed that the outbreak could have lasted for another four weeks if mosquito control interventions had not been undertaken. Finally, we analyse the dengue transmission risk in mainland China. We find that southern China, including Guangzhou, can have more than seven months of dengue transmission per year while even Beijing, in the temperate north, can have dengue transmission during hot summer months. The results demonstrate the importance of using detailed vector and infection ecology, especially when vector-borne disease transmission risk is modelled over a broad range of climatic zones.
Collapse
Affiliation(s)
- Soeren Metelmann
- Institute for Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cyril Caminade
- Institute for Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Keke Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lina Cao
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shandong University, Jinan, China
| | - Jolyon M. Medlock
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Medical Entomology Group, Public Health England, Salisbury, United Kingdom
| | - Matthew Baylis
- Institute for Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Andrew P. Morse
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, WHO Collaborating Centre for Vector Surveillance and Management, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Shandong University, Jinan, China
| |
Collapse
|
54
|
Tukwasibwe S, Traherne JA, Chazara O, Jayaraman J, Trowsdale J, Moffett A, Jiang W, Nankabirwa JI, Rek J, Arinaitwe E, Nsobya SL, Atuheirwe M, Frank M, Godwin A, Jagannathan P, Cose S, Kamya MR, Dorsey G, Rosenthal PJ, Colucci F, Nakimuli A. Diversity of KIR genes and their HLA-C ligands in Ugandan populations with historically varied malaria transmission intensity. Malar J 2021; 20:111. [PMID: 33632228 PMCID: PMC7908804 DOI: 10.1186/s12936-021-03652-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Malaria is one of the most serious infectious diseases in the world. The malaria burden is greatly affected by human immunity, and immune responses vary between populations. Genetic diversity in KIR and HLA-C genes, which are important in immunity to infectious diseases, is likely to play a role in this heterogeneity. Several studies have shown that KIR and HLA-C genes influence the immune response to viral infections, but few studies have examined the role of KIR and HLA-C in malaria infection, and these have used low-resolution genotyping. The aim of this study was to determine whether genetic variation in KIR and their HLA-C ligands differ in Ugandan populations with historically varied malaria transmission intensity using more comprehensive genotyping approaches. METHODS High throughput multiplex quantitative real-time PCR method was used to genotype KIR genetic variants and copy number variation and a high-throughput real-time PCR method was developed to genotype HLA-C1 and C2 allotypes for 1344 participants, aged 6 months to 10 years, enrolled from Ugandan populations with historically high (Tororo District), medium (Jinja District) and low (Kanungu District) malaria transmission intensity. RESULTS The prevalence of KIR3DS1, KIR2DL5, KIR2DS5, and KIR2DS1 genes was significantly lower in populations from Kanungu compared to Tororo (7.6 vs 13.2%: p = 0.006, 57.2 vs 66.4%: p = 0.005, 33.2 vs 46.6%: p < 0.001, and 19.7 vs 26.7%: p = 0.014, respectively) or Jinja (7.6 vs 18.1%: p < 0.001, 57.2 vs 63.8%: p = 0.048, 33.2 vs 43.5%: p = 0.002, and 19.7 vs 30.4%: p < 0.001, respectively). The prevalence of homozygous HLA-C2 was significantly higher in populations from Kanungu (31.6%) compared to Jinja (21.4%), p = 0.043, with no significant difference between Kanungu and Tororo (26.7%), p = 0.296. CONCLUSIONS The KIR3DS1, KIR2DL5, KIR2DS5 and KIR2DS1 genes may partly explain differences in transmission intensity of malaria since these genes have been positively selected for in places with historically high malaria transmission intensity. The high-throughput, multiplex, real-time HLA-C genotyping PCR method developed will be useful in disease-association studies involving large cohorts.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | | | - Olympe Chazara
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Jyothi Jayaraman
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Wei Jiang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Joaniter I. Nankabirwa
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Samuel L. Nsobya
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Maxine Atuheirwe
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | - Mubiru Frank
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | - Anguzu Godwin
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | | | - Stephen Cose
- MRC/UVRI and LSHTM Uganda Research Unit, Kampala, Uganda
| | - Moses R. Kamya
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | | | | | - Francesco Colucci
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW UK
| | - Annettee Nakimuli
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| |
Collapse
|
55
|
Shi SM, Shi TQ, Chen SB, Cui YB, Kassegne K, Okpeku M, Chen JH, Shen HM. Genome-Wide Scans for Ghanaian Plasmodium falciparum Genes Under Selection From Local and Chinese Host Populations. Front Cell Infect Microbiol 2021; 11:630797. [PMID: 33718278 PMCID: PMC7947188 DOI: 10.3389/fcimb.2021.630797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/07/2021] [Indexed: 01/02/2023] Open
Abstract
Initial malarial infection mostly causes symptomatic illness in humans. Infection that is not fatal induces complete protection from severe illness and death, and thus complete protection from severe illness or death is granted with sufficient exposure. However, malaria parasite immunity necessitates constant exposure. Therefore, it is important to evaluate lowered immunity and recurrent susceptibility to symptomatic disease in lower transmission areas. We aimed to investigate selection pressure based on transmission levels, antimalarial drug use, and environmental factors. We whole genome sequenced (WGS) P. falciparum clinical samples from Chinese hosts working in Ghana and compared the results with the WGS data of isolates from native Ghanaians downloaded from pf3k. The P. falciparum samples were generally clustered according to their geographic origin, and Chinese imported samples showed a clear African origin with a slightly different distribution from the native Ghanaian samples. Moreover, samples collected from two host populations showed evidence of differences in the intensity of selection. Compared with native Ghanaian samples, the China-imported isolates exhibited a higher proportion of monoclonal infections, and many genes associated with RBC invasion and immune evasion were found to be under less selection pressure. There was no significant difference in the selection of drug-resistance genes due to a similar artemisinin-based combination therapy medication profile. Local selection of malarial parasites is considered to be a result of differences in the host immunity or disparity in the transmission opportunities of the host. In China, most P. falciparum infections were imported from Africa, and under these circumstances, distinct local selective pressures may be caused by varying acquired immunity and transmission intensity. This study revealed the impact of host switching on the immune system, and it may provide a better understanding of the mechanisms that enable clinical immunity to malaria.
Collapse
Affiliation(s)
- Shan-Mei Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Tian-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Moses Okpeku
- Discipline of Genetics, School of Life Science, University of Kwazulu-Natal, Durban, South Africa
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, China.,School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention⁃Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, National Centre for International Research on Tropical Diseases, WHO Collaborating Center for Tropical Diseases, Shanghai, China
| |
Collapse
|
56
|
Awab GR, Aaram F, Jamornthanyawat N, Suwannasin K, Pagornrat W, Watson JA, Woodrow CJ, Dondorp AM, Day NPJ, Imwong M, White NJ. Protective effect of Mediterranean-type glucose-6-phosphate dehydrogenase deficiency against Plasmodium vivax malaria. eLife 2021; 10:e62448. [PMID: 33543710 PMCID: PMC7884069 DOI: 10.7554/elife.62448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 01/19/2023] Open
Abstract
X-linked glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy. The severe Mediterranean variant (G6PD Med) found across Europe and Asia is thought to confer protection against malaria, but its effect is unclear. We fitted a Bayesian statistical model to observed G6PD Med allele frequencies in 999 Pashtun patients presenting with acute Plasmodium vivax malaria and 1408 population controls. G6PD Med was associated with reductions in symptomatic P. vivax malaria incidence of 76% (95% credible interval [CI], 58-88) in hemizygous males and homozygous females combined and 55% (95% CI, 38-68) in heterozygous females. Unless there is very large population stratification within the Pashtun (confounding these results), the G6PD Med genotype confers a very large and gene-dose proportional protective effect against acute vivax malaria. The proportion of patients with vivax malaria at risk of haemolysis following 8-aminoquinoline radical cure is substantially overestimated by studies measuring G6PD deficiency prevalence in healthy subjects.
Collapse
Affiliation(s)
- Ghulam R Awab
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Nangarhar Medical FacultyJalalabadAfghanistan
| | | | - Natsuda Jamornthanyawat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Kanokon Suwannasin
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Watcharee Pagornrat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - James A Watson
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Nicholas PJ Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
57
|
Metwally DM, Alajmi RA, El-Khadragy MF, Al-Quraishy S. Silver Nanoparticles Biosynthesized With Salvia officinalis Leaf Exert Protective Effect on Hepatic Tissue Injury Induced by Plasmodium chabaudi. Front Vet Sci 2021; 7:620665. [PMID: 33614756 PMCID: PMC7889953 DOI: 10.3389/fvets.2020.620665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/29/2020] [Indexed: 01/24/2023] Open
Abstract
Malaria is an important health problem in subtropical and tropical areas around the world. Infection with protozoan parasites of the Plasmodium genus, which grow inside host erythrocytes, causes malaria and may lead to morbidity and mortality. Liver tissue plays an important role in the pathogenesis of malaria and is closely involved in parasitic pre-erythrocytic development. Numerous published studies have demonstrated that the liver is not only the source of Plasmodium parasites prior to erythrocytic growth but is also a primary immune effector toward the blood stage of the malaria life cycle. Despite efforts to improve antimalarial drugs and vaccines, Plasmodium species that cause severe malaria are being detected increasingly frequently in endemic regions. In this study, Salvia officinalis (S. officinalis) leaf extract was employed to synthesize silver nanoparticles (Ag-NPs). This method is eco-friendly and represents a single-step technique for the biosynthetic process; therefore, it has attracted considerable attention. Accordingly, we biosynthesized Ag-NPs with extract of the S. officinalis leaf and examined the antimalarial activity of these nanoparticles in a murine model of Plasmodium chabaudi malaria (P. chabaudi malaria). Forty mice were chosen and classified into four types: infected group, healthy control, pretreated mice infected after treatment with 50 mg/kg of S. officinalis leaf extract-biosynthesized Ag-NPs for two weeks, and post-treated mice infected before treatment with 50 mg/kg of S. officinalis leaf extract-biosynthesized Ag-NPs (administered daily for 7 d). In this study, both pre-treatment and post-treatment with Ag-NPs produced a substantial reduction in parasitemia relative to the infected group. We investigated the antiplasmodial and hepatoprotective effects of S. officinalis leaf extract-biosynthesized Ag-NPs on P. chabaudi-induced inflammation and hepatic oxidative stress markers.
