51
|
Poespoprodjo JR, Fobia W, Kenangalem E, Lampah DA, Hasanuddin A, Warikar N, Sugiarto P, Tjitra E, Anstey NM, Price RN. Vivax malaria: a major cause of morbidity in early infancy. Clin Infect Dis 2009; 48:1704-12. [PMID: 19438395 PMCID: PMC4337979 DOI: 10.1086/599041] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND In areas where malaria is endemic, infants aged <3 months appear to be relatively protected from symptomatic and severe Plasmodium falciparum malaria, but less is known about the effect of Plasmodium vivax infection in this age group. METHODS To define malaria morbidity in the first year of life in an area where both multidrug-resistant P. falciparum and P. vivax are highly prevalent, data were gathered on all infants attending a referral hospital in Papua, Indonesia, using systematic data forms and hospital computerized records. Additional clinical and laboratory data were prospectively collected from inpatients aged <3 months. RESULTS From April 2004 through April 2008, 4976 infants were admitted to the hospital, of whom 1560 (31%) had malaria, with infection equally attributable to P. falciparum and P. vivax. The case-fatality rate was similar for inpatients with P. falciparum malaria (13 [2.2%] of 599 inpatients died) and P. vivax malaria (6 [1.0%] of 603 died; P= .161), whereas severe malarial anemia was more prevalent among those with P. vivax malaria (193 [32%] of 605 vs. 144 [24%] of 601; P= .025). Of the 187 infants aged <3 months, 102 (56%) had P. vivax malaria, and 55 (30%) had P. falciparum malaria. In these young infants, infection with P. vivax was associated with a greater risk of severe anemia (odds ratio, 2.4; 95% confidence interval, 1.03-5.91; P= .041) and severe thrombocytopenia (odds ratio, 3.3; 95% confidence interval, 1.07-10.6; P= .036) compared with those who have P. falciparum infection. CONCLUSIONS P. vivax malaria is a major cause of morbidity in early infancy. Preventive strategies, early diagnosis, and prompt treatment should be initiated in the perinatal period.
Collapse
Affiliation(s)
- Jeanne R Poespoprodjo
- District Health Authority, Menzies School of Health Research, National Institute of Health Research and Development Malaria Research Program, Jakarta, Indonesia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity.
Collapse
Affiliation(s)
- Denise L Doolan
- Queensland Institute of Medical Research, The Bancroft Centre, Post Office Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia.
| | | | | |
Collapse
|
53
|
Ned R, Price A, Crawford S, Ayisi J, van Eijk A, Otieno J, Nahlen B, Steketee R, Slutsker L, Shi Y, Lanar D, Udhayakumar V. Effect of Placental Malaria and HIV Infection on the Antibody Responses toPlasmodium falciparumin Infants. J Infect Dis 2008; 198:1609-19. [DOI: 10.1086/593066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
54
|
Ladeia-Andrade S, Ferreira MU, Scopel KKG, Braga EM, Bastos MDS, Wunderlich G, Coura JR. Naturally acquired antibodies to merozoite surface protein (MSP)-1(19) and cumulative exposure to Plasmodium falciparum and Plasmodium vivax in remote populations of the Amazon Basin of Brazil. Mem Inst Oswaldo Cruz 2008; 102:943-51. [PMID: 18209933 DOI: 10.1590/s0074-02762007000800009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 12/18/2007] [Indexed: 11/21/2022] Open
Abstract
To infer recent patterns of malaria transmission, we measured naturally acquired IgG antibodies to the conserved 19-kDa C-terminal region of the merozoite surface protein (MSP)-1 of both Plasmodium vivax (PvMSP-1(19)) and Plasmodium falciparum (PfMSP-1(19)) in remote malaria-exposed populations of the Amazon Basin. Community-based cross-sectional surveys were carried out between 2002 and 2003 in subjects of all age groups living along the margins of the Unini and Jaú rivers, Northwestern Brazil. We found high prevalence rates of IgG antibodies to PvMSP-1(19) (64.0 - 69.6%) and PfMSP-1(19) (51.6 - 52.0%), with significant differences in the proportion of subjects with antibodies to PvMSP-1(19) according to age, place of residence and habitual involvement in high-risk activities, defining some groups of highly exposed people who might be preferential targets of malaria control measures. In contrast, no risk factor other than age was significantly associated with seropositivity to PfMSP-1(19). Only 14.1% and 19.3% of the subjects tested for antibodies to PvMSP-1(19) and PfMSP-1(19) in consecutive surveys (142 - 203 days apart) seroconverted or had a three fold or higher increase in the levels of antibodies to these antigens. We discuss the extent to which serological data correlated with the classical malariometric indices and morbidity indicators measured in the studied population at the time of the seroprevalence surveys and highlight some limitations of serological data for epidemiological inference.
