51
|
Shafat Z, Hamza A, Islam A, Al-Dosari MS, Parvez MK, Parveen S. Structural exploration of Y-domain reveals its essentiality in HEV pathogenesis. Protein Expr Purif 2021; 187:105947. [PMID: 34314826 DOI: 10.1016/j.pep.2021.105947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022]
Abstract
Hepatitis E virus (HEV) is a major causative agent of hepatitis E infections across the globe. Although the essentiality of HEV nonstructural polyprotein (pORF1) putative Y-domain (Yd) has been established in viral pathogenesis, its structural-functional role remains elusive. The current research discusses the novel exploration on Yd protein expression, purification, biophysical characterization and structure-based docking analysis. The codon optimized synthetic gene and optimized expression parameters i.e., 5 h induction with 0.25 mM IPTG at 37 °C, resulted in efficient production of Yd protein (~40 kDa) in E. coli BL21(DE3) cells. Majority of the recombinant Yd (rYd) protein expressed as inclusion bodies was solubilized in 0.5% N-lauroylsarcosine and purified using Ni-NTA chromatography. Circular dichroism (CD) and UV visible absorption spectroscopic studies on Yd revealed both secondary and tertiary structure stability in alkaline range (pH 8.0-10.0), suggesting correlation with its physiological activity. Thus, loss in structure at low pH perhaps play crucial role in cytoplasmic-membrane interaction. The biophysical data were in good agreement with insilico structural analyses, which suggested mixed α/β fold, non-random and basic nature of Yd protein. Furthermore, due to Yd protein essentiality in HEV replication and pathogenesis, it was considered as a template for docking and drug-likeness analyses. The 3D modeling of Yd protein and structure-based screening and drug-likeness of inhibitory compounds, including established antiviral drugs led to the identification of top nine promising candidates. Nonetheless, in vitro studies on the predicted interaction of Yd with intracellular-membrane towards establishing replication-complexes as well as validations of the proposed therapeutic agents are warranted.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Abu Hamza
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
52
|
Lienhard J, Vonlanthen-Specker I, Sidler X, Bachofen C. Screening of Swiss Pig Herds for Hepatitis E Virus: A Pilot Study. Animals (Basel) 2021; 11:3050. [PMID: 34827782 PMCID: PMC8614339 DOI: 10.3390/ani11113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis E virus (HEV) is an important cause of acute hepatitis in humans worldwide. In industrialised countries, most infections are caused by the zoonotic genotype 3. The main reservoir was found in pigs, with fattening pigs as the main shedders. The aim of this study was to establish a screening tool to detect HEV in pig farms. HEV-positive samples were sequenced using Sanger sequencing. First, different sample materials, including floor swabs, slurry, dust swabs and faeces were tested for HEV. Floor swabs turned out to give the best results and, in the form of sock swabs, were used for the screening of Swiss pig herds. A total of 138 pig farms were tested, with a focus on fattening pigs. Overall, 81 farms (58.8%) were HEV positive. Most sequences belonged to subtype 3h, in which they formed a specific cluster (Swiss cluster). In addition, subtype 3l and two unassigned sequences were detected. As a conclusion, sock swabs were found to be a helpful tool to screen pig herds for HEV and establish a sequence collection that may enable molecular epidemiology and support outbreak investigation and prevention.
Collapse
Affiliation(s)
- Julia Lienhard
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (J.L.); (I.V.-S.)
| | | | - Xaver Sidler
- Division of Swine Medicine, Department of Farm Animals, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland;
| | - Claudia Bachofen
- Institute of Virology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; (J.L.); (I.V.-S.)
| |
Collapse
|
53
|
Zhou Z, Xie Y, Wu C, Nan Y. The Hepatitis E Virus Open Reading Frame 2 Protein: Beyond Viral Capsid. Front Microbiol 2021; 12:739124. [PMID: 34690982 PMCID: PMC8529240 DOI: 10.3389/fmicb.2021.739124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) is a zoonotic pathogen causing hepatitis in both human and animal hosts, which is responsible for acute hepatitis E outbreaks worldwide. The 7.2 kb genome of the HEV encodes three well-defined open reading frames (ORFs), where the ORF2 translation product acts as the major virion component to form the viral capsid. In recent years, besides forming the capsid, more functions have been revealed for the HEV-ORF2 protein, and it appears that HEV-ORF2 plays multiple functions in both viral replication and pathogenesis. In this review, we systematically summarize the recent research advances regarding the function of the HEV-ORF2 protein such as application in the development of a vaccine, regulation of the innate immune response and cellular signaling, involvement in host tropism and participation in HEV pathogenesis as a novel secretory factor. Progress in understanding more of the function of HEV-ORF2 protein beyond the capsid protein would contribute to improved control and treatment of HEV infection.