Collapse
Affiliation(s)
- Dina M Metwally
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reem A Alajmi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manal F El-Khadragy
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdelrahman University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
58
|
Oriero EC, Amenga-Etego L, Ishengoma DS, Amambua-Ngwa A. Plasmodium malariae, current knowledge and future research opportunities on a neglected malaria parasite species. Crit Rev Microbiol 2021; 47:44-56. [PMID: 33507842 DOI: 10.1080/1040841x.2020.1838440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasmodium malariae is often reported as a benign malaria parasite. There are limited data on its biology and disease burden in sub-Saharan Africa (sSA) possibly due to the unavailability of specific and affordable tools for routine diagnosis and large epidemiology studies. In addition, P. malariae occurs at low parasite densities and in co-infections with other species, predominately P. falciparum. The paucity of data on P. malariae infections limits the capacity to accurately determine its contribution to malaria and the effect of control interventions against P. falciparum on its prevalence. Here, we summarise the current knowledge on P. malariae epidemiology in sSA - overall prevalence ranging from 0-32%, as detected by different diagnostic methods; seroprevalence ranging from 0-56% in three countries (Mozambique, Benin and Zimbabwe), and explore the future application of next-generation sequencing technologies as a tool for enriching P. malariae genomic epidemiology. This will provide insights into important adaptive mechanisms of this neglected non-falciparum species, including antimalarial drug resistance, local and regional parasite transmission patterns and genomic signatures of selection. Improved diagnosis and genomic surveillance of non-falciparum malaria parasites in Africa would be helpful in evaluating progress towards elimination of all human Plasmodium species.
Collapse
Affiliation(s)
- Eniyou C Oriero
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| | - Lucas Amenga-Etego
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Ghana
| | - Deus S Ishengoma
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Alfred Amambua-Ngwa
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia at LSHTM, Fajara, The Gambia
| |
Collapse
|
59
|
Pedro N, Pinto RJ, Cavadas B, Pereira L. Sub-Saharan African information potential to unveil adaptations to infectious disease. Hum Mol Genet 2021; 30:R138-R145. [PMID: 33461217 DOI: 10.1093/hmg/ddab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 12/09/2022] Open
Abstract
Sub-Saharan Africa is the most promising region of the world to conduct high-throughput studies to unveil adaptations to infectious diseases due to several reasons, namely, the longest evolving time-depth in the Homo sapiens phylogenetic tree (at least two-third older than any other worldwide region); the continuous burden of infectious diseases (still number one in health/life threat); and the coexistence of populations practising diverse subsistence modes (nomadic or seminomadic hunter-gatherers and agropastoralists, and sedentary agriculturalists, small urban and megacity groups). In this review, we will present the most up-to-date results that shed light on three main hypotheses related with this adaptation. One is the hypothesis of coevolution between host and pathogen, given enough time for the establishment of this highly dynamic relationship. The second hypothesis enunciates that the agricultural transition was responsible for the increase of the infectious disease burden, due to the huge expansion of the sedentary human population and the cohabitation with domesticates as main reservoirs of pathogens. The third hypothesis states that the boosting of our immune system against pathogens by past selection may have resulted in maladaptation of the developed hygienic societies, leading to an increase of allergic, inflammatory and autoimmune disorders. Further work will enlighten the biological mechanisms behind these main adaptations, which can be insightful for translation into diagnosis, prognosis and treatment interventions.
Collapse
Affiliation(s)
- Nicole Pedro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Ricardo J Pinto
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bruno Cavadas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Luisa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,IPATIMUP - Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
60
|
Su XZ, Wu J. Zoonotic Transmissions and Host Switches of Malaria Parasites. ZOONOSES (BURLINGTON, MASS.) 2021; 1. [PMID: 35282332 DOI: 10.15212/zoonoses-2021-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malaria is a deadly disease that affects the health of hundreds of millions of people annually. There are five Plasmodium parasite species that can naturally infect humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Some of the parasites can also infect various non-human primates. Parasites mainly infecting monkeys such as Plasmodium cynomolgi (in fact P. knowlesi was considered as a parasite of monkeys for years) can also be transmitted to human hosts. Recently, many new Plasmodium species were discovered in African apes, and it is possible that some of the parasites can be transmitted to humans in the future. Here, we searched PubMed and the internet via Google and selected articles concerning zoonotic transmission and evolution of selected malaria parasite species. We reviewed the current advances in the relevant topics emphasizing on transmissions of malaria parasites between humans and non-human primates. We also briefly discuss the transmissions of some avian malaria parasites between wild birds and domestic fowls. Zoonotic malaria transmissions are widespread, which poses a threat to public health. More studies on parasite species identification in non-human primates, transmission, and evolution are needed to reduce or prevent transmission of malaria parasites from non-human primates to humans.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| |
Collapse
|
61
|
Phytochemistry and pharmacological activity of the genus artemisia. Arch Pharm Res 2021; 44:439-474. [PMID: 33893998 PMCID: PMC8067791 DOI: 10.1007/s12272-021-01328-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023]
Abstract
Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.
Collapse
|
62
|
Keshavarz H, Hassanpour G, Tohidinik H, Mohebali M, Sanjar M. Prediction of malaria cases in the southeastern Iran using climatic variables: An 18-year SARIMA time series analysis. ASIAN PAC J TROP MED 2021. [DOI: 10.4103/1995-7645.329008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
63
|
Loufouma Mbouaka A, Gamble M, Wurst C, Jäger HY, Maixner F, Zink A, Noedl H, Binder M. The elusive parasite: comparing macroscopic, immunological, and genomic approaches to identifying malaria in human skeletal remains from Sayala, Egypt (third to sixth centuries AD). ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2021; 13:115. [PMID: 34149953 PMCID: PMC8202054 DOI: 10.1007/s12520-021-01350-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 05/12/2023]
Abstract
UNLABELLED Although malaria is one of the oldest and most widely distributed diseases affecting humans, identifying and characterizing its presence in ancient human remains continue to challenge researchers. We attempted to establish a reliable approach to detecting malaria in human skeletons using multiple avenues of analysis: macroscopic observations, rapid diagnostic tests, and shotgun-capture sequencing techniques, to identify pathological changes, Plasmodium antigens, and Plasmodium DNA, respectively. Bone and tooth samples from ten individuals who displayed skeletal lesions associated with anaemia, from a site in southern Egypt (third to sixth centuries AD), were selected. Plasmodium antigens were detected in five of the ten bone samples, and traces of Plasmodium aDNA were detected in six of the twenty bone and tooth samples. There was relatively good synchronicity between the biomolecular findings, despite not being able to authenticate the results. This study highlights the complexity and limitations in the conclusive identification of the Plasmodium parasite in ancient human skeletons. Limitations regarding antigen and aDNA preservation and the importance of sample selection are at the forefront of the search for malaria in the past. We confirm that, currently, palaeopathological changes such as cribra orbitalia are not enough to be certain of the presence of malaria. While biomolecular methods are likely the best chance for conclusive identification, we were unable to obtain results which correspond to the current authentication criteria of biomolecules. This study represents an important contribution in the refinement of biomolecular techniques used; also, it raises new insight regarding the consistency of combining several approaches in the identification of malaria in past populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12520-021-01350-z.
Collapse
Affiliation(s)
- Alvie Loufouma Mbouaka
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - Michelle Gamble
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Heritage and Archaeological Research Practice, 101 Rose Street South Lane, EH2 3JG Edinburgh, Scotland
| | - Christina Wurst
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Heidi Yoko Jäger
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, Viale Druso 1, 39100 Bolzano, Italy
| | - Harald Noedl
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
- Present Address: Malaria Research Initiative Bandarban, Vienna, Austria
| | - Michaela Binder
- Bioarchaeology Department, Austrian Archaeological Institute at the Austrian Academy of Sciences, Franz Klein-Gasse 1, 1190 Vienna, Austria
- Present Address: Planen und Bauen im Bestand, Novetus, Belvederegasse 41, 1040 Vienna, Austria
| |
Collapse
|
64
|
Oany AR, Pervin T, Moni MA. Pharmacoinformatics based elucidation and designing of potential inhibitors against Plasmodium falciparum to target importin α/β mediated nuclear importation. INFECTION GENETICS AND EVOLUTION 2020; 88:104699. [PMID: 33385575 DOI: 10.1016/j.meegid.2020.104699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022]
Abstract
Plasmodium falciparum, the prime causative agent of malaria, is responsible for 4, 05,000 deaths per year and fatality rates are higher among the children aged below 5 years. The emerging distribution of the multi-drug resistant P. falciparum becomes a worldwide concern, so the identification of unique targets and novel inhibitors is a prime need now. In the present study, we have employed pharmacoinformatics approaches to analyze 265 lead-like compounds from PubChem databases for virtual screening. Thereafter, 15 lead-like compounds were docked within the active side pocket of importin alpha. Comparative ligand properties and absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile were also assessed. Finally, a novel inhibitor was designed and assessed computationally for its efficacy. From the comparative analysis we have found that our screened compounds possess better results than the existing lead ivermectin; having the highest binding energy of -15.6 kcal/mol, whereas ivermectin has -12.4 kcal/mol. The novel lead compound possessed more fascinating output without deviating any of the rules of Lipinski. It also possessed higher bioavailability and the drug-likeness score of 0.55 and 0.71, respectively compared to ivermectin. Furthermore, the binding study was confirmed by molecular dynamics simulation over 25 ns by evaluating the stability of the complex. Finally, all the screened compounds and the novel compound showed promising ADMET properties likewise. To end, we hope that our proposed screened compounds, as well as the novel compound, might give some advances to treat malaria efficiently in vitro and in vivo.