Collapse
Affiliation(s)
- Simone Ladeia-Andrade
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz-Fiocruz, 21045-900 Rio de Janeiro, Brasil.
| | | | | | | | | | | | | |
Collapse
|
55
|
Grynberg P, Fontes CJF, Hughes AL, Braga EM. Polymorphism at the apical membrane antigen 1 locus reflects the world population history of Plasmodium vivax. BMC Evol Biol 2008; 8:123. [PMID: 18445274 PMCID: PMC2394524 DOI: 10.1186/1471-2148-8-123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 04/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background In malaria parasites (genus Plasmodium), ama-1 is a highly polymorphic locus encoding the Apical Membrane Protein-1, and there is evidence that the polymorphism at this locus is selectively maintained. We tested the hypothesis that polymorphism at the ama-1 locus reflects population history in Plasmodium vivax, which is believed to have originated in Southeast Asia and is widely geographically distributed. In particular, we tested for a signature of the introduction of P. vivax into the New World at the time of the European conquest and African slave trade and subsequent population expansion. Results One hundred and five ama-1 sequences were generated and analyzed from samples from six different Brazilian states and compared with database sequences from the Old World. Old World populations of P. vivax showed substantial evidence of population substructure, with high sequence divergence among localities at both synonymous and nonsynonymous sites, while Brazilian isolates showed reduced diversity and little population substructure. Conclusion These results show that genetic diversity in P. vivax AMA-1 reflects population history, with population substructure characterizing long-established Old World populations, whereas Brazilian populations show evidence of loss of diversity and recent population expansion. Note Nucleotide sequence data reported is this paper are available in the GenBank™ database under the accession numbers EF031154 – EF031216 and EF057446 – EF057487
Collapse
Affiliation(s)
- Priscila Grynberg
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, (MG), Brazil.
| | | | | | | |
Collapse
|
56
|
Abstract
Malaria is one of the greatest killers of children in the world. Treatment is available, but there are problems with affordability, availability, accessibility and increasing drug resistance. A new regime, intermittent preventive treatment in infants (IPTi) shows promise. It involves giving a treatment course of antimalarial drugs, regardless of parasitaemia, at intervals over the first year of life. The aim is to decrease the frequency of malarial illness while allowing the development of natural immunity. Its strength is that it can be linked with the childhood immunisation schedule. Early studies are encouraging, but much remains to be learned before its potential place in the prevention of malaria in children can be determined and it can safely be introduced as public policy. A review of the literature was performed in July 2006 for references relating to IPTi and other forms of personal prevention of malaria in infants and children.
Collapse
Affiliation(s)
- Sally Munday
- Anton Breinl Centre, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
57
|
Zhou J, Yang J, Zhang G, Nishikawa Y, Fujisaki K, Xuan X. Babesia gibsoni: An apical membrane antigen-1 homologue and its antibody response in the infected dogs. Exp Parasitol 2006; 114:329-33. [PMID: 16777097 DOI: 10.1016/j.exppara.2006.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/27/2006] [Accepted: 04/29/2006] [Indexed: 11/17/2022]
Abstract
A cDNA encoding the apical membrane antigen-1 (AMA-1) homologue was obtained by immunoscreening a cDNA expression library prepared from Babesia gibsoni merozoite mRNA. The complete nucleotide sequence of the gene was 2062bp. Computer analysis suggested that the sequence contains an open reading frame of 1794bp with a coding capacity of approximately 66kDa. Based on the homology analysis, this putative protein was designated as B. gibsoni AMA-1 (BgAMA-1). The BgAMA-1 gene was expressed in the Escherichia coli BL21 strain and used as the antigen in Western blotting and the enzyme-linked immunosorbent assay (ELISA). The results indicated that BgAMA-1 was recognized as an immunodominant antigen by the host immune system and that it induced a strong antibody response only in chronic B. gibsoni infection in dogs; however, the antibody response could not be detected in the early infection stage (within 15 days). This phenomenon might be explained by the limited stimulation with the low-abundance protein in the early infection stage. This result shows that BgAMA-1 is a new member of the AMA-1 family and that its immune response is characteristic of canine B. gibsoni infection.
