51
|
Cervin J, Wands AM, Casselbrant A, Wu H, Krishnamurthy S, Cvjetkovic A, Estelius J, Dedic B, Sethi A, Wallom KL, Riise R, Bäckström M, Wallenius V, Platt FM, Lebens M, Teneberg S, Fändriks L, Kohler JJ, Yrlid U. GM1 ganglioside-independent intoxication by Cholera toxin. PLoS Pathog 2018; 14:e1006862. [PMID: 29432456 PMCID: PMC5825173 DOI: 10.1371/journal.ppat.1006862] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 02/23/2018] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors via its B subunit (CTB). We have recently shown that in addition to the previously described binding partner ganglioside GM1, CTB binds to fucosylated proteins. Using flow cytometric analysis of primary human jejunal epithelial cells and granulocytes, we now show that CTB binding correlates with expression of the fucosylated Lewis X (LeX) glycan. This binding is competitively blocked by fucosylated oligosaccharides and fucose-binding lectins. CTB binds the LeX glycan in vitro when this moiety is linked to proteins but not to ceramides, and this binding can be blocked by mAb to LeX. Inhibition of glycosphingolipid synthesis or sialylation in GM1-deficient C6 rat glioma cells results in sensitization to CT-mediated intoxication. Finally, CT gavage produces an intact diarrheal response in knockout mice lacking GM1 even after additional reduction of glycosphingolipids. Hence our results show that CT can induce toxicity in the absence of GM1 and support a role for host glycoproteins in CT intoxication. These findings open up new avenues for therapies to block CT action and for design of detoxified enterotoxin-based adjuvants.
Collapse
Affiliation(s)
- Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Amberlyn M. Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Anna Casselbrant
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Han Wu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Soumya Krishnamurthy
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Aleksander Cvjetkovic
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Estelius
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benjamin Dedic
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anirudh Sethi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Rebecca Riise
- Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Malin Bäckström
- Mammalian Protein Expression Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Ville Wallenius
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frances M. Platt
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Susann Teneberg
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
52
|
Abstract
Cholera is an acute secretory diarrhoeal infection caused by the bacterium Vibrio cholerae. It is likely to have originated in the Indian sub-continent; however, it spread to cause six worldwide pandemics between 1817-1923. The ongoing seventh worldwide pandemic of cholera began in 1961. The intensity, duration and severity of cholera epidemics have been increasing, signaling the need for more effective control and prevention measures. The response to the cholera pandemics of the 19th century led to the development of safe and effective sanitation and water systems which have effectively removed the risk of cholera in many settings. However, such systems are not in place to protect billions of people worldwide. Although some progress has been made in expanding access to water in recent years, achieving optimal infrastructure will, in the most optimistic scenario, take decades. Climate change, extreme weather events and rapid urbanisation suggests that alternatives to the current paradigm of providing large centralised water and sanitation systems should be considered, including smaller decentralised systems. The aim of this review paper is to provide an overview of current knowledge regarding management of cholera with a focus on prevention measures including vaccination and water and sanitation interventions.
Collapse
Affiliation(s)
- Hannah G Davies
- Paediatric Emergency Department, St Thomas's Hospital, London, SEI 7EH, UK.
| | - Conor Bowman
- Infectious Diseases Unit, The Royal Free Hospital, London, NW3 2QG, UK.
| | - Stephen P Luby
- Infectious Diseases and Geographic Medicine, Stanford University, California, CA 94305, USA.
| |
Collapse
|
53
|
Parker EPK, Ramani S, Lopman BA, Church JA, Iturriza-Gómara M, Prendergast AJ, Grassly NC. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol 2018; 13:97-118. [PMID: 29218997 PMCID: PMC7026772 DOI: 10.2217/fmb-2017-0128] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/13/2017] [Indexed: 12/12/2022] Open
Abstract
Oral vaccines are less immunogenic when given to infants in low-income compared with high-income countries, limiting their potential public health impact. Here, we review factors that might contribute to this phenomenon, including transplacental antibodies, breastfeeding, histo blood group antigens, enteric pathogens, malnutrition, microbiota dysbiosis and environmental enteropathy. We highlight several clear risk factors for vaccine failure, such as the inhibitory effect of enteroviruses on oral poliovirus vaccine. We also highlight the ambiguous and at times contradictory nature of the available evidence, which undoubtedly reflects the complex and interconnected nature of the factors involved. Mechanisms responsible for diminished immunogenicity may be specific to each oral vaccine. Interventions aiming to improve vaccine performance may need to reflect the diversity of these mechanisms.
Collapse
Affiliation(s)
- Edward PK Parker
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| | | | - Benjamin A Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - James A Church
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Miren Iturriza-Gómara
- Centre for Global Vaccine Research, Institute of Infection & Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Andrew J Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Nicholas C Grassly
- Department of Infectious Disease Epidemiology, St Mary's Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
54
|
Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J. Cholera. Lancet 2017; 390:1539-1549. [PMID: 28302312 DOI: 10.1016/s0140-6736(17)30559-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 12/15/2016] [Indexed: 12/30/2022]
Abstract
Cholera is an acute, watery diarrhoeal disease caused by Vibrio cholerae of the O1 or O139 serogroups. In the past two centuries, cholera has emerged and spread from the Ganges Delta six times and from Indonesia once to cause global pandemics. Rational approaches to the case management of cholera with oral and intravenous rehydration therapy have reduced the case fatality of cholera from more than 50% to much less than 1%. Despite improvements in water quality, sanitation, and hygiene, as well as in the clinical treatment of cholera, the disease is still estimated to cause about 100 000 deaths every year. Most deaths occur in cholera-endemic settings, and virtually all deaths occur in developing countries. Contemporary understanding of immune protection against cholera, which results from local intestinal immunity, has yielded safe and protective orally administered cholera vaccines that are now globally stockpiled for use in the control of both epidemic and endemic cholera.
Collapse
Affiliation(s)
- John D Clemens
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh; UCLA Fielding School of Public Health, Los Angeles, CA, USA; Korea University School of Medicine, Seoul, Korea.
| | | | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Dhaka, Bangladesh
| | | |
Collapse
|
55
|
Matias WR, Teng JE, Hilaire IJ, Harris JB, Franke MF, Ivers LC. Household and Individual Risk Factors for Cholera among Cholera Vaccine Recipients in Rural Haiti. Am J Trop Med Hyg 2017; 97:436-442. [PMID: 28722575 PMCID: PMC5544067 DOI: 10.4269/ajtmh.16-0407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Oral cholera vaccination was used as part of cholera control in Haiti, but the vaccine does not provide complete protection. We conducted secondary data analyses of a vaccine effectiveness study in Haiti to evaluate risk factors for cholera among cholera vaccine recipients. Individuals vaccinated against cholera that presented with acute watery diarrhea and had a stool sample positive for Vibrio cholerae O1 were included as cases. Up to four vaccinated individuals who did not present for treatment of diarrhea were included as controls for each case, and matched by location of residence, enrollment time, and age. We evaluated sociodemographic characteristics and risk factors for cholera. Univariable and multivariable logistic regression were performed to identify risk factors for cholera among vaccinees. Thirty-three vaccine recipients with culture-confirmed cholera were included as cases. One-hundred-and-seventeen of their matched controls reported receiving vaccine and were included as controls. In a multivariable analysis, self-reporting use of branded household water disinfection products as a means of treating water (adjusted relative risk [aRR] = 44.3, 95% confidence interval [CI] = 4.19-468.05, P = 0.002), and reporting having a latrine as the main household toilet (aRR = 4.22, 95% CI = 1.23-14.43, P = 0.02), were independent risk factors for cholera. Self-reporting always treating water (aRR = 0.09, 95% CI = 0.01-0.57, P = 0.01) was associated with protection against cholera. The field effectiveness of water, sanitation, and hygiene interventions used in combination with cholera vaccination in cholera control should be measured and monitored over time to identify and remediate shortcomings, and ensure successful impact on disease control.