Collapse
Affiliation(s)
- Arafat Rahman Oany
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh; Aristopharma Limited, Bangladesh.
| | - Tahmina Pervin
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Mohammad Ali Moni
- Department of Computer Science & Engineering, Green University, Bangladesh; Department of Computer Science & Engineering, Pabna University of Science & Technology, Bangladesh; WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW, Sydney, Australia.
| |
Collapse
|
65
|
Zheng Y, Wang J, Liang X, Huang H, Ma Y, Lin L, Wang C, Zhan X, Yang L, Zha G, Yang P, Zou X, Chen Z, Chen X, Chen W, Liu X, Lin M. Epidemiology, evolutionary origin, and malaria-induced positive selection effects of G6PD-deficient alleles in Chinese populations. Mol Genet Genomic Med 2020; 8:e1540. [PMID: 33128437 PMCID: PMC7767544 DOI: 10.1002/mgg3.1540] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disorder in the Chinese population, there is scarce evidence regarding the epidemiology, evolutionary origin, and malaria-induced positive selection effects of G6PD-deficient alleles in various Chinese ethnic populations. METHODS We performed a large population-based screening (n = 15,690) to examine the impact of selection on human nucleotide diversity and to infer the evolutionary history of the most common deficiency alleles in Chinese populations. RESULTS The frequencies of G6PD deficiency ranged from 0% to 11.6% in 12 Chinese ethnic populations. A frequency map based on geographic information showed that G6PD deficiency was highly correlated with historical malaria prevalence in China and was affected by altitude and latitude. The five most frequently occurring G6PD gene variants were NM_001042351.3:c.1376G>T, NM_001042351.3:c.1388G>A, NM_001042351.3:c.95A>G, NM_001042351.3:c.1311T>C, and NM_001042351.3:c.1024C>T, which were distributed with ethnic features. A pathogenic but rarely reported variant site (NM_001042351.3:c.448G>A) was identified in this study. Bioinformatic analysis revealed a strong and recent positive selection targeting the NM_001042351.3:c.1376G>T allele that originated in the past 3125 to 3750 years and another selection targeting the NM_001042351.3:c.1388G>A allele that originated in the past 5000 to 6000 years. Additionally, both alleles originated from a single ancestor. CONCLUSION These results indicate that malaria has had a major impact on the Chinese genome since the introduction of rice agriculture.
Collapse
Affiliation(s)
- Yuzhong Zheng
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvinceChina
| | - Junli Wang
- Reproductive Medicine CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Xueyan Liang
- Department of Medical GeneticsShantou University Medical CollegeShantouGuangdongChina
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdongChina
| | - Huiying Huang
- Department of Medical GeneticsShantou University Medical CollegeShantouGuangdongChina
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdongChina
| | - Yanbo Ma
- School of Mathematics and StatisticsHanshan Normal UniversityChaozhouGuangdongChina
| | - Liyun Lin
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvinceChina
| | - Chunfang Wang
- Reproductive Medicine CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| | - Xiaofen Zhan
- Department of Medical LaboratoryChaozhou Central Hospital Affiliated to Southern Medical UniversityChaozhouGuangdongChina
| | - Liye Yang
- Department of Medical LaboratoryChaozhou Central Hospital Affiliated to Southern Medical UniversityChaozhouGuangdongChina
| | - Guangcai Zha
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvinceChina
| | - Peikui Yang
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvinceChina
| | - Xianghui Zou
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvinceChina
| | - Zikai Chen
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvinceChina
| | - Xinyao Chen
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdongChina
| | - Weizhong Chen
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdongChina
| | - Xiangzhi Liu
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdongChina
| | - Min Lin
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvinceChina
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdongChina
| |
Collapse
|
66
|
Abstract
Malaria is one of the most impacting public health problems in tropical and subtropical areas of the globe, with approximately 200 million cases worldwide annually. In the absence of an effective vaccine, rapid treatment is vital for effective malaria control. However, parasite resistance to currently available drugs underscores the urgent need for identifying new antimalarial therapies with new mechanisms of action. Among potential drug targets for developing new antimalarial candidates, protein kinases are attractive. These enzymes catalyze the phosphorylation of several proteins, thereby regulating a variety of cellular processes and playing crucial roles in the development of all stages of the malaria parasite life cycle. Moreover, the large phylogenetic distance between Plasmodium species and its human host is reflected in marked differences in structure and function of malaria protein kinases between the homologs of both species, indicating that selectivity can be attained. In this review, we describe the functions of the different types of Plasmodium kinases and highlight the main recent advances in the discovery of kinase inhibitors as potential new antimalarial drug candidates.
Collapse
|
67
|
Brown AC, Guler JL. From Circulation to Cultivation: Plasmodium In Vivo versus In Vitro. Trends Parasitol 2020; 36:914-926. [DOI: 10.1016/j.pt.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022]
|
68
|
Carter R, Karunaweera ND. The role of improved housing and living environments in malaria control and elimination. Malar J 2020; 19:385. [PMID: 33129327 PMCID: PMC7603669 DOI: 10.1186/s12936-020-03450-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Malaria risk and endemicity is often associated with the nature of human habitation and living environment. The disappearance of malaria from regions where it had been endemic for centuries, such as coastal areas of southern England, has been attributed, at least in part, to improvement in the quality of housing. Moreover, indigenous malaria transmission ceased throughout England without the necessity to eliminate the vector mosquitoes. The principles of malaria transmission, as formulated following the thinking of the pioneers of malaria epidemiology, Ronald Ross and George Macdonald, show how this may happen. Malaria ceases to be sustainable where its reproduction number, R0, the number of new cases generated on average for each existing case of malaria, falls below 1. In the terms of a Ross/Macdonald analysis the reduced contact between humans and blood-feeding mosquitoes that is achieved through housing that is secure against mosquito entry can have a powerful effect in reducing malaria R0. The island of Sri Lanka, where malaria had been endemic probably for centuries previously, has reported no indigenous cases of malaria since 2012. The disappearance of malaria from Sri Lanka followed an effective attack upon malaria transmission by the Sri Lanka Anti Malaria Campaign. The targeted and enhanced efforts of this campaign launched in 1999, drove the malaria R0 below 1 for most of the period up to 2012, leading to a nearly continuous decline in malaria cases until their extinction. The decades leading up to the launch of these efforts were ones of general improvement of living environment and notably in the quality of housing stock. Studies in the late 1980s had shown that quality of housing in a highly malarious district of Sri Lanka was a strong determinant of malaria risk. Through its effects on malaria R0, improved housing is likely to have facilitated the malaria control and cessation of indigenous malaria transmission in Sri Lanka and that it will help reduce the risk of the re-introduction of malaria to the island.
Collapse
Affiliation(s)
- Richard Carter
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka.
| |
Collapse
|
69
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
70
|
Garcia S. Pandemics and Traditional Plant-Based Remedies. A Historical-Botanical Review in the Era of COVID19. FRONTIERS IN PLANT SCIENCE 2020; 11:571042. [PMID: 32983220 PMCID: PMC7485289 DOI: 10.3389/fpls.2020.571042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/17/2020] [Indexed: 05/03/2023]
Abstract
Pandemics are as old as humanity and since ancient times we have turned to plants to find solutions to health-related problems. Traditional medicines based mostly on plants are still the only therapeutic possibility in many developing countries, but even in the richest ones, herbal formulation currently receives increased attention. Plants are natural laboratories whose complex secondary metabolism produces a wealth of chemical compounds, leading to drug discovery - 25% of widespread use drugs are indeed of plant origin. Their therapeutic potential is even bigger: although many plant-based compounds show inhibitory effects against a myriad of pathogens, few reach the stage of clinical trials. Their mechanism of action is often unknown, yet traditional plant-based remedies have the advantage of a long-term experience in their use, usually of hundreds to thousands of years, and thus a precious experience on their safety and effects. Here I am providing a non-systematic historical-botanical review of some of the most devastating pandemics that humanity has faced, with a focus on plant therapeutic uses. I will revisit the Middle Ages black death, in which a plant-based lotion (the four thieves vinegar) showed some effectiveness; the smallpox, a viral disease that lead to the discovery of vaccination but for which the native Americans had a plant ally, an interesting carnivorous plant species; tuberculosis and the use of garlic; the Spanish flu and the widespread recommendation of eating onions, among other plant-based treatments; and malaria, whose first effective treatment, quinine, came from the bark of a Peruvian tree, properties already known by the Quechua people. Synthetic analogues of quinine such as chloroquine or hydroxychloroquine are now being revisited for the treatment of COVID19 symptoms, as they are artemisinin and derivatives, other plant-based compounds effective against malaria. Finally, I will give some hints on another facet of plants to aid us in the prevention of infectious diseases: the production of biotechnological plant-based vaccines. Altogether, my aim is to stress the significant role of plants in global health (past, present and future) and the need of enhancing and protecting the botanical knowledge, from systematics to conservation, from ecology to ethnobotany.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| |
Collapse
|
71
|
Yan SD, Orkis J, Khan Sohail S, Wilson S, Davis T, Storey JD. Digging for care-seeking behaviour among gold miners in the Guyana hinterland: a qualitative doer non-doer analysis of social and behavioural motivations for malaria testing and treatment. Malar J 2020; 19:235. [PMID: 32631345 PMCID: PMC7336500 DOI: 10.1186/s12936-020-03289-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/17/2020] [Indexed: 10/29/2022] Open
Abstract
BACKGROUND Although Guyana has made significant progress toward malaria control, limited access to malaria testing and treatment services threatens those gains. Mining activities create breeding environments for mosquitoes, and the migrant and mobile mining populations are hard to reach with information and services. The Ministry of Public Health (MoPH) has trained volunteers to test and treat malaria cases in remote regions. However, it remains unclear how miners perceive these testers, the services they provide, or what their malaria care-seeking behaviour is in general. To better address these challenges, Breakthrough ACTION Guyana and MoPH conducted qualitative research from October to November 2018 in Regions 7 and 8 in Guyana. METHODS A total of 109 individuals, 70 miners, 17 other mining camp staff, and 22 other key stakeholders (e.g. community health workers, pharmacists, and regional leadership), participated in semi-structured interviews and focus group discussions. Results were derived using a framework analysis, with an adjusted doer and non-doer analysis, and organized using the integrated behaviour framework. RESULTS Miners sought MoPH-approved services because of close geographic proximity to testing services, a preference for public service treatment, and a desire to correctly diagnose and cure malaria rather than just treat its symptoms. Those who chose to initiate self-treatment-using unregulated medications from the private and informal sector-did so out of convenience and the belief that self-treatment had worked before. Miners who completed the full MoPH-approved treatment understood the need to complete the treatment, while those who prematurely stopped treatment did so because of medication side effects and a desire to feel better as soon as possible. CONCLUSION Reasons why miners do and do not pursue malaria testing and treatment services are diverse. These results can inform better MoPH programming and new solutions to improve malaria outcomes in Guyana.