Collapse
Affiliation(s)
- Jinlin Zhou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | |
Collapse
|
58
|
Chelimo K, Ofulla AV, Narum DL, Kazura JW, Lanar DE, John CC. Antibodies to Plasmodium falciparum antigens vary by age and antigen in children in a malaria-holoendemic area of Kenya. Pediatr Infect Dis J 2005; 24:680-4. [PMID: 16094220 DOI: 10.1097/01.inf.0000172151.28851.fd] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Antibodies are important in protection against infection and disease caused by Plasmodium falciparum, but the frequencies of antibodies to multiple P. falciparum antigens in children are not well-characterized. METHODS IgG and IgM antibodies to the vaccine candidate antigens circumsporozoite protein, thrombospondin-related adhesive protein, liver stage antigen-1, apical membrane antigen-1, erythrocyte-binding antigen-175 and merozoite surface protein-1 were measured by enzyme-linked immunosorbent assay in 110 children 0-50 months of age in a malaria holoendemic area of Kenya. RESULTS A similar pattern was seen for IgG antibodies to circumsporozoite protein, thrombospondin-related adhesive protein, apical membrane antigen-1 and erythrocyte-binding antigen-175: high frequencies (70-90%) in children 0-4 months of age; a decrease in children 5-20 months of age (35-71%); and progressive increases in children 21-36 and 37-50 months of age (53-80% and 60-100%, respectively). In contrast, IgG antibodies to liver stage antigen-1 were infrequent in children 0-4 months of age (5%) and increased with age to 64%, and IgG antibody frequencies to merozoite surface protein-1 were similar across age groups (26-52%). IgG antibodies to all antigens were predominantly of the IgG1 and IgG3 subclasses. Frequencies of IgM antibodies to all antigens were low in children 0-4 months of age (0-15%) and increased with age (24-56% in the oldest children). CONCLUSION In children in a malaria-holoendemic area, IgM antibody to all P. falciparum antigens is infrequent in the first 4 months of life but increases with age and increased exposure. The pattern of age-related IgG response frequencies to P. falciparum antigens varies significantly by antigen.
Collapse
|
59
|
Malhotra I, Mungai P, Muchiri E, Ouma J, Sharma S, Kazura JW, King CL. Distinct Th1- and Th2-Type prenatal cytokine responses to Plasmodium falciparum erythrocyte invasion ligands. Infect Immun 2005; 73:3462-70. [PMID: 15908375 PMCID: PMC1111871 DOI: 10.1128/iai.73.6.3462-3470.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prenatal immunity to Plasmodium falciparum merozoite proteins involved in erythrocyte invasion may contribute to the partial protection against malaria that is acquired during infancy in areas of stable malaria transmission. We examined newborn and maternal cytokine and antibody responses to merozoite surface protein-1 (MSP-1), ribosomal phosphoprotein P0 (PfP0), and region II of erythrocyte binding antigen-175 (EBA-175) in infant-mother pairs in Kenya. Overall, 82 of 167 (50%), 106 of 176 (60%), and 38 of 84 (45%) cord blood lymphocytes (CBL) from newborns produced one or more cytokines in response to MSP-1, PfP0, and EBA-175, respectively. Newborns of primigravid and/or malaria-infected women were more likely to have antigen-responsive CBL than were newborns of multigravid and/or uninfected women at delivery. Newborn cytokine responses did not match those of their mothers and fell into three distinct categories, Th1 (21 of 55 CBL donors produced only gamma interferon and/or interleukin 2 [IL-2]), Th2 (21 of 55 produced only IL-5 and/or IL-13), and mixed Th1/Th2 (13 of 55). Newborns produced more IL-10 than adults. High and low levels of cord blood IL-12 p70 production induced by anti-CD40 activation were associated with malaria-specific Th1 and Th2 responses, respectively. Antigen-responsive CBL in some newborns were detected only after depletion of IL-10-secreting CD8 cells with enrichment for CD4 cells. These data indicate that prenatal sensitization to blood-stage Plasmodium falciparum occurs frequently in areas where malaria is holoendemic. Modulation of this immunity, possibly by maternal parity and malaria, may affect the acquisition of protective immunity against malaria during infancy.