Collapse
Affiliation(s)
- Wilfredo R Matias
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts.,Partners In Health, Boston, Massachusetts
| | - Jessica E Teng
- Partners In Health, Boston, Massachusetts.,Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - Jason B Harris
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Molly F Franke
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| | - Louise C Ivers
- Partners In Health, Boston, Massachusetts.,Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts.,Division of Global Health Equity, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
56
|
Abstract
Infectious diseases kill nearly 9 million people annually. Bacterial pathogens are responsible for a large proportion of these diseases, and the bacterial agents of pneumonia, diarrhea, and tuberculosis are leading causes of death and disability worldwide. Increasingly, the crucial role of nonhost environments in the life cycle of bacterial pathogens is being recognized. Heightened scrutiny has been given to the biological processes impacting pathogen dissemination and survival in the natural environment, because these processes are essential for the transmission of pathogenic bacteria to new hosts. This chapter focuses on the model environmental pathogen Vibrio cholerae to describe recent advances in our understanding of how pathogens survive between hosts and to highlight the processes necessary to support the cycle of environmental survival, transmission, and dissemination. We describe the physiological and molecular responses of V. cholerae to changing environmental conditions, focusing on its survival in aquatic reservoirs between hosts and its entry into and exit from human hosts.
Collapse
|
57
|
Anifowoshe AT, Owolodun OA, Akinseye KM, Iyiola OA, Oyeyemi BF. Gene frequencies of ABO and Rh blood groups in Nigeria: A review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
58
|
Hatlem D, Heggelund JE, Burschowsky D, Krengel U, Kristiansen PE. 1H, 13C, 15N backbone assignment of the human heat-labile enterotoxin B-pentamer and chemical shift mapping of neolactotetraose binding. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:99-104. [PMID: 28243889 DOI: 10.1007/s12104-017-9728-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
The major virulence factor of enterotoxigenic Escherichia coli is the heat-labile enterotoxin (LT), an AB5 toxin closely related to the cholera toxin. LT consists of six subunits, the catalytically active A-subunit and five B-subunits arranged as a pentameric ring (LTB), which enable the toxin to bind to the epithelial cells in the intestinal lumen. LTB has two recognized binding sites; the primary binding site is responsible for anchoring the toxin to its main receptor, the GM1-ganglioside, while the secondary binding site recognizes blood group antigens. Herein, we report the 1H, 13C, 15N main chain assignment of LTB from human isolates (hLTB; 103 a.a. per subunit, with a total molecular mass of 58.5 kDa). The secondary structure was predicted based on 13C', 13Cα, 13Cβ, 1HN and 15N chemical shifts and compared to a published crystal structure of LTB. Neolactotetraose (NEO) was titrated to hLTB and chemical shift perturbations were measured. The chemical shift perturbations were mapped onto the crystal structure, confirming that NEO binds to the primary binding site of hLTB and competes with GM1-binding. Our new data further lend support to the hypothesis that binding at the primary binding site is transmitted to the secondary binding site of the toxin, where it may influence the binding to blood group antigens.
Collapse
Affiliation(s)
- Daniel Hatlem
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway
| | - Julie E Heggelund
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- School of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Daniel Burschowsky
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway
- Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Ute Krengel
- Department of Chemistry, University of Oslo, Blindern, P.O. Box 1033, 0315, Oslo, Norway.
| | - Per E Kristiansen
- Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway.
| |
Collapse
|
59
|
Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates. Biochem Res Int 2017; 2016:9051727. [PMID: 28044107 PMCID: PMC5164903 DOI: 10.1155/2016/9051727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/20/2016] [Indexed: 12/05/2022] Open
Abstract
Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i) the selective pressure on the GT6 paralogs genes in primates; (ii) the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii) the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions.
Collapse
|
60
|
Dotz V, Wuhrer M. Histo-blood group glycans in the context of personalized medicine. Biochim Biophys Acta Gen Subj 2016; 1860:1596-607. [PMID: 26748235 PMCID: PMC7117023 DOI: 10.1016/j.bbagen.2015.12.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide structures which may be conjugated to lipids or proteins. They are known to be important recognition motifs not only in the context of blood transfusions, but also in infection and cancer development. SCOPE OF REVIEW Current knowledge on the molecular background and the implication of histo-blood group glycans in the prevention and therapy of infectious and non-communicable diseases, such as cancer and cardiovascular disease, is presented. MAJOR CONCLUSIONS Glycan-based histo-blood groups are associated with intestinal microbiota composition, the risk of various diseases as well as therapeutic success of, e.g., vaccination. Their potential as prebiotic or anti-microbial agents, as disease biomarkers and vaccine targets should be further investigated in future studies. For this, recent and future technological advancements will be of particular importance, especially with regard to the unambiguous structural characterization of the glycan portion in combination with information on the protein and lipid carriers of histo-blood group-active glycans in large cohorts. GENERAL SIGNIFICANCE Histo-blood group glycans have a unique linking position in the complex network of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly promising targets for novel approaches in the field of personalized medicine. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Viktoria Dotz
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Division of Bioanalytical Chemistry, VU University Amsterdam, Amsterdam, The Netherlands; Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
61
|
Harris JB, LaRocque RC. Cholera and ABO Blood Group: Understanding an Ancient Association. Am J Trop Med Hyg 2016; 95:263-264. [PMID: 27402512 PMCID: PMC4973168 DOI: 10.4269/ajtmh.16-0440] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/14/2016] [Indexed: 02/01/2023] Open
Affiliation(s)
- Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
62
|
Kaidarova Z, Bravo MD, Kamel HT, Custer BS, Busch MP, Lanteri MC. Blood group A and D negativity are associated with symptomatic West Nile virus infection. Transfusion 2016; 56:1699-706. [PMID: 27189860 DOI: 10.1111/trf.13622] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND West Nile virus (WNV) infection is mostly asymptomatic (AS) but 20% of subjects report WNV fever and 1% of patients experience neurologic diseases with higher rates in elderly and immunosuppressed persons. With no treatment and no vaccine to prevent the development of symptomatic (S) infections, it is essential to understand prognostic factors influencing S disease outcome. Host genetic background has been linked to the development of WNV neuroinvasive disease. This study investigates the association between the ABO and D blood group status and WNV disease outcome. STUDY DESIGN AND METHODS The distribution of blood groups was investigated within a cohort of 374 WNV+ blood donors including 244 AS and 130 S WNV+ blood donors. Logistic regression analyses were used to examine associations between A, B, O, and D blood groups and WNV clinical disease outcome. RESULTS S WNV+ donors exhibited increased frequencies of blood group A (S 47.6%, AS 36.8%, p = 0.04; odds ratio [OR], 1.56; 95% confidence interval [CI], 1.01-2.40) and D- individuals (S 21.5%, AS 13.1%, p = 0.03; OR, 1.82; 95% CI, 1.04-3.18). CONCLUSION The findings suggest a genetic susceptibility placing blood group A and D- individuals at risk for the development of S disease outcome after WNV infection.
Collapse
Affiliation(s)
| | | | | | - Brian S Custer
- Blood Systems Research Institute, San Francisco, California.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, California.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Marion C Lanteri
- Blood Systems Research Institute, San Francisco, California.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
63
|
Kuhlmann FM, Santhanam S, Kumar P, Luo Q, Ciorba MA, Fleckenstein JM. Blood Group O-Dependent Cellular Responses to Cholera Toxin: Parallel Clinical and Epidemiological Links to Severe Cholera. Am J Trop Med Hyg 2016; 95:440-3. [PMID: 27162272 DOI: 10.4269/ajtmh.16-0161] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022] Open
Abstract
Because O blood group has been associated with more severe cholera infections, it has been hypothesized that cholera toxin (CT) may bind non-O blood group antigens of the intestinal mucosae, thereby preventing efficient interaction with target GM1 gangliosides required for uptake of the toxin and activation of cyclic adenosine monophosphate (cAMP) signaling in target epithelia. Herein, we show that after exposure to CT, human enteroids expressing O blood group exhibited marked increase in cAMP relative to cells derived from blood group A individuals. Likewise, using CRISPR/Cas9 engineering, a functional group O line (HT-29-A(-/-)) was generated from a parent group A HT-29 line. CT stimulated robust cAMP responses in HT-29-A(-/-) cells relative to HT-29 cells. These findings provide a direct molecular link between blood group O expression and differential cellular responses to CT, recapitulating clinical and epidemiologic observations.