Collapse
Affiliation(s)
- Shirley D Yan
- Johns Hopkins Center for Communication Programs, 111 Market Place, Suite 310, Baltimore, MD, USA.
| | - Jennifer Orkis
- Johns Hopkins Center for Communication Programs, 111 Market Place, Suite 310, Baltimore, MD, USA
| | - Saifra Khan Sohail
- Johns Hopkins Center for Communication Programs, 111 Market Place, Suite 310, Baltimore, MD, USA
| | - Sean Wilson
- Breakthrough ACTION Guyana, XX Barrack St., Georgetown, Guyana
| | - TrishAnn Davis
- Johns Hopkins Center for Communication Programs, 111 Market Place, Suite 310, Baltimore, MD, USA
| | - J Douglas Storey
- Johns Hopkins Center for Communication Programs, 111 Market Place, Suite 310, Baltimore, MD, USA
| |
Collapse
|
72
|
Pomari E, Silva R, Moro L, La Marca G, Perandin F, Verra F, Bisoffi Z, Piubelli C. Droplet Digital PCR for the Detection of Plasmodium falciparum DNA in Whole Blood and Serum: A Comparative Analysis with Other Molecular Methods. Pathogens 2020; 9:pathogens9060478. [PMID: 32560386 PMCID: PMC7350319 DOI: 10.3390/pathogens9060478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The estimation of Plasmodium falciparum parasitaemia can vary according to the method used. Recently, droplet digital PCR (ddPCR) has been proposed as a promising approach in the molecular quantitation of Plasmodium, but its ability to predict the actual parasitaemia on clinical samples has not been largely investigated. Moreover, the possibility of applying the ddPCR-sensitive method to serum samples has never been explored. Methods: We used, for the first time, ddPCR on both blood and serum to detect the DNA of P. falciparum in 52 paired samples from 26 patients. ddPCR was compared with loop-mediated isothermal amplification (LAMP) and rtPCR. The correlation between the ddPCR results, microscopy, and clinical parameters was examined. Results: ddPCR and microscopy were found to be strongly correlated (ρ(26) = 0.83111, p < 0.0001) in blood. Samples deviating from the correlation were partially explained by clinical parameters. In serum samples, ddPCR revealed the best performance in detecting P. falciparum DNA, with 77% positive samples among malaria subjects. Conclusion: Absolute quantitation by ddPCR can be a flexible technique for Plasmodium detection, with potential application in the diagnosis of malaria. In particular, ddPCR is a powerful approach for Plasmodium DNA analysis on serum when blood samples are unavailable.
Collapse
Affiliation(s)
- Elena Pomari
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
- Correspondence: (E.P.); (C.P.)
| | - Ronaldo Silva
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Lucia Moro
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Giulia La Marca
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Francesca Perandin
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Federica Verra
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
| | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
- Department of Diagnostics and Public Health, University of Verona, 37134 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy; (R.S.); (L.M.); (G.L.M.); (F.P.); (F.V.); (Z.B.)
- Correspondence: (E.P.); (C.P.)
| |
Collapse
|
73
|
Three mixed ligand mononuclear Zn(II) complexes of 4-acyl pyrazolones: Synthesis, characterization, crystal study and anti-malarial activity. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
74
|
Abstract
The medical, public health, and scientific communities are grappling with monumental imperatives to contain COVID-19, develop effective vaccines, identify efficacious treatments for the infection and its complications, and find biomarkers that detect patients at risk of severe disease. The focus of this communication is on a potential biomarker, short telomere length (TL), that might serve to identify patients more likely to die from the SARS-CoV-2 infection, regardless of age. The common thread linking these patients is lymphopenia, which largely reflects a decline in the numbers of CD4/CD8 T cells but not B cells. These findings are consistent with data that lymphocyte TL dynamics impose a limit on T-cell proliferation. They suggest that T-cell lymphopoiesis might stall in individuals with short TL who are infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Abraham Aviv
- Center of Human Development and AgingRutgers, The State University of New JerseyNew Jersey Medical SchoolNewarkNJUSA
| |
Collapse
|
75
|
Hematological and biochemical effects of Morinda lucida and Alstonia boonei on the liver and kidney of mice infected with Plasmodium berghei. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00436-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
76
|
Aguilar JB, Gutierrez JB. An Epidemiological Model of Malaria Accounting for Asymptomatic Carriers. Bull Math Biol 2020; 82:42. [PMID: 32172448 PMCID: PMC7072066 DOI: 10.1007/s11538-020-00717-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Abstract
Asymptomatic individuals in the context of malarial disease are subjects who carry a parasite load, but do not show clinical symptoms. A correct understanding of the influence of asymptomatic individuals on transmission dynamics will provide a comprehensive description of the complex interplay between the definitive host (female Anopheles mosquito), intermediate host (human), and agent (Plasmodium parasite). The goal of this article is to conduct a rigorous mathematical analysis of a new compartmentalized malaria model accounting for asymptomatic human hosts for the purpose of calculating the basic reproductive number ([Formula: see text]) and determining the bifurcations that might occur at the onset of disease-free equilibrium. A point of departure of this model from others appearing in the literature is that the asymptomatic compartment is decomposed into two mutually disjoint sub-compartments by making use of the naturally acquired immunity of the population under consideration. After deriving the model, a qualitative analysis is carried out to classify the stability of the equilibria of the system. Our results show that the dynamical system is locally asymptotically stable provided that [Formula: see text]. However, this stability is not global, owning to the occurrence of a sub-critical bifurcation in which additional non-trivial sub-threshold equilibrium solutions appear in response to a specified parameter being perturbed. To ensure that the model does not undergo a backward bifurcation, we demand an auxiliary parameter denoted [Formula: see text] in addition to the threshold constraint [Formula: see text]. The authors hope that this qualitative analysis will fill in the gaps of what is currently known about asymptomatic malaria and aid in designing strategies that assist the further development of malaria control and eradication efforts.
Collapse
Affiliation(s)
- Jacob B Aguilar
- Department of Mathematics and Sciences, Saint Leo University, Saint Leo, FL, 33574, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
77
|
Rougeron V, Elguero E, Arnathau C, Acuña Hidalgo B, Durand P, Houze S, Berry A, Zakeri S, Haque R, Shafiul Alam M, Nosten F, Severini C, Gebru Woldearegai T, Mordmüller B, Kremsner PG, González-Cerón L, Fontecha G, Gamboa D, Musset L, Legrand E, Noya O, Pumpaibool T, Harnyuttanakorn P, Lekweiry KM, Mohamad Albsheer M, Mahdi Abdel Hamid M, Boukary AOMS, Trape JF, Renaud F, Prugnolle F. Human Plasmodium vivax diversity, population structure and evolutionary origin. PLoS Negl Trop Dis 2020; 14:e0008072. [PMID: 32150544 PMCID: PMC7082039 DOI: 10.1371/journal.pntd.0008072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/19/2020] [Accepted: 01/18/2020] [Indexed: 11/19/2022] Open
Abstract
More than 200 million malaria clinical cases are reported each year due to Plasmodium vivax, the most widespread Plasmodium species in the world. This species has been neglected and understudied for a long time, due to its lower mortality in comparison with Plasmodium falciparum. A renewed interest has emerged in the past decade with the discovery of antimalarial drug resistance and of severe and even fatal human cases. Nonetheless, today there are still significant gaps in our understanding of the population genetics and evolutionary history of P. vivax, particularly because of a lack of genetic data from Africa. To address these gaps, we genotyped 14 microsatellite loci in 834 samples obtained from 28 locations in 20 countries from around the world. We discuss the worldwide population genetic structure and diversity and the evolutionary origin of P. vivax in the world and its introduction into the Americas. This study demonstrates the importance of conducting genome-wide analyses of P. vivax in order to unravel its complex evolutionary history. Among the five Plasmodium species infecting humans, P. vivax is the most prevalent parasite outside Africa. To date, there has been less research on this species than for Plasmodium falciparum, a more lethal species, principally because of the lack of an in vitro culture system and also because P. vivax is considered relatively benign. Nevertheless, P. vivax is responsible for severe and incapacitating clinical symptoms with significant effects on human health. The emergence of new drug resistance and the discovery of severe and even fatal cases due to P. vivax question the benign status of P. vivax malaria. In recent years, there has been increased interest in characterizing the distribution of genetic variation in P. vivax. However, these studies either generated genetic information from a regional geographic scale or combine genetic datasets generated in different molecular platforms, which is known to generate biased results. In this study, we used a single genotyping platform to genotype 14 microsatellite markers in 834 samples of P. vivax obtained from 28 locations in 20 countries from around the world, including several populations from East and West Africa. We discuss the worldwide population genetic structure and the evolutionary origins of P. vivax, as well as its introduction into the Americas.