Collapse
Affiliation(s)
- Indu Malhotra
- Center for Global Health and Diseases, Case Western Reserve University, 2103 Cornell Rd., WRC Room 4132, Cleveland, OH 44106-7286, USA
| | | | | | | | | | | | | |
Collapse
|
60
|
Healer J, Triglia T, Hodder AN, Gemmill AW, Cowman AF. Functional analysis of Plasmodium falciparum apical membrane antigen 1 utilizing interspecies domains. Infect Immun 2005; 73:2444-51. [PMID: 15784590 PMCID: PMC1087462 DOI: 10.1128/iai.73.4.2444-2451.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate whose function has not been unequivocally defined. Partial complementation of function can be achieved by exchanging the AMA1 of P. falciparum (PfAMA1) with that of P. chabaudi (PcAMA1). In this study, parasites expressing chimeric AMA1 proteins were created to identify domains of PfAMA1 critical in erythrocyte invasion and which are important immune targets. We report that specific chimeric AMA1 proteins containing domains I to III from PfAMA1 and PcAMA1 were able to complement PfAMA1 function in erythrocyte invasion. We demonstrate that domain III does not contain dominant epitope targets of antibodies raised against Escherichia coli expressed and refolded PfAMA1 ectodomain. Furthermore, we generated a parasite line in which the N-terminal pro region of PfAMA1 does not undergo proteolytic cleavage and show that its removal is necessary for PfAMA1 function.
Collapse
Affiliation(s)
- Julie Healer
- Walter and Eliza Hall Institute, Melbourne, Australia
| | | | | | | | | |
Collapse
|
61
|
Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SLR, Carneiro I, Malima R, Lusingu J, Manjurano A, Nkya WMM, Lemnge MM, Cox J, Reyburn H, Riley EM. Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A 2005; 102:5108-13. [PMID: 15792998 PMCID: PMC555970 DOI: 10.1073/pnas.0408725102] [Citation(s) in RCA: 394] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The implementation and evaluation of malaria control programs would be greatly facilitated by new tools for the rapid assessment of malaria transmission intensity. Because acquisition and maintenance of antimalarial antibodies depend on exposure to malaria infection, such antibodies might be used as proxy measures of transmission intensity. We have compared the prevalence of IgG antibodies with three Plasmodium falciparum asexual stage antigens in individuals of all ages living at varying altitudes encompassing a range of transmission intensities from hyper- to hypoendemic in northeastern Tanzania, with alternative measures of transmission intensity. The prevalence of antibodies to merozoite surface protein-1(19) was significantly more closely correlated with altitude than either point-prevalence malaria parasitemia or single measures of hemoglobin concentration. Analysis of age-specific seroprevalence rates enabled differentiation of recent (seasonal) changes in transmission intensity from longer-term transmission trends and, using a mathematical model of the annual rate of seroconversion, estimation of the longevity of the antibody response. Thus, serological tools allow us to detect variations in malaria transmission over time. Such tools will be invaluable for monitoring trends in malaria endemicity and the effectiveness of malaria control programs.