Collapse
Affiliation(s)
- F Matthew Kuhlmann
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Srikanth Santhanam
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Pardeep Kumar
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Qingwei Luo
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Matthew A Ciorba
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri. Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, Saint Louis, Missouri. Molecular Microbiology and Microbial Pathogenesis Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, Saint Louis, Missouri. Veterans Affairs Medical Center, Saint Louis, Missouri.
| |
Collapse
|
64
|
High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence. PLoS Pathog 2016; 12:e1005567. [PMID: 27082955 PMCID: PMC4833353 DOI: 10.1371/journal.ppat.1005567] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1-1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera.
Collapse
|
65
|
Chowdhury F, Kuchta A, Khan AI, Faruque ASG, Calderwood SB, Ryan ET, Qadri F. The increased severity in patients presenting to hospital with diarrhea in Dhaka, Bangladesh since the emergence of the hybrid strain of Vibrio cholerae O1 is not unique to cholera patients. Int J Infect Dis 2015; 40:9-14. [PMID: 26409202 PMCID: PMC4666742 DOI: 10.1016/j.ijid.2015.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 08/07/2015] [Accepted: 09/06/2015] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A hybrid strain of Vibrio cholerae O1 El Tor that expresses a classical cholera toxin (CT) emerged in 2001. This hybrid variant rapidly replaced the previous El Tor strain around the world. The global emergence of this variant coincided with anecdotal reports that cholera patients were presenting with more severe dehydration and disease in many locations. METHODS A comparison was made of the severity of disease before and after the emergence of the hybrid strain in cholera patients attending an icddr,b hospital in Dhaka, Bangladesh. RESULTS It was found that cholera patients presented with more severe dehydration and severe disease in the later period. However, this was also true for all non-cholera patients as well. In addition, in sub-analyses of patients who presented with rotavirus and enterotoxigenic Escherichia coli (ETEC), similar results were found. Comparing the two periods for differences in patient characteristics, nutritional status, vaccination status, and income, no plausible cause for patients presenting with more severe disease was identified in the later period. CONCLUSIONS As a shift in severity for both cholera and non-cholera was observed, these results indicate that the altered El Tor strain cannot fully explain the difference in cholera severity before and after 2001.
Collapse
Affiliation(s)
- Fahima Chowdhury
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - Alison Kuchta
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - A S G Faruque
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh
| | - Stephen B Calderwood
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T Ryan
- Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Harvard School of Public Health, Boston, Massachusetts, USA
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research (icddr,b), Dhaka, Bangladesh.
| |
Collapse
|
66
|
Wands AM, Fujita A, McCombs JE, Cervin J, Dedic B, Rodriguez AC, Nischan N, Bond MR, Mettlen M, Trudgian DC, Lemoff A, Quiding-Järbrink M, Gustavsson B, Steentoft C, Clausen H, Mirzaei H, Teneberg S, Yrlid U, Kohler JJ. Fucosylation and protein glycosylation create functional receptors for cholera toxin. eLife 2015; 4:e09545. [PMID: 26512888 PMCID: PMC4686427 DOI: 10.7554/elife.09545] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
Cholera toxin (CT) enters and intoxicates host cells after binding cell surface receptors using its B subunit (CTB). The ganglioside (glycolipid) GM1 is thought to be the sole CT receptor; however, the mechanism by which CTB binding to GM1 mediates internalization of CT remains enigmatic. Here we report that CTB binds cell surface glycoproteins. Relative contributions of gangliosides and glycoproteins to CTB binding depend on cell type, and CTB binds primarily to glycoproteins in colonic epithelial cell lines. Using a metabolically incorporated photocrosslinking sugar, we identified one CTB-binding glycoprotein and demonstrated that the glycan portion of the molecule, not the protein, provides the CTB interaction motif. We further show that fucosylated structures promote CTB entry into a colonic epithelial cell line and subsequent host cell intoxication. CTB-binding fucosylated glycoproteins are present in normal human intestinal epithelia and could play a role in cholera. DOI:http://dx.doi.org/10.7554/eLife.09545.001 Cholera is a serious diarrheal disease that can be deadly if left untreated. It is caused by eating food, or drinking water, contaminated by the bacterium Vibrio cholerae. This bacterium can survive passage through the acidic conditions of the stomach. Inside the small intestine, V. cholerae attaches to the intestinal wall and starts producing cholera toxin. The toxin enters intestinal cells, causing them to release water and ions, including sodium and chloride ions. The salt-water environment created inside the intestine can, by osmosis, draw up to a further six liters of water into the intestine each day. This results in the copious production of watery diarrhea and severe dehydration. Cholera toxin is composed of six protein subunits, including five copies of cholera toxin subunit B (CTB). CTB subunits help the uptake of the toxin by intestinal cells, and it has long been reported that CTB subunits attach to intestinal cells by binding to a cell surface molecule called GM1. CTB subunits have a high affinity for GM1, yet recent work suggests CTB may not bind exclusively to GM1; one or more additional cell surface molecules may be directly involved in cholera toxin uptake. Wands et al. now reveal that numerous cell surface molecules are recognized by CTB, and that these molecules can assist cholera toxin uptake by host cells. Glycoproteins, proteins that are marked with sugar molecules, were shown to be the primary CTB binding sites on human colon cells, and it was the glycoprotein’s sugar component, not the protein itself, that interacted with CTB. Wands et al. discovered that in particular glycoproteins containing a sugar called fucose were largely responsible for CTB binding and toxin uptake. Together these findings reveal a previously unrecognized mechanism for cholera toxin entry into host cells, and suggest that fucose-containing or fucose-mimicking molecules could be developed as new treatments for cholera. DOI:http://dx.doi.org/10.7554/eLife.09545.002
Collapse
Affiliation(s)
- Amberlyn M Wands
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Akiko Fujita
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Janet E McCombs
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benjamin Dedic
- Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Andrea C Rodriguez
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Michelle R Bond
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcel Mettlen
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - David C Trudgian
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marianne Quiding-Järbrink
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Gustavsson
- Department of Surgery, University of Gothenburg, Gothenburg, Sweden
| | - Catharina Steentoft
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamid Mirzaei
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Susann Teneberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Mucosal Immunobiology and Vaccine Center, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
67
|
Azevedo L, Serrano C, Amorim A, Cooper DN. Trans-species polymorphism in humans and the great apes is generally maintained by balancing selection that modulates the host immune response. Hum Genomics 2015; 9:21. [PMID: 26337052 PMCID: PMC4559023 DOI: 10.1186/s40246-015-0043-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/20/2015] [Indexed: 12/20/2022] Open
Abstract
Known examples of ancient identical-by-descent genetic variants being shared between evolutionarily related species, known as trans-species polymorphisms (TSPs), result from counterbalancing selective forces acting on target genes to confer resistance against infectious agents. To date, putative TSPs between humans and other primate species have been identified for the highly polymorphic major histocompatibility complex (MHC), the histo-blood ABO group, two antiviral genes (ZC3HAV1 and TRIM5), an autoimmunity-related gene LAD1 and several non-coding genomic segments with a putative regulatory role. Although the number of well-characterized TSPs under long-term balancing selection is still very small, these examples are connected by a common thread, namely that they involve genes with key roles in the immune system and, in heterozygosity, appear to confer genetic resistance to pathogens. Here, we review known cases of shared polymorphism that appear to be under long-term balancing selection in humans and the great apes. Although the specific selective agent(s) responsible are still unknown, these TSPs may nevertheless be seen as constituting important adaptive events that have occurred during the evolution of the primate immune system.
Collapse
Affiliation(s)
- Luisa Azevedo
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Catarina Serrano
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - Antonio Amorim
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007, Porto, Portugal.