Collapse
Affiliation(s)
- Zhaobin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yinqian Xie
- Shaanxi Animal Disease Prevention and Control Center, Xi’an, China
| | - Chunyan Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| | - Yuchen Nan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Scientific Observing and Experimental Station of Veterinary Pharmacology and Diagnostic Technology, Ministry of Agriculture, Yangling, China
| |
Collapse
|
54
|
Shafat Z, Ahmed A, Parvez MK, Parveen S. Sequence to structure analysis of the ORF4 protein from Hepatitis E virus. Bioinformation 2021; 17:818-828. [PMID: 35539889 PMCID: PMC9049080 DOI: 10.6026/97320630017818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is the main cause of acute hepatitis worldwide. HEV accounts for up to 30% mortality rate in pregnant women, with highest incidences reported for genotype 1 (G1) HEV. The contributing factors in adverse cases during pregnancy in women due to HEV infection is still debated. The mechanism underlying the pathogenesis of viral infection is attributed to different genomic component of HEV, i.e., open reading frames (ORFs): ORF1, ORF2, ORF3 and ORF4. Recently, ORF4 has been discovered in enhancing the replication of GI isolates of HEV through regulation of an IRES-like RNA element. However, its characterization through computational methodologies remains unexplored. In this novel study, we provide comprehensive overview of ORF4 protein's genetic and molecular characteristics through analyzing its sequence and different structural levels. A total of three different datasets (Human, Rat and Ferret) of ORF4 genomes were built and comparatively analyzed. Several non-synonymous mutations in conjunction with higher entropy values were observed in rat and ferret datasets, however, limited variation was observed in human ORF4 genomes. Higher transition to tranversion ratio was observed in the ORF4 genomes. Studies have reported the association of intrinsic disordered proteins (IDP) with drug discovery due to its role in several signaling and regulatory processes through protein-protein interactions (PPIs). As PPIs are potent drug target sources, thus the ORF4 protein was explored by analyzing its polypeptide structure in order to shed light on its intrinsic disorder. Pressures that lead towards preponderance of disordered-promoting amino acid residues shaped the evolution of ORF4. The intrinsic disorder propensity analysis revealed ORF4 protein (Human) as a highly disordered protein (IDP). Predominance of coils and lack of secondary structure further substantiated our findings suggesting its involvement in binding to ligand molecules. Thus, ORF4 contributes to cellular signaling processes through protein-protein interactions, as IDPs are targets for regulation to accelerate the process of drug designing strategies against HEV infections.
Collapse
Affiliation(s)
- Zoya Shafat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Anwar Ahmed
- Centre of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
55
|
Cellular Organelles Involved in Hepatitis E Virus Infection. Pathogens 2021; 10:pathogens10091206. [PMID: 34578238 PMCID: PMC8469867 DOI: 10.3390/pathogens10091206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis E virus (HEV), a major cause of acute hepatitis worldwide, infects approximately 20 million individuals annually. HEV can infect a wide range of mammalian and avian species, and cause frequent zoonotic spillover, increasingly raising public health concerns. To establish a successful infection, HEV needs to usurp host machineries to accomplish its life cycle from initial attachment to egress. However, relatively little is known about the HEV life cycle, especially the functional role(s) of cellular organelles and their associated proteins at different stages of HEV infection. Here, we summarize current knowledge regarding the relation of HEV with the different cell organelles during HEV infection. Furthermore, we discuss the underlying mechanisms by which HEV infection is precisely regulated in infected cells and the modification of host cell organelles and their associated proteins upon HEV infection.
Collapse
|
56
|
Yadav KK, Kenney SP. Hepatitis E Virus Immunopathogenesis. Pathogens 2021; 10:pathogens10091180. [PMID: 34578211 PMCID: PMC8465319 DOI: 10.3390/pathogens10091180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Hepatitis E virus is an important emerging pathogen producing a lethal impact on the pregnant population and immunocompromised patients. Starting in 1983, it has been described as the cause for acute hepatitis transmitted via the fecal–oral route. However, zoonotic and blood transfusion transmission of HEV have been reported in the past few decades, leading to the detailed research of HEV pathogenesis. The reason behind HEV being highly virulent to the pregnant population particularly during the third trimester, leading to maternal and fetal death, remains unknown. Various host factors (immunological, nutritional, hormonal) and viral factors have been studied to define the key determinants assisting HEV to be virulent in pregnant and immunocompromised patients. Similarly, chronic hepatitis is seen particularly in solid organ transplant patients, resulting in fatal conditions. This review describes recent advances in the immunopathophysiology of HEV infections in general, pregnant, and immunocompromised populations, and further elucidates the in vitro and in vivo models utilized to understand HEV pathogenesis.