Collapse
Affiliation(s)
- C J Drakeley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Morais CG, Soares IS, Carvalho LH, Fontes CJF, Krettli AU, Braga EM. IgG isotype to C-terminal 19 kDa of Plasmodium vivax merozoite surface protein 1 among subjects with different levels of exposure to malaria in Brazil. Parasitol Res 2005; 95:420-6. [PMID: 15759156 DOI: 10.1007/s00436-005-1314-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 01/10/2005] [Indexed: 11/30/2022]
Abstract
Subclasses of antibodies to the C-terminal 19 kDa fragment of the Plasmodium vivax merozoite surface protein 1 (PvMSP-1(19)) were assessed among subjects with distinct degrees of malaria exposure in the Brazilian endemic area. The PvMSP-1(19) specific IgG1and IgG3 levels were low among subjects with long-term exposure (approximately 19 years) when compared to subjects less and sporadically exposed (<1 year). No statistically difference was observed in IgG subclass distribution of antibodies from symptomatic Plasmodium-infected patients, asymptomatic parasite carriers and non-infected subjects living in a same mesoendemic area. Subjects briefly exposed to a P. vivax outbreak living in a rural community outside the endemic area were also evaluated to measure the persistence of specific antibodies. IgG anti-PvMSP-1(19) antibodies persisted in 40% of the subjects who had had malarial symptoms 8 months before and decreased after 7 years (28%). Specific IgG1 were the predominant isotype. Our study emphasizes the highly immunogenicity of the PvMSP-1(19) and points toward its possible use as a potential malaria vaccine.
Collapse
Affiliation(s)
- Cristiane G Morais
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
63
|
Scopel KKG, Fontes CJF, Ferreira MU, Braga EM. Plasmodium falciparum: IgG subclass antibody response to merozoite surface protein-1 among Amazonian gold miners, in relation to infection status and disease expression. Exp Parasitol 2005; 109:124-34. [PMID: 15687019 DOI: 10.1016/j.exppara.2004.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/18/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.
Collapse
Affiliation(s)
- Kézia K G Scopel
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte (MG), Brazil
| | | | | | | |
Collapse
|
64
|
Polley SD, Mwangi T, Kocken CHM, Thomas AW, Dutta S, Lanar DE, Remarque E, Ross A, Williams TN, Mwambingu G, Lowe B, Conway DJ, Marsh K. Human antibodies to recombinant protein constructs of Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) and their associations with protection from malaria. Vaccine 2004; 23:718-28. [PMID: 15542195 DOI: 10.1016/j.vaccine.2004.05.031] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Revised: 05/10/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
Serum antibodies from 1071 people in two Kenyan villages were assayed using eight different recombinant Apical Membrane Antigen 1 (AMA1) protein constructs to investigate their role in naturally acquired immunity. In both communities, antibodies against the full-length ectodomain (both FVO and 3D7 allele constructs) prior to a malaria transmission season were significantly associated with protection from malaria in the following 6 months, even after adjusting for age and antibody reactivity to whole parasite (schizont) extract. However, these protective associations of antibodies were only seen among subjects that were parasite slide positive at the time of pre-season serum sampling. Competition ELISAs with the FVO and 3D7 allele constructs showed that antibodies can recognise either conserved or allele-specific epitopes in AMA1. Results encourage the development of an AMA1 vaccine based on the full-length ectodomain, and indicate that the function of human antibodies to allele-specific and conserved epitopes in AMA1 should be studied further.
Collapse
Affiliation(s)
- Spencer D Polley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Healer J, Murphy V, Hodder AN, Masciantonio R, Gemmill AW, Anders RF, Cowman AF, Batchelor A. Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum. Mol Microbiol 2004; 52:159-68. [PMID: 15049818 DOI: 10.1111/j.1365-2958.2003.03974.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Apical membrane antigen-1 (AMA-1) is a target of antibodies that inhibit invasion of Plasmodium falciparum into human erythrocytes and is a candidate for inclusion in a malaria vaccine. We have identified a line of P. falciparum (W2mef) less susceptible to anti-AMA1 antibodies raised to the protein from a heterologous parasite line (3D7). We have constructed transgenic P. falciparum expressing heterologous AMA-1 alleles. In vitro invasion assays show that these transgenic parasites differ from parental lines in susceptibility to inhibitory antibodies, providing direct evidence that sequence polymorphisms within AMA-1 are responsible for evasion of immune responses that inhibit parasite invasion. We also generated a parasite line that would express a chimeric AMA-1 protein, in which highly polymorphic residues within domain 1 were exchanged. Inhibition assays suggest that these residues are not sufficient for inhibition by invasion-blocking antibodies. This study is the first to use P. falciparum allelic exchange to examine the relationship between genetic diversity and susceptibility to protective antibodies. The findings have important implications for the development of an AMA-1-based malaria vaccine.