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
68
|
Cholera in pregnancy: Clinical and immunological aspects. Int J Infect Dis 2015; 39:20-4. [PMID: 26283553 DOI: 10.1016/j.ijid.2015.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/13/2015] [Accepted: 08/09/2015] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The objective of this study was to examine the clinical and immunological features of cholera in pregnancy. METHODS Women of reproductive age presenting to the icddr,b Dhaka hospital with cholera, and enrolled as part of a larger cohort study, were tested for pregnancy on admission. We compared initial clinical features and immune responses of pregnant patients with non-pregnant female patients at days 2, 7 and 21 after infection. RESULTS Among reproductive age women enrolled between January 2001 and May 2006, 9.7% (14/144) were pregnant. The duration of diarrhoea prior to admission tended to be higher in pregnant compared to non-pregnant patients (p=0.08), but other clinical characteristics did not differ. Antibody responses to cholera toxin B subunit (CtxB), toxin-coregulated pilus A (TcpA), Vibrio cholerae lipopolysaccharide (LPS), and serum vibriocidal antibody responses, were comparable between pregnant and non-pregnant patients. There were no deaths among the pregnant cases or non-pregnant controls, and no adverse foetal outcomes, including stillbirths, during 21 days of follow up of pregnant cases. CONCLUSIONS To our knowledge, this is the first report of immune responses in pregnant women with cholera. We found that pregnant woman early in pregnancy has comparable clinical illness and subsequent immune responses compared to non-pregnant women. These findings suggest that the evaluation of safety and immunogenicity of oral cholera vaccines in pregnancy should be an area of future investigations.
Collapse
|
69
|
Dewan G. Comparative frequency and allelic distribution of ABO and Rh (D) blood groups of major tribal communities of southern Bangladesh with general population and their determinants. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
70
|
Innocent AOU, Francisca N, Adeniyi A, David O, Tajudeen B, Sola M, Kehinde A, Jerry I, Mike O, Stella S, Innocent AOU, Francisca N, Adeniyi A, David O, Tajudeen B, Sola M, Kehinde A, Jerry I, Mike O, Stella S. A review of perception and myth on causes of cholera infection in endemic areas of Nigeria. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
71
|
Franchini M, Bonfanti C. Evolutionary aspects of ABO blood group in humans. Clin Chim Acta 2015; 444:66-71. [PMID: 25689219 DOI: 10.1016/j.cca.2015.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 02/03/2023]
Abstract
The antigens of the ABO blood group system (A, B and H determinants) are complex carbohydrate molecules expressed on red blood cells and on a variety of other cell lines and tissues. Growing evidence is accumulating that ABO antigens, beyond their key role in transfusion medicine, may interplay with the pathogenesis of many human disorders, including infectious, cardiovascular and neoplastic diseases. In this narrative review, after succinct description of the current knowledge on the association between ABO blood groups and the most severe diseases, we aim to elucidate the particularly intriguing issue of the possible role of ABO system in successful aging. In particular, focus will be placed on studies evaluating the ABO phenotype in centenarians, the best human model of longevity.
Collapse
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Azienda Ospedaliera Carlo Poma, Mantova, Italy.
| | - Carlo Bonfanti
- Department of Hematology and Transfusion Medicine, Azienda Ospedaliera Carlo Poma, Mantova, Italy
| |
Collapse
|
72
|
Mohsenpour B, Hajibagheri K, Afrasiabian S, Ghaderi E, Ghasembegloo S. ABO blood groups and susceptibility to brucellosis. Jpn J Infect Dis 2014; 68:124-7. [PMID: 25672353 DOI: 10.7883/yoken.jjid.2014.185] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between blood groups and some infections such as norovirus, cholera, and malaria has been reported. Despite the importance of brucellosis, there is a lack of data on the relationship between blood groups and brucellosis. Thus, in this study, we examined the relationship between blood groups and brucellosis. In this case-control study, the blood groups of 100 patients with brucellosis and 200 healthy individuals were studied. Exclusion criteria for the control group consisted of a positive Coombs Wright test or a history of brucellosis. The chi-square test was used to compare qualitative variables between the two groups. The variables that met inclusion criteria for the regression model were entered into the logistic regression model. A total of 43% patients were female and 57% male; 27% were urban and 73% rural. Regression analysis showed that the likelihood of brucellosis infection was 6.26 times more in people with blood group AB than in those with blood group O (P<0.001). However, Rh type was not associated with brucellosis infection. Thus, there is a relationship between blood group and brucellosis. People with blood group AB were susceptible to brucellosis, but no difference was observed for brucellosis infection in terms of blood Rh type.
Collapse
Affiliation(s)
- Behzad Mohsenpour
- Infectious Diseases Department, School of Medicine, Kurdistan University of Medical Sciences
| | | | | | | | | |
Collapse
|
73
|
Household Transmission of Vibrio cholerae in Bangladesh. PLoS Negl Trop Dis 2014; 8:e3314. [PMID: 25411971 PMCID: PMC4238997 DOI: 10.1371/journal.pntd.0003314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/03/2014] [Indexed: 11/19/2022] Open
Abstract
Background Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces) to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures. Methodology/Principal Findings Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001–2006. We estimated the probabilities of cholera transmission through 1) direct exposure within the household and 2) contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001) occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%–22.8%) risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length). The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%–8.0%). The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%–16.6%) and 8.2% (2.1%–27.1%) through direct exposure, and 3.4% (1.7%–6.7%) and 2.0% (0.5%–7.3%) through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered. Conclusions Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of the transmissibility of endemic cholera within prospectively-followed members of households. The role of direct transmission must be considered when planning cholera control activities. Since John Snow's ground-breaking investigations of the devastating outbreaks in 19th-century London, cholera has been considered the quintessential waterborne human infection, transmitting via fecal contamination of environmental water sources. Recently, renewed interest has been paid to the potential importance of transmission through direct exposure within close-contact groups, such as, via fecal contamination of surfaces, food, or drinking water within households. Significant direct transmission of cholera within close contact groups would represent a new target for innovative prevention and control strategies. We estimated the probability of transmission 1) via direct contact within 364 urban households located in an endemic cholera setting (Dhaka, Bangladesh) and 2) via exposure to sources located outside of these households. In this setting we estimated a 4 to 8 percent probability of becoming infected with cholera via direct exposure within households in this setting versus a 2 to 3 percent likelihood of infection due to exposure to external sources over a comparable time period. Our results demonstrate that direct (within-household) transmission is a significant component of endemic cholera transmission, suggesting that biomedical and behavioral-modification interventions specifically targeting this mode of transmission could substantially reduce the cholera burden in this type of setting.
Collapse
|
74
|
Ansari SA, Khan A, Khan TA, Raza Y, Syed SA, Akhtar SS, Kazmi SU. Correlation of ABH blood group antigens secretion with Helicobacter pylori infection in Pakistani patients. Trop Med Int Health 2014; 20:115-9. [PMID: 25322664 DOI: 10.1111/tmi.12401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES A and B blood group antigens are fucosylated carbohydrate present on human erythrocytes and body secretions. Their presence in body secretions depends on the expression of a dominant allele of secretor gene FUT2 and is correlated with susceptibility to various infectious and non-infectious diseases. We investigated the correlation of blood group and ABH antigen secretion with Helicobacter pylori infection and gastroduodenal symptoms and analysed the distribution of babA gene among ABH secretors and non-secretors. METHODS Two hundred and ninety patients who underwent gastroduodenal endoscopy during 2011 to 2012 participated. Gastric biopsy, saliva and blood samples were obtained from every patient. Gastric biopsies were subjected to rapid urease test and PCR for the detection of H. pylori and babA gene. Blood grouping and ABH antigens secretions were determined by Lewis blood group phenotyping and haemagglutination inhibition test. RESULTS 50.34% of patients were ABH antigen secretors and 45.51% non-secretors. Distribution analysis of blood group revealed that 40 blood group B, 67 blood group A 20 blood group O and 19 blood group AB patients secreted ABH antigens in saliva. Fifty-six blood group O, 19 blood group B, 32 blood group A and 17 blood group AB patients were non-secretors. Gastroduodenal complaints were common among non-secretors. Sixty-two percent of patients with a combination of duodenal ulcer and gastro-oesophageal reflux and 54% of patients with gastritis were non-secretors. Of 290 samples, 31.02% were positive for H. pylori. Thirty percent of these tested positive for babA gene; the majority belonged to non-secretor blood group O. CONCLUSIONS Our results suggest that the infection of H. pylori is correlated with ABO blood groups and blood group antigens secretion in body fluids.