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
- * E-mail: ,
| | - Eric Elguero
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
| | - Céline Arnathau
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
| | - Beatriz Acuña Hidalgo
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
| | - Patrick Durand
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
| | - Sandrine Houze
- Service de Parasitologie-mycologie CNR du Paludisme, AP-HP Hôpital Bichat, Paris, France
| | - Antoine Berry
- Centre de Physiopathologie de Toulouse-Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1043, CNRS UMR5282, Université de Toulouse Paul Sabatier, F-31300 Toulouse, France
- Service de Parasitologie-Mycologie, Institut Fédératif de Biologie, Centre Hospitalier Universitaire de Toulouse, F-31300 Toulouse, France
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Rashidul Haque
- Emerging Infections & Parasitology Laboratory, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Mohammad Shafiul Alam
- Emerging Infections & Parasitology Laboratory, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - François Nosten
- Centre for Tropical Medicine and Global Health,Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Carlo Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Tamirat Gebru Woldearegai
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Department of Medical Laboratory Sciences, College of Medical and Health Sciences, Haramaya University, Harar, Ethiopia
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Centre for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Lilia González-Cerón
- Regional Centre of Research in Public Health, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | - Gustavo Fontecha
- Microbiology Research Institute, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, AP, Lima, Peru
| | - Lise Musset
- Unit, Institut Pasteur de Guyane, BP6010, French Guiana
| | - Eric Legrand
- Malaria Genetic and Resistance Group, Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France
| | - Oscar Noya
- Centro para Estudios Sobre Malaria, Instituto de Altos Estudios en Salud “Dr. Arnoldo Gabaldón”, Ministerio del Poder Popular para la Salud and Instituto de Medicina Tropical, Universidad Central de Venezuela, Maracay, Caracas, Venezuela
| | - Tepanata Pumpaibool
- Biomedical Science, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Malaria Research Programme, College of Public Health Science, Chulalongkorn University, Bangkok, Thailand
| | - Pingchai Harnyuttanakorn
- Malaria Research Programme, College of Public Health Science, Chulalongkorn University, Bangkok, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Khadijetou Mint Lekweiry
- UR-Génomes et milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Mauritania
| | - Musab Mohamad Albsheer
- Department of Parasitology and Medical Entomology, Medical Campus, University of Khartoum, Sudan
| | | | - Ali Ould Mohamed Salem Boukary
- UR-Génomes et milieux, Faculté des Sciences et Techniques, Université de Nouakchott Al-Aasriya, Mauritania
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Jean-François Trape
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
| | - François Renaud
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
| | - Franck Prugnolle
- Laboratoire MIVEGEC (Université de Montpellier-CNRS-IRD), CREES, Montpellier, France
| |
Collapse
|
78
|
Old and Recent Advances in Life Cycle, Pathogenesis, Diagnosis, Prevention, and Treatment of Malaria Including Perspectives in Ethiopia. ScientificWorldJournal 2020. [DOI: 10.1155/2020/1295381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Malaria, caused by apicomplexan parasite, is an old disease and continues to be a major public health threat in many countries. This article aims to present different aspects of malaria including causes, pathogenesis, prevention, and treatment in an articulate and comprehensive manner. Six Plasmodium species are recognized as the etiology of human malaria, of which Plasmodium falciparum is popular in East and Southern Africa. Malaria is transmitted mainly through Anopheles gambiae and Anopheles funestus, the two most effective malaria vectors in the world. Half of the world’s population is at risk for malaria infection. Globally, the morbidity and mortality rates of malaria have become decreased even though few reports in Ethiopia showed high prevalence of malaria. The malaria parasite has a complex life cycle that takes place both inside the mosquito and human beings. Generally, diagnosis of malaria is classified into clinical and parasitological diagnoses. Lack of clear understanding on the overall biology of Plasmodium has created a challenge in an effort to develop new drugs, vaccines, and preventive methods against malaria. However, three types of vaccines and a lot of novel compounds are under perclinical and clinical studies that are triggered by the occurrence of resistance among commonly used drugs and insecticides. Antiadhesion adjunctive therapies are also under investigation in the laboratory. In addition to previously known targets for diagnostic tool, vaccine and drug discovery scientists from all corner of the world are in search of new targets and chemical entities.
Collapse
|
79
|
Liang X, Chen J, Ma Y, Huang H, Xie D, Monte‐Nguba S, Ehapo CS, Eyi UM, Zheng Y, Liu X, Zha G, Lin L, Chen W, Zhou X, Lin M. Evidence of positively selected G6PD A- allele reduces risk of Plasmodium falciparum infection in African population on Bioko Island. Mol Genet Genomic Med 2020; 8:e1061. [PMID: 31872983 PMCID: PMC7005621 DOI: 10.1002/mgg3.1061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme that protects red blood cells from oxidative damage. Although G6PD-deficient alleles appear to confer a protective effect of malaria, the link with clinical protection against Plasmodium infection is conflicting. METHODS A case-control study was conducted on Bioko Island, Equatorial Guinea and further genotyping analysis used to detect natural selection of the G6PD A- allele. RESULTS Our results showed G6PD A- allele could significantly reduce the risk of Plasmodium falciparum infection in male individuals (adjusted odds ratio [AOR], 0.43; 95% confidence interval [CI], 0.20-0.93; p < .05) and homozygous female individuals (AOR, 0.11; 95% CI, 0.01-0.84; p < .05). Additionally, the parasite densities were significantly different in the individuals with different G6PD A- alleles and individual levels of G6PD enzyme activity. The pattern of linkage disequilibrium and results of the long-range haplotype test revealed a strong selective signature in the region encompassing the G6PD A- allele over the past 6,250 years. The network of inferred haplotypes suggested a single origin of the G6PD A- allele in Africans. CONCLUSION Our findings demonstrate that glucose-6-phosphate dehydrogenase (G6PD) A- allele could reduce the risk of P. falciparum infection in the African population and indicate that malaria has a recent positive selection on G6PD A- allele.
Collapse
Affiliation(s)
- Xue‐Yan Liang
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvincePeople’s Republic of China
- Department of Medical GeneticsShantou University Medical CollegeShantouGuangdong ProvincePeople’s Republic of China
| | - Jiang‐Tao Chen
- The Chinese Medical Aid Team to the Republic of Equatorial GuineaGuangzhouGuangdong ProvincePeople’s Republic of China
- Department of Medical LaboratoryHuizhou Central HospitalHuizhouGuangdong ProvincePeople’s Republic of China
| | - Yan‐Bo Ma
- School of Mathematics and StatisticsHanshan Normal UniversityChaozhouGuangdong ProvincePeople’s Republic of China
| | - Hui‐Ying Huang
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvincePeople’s Republic of China
- Department of Medical GeneticsShantou University Medical CollegeShantouGuangdong ProvincePeople’s Republic of China
| | - Dong‐De Xie
- The Chinese Medical Aid Team to the Republic of Equatorial GuineaGuangzhouGuangdong ProvincePeople’s Republic of China
- Department of Medical LaboratoryHuizhou Central HospitalHuizhouGuangdong ProvincePeople’s Republic of China
| | | | - Carlos Salas Ehapo
- Department of Medical LaboratoryMalabo Regional HospitalMalaboEquatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical LaboratoryMalabo Regional HospitalMalaboEquatorial Guinea
| | - Yu‐Zhong Zheng
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvincePeople’s Republic of China
| | - Xiang‐Zhi Liu
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdong ProvincePeople’s Republic of China
| | - Guang‐Cai Zha
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvincePeople’s Republic of China
| | - Li‐Yun Lin
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvincePeople’s Republic of China
| | - Wei‐Zhong Chen
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdong ProvincePeople’s Republic of China
| | - Xia Zhou
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdong ProvincePeople’s Republic of China
| | - Min Lin
- School of Food Engineering and BiotechnologyHanshan Normal UniversityChaozhouGuangdong ProvincePeople’s Republic of China
- Department of Medical LaboratoryChaozhou People’s Hospital Affiliated to Shantou University Medical CollegeChaozhouGuangdong ProvincePeople’s Republic of China
| |
Collapse
|
80
|
HRP2: Transforming Malaria Diagnosis, but with Caveats. Trends Parasitol 2020; 36:112-126. [DOI: 10.1016/j.pt.2019.12.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022]
|
81
|
Investigating the Effect of Prompt Treatment on Malaria Prevalence in Children Aged below Five Years in Zambia: A Nested Case-Control Study in a Cross-Sectional Survey. ADVANCES IN PUBLIC HEALTH 2020. [DOI: 10.1155/2020/4289420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background. In a highly malaria endemic country like Zambia, prompt treatment of cases is known to reduce morbidity and mortality; however, it is not known whether it has a role as an effective prevention strategy because of the presence of asymptomatic chronic carriers who do not seek treatment and maintain the reservoirs of infection in the population. This study investigated the role of treatment of malaria cases as a prevention strategy in low, moderate, and high endemic settings. Methods. A nested case-control design was employed using datasets from a large countrywide national Malaria Indicator Survey of 2015. Self-reported malaria cases (n = 209) who took treatment in the two weeks preceding the survey were matched with controls (n = 511) who did not report malaria and did not take treatment during the same period using nearest neighbour propensity score matching for age, sex, and district. The data were analysed using conditional logistic regression in STATA version 15.1. Results. The malaria cases were more likely to be from rural areas (p=0.001), poorest households (p=0.049), and who lived in improvised housing structures (p=0.004) compared with the controls. Data from low and moderate malaria endemic areas did not have sufficient cases for the analysis to proceed; however, data from high endemic areas showed borderline evidence (p=0.054) that prompt treatment reduces the risk of malaria by almost half in the short-term aOR 0.057 (95% CI 0.32–1.01). Conclusion. We found borderline evidence which suggests that prompt treatment of malaria cases even in high endemic areas has potential to reduce the risk of malaria by almost half in the short term.
Collapse
|
82
|
Tiwari MK, Chaudhary S. Artemisinin-derived antimalarial endoperoxides from bench-side to bed-side: Chronological advancements and future challenges. Med Res Rev 2020; 40:1220-1275. [PMID: 31930540 DOI: 10.1002/med.21657] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/21/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
According to WHO World Malaria Report (2018), nearly 219 million new cases of malaria occurred and a total no. of 435 000 people died in 2017 due to this infectious disease. This is due to the rapid spread of parasite-resistant strains. Artemisinin (ART), a sesquiterpene lactone endoperoxide isolated from traditional Chinese herb Artemisia annua, has been recognized as a novel class of antimalarial drugs. The 2015 "Nobel Prize in Physiology or Medicine" was given to Prof Dr Tu Youyou for the discovery of ART. Hence, ART is termed as "Nobel medicine." The present review article accommodates insights from the chronological advancements and direct statistics witnessed during the past 48 years (1971-2019) in the medicinal chemistry of ART-derived antimalarial endoperoxides, and their clinical utility in malaria chemotherapy and drug discovery.