Collapse
Affiliation(s)
- Julie Healer
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, 3050, Australia
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Stanisic DI, Martin LB, Good MF. The Role of the 19-kDa Region of Merozoite Surface Protein 1 and Whole-Parasite-Specific Maternal Antibodies in Directing Neonatal Pups’ Responses to Rodent Malaria Infection. THE JOURNAL OF IMMUNOLOGY 2003; 171:5461-9. [PMID: 14607952 DOI: 10.4049/jimmunol.171.10.5461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal Abs generated as a result of prior exposure to infectious agents such as the malaria parasite are transferred from the mother through the placenta to the fetus. Numerous studies have attributed the resistance to malaria infection observed in neonates and infants up to 6 mo of age to the presence of maternally derived Abs. However, recent studies have produced conflicting results suggesting that alternative protective mechanisms may be responsible. Although the presence of maternally derived Abs in the infant is not disputed, their exact role in the infant is unknown. Even less clear is the effect that maternally derived Abs, if generated in response to vaccination, may have on the infant's ability to respond to malaria infection. Studies on mouse pups were performed to determine the role of the 19-kDa region of merozoite surface protein 1 (MSP1(19)) and Plasmodium yoelii-specific Abs in neonatal malaria infection and to examine their effect on the development of a specific immune response in the pup. It was shown that P. yoelii- and MSP1(19)-specific Abs transferred to the pup from the mother act to suppress the growth of the parasite in the pup. However, the maternally derived Abs interfered with the development of the pups' own Ab response to the parasite by altering the fine specificity of the response. These results suggest that immunizing women of child-bearing age with a malaria vaccine candidate such as MSP1(19) would not prevent the infant from producing Abs in response to malaria infection, but it may affect the region of the Ag to which it responds.
Collapse
MESH Headings
- Animals
- Animals, Newborn/growth & development
- Animals, Newborn/immunology
- Animals, Newborn/parasitology
- Animals, Suckling/immunology
- Animals, Suckling/parasitology
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/physiology
- Epitopes/administration & dosage
- Epitopes/immunology
- Epitopes/physiology
- Female
- Immunization, Passive
- Malaria/immunology
- Malaria/physiopathology
- Malaria/prevention & control
- Male
- Maternal-Fetal Exchange/immunology
- Merozoite Surface Protein 1/administration & dosage
- Merozoite Surface Protein 1/immunology
- Merozoite Surface Protein 1/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Weight
- Plasmodium yoelii/growth & development
- Plasmodium yoelii/immunology
- Pregnancy
- Protein Structure, Tertiary/physiology
- Species Specificity
Collapse
Affiliation(s)
- Danielle I Stanisic
- Queensland Institute of Medical Research and Co-operative Research Centre for Vaccine Technology, Brisbane, Australia
| | | | | |
Collapse
|
67
|
Jones TR, Gramzinski RA, Aguiar JC, Sim BKL, Narum DL, Fuhrmann SR, Kumar S, Obaldia N, Hoffman SL. Absence of antigenic competition in Aotus monkeys immunized with Plasmodium falciparum DNA vaccines delivered as a mixture. Vaccine 2002; 20:1675-80. [PMID: 11858878 DOI: 10.1016/s0264-410x(01)00513-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aotus lemurinus lemurinus monkeys were immunized four times with one of three DNA plasmids expressing important Plasmodium falciparum blood stage vaccine candidate proteins or with a mixture containing all three vaccines. The three vaccines encoded sequences from apical merozoite antigen-1 (AMA-1), erythrocyte binding protein-175 (EBA-175) and merozoite surface protein-1 (MSP-1). Antigen-specific enzyme-linked immunosorbant assays (ELISAs) showed no significant differences in antibody titer induced to the three antigens by a single vaccine compared with the titer induced to that same antigen by the trivalent preparation. Results of immunofluorescent antibody assays against erythrocytes infected with asexual blood stage P. falciparum indicated that each of the three monovalent vaccines induced significant antibody responses to whole parasites. The trivalent vaccine mixture induced, after four immunizations, an antibody titer to whole parasites that was 3--12-fold higher than those induced by any of the single vaccines. The fourth immunization with the trivalent vaccine increased the mean antibody in IFAT by more than five-fold.