Collapse
Affiliation(s)
- Shazia Akbar Ansari
- Immunology and Infectious Diseases Research Laboratory, Department of Microbiology, University of Karachi, Karachi, Pakistan
| | | | | | | | | | | | | |
Collapse
|
75
|
MOHAMMADALI F, POURFATHOLLAH A. Association of ABO and Rh Blood Groups to Blood-Borne Infections among Blood Donors in Tehran-Iran. IRANIAN JOURNAL OF PUBLIC HEALTH 2014; 43:981-9. [PMID: 25909065 PMCID: PMC4401062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/19/2014] [Indexed: 10/26/2022]
Abstract
BACKGROUND The aim of this study was to investigate the prevalence of hepatitis B, hepatitis C, HIV and syphilis infections in blood donors referred to Tehran Blood Transfusion Center (TBTC), and determine any association between blood groups and blood- borne infections between the years of 2005 and 2011. METHODS This was a retrospective study conducted at TBTC. All of the donor serum samples were screened for HBV, HCV, HIV and syphilis by using third generation ELISA kits and RPR test. Initial reactive samples were tested in duplicate. Confirmatory tests were performed on all repeatedly reactive donations. Blood group was determined by forward and reverse blood grouping. The results were subjected to chi square analysis for determination of statistical difference between the values among different categories according to SPSS program. RESULTS Overall, 2031451 donor serum samples were collected in 2005-2011. Totally, 10451 were positive test for HBV, HCV, HIV and syphilis. The overall seroprevalence of HBV, HCV, HIV, and syphilis was 0.39%, 0.11%, 0.005%, and 0.010%, respectively. Hepatitis B and HIV infections were significantly associated with blood group of donors (P <0.05) ; percentage of HIV Ag/Ab was higher in donors who had blood group "A" and percentage of HBs Ag was lower in donors who had blood group O. There was no significant association between Hepatitis C and syphilis infections with ABO and Rh blood groups (P>0.05). CONCLUSION Compared with neighboring countries and the international standards, prevalence of blood-borne infections is relatively low.
Collapse
Affiliation(s)
- Fatemeh MOHAMMADALI
- 1. Dept. of Hematology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
- 2. Iranian Blood Transfusion Research Center & Tehran Blood Transfusion Center,Tehran, Iran
| | - Aliakbar POURFATHOLLAH
- 2. Iranian Blood Transfusion Research Center & Tehran Blood Transfusion Center,Tehran, Iran
- 3. Dept. of Immunology, Faculty of Medical Sciences, Tarbiat Modares University,Tehran, Iran
| |
Collapse
|
76
|
Vasile F, Reina JJ, Potenza D, Heggelund JE, Mackenzie A, Krengel U, Bernardi A. Comprehensive analysis of blood group antigen binding to classical and El Tor cholera toxin B-pentamers by NMR. Glycobiology 2014; 24:766-78. [PMID: 24829308 DOI: 10.1093/glycob/cwu040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cholera is a diarrheal disease responsible for the deaths of thousands, possibly even hundreds of thousands of people every year, and its impact is predicted to further increase with climate change. It has been known for decades that blood group O individuals suffer more severe symptoms of cholera compared with individuals with other blood groups (A, B and AB). The observed blood group dependence is likely to be caused by the major virulence factor of Vibrio cholerae, the cholera toxin (CT). Here, we investigate the binding of ABH blood group determinants to both classical and El Tor CTB-pentamers using saturation transfer difference NMR and show that all three blood group determinants bind to both toxin variants. Although the details of the interactions differ, we see no large differences between the two toxin genotypes and observe very similar binding constants. We also show that the blood group determinants bind to a site distinct from that of the primary receptor, GM1. Transferred NOESY data confirm that the conformations of the blood group determinants in complex with both toxin variants are similar to those of reported X-ray and solution structures. Taken together, this detailed analysis provides a framework for the interpretation of the epidemiological data linking the severity of cholera infection and an individual's blood group, and brings us one step closer to understanding the molecular basis of cholera blood group dependence.
Collapse
Affiliation(s)
- Francesca Vasile
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - José J Reina
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Donatella Potenza
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Julie E Heggelund
- Department of Chemistry, University of Oslo, PO Box 1033, Blindern NO-0315, Norway
| | - Alasdair Mackenzie
- Department of Chemistry, University of Oslo, PO Box 1033, Blindern NO-0315, Norway
| | - Ute Krengel
- Department of Chemistry, University of Oslo, PO Box 1033, Blindern NO-0315, Norway
| | - Anna Bernardi
- Dipartimento di Chimica, Universita' degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
77
|
Güven AS, Sancakdar E, Kaya A, Uysal EB, Oflaz MB, Bolat F, Karapınar H, Koç E, Icagasioglu FD. Value of ABO blood group in predicting the severity of children with Crimean-Congo hemorrhagic fever. Int J Clin Exp Med 2014; 7:416-420. [PMID: 24600498 PMCID: PMC3931597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/20/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE The aim of this study was to assess the role of ABO blood groups in predicting disease severity and bleeding potential in children with Crimean-Congo hemorrhagic fever (CCHF). METHODS One hundred fifty-one hospitalized patients with CCHF were enrolled in this retrospective study. The patients were divided according to O- and non-O- (A, B and AB) blood groups (n=91 and n=60, respectively). They were also classified into two groups (severe and non-severe) based on disease severity (n=29 and n=122, respectively). Demographic characteristics, clinical findings, and hematologic and biochemical parameters of all patients were recorded on admission and discharge. RESULTS Although, in all cases, compared to the non-O blood group, the ratio of the blood group O was considerably higher (60% vs. 40%) and similarly so in severe cases (58.6% vs. 41.4%), this difference was not statistically significant (p>0.05). The aPTT at discharge and fever duration of the O-blood group were significantly higher than those of the non-O-blood group (p=0.042, p=0.034, respectively). The factor VIII level of the O-blood group was significantly lower than that of the non-O-blood group (p=0.040). Although the ratios of bleeding and severity were higher in the O-blood group compared to the other group, statistical significance was not reached (p>0.05). CONCLUSIONS Consideration of the ABO blood group is important during diagnostic follow-up to assess the severity of CCHF. In clinical practice, pediatric CCHF patients with the O blood group need to be followed closely for tendency to bleed.
Collapse
Affiliation(s)
- Ahmet Sami Güven
- Department of Pediatrics, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | - Enver Sancakdar
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | - Ali Kaya
- Department of Pediatrics, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | - Elif Bilge Uysal
- Department of Microbiology, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | - Mehmet Burhan Oflaz
- Department of Pediatrics, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | - Fatih Bolat
- Department of Pediatrics, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | - Hekim Karapınar
- Department of Cardiology, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | - Elif Koç
- Department of Pediatrics, Faculty of Medicine, Cumhuriyet UniversitySivas, Turkey
| | | |
Collapse
|
78
|
LaRocque RC, Harris JB, Ryan ET, Qadri F, Calderwood SB. Postgenomic approaches to cholera vaccine development. Expert Rev Vaccines 2014; 5:337-46. [PMID: 16827618 DOI: 10.1586/14760584.5.3.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cholera remains an important public health threat. A cholera vaccine that provides durable protection at the mucosal surface, especially among children in endemic settings, is urgently needed. The availability of the complete genome sequence of a clinical isolate of Vibrio cholerae O1 El Tor has allowed for comparative and functional genomic approaches in the study of cholera. This work holds promise for the identification of bacterial targets of protective human immune responses and may contribute to the development of a new generation of cholera vaccines.