Collapse
Affiliation(s)
- Mohit K Tiwari
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, India
| |
Collapse
|
83
|
Abstract
This chapter deals with the core of the book, considering that insect-borne diseases are not only a human matter; there are important effects regarding plants and animals with enormous economic consequences and connected with our first interest: the production of food and its quality. In fact, it is useful to concentrate on the consequences of these diseases for our health, when this is part of the problem. Parasites are interested in any kind of appropriate host and we are generally a secondary target. Therefore, this chapter will be divided into three parts: diseases affecting mankind, animals, and plants. However, first let’s consider the general frame of this argument, whose roots are in the distant past. Plague caused the decline of villages, towns, and empires, changing the direction of history. Plague is no longer a menace to humanity, and this is clearly evidenced by the improvements of medicine and hygiene in the last centuries—but it can return. It depends, as in the past, on us. Several factors are changing the impact and the occurrence of insect-borne diseases, although most of general aspects are maintained and have been present for a long time. Thanks to recent analytic techniques, it is possible to explain new aspects of the presence and diffusion of these diseases, as well as their past, present, and future impacts. Information about the main current insect-borne diseases is reported and divided into four steps. First, the story of the plague is presented as the most important one in the past. Later, diseases affecting mankind, animals, and plants are reported. In particular, the influences of environmental change, introduction of alien species, and new alerts are considered. The outbreaks concerning malaria, Bluetongue, and Xylella are reported in detail as model cases of current interest. The scientific study of insect-borne diseases started about 100 years ago, but we have now accumulated a large quantity of data and research, whose quantity and quality are continuously increasing. However, information about the incidence in human activities is largely available.
Collapse
|
84
|
Ab Hamid N, Mohd Noor SN, Susubi J, Isa NR, Md Rodzay R, Bachtiar Effendi AM, Hafisool AA, Azman FA, Abdullah SF, Kamarul Zaman MK, Wasi Ahmad N, Lee HL. Semi-field evaluation of the bio-efficacy of two different deltamethrin formulations against Aedes species in an outdoor residual spraying study. Heliyon 2020; 6:e03230. [PMID: 31993521 PMCID: PMC6976940 DOI: 10.1016/j.heliyon.2020.e03230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/18/2019] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
In recent decades, dengue incidence has trended upward worldwide causing urgent needs for new or modified vector control methods. We modified the existing indoor residual spraying (IRS) method by applying insecticide on the outer walls of building structures in an outdoor residual spraying (ORS) study. A semi-field study was conducted to investigate the bio-efficacy of two different deltamethrin formulations: K-Othrine® Polyzone, new polymer-enhanced deltamethrin formulated as a suspension concentrate (SC-PE), and K-Othrine® WG 250, traditional deltamethrin formulated as water dispersible granule (WG). The residual bio-efficacy of deltamethrin SC-PE was compared to deltamethrin WG on finished cement surfaces applied to the outer walls at the Institute for Medical Research (IMR), Malaysia. Standard WHO cone wall bioassays were adapted to evaluate the effective duration of action of these deltamethrin formulations against susceptible laboratory-reared and wild, free-flying Aedes aegypti and Ae. albopictus. Analyses of bioassay results showed that deltamethrin SC-PE 30 mg/m2 has improved longevity in comparison to deltamethrin WG 30 mg/m2. Deltamethrin SC-PE 30 mg/m2 was effective until week 17 (producing > 80% mortality), surpassing deltamethrin WG 30 mg/m2 which only lasted until week 10. This was supported by post-hoc test analyses which demonstrated that deltamethrin SC-PE 30 mg/m2 produced the highest mean of mortality in laboratory-reared Aedes species and the wild Ae. albopictus. However, the effective duration of action of deltamethrin SC-PE (17 weeks) was less than the recommended period by WHO (6 months) but was reasonable given that the spraying was undertaken outdoor. This preliminary data could be of use for the deployment of locally adapted ORS operation in controlling dengue.
Collapse
Affiliation(s)
- Nurulhusna Ab Hamid
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Siti Nurfadhlina Mohd Noor
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - John Susubi
- Vector Borne Disease Control Program, Kilu'ufi Hospital, Malaita Province, Solomon Islands
- School of Diploma in Applied Parasitology and Entomology, SEAMEO – TROPMED Regional Center Malaysia, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Nur Rasyidah Isa
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Rohaiyu Md Rodzay
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Ainaa Mardia Bachtiar Effendi
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Afiq Ahnaf Hafisool
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Fatin Atirah Azman
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Siti Farah Abdullah
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Muhammad Khairi Kamarul Zaman
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Nazni Wasi Ahmad
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - Han Lim Lee
- Medical Entomology Unit and WHO Collaborating Center for Vectors, Institute for Medical Research, Ministry of Health, Malaysia, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
85
|
Ha J, Martinson R, Iwamoto SK, Nishi A. Hemoglobin E, malaria and natural selection. EVOLUTION MEDICINE AND PUBLIC HEALTH 2019; 2019:232-241. [PMID: 31890210 PMCID: PMC6925914 DOI: 10.1093/emph/eoz034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022]
Abstract
It is known that there has been positive natural selection for hemoglobin S and C in humans despite negative health effects, due to its role in malaria resistance. However, it is not well understood, if there has been natural selection for hemoglobin E (HbE), which is a common variant in Southeast Asia. Therefore, we reviewed previous studies and discussed the potential role of natural selection in the prevalence of HbE. Our review shows that in vitro studies, evolutionary genetics studies and epidemiologic studies largely support an involvement of natural selection in the evolution of HbE and a protective role of HbE against malaria infection. However, the evidence is inconsistent, provided from different regions, and insufficient to perform an aggregated analysis such as a meta-analysis. In addition, few candidate gene, genome-wide association or epistasis studies, which have been made possible with the use of big data in the post-genomic era, have investigated HbE. The biological pathways linking HbE and malaria infection have not yet been fully elucidated. Therefore, further research is necessary before it can be concluded that there was positive natural selection for HbE due to protection against malaria. Lay summary: Our review shows that evidence largely supports an involvement of natural selection in the evolution of HbE and a protective role of HbE against malaria. However, the evidence is not consistent. Further research is necessary before it is concluded.
Collapse
Affiliation(s)
- Jiwoo Ha
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ryan Martinson
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90025, USA
| | - Sage K Iwamoto
- College of Letters & Science, University of California Berkeley, Berkeley, CA 94720-2930, USA
| | - Akihiro Nishi
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
- Corresponding author. Department of Epidemiology, UCLA Fielding School of Public Health, 650 Charles E Young Dr S, Los Angeles, CA 90095, USA. Tel: +1-310-206-7164; Fax: +1-310-206-6039; E-mail:
| |
Collapse
|
86
|
Mahdizadeh Gharakhanlou N, Mesgari MS, Hooshangi N. Developing an agent-based model for simulating the dynamic spread of Plasmodium vivax malaria: A case study of Sarbaz, Iran. ECOL INFORM 2019. [DOI: 10.1016/j.ecoinf.2019.101006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
87
|
Geng J, Malla P, Zhang J, Xu S, Li C, Zhao Y, Wang Q, Kyaw MP, Cao Y, Yang Z, Cui L. Increasing trends of malaria in a border area of the Greater Mekong Subregion. Malar J 2019; 18:309. [PMID: 31514740 PMCID: PMC6739967 DOI: 10.1186/s12936-019-2924-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/17/2019] [Indexed: 11/27/2022] Open
Abstract
Background Intensive malaria transmission along international borders is a significant impediment to malaria elimination in the Greater Mekong Subregion (GMS) of Southeast Asia. Passive case detection (PCD) was used to study the dynamics and trends of malaria transmission at the China–Myanmar border to provide epidemiologic information for improved malaria control. Methods PCD was conducted in one hospital and 12 clinics near the Laiza town in northeast Myanmar from 2011 to 2016. Clinical malaria was diagnosed by microscopy and demographic information was captured using a structured questionnaire at the time of the patient’s presentation for care. Results Over the study period, 6175 (19.7%) malaria cases were confirmed by microscopy from 31,326 suspected cases. The four human malaria parasite species were all identified, with Plasmodium vivax and Plasmodium falciparum accounting for 5607 (90.8%) and 481 (7.8%) of the confirmed cases, respectively. In contrast to the steady decline of malaria in the general GMS, the study site had an upward trend of malaria incidence with vivax malaria outbreaks in 2013 and 2016. Adult males, children under the age of 15, and those with occupations such as farming, being a soldier or student, had significantly higher risks of clinical malaria compared to having fevers from other aetiologies. A self-reported history of clinical malaria was also associated with a higher risk of confirmed malaria. Conclusions The China–Myanmar border area has experienced an overall upward trend of malaria incidence in recent years with P. vivax becoming the predominant species. Evidence-based control strategies need to focus on high-risk populations.
Collapse
Affiliation(s)
- Jinting Geng
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Pallavi Malla
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA
| | - Jiaqi Zhang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Shiling Xu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Cuiying Li
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | | | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China.