Collapse
Affiliation(s)
- Trevor R Jones
- Malaria Program, Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
King CL, Malhotra I, Wamachi A, Kioko J, Mungai P, Wahab SA, Koech D, Zimmerman P, Ouma J, Kazura JW. Acquired immune responses to Plasmodium falciparum merozoite surface protein-1 in the human fetus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:356-64. [PMID: 11751981 DOI: 10.4049/jimmunol.168.1.356] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infants born in areas of stable malaria transmission are relatively protected against severe morbidity and high density Plasmodium falciparum blood-stage infection. This protection may involve prenatal sensitization and immunologic reactivity to malaria surface ligands that participate in invasion of red cells. We examined cord blood T and B cell immunity to P. falciparum merozoite surface protein-1 (MSP-1) in infants born in an area of stable malaria transmission in Kenya. T cell cytokine responses to the C-terminal 19-kDa fragment of MSP-1 (MSP-1(19)) were detected in 24 of 92 (26%) newborns (4-192 IFN-gamma and 3-88 IL-4-secreting cells per 10(6)/cord blood lymphocytes). Peptide epitopes in the N-terminal block 3 region of MSP-1 also drove IFN-gamma and/or IL-13 production. There was no evidence of prenatal T cell sensitization to liver-stage Ag-1. A total of 5 of 86 (6%) newborns had cord blood anti-MSP-1(19) IgM Abs, an Ig isotype that does not cross the placenta and is therefore of fetal origin. The frequency of neonatal B cell sensitization was higher than that indicated by serology alone, as 5 of 27 (18%) cord blood samples contained B cells that produced IgG when stimulated with MSP-1(19) in vitro. Neonatal B cell IgG responses were restricted to the Q-KNG allele of MSP-1(19), the major variant in this endemic area, whereas T cells responded to all four MSP-1(19) alleles evaluated. In utero sensitization to MSP-1 correlated with the presence of malaria parasites in cord blood (chi(2) = 20, p < 0.0001). These data indicate that prenatal sensitization to blood-stage Ags occurs in infants born in malaria endemic areas.
Collapse
Affiliation(s)
- Christopher L King
- Division of Geographic Medicine, Department of Medicine, Case Western Reserve University, Harlan Wood Building, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Rhee MS, Akanmori BD, Waterfall M, Riley EM. Changes in cytokine production associated with acquired immunity to Plasmodium falciparum malaria. Clin Exp Immunol 2001; 126:503-10. [PMID: 11737069 PMCID: PMC1906215 DOI: 10.1046/j.1365-2249.2001.01681.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individuals living in malaria-endemic areas eventually develop clinical immunity to Plasmodium falciparum. That is, they are able to limit blood parasite densities to extremely low levels and fail to show symptoms of infection. As the clinical symptoms of malaria infection are mediated in part by pro-inflammatory cytokines it is not clear whether the acquisition of clinical immunity is due simply to the development of antiparasitic mechanisms or whether the ability to regulate inflammatory cytokine production is also involved. We hypothesize that there is a correlation between risk of developing clinical malaria and the tendency to produce high levels of proinflammatory cytokines in response to malaria infection. In order to test this hypothesis, we have compared the ability of peripheral blood mononuclear cells from malaria-naive and malaria-exposed adult donors to proliferate and to secrete IFN-gamma in response to P. falciparum schizont extract (PfSE). In order to determine how PfSE-induced IFN-gamma production is regulated, we have also measured production of IL-12p40 and IL-10 from PfSE-stimulated PBMC and investigated the role of neutralizing antibody to IL-12 in modulating IFN-gamma production. We find that cells from naive donors produce moderate amounts of IFN-gamma in response to PfSE and that IFN-gamma production is strongly IL-12 dependent. Cells from malaria-exposed donors living in an area of low malaria endemicity produce much higher levels of IFN-gamma and this response is also at least partially IL-12 dependent. In complete contrast, cells from donors living in an area of very high endemicity produce minimal amounts of IFN-gamma. No significant differences were detected between the groups in IL-10 production, suggesting that this cytokine does not play a major role in regulating malaria-induced IFN-gamma production. The data from this study thus strongly support the hypothesis that down-regulation of inflammatory cytokine production may be a component of acquired clinical immunity to malaria but the mechanism by which this is achieved remains to be elucidated.