Collapse
Affiliation(s)
- Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, GRJ 504, 55 Fruit Street, Boston, MA 02114, USA.
| | | | | | | | | |
Collapse
|
79
|
Jackson BR, Talkington DF, Pruckler JM, Fouché MDB, Lafosse E, Nygren B, Gómez GA, Dahourou GA, Archer WR, Payne AB, Hooper WC, Tappero JW, Derado G, Magloire R, Gerner-Smidt P, Freeman N, Boncy J, Mintz ED, the Cholera Serosurvey Working Group †. Seroepidemiologic survey of epidemic cholera in Haiti to assess spectrum of illness and risk factors for severe disease. Am J Trop Med Hyg 2013; 89:654-664. [PMID: 24106192 PMCID: PMC3795095 DOI: 10.4269/ajtmh.13-0208] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To assess the spectrum of illness from toxigenic Vibrio cholerae O1 and risk factors for severe cholera in Haiti, we conducted a cross-sectional survey in a rural commune with more than 21,000 residents. During March 22–April 6, 2011, we interviewed 2,622 residents ≥ 2 years of age and tested serum specimens from 2,527 (96%) participants for vibriocidal and antibodies against cholera toxin; 18% of participants reported a cholera diagnosis, 39% had vibriocidal titers ≥ 320, and 64% had vibriocidal titers ≥ 80, suggesting widespread infection. Among seropositive participants (vibriocidal titers ≥ 320), 74.5% reported no diarrhea and 9.0% had severe cholera (reported receiving intravenous fluids and overnight hospitalization). This high burden of severe cholera is likely explained by the lack of pre-existing immunity in this population, although the virulence of the atypical El Tor strain causing the epidemic and other factors might also play a role.
Collapse
Affiliation(s)
- Brendan R. Jackson
- *Address correspondence to Brendan R. Jackson, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop A38, Atlanta, GA 30333. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Valcin CL, Severe K, Riche CT, Anglade BS, Moise CG, Woodworth M, Charles M, Li Z, Joseph P, Pape JW, Wright PF. Predictors of disease severity in patients admitted to a cholera treatment center in urban Haiti. Am J Trop Med Hyg 2013; 89:625-632. [PMID: 24106188 PMCID: PMC3795091 DOI: 10.4269/ajtmh.13-0170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cholera, previously unrecognized in Haiti, spread through the country in the fall of 2010. An analysis was performed to understand the epidemiological characteristics, clinical management, and risk factors for disease severity in a population seen at the GHESKIO Cholera Treatment Center in Port-au-Prince. A comprehensive review of the medical records of patients admitted during the period of October 28, 2010–July 10, 2011 was conducted. Disease severity on admission was directly correlated with older age, more prolonged length of stay, and presentation during the two epidemic waves seen in the observation period. Although there was a high seroprevalence of human immunodeficiency virus (HIV), severity of cholera was not greater with HIV infection. This study documents the correlation of cholera waves with rainfall and its reduction in settings with improved sanitary conditions and potable water when newly introduced cholera affects all ages equally so that interventions must be directed throughout the population.
Collapse
Affiliation(s)
- Claude-Lyne Valcin
- *Address correspondence to Claude-Lyne Valcin, Dartmouth Medical School, Division of Infectious Diseases and International Health, 1 Medical Center Drive, Lebanon, NH 03756. E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Provenzano D, Kovác P, Wade WF. The ABCs (Antibody, B Cells, and Carbohydrate Epitopes) of Cholera Immunity: Considerations for an Improved Vaccine. Microbiol Immunol 2013; 50:899-927. [PMID: 17179659 DOI: 10.1111/j.1348-0421.2006.tb03866.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholera, a diarrheal disease, is known for explosive epidemics that can quickly kill thousands. Endemic cholera is a seasonal torment that also has a significant mortality. Not all nations with extensive rural communities can achieve the required infrastructure or behavioral changes to prevent epidemic or endemic cholera. For some communities, a single-dose cholera vaccine that protects those at risk is the most efficacious means to reduce morbidity and mortality. It is clear that our understanding of what a protective cholera immune response is has not progressed at the rate our understanding of the pathogenesis and molecular biology of cholera infection has. This review addresses V. cholerae lipopolysaccharide (LPS)-based immunogens because LPS is the only immunogen proven to induce protective antibody in humans. We discuss the role of anti-LPS antibodies in protection from cholera, the importance and the potential role of B cell subsets in protection that is based on their anatomical location and the intrinsic antigen-receptor specificity of various subsets is introduced.
Collapse
Affiliation(s)
- Daniele Provenzano
- Department of Biological Sciences, University of Texas-Brownsville, Brownsville, TX 78520, USA
| | | | | |
Collapse
|
82
|
del Carmen Fernández-Alonso M, Díaz D, Berbis MÁ, Marcelo F, Cañada J, Jiménez-Barbero J. Protein-carbohydrate interactions studied by NMR: from molecular recognition to drug design. Curr Protein Pept Sci 2013; 13:816-30. [PMID: 23305367 PMCID: PMC3706953 DOI: 10.2174/138920312804871175] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 07/12/2012] [Accepted: 07/25/2012] [Indexed: 02/04/2023]
Abstract
Diseases that result from infection are, in general, a consequence of specific interactions between a pathogenic organism and the cells. The study of host-pathogen interactions has provided insights for the design of drugs with therapeutic properties. One area that has proved to be promising for such studies is the constituted by carbohydrates which participate in biological processes of paramount importance. On the one hand, carbohydrates have shown to be information carriers with similar, if not higher, importance than traditionally considered carriers as amino acids and nucleic acids. On the other hand, the knowledge on molecular recognition of sugars by lectins and other carbohydrate-binding proteins has been employed for the development of new biomedical strategies. Biophysical techniques such as X-Ray crystallography and NMR spectroscopy lead currently the investigation on this field. In this review, a description of traditional and novel NMR methodologies employed in the study of sugar-protein interactions is briefly presented in combination with a palette of NMR-based studies related to biologically and/or pharmaceutically relevant applications.
Collapse
|
83
|
Majumder PP, Sarkar-Roy N, Staats H, Ramamurthy T, Maiti S, Chowdhury G, Whisnant CC, Narayanasamy K, Wagener DK. Genomic correlates of variability in immune response to an oral cholera vaccine. Eur J Hum Genet 2013; 21:1000-6. [PMID: 23249958 PMCID: PMC3746254 DOI: 10.1038/ejhg.2012.278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 11/09/2022] Open
Abstract
Cholera is endemic to many countries. Recent major outbreaks of cholera have prompted World Health Organization to recommend oral cholera vaccination as a public-health strategy. Variation in percentage of seroconversion upon cholera vaccination has been recorded across populations. Vaccine-induced responses are influenced by host genetic differences. We have investigated association between single-nucleotide polymorphic (SNP) loci in and around 296 immunologically relevant genes and total anti-lipopolysaccharide (LPS) antibody response to a killed whole-cell vaccine, comprising LPS from multiple strains of Vibrio cholerae. Titers derived from standard vibriocidal assays were also analyzed to gain further insights on validated SNP associations. Vaccination was administered to 1000 individuals drawn from India. Data on two independent random subsets, each comprising ∼500 vaccinees, were used for discovery of genomic associations and validation, respectively. Significant associations of four SNPs and haplotypes in three genes (MARCO, TNFAIP3 and CXCL12) with AR were discovered and validated, of which two in TNFAIP3 and CXCL12 were also significantly associated with immunity (fourfold increase in vibriocidal titers). CXCL12 is a neutrophil and lymphocyte chemoattractant that is upregulated in response to V. cholerae infection. LPS in the vaccine possibly provides signals that mimic those of the live bacterium. TNFAIP3 promotes intestinal epithelial barrier integrity and provides tight junction protein regulation; possible requirements for adequate response to the vaccine. LPS is a potent activator of innate immune responses and a ligand of MARCO. Variants in this gene have been found to be associated with LPS response, but not with high vibriocidal titer level.