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, 3720 Spectrum Boulevard, Suite 304, Tampa, FL, 33612, USA.
| |
Collapse
|
88
|
Bhatt B, Joshi JP. Knowledge, Awareness and Perception on Malaria in Tribal Regions of Vadodara District, Gujarat (India). JOURNAL OF HEALTH MANAGEMENT 2019. [DOI: 10.1177/0972063419868580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Malaria affects health and general well-being of many people in the developing world. In India also, malaria is a major public health problem. It continues to be a leading cause of morbidity and mortality in many tropical regions of the world, despite global efforts to eradicate the disease. To achieve the targets of reducing malaria prevalence and preventing malaria epidemic, it is essential to have active community participation. Therefore, clear understanding of the Knowledge, Awareness and Perception (KAPs) of a particular community can help in framing the policy of prevention and promotion of any malaria control measure. In this context, the decision makers in the health sector are recognizing the importance of community’s KAPs on malaria and, thus, is gaining stimulus as one of the methods for malaria control. KAPs, however, play an important role in the improvement of health and health-seeking behaviour of a disease-burdened group. This study, therefore, investigates a local community’s KAPs on malaria in tribal areas of Vadodara District. The KAP investigates the community’s understanding of malaria transmission, their recognition of signs and symptoms, their treatment-seeking behaviours and community preventive measures and practices.
Collapse
Affiliation(s)
- Bindu Bhatt
- Department of Geography, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Janak P. Joshi
- Department of Geography, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
89
|
Scully EJ, Shabani E, Rangel GW, Grüring C, Kanjee U, Clark MA, Chaand M, Kurita R, Nakamura Y, Ferreira MU, Duraisingh MT. Generation of an immortalized erythroid progenitor cell line from peripheral blood: A model system for the functional analysis of Plasmodium spp. invasion. Am J Hematol 2019; 94:963-974. [PMID: 31148215 PMCID: PMC6984401 DOI: 10.1002/ajh.25543] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Malaria pathogenesis is caused by the replication of Plasmodium parasites within the red blood cells (RBCs) of the vertebrate host. This selective pressure has favored the evolution of protective polymorphisms in erythrocyte proteins, a subset of which serve as cognate receptors for parasite invasion ligands. Recently, the generation of RBCs from immortalized hematopoietic stem cells (HSCs) has offered a more tractable system for genetic manipulation and long-term in vitro culture, enabling elucidation of the functional determinants of host susceptibility in vitro. Here we report the generation of an immortalized erythroid progenitor cell line (EJ cells) from as few as 100 000 peripheral blood mononuclear cells. It offers a robust method for the creation of customized model systems from small volumes of peripheral blood. The EJ cell differentiation mirrored erythropoiesis of primary HSCs, yielding orthochromatic erythroblasts and enucleated RBCs after eight days (ejRBCs). The ejRBCs supported invasion by both P. vivax and P. falciparum. To demonstrate the genetic tractability of this system, we used CRISPR/Cas9 to disrupt the Duffy Antigen/Receptor for Chemokines (DARC) gene, which encodes the canonical receptor of P. vivax in humans. Invasion of P. vivax into this DARC-knockout cell line was strongly inhibited providing direct genetic evidence that P. vivax requires DARC for RBC invasion. Further, genetic complementation of DARC restored P. vivax invasion. Taken together, the peripheral blood immortalization method presented here offers the capacity to generate biologically representative model systems for studies of blood-stage malaria invasion from the peripheral blood of donors harboring unique genetic backgrounds, or rare polymorphisms.
Collapse
Affiliation(s)
- Erik J. Scully
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
- Broad Institute, Cambridge, MA, United States of America
| | - Estela Shabani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Gabriel W. Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Christof Grüring
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Martha A. Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Mudit Chaand
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo 135-8521, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Ibaraki 305-0074, Japan
| | - Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, BR 05508-900
| | - Manoj T. Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
90
|
Huckaby AC, Granum CS, Carey MA, Szlachta K, Al-Barghouthi B, Wang YH, Guler JL. Complex DNA structures trigger copy number variation across the Plasmodium falciparum genome. Nucleic Acids Res 2019; 47:1615-1627. [PMID: 30576466 PMCID: PMC6393310 DOI: 10.1093/nar/gky1268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Antimalarial resistance is a major obstacle in the eradication of the human malaria parasite, Plasmodium falciparum. Genome amplifications, a type of DNA copy number variation (CNV), facilitate overexpression of drug targets and contribute to parasite survival. Long monomeric A/T tracks are found at the breakpoints of many Plasmodium resistance-conferring CNVs. We hypothesize that other proximal sequence features, such as DNA hairpins, act with A/T tracks to trigger CNV formation. By adapting a sequence analysis pipeline to investigate previously reported CNVs, we identified breakpoints in 35 parasite clones with near single base-pair resolution. Using parental genome sequence, we predicted the formation of stable hairpins within close proximity to all future breakpoint locations. Especially stable hairpins were predicted to form near five shared breakpoints, establishing that the initiating event could have occurred at these sites. Further in-depth analyses defined characteristics of these 'trigger sites' across the genome and detected signatures of error-prone repair pathways at the breakpoints. We propose that these two genomic signals form the initial lesion (hairpins) and facilitate microhomology-mediated repair (A/T tracks) that lead to CNV formation across this highly repetitive genome. Targeting these repair pathways in P. falciparum may be used to block adaptation to antimalarial drugs.
Collapse
Affiliation(s)
- Adam C Huckaby
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Claire S Granum
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Maureen A Carey
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Karol Szlachta
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Basel Al-Barghouthi
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22908, USA.,Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
91
|
Craciunescu T, Murari A, Gelfusa M. Causality Detection Methods Applied to the Investigation of Malaria Epidemics. ENTROPY 2019; 21:e21080784. [PMID: 33267497 PMCID: PMC7515313 DOI: 10.3390/e21080784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2019] [Accepted: 08/09/2019] [Indexed: 12/31/2022]
Abstract
Malaria, a disease with major health and socio-economic impacts, is driven by multiple factors, including a complex interaction with various climatic variables. In this paper, five methods developed for inferring causal relations between dynamic processes based on the information encapsulated in time series are applied on cases previously studied in literature by means of statistical methods. The causality detection techniques investigated in the paper are: a version of the kernel Granger causality, transfer entropy, recurrence plot, causal decomposition and complex networks. The methods provide coherent results giving a quite good confidence in the conclusions.
Collapse
Affiliation(s)
- Teddy Craciunescu
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele-Bucharest, Romania
- Correspondence:
| | - Andrea Murari
- Consorzio RFX (CNR, ENEA, INFN, Universita’ di Padova, Acciaierie Venete SpA), 35127 Padova, Italy
| | - Michela Gelfusa
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
92
|
Targeting the apicoplast in malaria. Biochem Soc Trans 2019; 47:973-983. [PMID: 31383817 DOI: 10.1042/bst20170563] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022]
Abstract
Malaria continues to be one of the leading causes of human mortality in the world, and the therapies available are insufficient for eradication. Severe malaria is caused by the apicomplexan parasite Plasmodium falciparum Apicomplexan parasites, including the Plasmodium spp., are descendants of photosynthetic algae, and therefore they possess an essential plastid organelle, named the apicoplast. Since humans and animals have no plastids, the apicoplast is an attractive target for drug development. Indeed, after its discovery, the apicoplast was found to host the target pathways of some known antimalarial drugs, which motivated efforts for further research into its biological functions and biogenesis. Initially, many apicoplast inhibitions were found to result in 'delayed death', whereby parasite killing is seen only at the end of one invasion-egress cycle. This slow action is not in line with the current standard for antimalarials, which seeded scepticism about the potential of compounds targeting apicoplast functions as good candidates for drug development. Intriguingly, recent evidence of apicoplast inhibitors causing rapid killing could put this organelle back in the spotlight. We provide an overview of drugs known to inhibit apicoplast pathways, alongside recent findings in apicoplast biology that may provide new avenues for drug development.
Collapse
|
93
|
Kumar A, Ghosh DK, Ali J, Ranjan A. Characterization of Lipid Binding Properties of Plasmodium falciparum Acyl-Coenzyme A Binding Proteins and Their Competitive Inhibition by Mefloquine. ACS Chem Biol 2019; 14:901-915. [PMID: 30986346 DOI: 10.1021/acschembio.9b00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malaria remains a worldwide concern in terms of morbidity and mortality. Limited understanding of the Plasmodium proteome makes it challenging to control malaria. Understanding of the expression and functions of different Plasmodium proteins will help in knowing this organism's virulence properties, besides facilitating the drug development process. In this study, we characterize the lipid binding and biophysical properties of the putative Plasmodium falciparum acyl-CoA binding proteins (PfACBPs), which may have intriguing functions in different stages of P. falciparum life cycle. While the PfACBPs can bind to long-chain fatty acyl-CoAs with high affinity, their affinity for short-chain fatty acyl-CoAs is weak. Base-stacking, electrostatic, and hydrophobic interactions between the aromatic rings, charged groups or residues, and hydrophobic chains or residues are responsible for acyl-CoA binding to PfACBPs. PfACBPs can also bind to phospholipids. PfACBPs cannot bind to the fatty acids and unphosphorylated fatty acid esters. PfACBPs are globular-helical proteins that contain a conserved acyl-CoA binding region. They exist in folded or unfolded conformations without attaining any intermediate state. In a systematic high-throughput in silico screening, mefloquine is identified as a potential ligand of PfACBPs. Binding affinities of mefloquine are much higher than those of fatty acyl-CoAs for all PfACBPs. Mefloquine binds to the acyl-CoA binding pocket of PfACBPs, thereby engaging many of the critical residues. Thus, mefloquine acts as a competitive inhibitor against fatty acyl-CoA binding to PfACBPs, leading to the prevention of P. falciparum growth and proliferation. Taken together, our study characterizes the functions of annotated PfACBPs and highlights the mechanistic details of their inactivation by mefloquine.
Collapse
Affiliation(s)
- Abhishek Kumar
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Debasish Kumar Ghosh
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jamshaid Ali
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Rajiv Gandhi Centre for Biotechnology Thiruvananthapuram, Kerala 695014, India
| | - Akash Ranjan
- Computational and Functional Genomics Group Centre for DNA Fingerprinting and Diagnostics Uppal, Hyderabad, Telangana 500039, India
| |
Collapse
|
94
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
95
|
Abstract
Water, essential for the biology of living organisms, is also important for agriculture, for the organization of social life and for culture. In this review we discuss the interrelationship between water availability and human population size. The total population of the globe, 3–5 million people between the years 25,000 and 5000 Before Common Era (BCE), increased about 50-fold in coincidence with the development of agriculture. Later on, after the year 200 Common Era (CE), the number of people did not change appreciably and increased slowly in the period 1000 to 1500 CE. We show that the main cause of this observed slow-down in population growth was the increase in population density, which caused the appearance and spreading of infectious diseases, often due to the use of contaminated water. Population started to increase again when people learned how to use appropriate sanitation and hygienic rules. The management of water resources, including transport of water to the areas where it is needed, separation and depuration of wastewater and production of freshwater by desalination, have become increasingly important. The population level is today very high and will continue to grow, thus causing a further increase in the density of people and an increased risk of contagious diseases. Therefore, more water for sanitation will be needed all over the world.