Collapse
Affiliation(s)
- M S Rhee
- Institute of Cell, Animal and Population Biology, Division of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
70
|
Polley SD, Conway DJ. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics 2001; 158:1505-12. [PMID: 11514442 PMCID: PMC1461755 DOI: 10.1093/genetics/158.4.1505] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The surface-accessible ectodomain region of the Plasmodium falciparum apical membrane antigen 1 (AMA1) is a malaria vaccine candidate. The amino acid sequence may be under selection from naturally acquired immune responses, and previous analyses with a small number of allele sequences indicate a non-neutral pattern of nucleotide variation. To investigate whether there is selection to maintain polymorphism within a population, and to identify the parts of the ectodomain under strongest selection, a sample of 51 alleles from a single endemic population was studied. Analyses using Fu and Li's D and F tests, Tajima's D test, and the McDonald-Kreitman test (with the chimpanzee parasite P. reichenowi as outgroup) show significant departure from neutrality and indicate the selective maintenance of alleles within the population. There is also evidence of a very high recombination rate throughout the sequence, as estimated by the recombination parameter, C, and by the rapid decline in linkage disequilibrium with increasing nucleotide distance. Of the three domains (I-III) encoding structures determined by disulfide bonds, the evidence of selection is strongest for Domains I and III. We predict that these domains in particular are targets of naturally acquired protective immune responses in humans.
Collapse
Affiliation(s)
- S D Polley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
71
|
Riley EM. The London School of Hygiene and Tropical Medicine: a new century of malaria research. Mem Inst Oswaldo Cruz 2001; 95 Suppl 1:25-32. [PMID: 11142720 DOI: 10.1590/s0074-02762000000700004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The global malaria situation has scarcely improved in the last 100 years, despite major advances in our knowledge of the basic biology, epidemiology and clinical basis of the disease. Effective malaria control, leading to a significant decrease in the morbidity and mortality attributable to malaria, will require a multidisciplinary approach. New tools--drugs, vaccine and insecticides--are needed but there is also much to be gained by better use of existing tools: using drugs in combination in order to slow the development of drug resistance; targeting resources to areas of greatest need; using geographic information systems to map the populations at risk and more sophisticated marketing techniques to distribute bed nets and insecticides. Sustainable malaria control may require the deployment of a highly effective vaccine, but there is much that can be done in the meantime to reduce the burden of disease.
Collapse
Affiliation(s)
- E M Riley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St., London WC1E 7HT, UK.
| |
Collapse
|
72
|
Riley EM, Wagner GE, Akanmori BD, Koram KA. Do maternally acquired antibodies protect infants from malaria infection? Parasite Immunol 2001; 23:51-9. [PMID: 11240896 DOI: 10.1046/j.1365-3024.2001.00364.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neonates and infants are relatively protected from clinical malaria, but the mechanism of this protection is not well understood. Maternally derived antibodies are commonly believed to provide protection against many infectious diseases, including malaria, for periods of up to 6-9 months but several recent epidemiological studies have produced conflicting results regarding a protective role of passively acquired antimalarial antibodies. In this article, we review the epidemiological evidence for resistance of young infants to malaria, summarize the data on antimalarial antibody levels and specificity and their association with protection from malaria infection or clinical disease, and explore alternative explanations for resistance to malaria in infants.
Collapse
Affiliation(s)
- E M Riley
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | |
Collapse
|