Collapse
|
84
|
Levine MM, Robins-Browne RM. Factors that explain excretion of enteric pathogens by persons without diarrhea. Clin Infect Dis 2013; 55 Suppl 4:S303-11. [PMID: 23169942 PMCID: PMC3502317 DOI: 10.1093/cid/cis789] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Excretion of enteropathogens by subjects without diarrhea influences our appreciation of the role of these pathogens as etiologic agents. Characteristics of the pathogens and host and environmental factors help explain asymptomatic excretion of diarrheal pathogens by persons without diarrhea. After causing acute diarrhea followed by clinical recovery, some enteropathogens are excreted asymptomatically for many weeks. Thus, in a prevalence survey of persons without diarrhea, some may be excreting pathogens from diarrheal episodes experienced many weeks earlier. Volunteer challenges with Vibrio cholerae O1, enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli, Campylobacter jejuni, and Giardia lamblia document heterogeneity among enteropathogen strains, with some inexplicably not eliciting diarrhea. The immune host may not manifest diarrhea following ingestion of a pathogen but may nevertheless asymptomatically excrete. Some human genotypes render them less susceptible to symptomatic or severe diarrheal infection with certain pathogens such as Vibrio cholerae O1 and norovirus. Pathogens in stools of individuals without diarrhea may reflect recent ingestion of inocula too small to cause disease in otherwise susceptible hosts or of animal pathogens (eg, bovine or porcine ETEC) that do not cause human illness.
Collapse
Affiliation(s)
- Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
85
|
Mazières S, Temory SA, Vasseur H, Gallian P, Di Cristofaro J, Chiaroni J. Blood group typing in five Afghan populations in the North Hindu-Kush region: implications for blood transfusion practice. Transfus Med 2013; 23:167-74. [DOI: 10.1111/tme.12038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
Affiliation(s)
- S. Mazières
- Aix Marseille Université; CNRS, EFS, ADÉS; UMR 7268; Marseille; France
| | - S. A. Temory
- Centre National de Transfusion Sanguine de Kabul; Kabul; Afghanistan
| | - H. Vasseur
- Etablissement Français du Sang Auvergne-Loire; Saint-Etienne; France
| | | | | | | |
Collapse
|
86
|
Pathogen-driven selection in the human genome. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2013; 2013:204240. [PMID: 23533945 PMCID: PMC3603197 DOI: 10.1155/2013/204240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/31/2013] [Indexed: 01/19/2023]
Abstract
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Collapse
|
87
|
The repertoire of glycosphingolipids recognized by Vibrio cholerae. PLoS One 2013; 8:e53999. [PMID: 23349777 PMCID: PMC3549955 DOI: 10.1371/journal.pone.0053999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/07/2012] [Indexed: 01/01/2023] Open
Abstract
The binding of cholera toxin to the ganglioside GM1 as the initial step in the process leading to diarrhea is nowadays textbook knowledge. In contrast, the knowledge about the mechanisms for attachment of Vibrio cholerae bacterial cells to the intestinal epithelium is limited. In order to clarify this issue, a large number of glycosphingolipid mixtures were screened for binding of El Tor V. cholerae. Several specific interactions with minor complex non-acid glycosphingolipids were thereby detected. After isolation of binding-active glycosphingolipids, characterization by mass spectrometry and proton NMR, and comparative binding studies, three distinct glycosphingolipid binding patterns were defined. Firstly, V. cholerae bound to complex lacto/neolacto glycosphingolipids with the GlcNAcβ3Galβ4GlcNAc sequence as the minimal binding epitope. Secondly, glycosphingolipids with a terminal Galα3Galα3Gal moiety were recognized, and the third specificity was the binding to lactosylceramide and related compounds. V. cholerae binding to lacto/neolacto glycosphingolipids, and to the other classes of binding-active compounds, remained after deletion of the chitin binding protein GbpA. Thus, the binding of V. cholerae to chitin and to lacto/neolacto containing glycosphingolipids represents two separate binding specificities.
Collapse
|
88
|
|
89
|
Leung DT, Chowdhury F, Calderwood SB, Qadri F, Ryan ET. Immune responses to cholera in children. Expert Rev Anti Infect Ther 2012; 10:435-44. [PMID: 22512753 DOI: 10.1586/eri.12.23] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cholera is a severe acute dehydrating diarrheal disease caused by Vibrio cholerae O1 or O139 infection, and is associated with significant mortality and morbidity globally. Although young children bear a high burden of the disease, currently available oral vaccines give a lower efficacy and shorter duration of protection in this group than in adults. According to the studies of natural infection, young children achieve comparable systemic anti-V. cholerae antigen-specific antibody, gut-homing antibody-secreting cell and memory B-cell responses as adults. Studies on innate and cell-mediated immune responses are lacking in children, and may offer important insights into differences in vaccine efficacy. The impact of host factors such as malnutrition, genetics and coinfection with other pathogens also remains to be fully defined.
Collapse
Affiliation(s)
- Daniel T Leung
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | | | | | | |
Collapse
|
90
|
Adagbada AO, Adesida SA, Nwaokorie FO, Niemogha MT, Coker AO. Cholera epidemiology in Nigeria: an overview. Pan Afr Med J 2012; 12:59. [PMID: 22937199 PMCID: PMC3428179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/04/2012] [Indexed: 11/23/2022] Open
Abstract
Cholera is an acute diarrhoeal infection caused by ingestion of food or water contaminated with the bacterium, Vibrio cholera. Choleragenic V. cholera O1 and O139 are the only causative agents of the disease. The two most distinguishing epidemiologic features of the disease are its tendency to appear in explosive outbreaks and its predisposition to causing pandemics that may progressively affect many countries and spread into continents. Despite efforts to control cholera, the disease continues to occur as a major public health problem in many developing countries. Numerous studies over more than a century have made advances in the understanding of the disease and ways of treating patients, but the mechanism of emergence of new epidemic strains, and the ecosystem supporting regular epidemics, remain challenging to epidemiologists. In Nigeria, since the first appearance of epidemic cholera in 1972, intermittent outbreaks have been occurring. The later part of 2010 was marked with severe outbreak which started from the northern part of Nigeria, spreading to the other parts and involving approximately 3,000 cases and 781 deaths. Sporadic cases have also been reported. Although epidemiologic surveillance constitutes an important component of the public health response, publicly available surveillance data from Nigeria have been relatively limited to date. Based on existing relevant scientific literature on features of cholera, this paper presents a synopsis of cholera epidemiology emphasising the situation in Nigeria.
Collapse
Affiliation(s)
- Ajoke Olutola Adagbada
- Molecular Biology and Biotechnology Division, Nigerian Institute of Medical Research, Yaba, Lagos, Nigeria
| | | | | | | | | |
Collapse
|
91
|
Abstract
Cholera is an acute, secretory diarrhoea caused by infection with Vibrio cholerae of the O1 or O139 serogroup. It is endemic in more than 50 countries and also causes large epidemics. Since 1817, seven cholera pandemics have spread from Asia to much of the world. The seventh pandemic began in 1961 and affects 3-5 million people each year, killing 120,000. Although mild cholera can be indistinguishable from other diarrhoeal illnesses, the presentation of severe cholera is distinct, with pronounced diarrhoeal purging. Management of patients with cholera involves aggressive fluid replacement; effective therapy can decrease mortality from more than 50% to less than 0·2%. Antibiotic treatment decreases volume and duration of diarrhoea by 50% and is recommended for patients with moderate to severe dehydration. Prevention of cholera depends on access to safe water and sanitation. Two oral cholera vaccines are available and the most effective use of these in integrated prevention programmes is being actively assessed.