Collapse
|
96
|
Okuneye K, Eikenberry SE, Gumel AB. Weather-driven malaria transmission model with gonotrophic and sporogonic cycles. JOURNAL OF BIOLOGICAL DYNAMICS 2019; 13:288-324. [PMID: 30691351 DOI: 10.1080/17513758.2019.1570363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Malaria is mainly a tropical disease and its transmission cycle is heavily influenced by environment: The life-cycles of the Anopheles mosquito vector and Plasmodium parasite are both strongly affected by ambient temperature, while suitable aquatic habitat is necessary for immature mosquito development. Therefore, how global warming may affect malaria burden is an active question, and we develop a new ordinary differential equations-based malaria transmission model that explicitly considers the temperature-dependent Anopheles gonotrophic and Plasmodium sporogonic cycles. Mosquito dynamics are coupled to infection among a human population with symptomatic and asymptomatic disease carriers, as well as temporary immunity. We also explore the effect of incorporating diurnal temperature variations upon transmission. Rigorous analysis of the model show that the non-trivial disease-free equilibrium is locally-asymptotically stable when the associated reproduction number is less than unity (this equilibrium is globally-asymptotically for a special case with no density-dependent larval and disease-induced host mortality). Numerical simulations of the model, for the case where the ambient temperature is held constant, suggest a nonlinear, hyperbolic relationship between the reproduction number and clinical malaria burden. Moreover, malaria burden peaks at 29.5 o C when daily ambient temperature is held constant, but this peak decreases with increasing daily temperature variation, to about 23-25 o C. Malaria burden also varies nonlinearly with temperature, such that small temperature changes influent disease mainly at marginal temperatures, suggesting that in areas where malaria is highly endemic, any response to global warming may be highly nonlinear and most typically minimal, while in areas of more marginal malaria potential (such as the East African highlands), increasing temperatures may translate nearly linearly into increased disease potential. Finally, we observe that while explicitly modelling the stages of the Plasmodium sporogonic cycle is essential, explicitly including the stages of the Anopheles gonotrophic cycle is of minimal importance.
Collapse
Affiliation(s)
- Kamaldeen Okuneye
- a School of Mathematical and Statistical Sciences, Arizona State University , Tempe , Arizona 85287 , USA
| | - Steffen E Eikenberry
- a School of Mathematical and Statistical Sciences, Arizona State University , Tempe , Arizona 85287 , USA
| | - Abba B Gumel
- a School of Mathematical and Statistical Sciences, Arizona State University , Tempe , Arizona 85287 , USA
- b Department of Mathematics and Applied Mathematics, University of Pretoria , Pretoria , South Africa
| |
Collapse
|
97
|
Origin of the New World Plasmodium vivax: Facts and New Approaches. Int Microbiol 2019; 22:337-342. [PMID: 30810995 DOI: 10.1007/s10123-018-00053-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/26/2018] [Accepted: 12/17/2018] [Indexed: 01/05/2023]
Abstract
Malaria is one of the most important human diseases throughout tropical and sub-tropical regions of the world. Global distribution and ample host range have contributed to the genetic diversity of the etiological agent, Plasmodium. Phylogeographical analyses demonstrated that Plasmodium falciparum and Plasmodium vivax follow an Out of Africa (OOA) expansion, having a higher genetic diversity in African populations and a low genetic diversity in South American populations. Modeling the evolutionary rate of conserved genes for both P. falciparum and P. vivax determined the approximate arrival of human malaria in South America. Bayesian computational methods suggest that P. falciparum originated in Africa and arrived in South America through multiple independent introductions by the transatlantic African slave trade; however, in South America, P. vivax could have been introduced through an alternate migratory route. Alignments of P. vivax mitogenomes have revealed low genetic variation between the South American and Southeast Asian populations suggesting introduction through either pre-Columbian human migration or post-colonization events. To confirm the findings of these phylogeographical analyses, molecular methods were used to diagnose malaria infection in archeological remains of pre-Columbian ethnic groups. Immunohistochemistry tests were used and identified P. vivax but not P. falciparum in histologically prepared tissues from pre-Columbian Peruvian mummies, whereas shotgun metagenomics sequencing of DNA isolated from pre-Columbian Caribbean coprolites revealed Plasmodium-homologous reads; current evidence suggests that only P. vivax might have been present in pre-Columbian South America.
Collapse
|
98
|
Garrido-Cardenas JA, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Plasmodium genomics: an approach for learning about and ending human malaria. Parasitol Res 2019; 118:1-27. [PMID: 30402656 DOI: 10.1007/s00436-018-6127-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
Abstract
Malaria causes high levels of morbidity and mortality in human beings worldwide. According to the World Health Organization (WHO), about half a million people die of this disease each year. Malaria is caused by six species of parasites belonging to the Plasmodium genus: P. falciparum, P. knowlesi, P. vivax, P. malariae, P. ovale curtisi, and P. ovale wallikeri. Currently, malaria is being kept under control with varying levels of elimination success in different countries. The development of new molecular tools as well as the use of next-generation sequencing (NGS) technologies and novel bioinformatic approaches has improved our knowledge of malarial epidemiology, diagnosis, treatment, vaccine development, and surveillance strategies. In this work, the genetics and genomics of human malarias have been analyzed. Since the first P. falciparum genome was sequenced in 2002, various population-level genetic and genomic surveys, together with transcriptomic and proteomic studies, have shown the importance of molecular approaches in supporting malaria elimination.
Collapse
Affiliation(s)
| | - Lilia González-Cerón
- Regional Center for Public Health Research, National Institute of Public Health, Tapachula, Chiapas, Mexico
| | | | | |
Collapse
|
99
|
Nascimento J, Sampaio VS, Karl S, Kuehn A, Almeida A, Vitor-Silva S, de Melo GC, Baia da Silva DC, C. P. Lopes S, Fé NF, Lima JBP, Guerra MGB, Pimenta PFP, Bassat Q, Mueller I, Lacerda MVG, Monteiro WM. Use of anthropophilic culicid-based xenosurveillance as a proxy for Plasmodium vivax malaria burden and transmission hotspots identification. PLoS Negl Trop Dis 2018; 12:e0006909. [PMID: 30418971 PMCID: PMC6258424 DOI: 10.1371/journal.pntd.0006909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/26/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Vector-borne diseases account for more than 17% of all infectious diseases, causing more than one million deaths annually. Malaria remains one of the most important public health problems worldwide. These vectors are bloodsucking insects, which can transmit disease-producing microorganisms during a blood meal. The contact of culicids with human populations living in malaria-endemic areas suggests that the identification of Plasmodium genetic material in the blood present in the gut of these mosquitoes may be possible. The process of assessing the blood meal for the presence of pathogens is termed 'xenosurveillance'. In view of this, the present work investigated the relationship between the frequency with which Plasmodium DNA is found in culicids and the frequency with which individuals are found to be carrying malaria parasites. A cross-sectional study was performed in a peri-urban area of Manaus, in the Western Brazilian Amazon, by simultaneously collecting human blood samples and trapping culicids from households. A total of 875 individuals were included in the study and a total of 13,374mosquito specimens were captured. Malaria prevalence in the study area was 7.7%. The frequency of households with at least one culicid specimen carrying Plasmodium DNA was 6.4%. Plasmodium infection incidence was significantly related to whether any Plasmodium positive blood-fed culicid was found in the same household [IRR 3.49 (CI95% 1.38-8.84); p = 0.008] and for indoor-collected culicids [IRR 4.07 (CI95%1.25-13.24); p = 0.020]. Furthermore, the number of infected people in the house at the time of mosquito collection was related to whether there were any positive blood-fed culicid mosquitoes in that household for collection methods combined [IRR 4.48 (CI95%2.22-9.05); p<0.001] or only for indoor-collected culicids [IRR 4.88 (CI95%2.01-11.82); p<0.001]. Our results suggest that xenosurveillance can be used in endemic tropical regions in order to estimate the malaria burden and identify transmission foci in areas where Plasmodium vivax is predominant.
Collapse
Affiliation(s)
- Joabi Nascimento
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Vanderson S. Sampaio
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Stephan Karl
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Entomology Section, Vector-borne Diseases Unit, Papua New Guinea Institute of Medical Research, Papua, New Guinea
- Department of Medical Biology, University of Melbourne, Australia
| | - Andrea Kuehn
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
| | - Anne Almeida
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Sheila Vitor-Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Gisely Cardoso de Melo
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Djane C. Baia da Silva
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
| | | | - Nelson F. Fé
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
| | - José B. Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Maria G. Barbosa Guerra
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
| | - Paulo F. P. Pimenta
- Laboratório de Entomologia Médica, Centro de Pesquisas René Rachou (Fiocruz), Belo Horizonte, MG, Brazil
| | - Quique Bassat
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Australia
- Parasites & Hosts Unit, Institut Pasteur, Paris, France
| | - Marcus V. G. Lacerda
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, AM, Brazil
| | - Wuelton M. Monteiro
- Diretoria de Ensino e Pesquisa, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, Manaus, AM, Brazil
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, AM, Brazil
- * E-mail:
| |
Collapse
|
100
|
Jacobs L, de Kock C, Taylor D, Pelly SC, Blackie MA. Synthesis of five libraries of 6,5-fused heterocycles to establish the importance of the heterocyclic core for antiplasmodial activity. Bioorg Med Chem 2018; 26:5730-5741. [DOI: 10.1016/j.bmc.2018.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/24/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022]
|