Collapse
Affiliation(s)
- Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
92
|
Mandal PK, Branson TR, Hayes ED, Ross JF, Gavín JA, Daranas AH, Turnbull WB. Towards a Structural Basis for the Relationship Between Blood Group and the Severity of El Tor Cholera. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Reassessment of the 2010-2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc Natl Acad Sci U S A 2012; 109:6602-7. [PMID: 22505737 DOI: 10.1073/pnas.1203333109] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mathematical models can provide key insights into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. We study the ex post reliability of predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. We consider the impact of different approaches to the modeling of spatial spread of Vibrio cholerae and mechanisms of cholera transmission, accounting for the dynamics of susceptible and infected individuals within different local human communities. To explain resurgences of the epidemic, we go on to include waning immunity and a mechanism explicitly accounting for rainfall as a driver of enhanced disease transmission. The formal comparative analysis is carried out via the Akaike information criterion (AIC) to measure the added information provided by each process modeled, discounting for the added parameters. A generalized model for Haitian epidemic cholera and the related uncertainty is thus proposed and applied to the year-long dataset of reported cases now available. The model allows us to draw predictions on longer-term epidemic cholera in Haiti from multiseason Monte Carlo runs, carried out up to January 2014 by using suitable rainfall fields forecasts. Lessons learned and open issues are discussed and placed in perspective. We conclude that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control.
Collapse
|
94
|
Mandal PK, Branson TR, Hayes ED, Ross JF, Gavín JA, Daranas AH, Turnbull WB. Towards a structural basis for the relationship between blood group and the severity of El Tor cholera. Angew Chem Int Ed Engl 2012; 51:5143-6. [PMID: 22488789 PMCID: PMC3505909 DOI: 10.1002/anie.201109068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/06/2012] [Indexed: 01/31/2023]
Affiliation(s)
- Pintu K Mandal
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT UK
| | | | | | | | | | | | | |
Collapse
|
95
|
Tanikawa C, Urabe Y, Matsuo K, Kubo M, Takahashi A, Ito H, Tajima K, Kamatani N, Nakamura Y, Matsuda K. A genome-wide association study identifies two susceptibility loci for duodenal ulcer in the Japanese population. Nat Genet 2012; 44:430-4, S1-2. [PMID: 22387998 DOI: 10.1038/ng.1109] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/20/2012] [Indexed: 12/20/2022]
Abstract
Through a genome-wide association analysis with a total of 7,035 individuals with duodenal ulcer and 25,323 controls from Japan, we identified two susceptibility loci at the PSCA gene (encoding prostate stem cell antigen) at 8q24 and at the ABO blood group locus at 9q34. The C allele of rs2294008 at PSCA was associated with increased risk of duodenal ulcer (odds ratio (OR) = 1.84; P = 3.92 × 10(-33)) in a recessive model but was associated with decreased risk of gastric cancer (OR = 0.79; P = 6.79 × 10(-12)), as reported previously. The T allele of rs2294008 encodes a translation initiation codon upstream of the reported site and changes protein localization from the cytoplasm to the cell surface. rs505922 at ABO was also associated with duodenal ulcer in a recessive model (OR = 1.32; P = 1.15 × 10(-10)). Our findings demonstrate a role for genetic variants in the pathogenesis of duodenal ulcer.
Collapse
Affiliation(s)
- Chizu Tanikawa
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Cholera is an acute, severe diarrheal disease caused by Vibrio cholerae that affects millions of people each year. Without prompt rehydration, death can occur within hours of the onset of symptoms. In October 2010, cholera emerged in Haiti, and the resulting large epidemic continues today. As of August 29, 2011, more than 439,000 cases have been reported in Haiti, with over 6,200 deaths. This review covers important features of epidemiology, pathogenesis, treatment and prevention of cholera, with a focus on the ongoing epidemic in Haiti.
Collapse
Affiliation(s)
- Ana A Weil
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
97
|
Heggelund JE, Haugen E, Lygren B, Mackenzie A, Holmner Å, Vasile F, Reina JJ, Bernardi A, Krengel U. Both El Tor and classical cholera toxin bind blood group determinants. Biochem Biophys Res Commun 2012; 418:731-5. [PMID: 22305717 DOI: 10.1016/j.bbrc.2012.01.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 01/24/2023]
Abstract
Cholera is a disease which shows a clear blood group profile, with blood group O individuals experiencing the most severe symptoms. For a long time, the cholera toxin has been suspected to be the main culprit of this blood group dependence. Here, we show that both El Tor and classical cholera toxin B-pentamers do indeed bind blood group determinants (with equal affinities), using Surface Plasmon Resonance and NMR spectroscopy. Together with previous structural data, this confirms our earlier hypothesis as to the molecular basis of cholera blood group dependence, with an interesting twist: the shorter blood group H-determinant characteristic of blood group O individuals binds with similar binding affinity compared to the A-determinant, however, with different kinetics.
Collapse
Affiliation(s)
- Julie E Heggelund
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Arifuzzaman M, Ahmed T, Rahman MA, Chowdhury F, Rashu R, Khan AI, LaRocque RC, Harris JB, Bhuiyan TR, Ryan ET, Calderwood SB, Qadri F. Individuals with Le(a+b-) blood group have increased susceptibility to symptomatic vibrio cholerae O1 infection. PLoS Negl Trop Dis 2011; 5:e1413. [PMID: 22216364 PMCID: PMC3246451 DOI: 10.1371/journal.pntd.0001413] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/20/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Human genetic factors such as blood group antigens may affect the severity of infectious diseases. Presence of specific ABO and Lewis blood group antigens has been shown previously to be associated with the risk of different enteric infections. The aim of this study was to determine the relationship of the Lewis blood group antigens with susceptibility to cholera, as well as severity of disease and immune responses to infection. METHODOLOGY We determined Lewis and ABO blood groups of a cohort of patients infected by Vibrio cholerae O1, their household contacts, and healthy controls, and analyzed the risk of symptomatic infection, severity of disease if infected and immune response following infection. PRINCIPAL FINDINGS We found that more individuals with cholera expressed the Le(a+b-) phenotype than the asymptomatic household contacts (OR 1.91, 95% CI 1.03-3.56) or healthy controls (OR 1.90, 95% CI 1.13-3.21), as has been seen previously for the risk of symptomatic ETEC infection. Le(a-b+) individuals were less susceptible to cholera and if infected, required less intravenous fluid replacement in hospital, suggesting that this blood group may be associated with protection against V. cholerae O1. Individuals with Le(a-b-) blood group phenotype who had symptomatic cholera had a longer duration of diarrhea and required higher volumes of intravenous fluid replacement. In addition, individuals with Le(a-b-) phenotype also had lessened plasma IgA responses to V. cholerae O1 lipopolysaccharide on day 7 after infection compared to individuals in the other two Lewis blood group phenotypes. CONCLUSION Individuals with Lewis blood type Le(a+b-) are more susceptible and Le(a-b+) are less susceptible to V. cholerae O1 associated symptomatic disease. Presence of this histo-blood group antigen may be included in evaluating the risk for cholera in a population, as well as in vaccine efficacy studies, as is currently being done for the ABO blood group antigens.
Collapse
Affiliation(s)
- Mohammad Arifuzzaman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tanvir Ahmed
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Mohammad Arif Rahman
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Fahima Chowdhury
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Rasheduzzaman Rashu
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Taufiqur Rahman Bhuiyan
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Centre for Vaccine Sciences, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B), Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
99
|
Abstract
Cholera is a major global health problem, causing approximately 100,000 deaths annually, about half of which occur in sub-Saharan Africa. Although early-generation parenteral cholera vaccines were abandoned as public health tools owing to their limited efficacy, newer-generation oral cholera vaccines have attractive safety and protection profiles. Both killed and live oral vaccines have been licensed, although only killed oral vaccines are currently manufactured and available. These killed oral vaccines not only provide direct protection to vaccinated individuals, but also confer herd immunity. The combination of direct vaccine protection and vaccine herd immunity effects makes these vaccines highly cost-effective and, therefore, attractive for use in developing countries. Administration of these oral vaccines does not require qualified medical personnel, which makes their use practical--even in developing countries. Although new-generation oral cholera vaccines should not be considered in isolation from other preventive approaches, especially improved water quality and sanitation, they represent important tools in the public health armamentarium to control both endemic and epidemic cholera.
Collapse
Affiliation(s)
- John Clemens
- International Vaccine Institute, Seoul National University Research Park, San 4-8, Nakseongdae-dong, Kwanak-gu, Seoul 151-919, Korea.
| | | | | | | | | |
Collapse
|
100
|
|