Collapse
|
57
|
Kupke P, Werner JM. Hepatitis E Virus Infection-Immune Responses to an Underestimated Global Threat. Cells 2021; 10:cells10092281. [PMID: 34571931 PMCID: PMC8468229 DOI: 10.3390/cells10092281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022] Open
Abstract
Infection with the hepatitis E virus (HEV) is one of the main ubiquitous causes for developing an acute hepatitis. Moreover, chronification plays a predominant role in immunocompromised patients such as transplant recipients with more frequent severe courses. Unfortunately, besides reduction of immunosuppression and off-label use of ribavirin or pegylated interferon alfa, there is currently no specific anti-viral treatment to prevent disease progression. So far, research on involved immune mechanisms induced by HEV is limited. It is very difficult to collect clinical samples especially from the early phase of infection since this is often asymptomatic. Nevertheless, it is certain that the outcome of HEV-infected patients correlates with the strength of the proceeding immune response. Several lymphoid cells have been identified in contributing either to disease progression or achieving sustained virologic response. In particular, a sufficient immune control by both CD4+ and CD8+ T cells is necessary to prevent chronic viral replication. Especially the mechanisms underlying fulminant courses are poorly understood. However, liver biopsies indicate the involvement of cytotoxic T cells in liver damage. In this review, we aimed to highlight different parts of the lymphoid immune response against HEV and point out questions that remain unanswered regarding this underestimated global threat.
Collapse
|
58
|
Ideno S, Inoue T, Takahashi K, Urayama T, Maeno H, Takeuchi K, Sakai K. Phenotypic characterization of cell culture-derived hepatitis E virus subjected to different chemical treatments: Application in virus removal via nanofiltration. J Virol Methods 2021; 296:114244. [PMID: 34302862 DOI: 10.1016/j.jviromet.2021.114244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/23/2022]
Abstract
Safety evaluation for the hepatitis E virus (HEV) is required for plasma fractionation products. Plasma-derived HEV (pHEV) is quite unique in that it is associated with a lipid membrane, which, when stripped during manufacturing processes, induces morphological changes in the virus, making it difficult to select proper HEV phenotypes for clearance studies. We developed a convenient system for the preparation of a high titer cell culture-derived HEV (cHEV). In this system, PLC/PRF/5 cells transfected with the wild-type HEV genome generated lipid membrane-associated cHEV for a long period even after cryopreservation. We also examined how this lipid membrane-associated cHEV can be used to verify the robustness of pHEV removal via 19-nm nanofiltration. Sodium-deoxycholate and trypsin (NaDOC/T) treatment not only dissolved lipid but also digested membrane-associated proteins from pHEV and cHEV, making the resulting cHEV particle smaller in size than any pHEV phenotypes generated by ethanol or solvent-detergent treatment in this study. In both 19-nm and 35-nm nanofiltration, cHEV behaved identically to pHEV. These results indicate that cHEV is a useful resource for viral clearance studies in term of availability, and the use of NaDOC/T-treated cHEV ensured robust pHEV removal capacity via 19-nm nanofiltration.
Collapse
Affiliation(s)
- Shoji Ideno
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan.
| | - Takamasa Inoue
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Kadue Takahashi
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Takeru Urayama
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Hideki Maeno
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Sakai
- Central Research Laboratory, Research & Development Division, Japan Blood Products Organization, Kobe, Japan
| |
Collapse
|
59
|
Glitscher M, Hildt E. Hepatitis E virus egress and beyond - the manifold roles of the viral ORF3 protein. Cell Microbiol 2021; 23:e13379. [PMID: 34272798 DOI: 10.1111/cmi.13379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Although the hepatitis E virus represents an uprising threat to the global community by representing the commonest cause of an acute viral hepatitis worldwide, its life cycle is grossly understudied. Albeit HEV is a non-enveloped virus, its progeny is released as quasi-enveloped virions. Thus, the responsible accessory protein pORF3 gained rising attention in the past years. It mediates viral release via the exosomal route by targeting the viral capsid to the endosomal system, more precisely to multivesicular bodies. As this is followed by quasi-envelopment, pORF3 may in terms represent a substitute to a conventional envelope protein. This feature proofs to be rather unique with respect to other enteric viruses, although the protein's role in the viral life cycle seems to reach far beyond simply maintaining release of progeny viruses. How pORF3 affects viral morphogenesis, how it mediates efficient viral release and how it supports viral spread is summarised in this microreview. With this, we aim to shed light on functions of pORF3 to gain further insights in still enigmatic aspects of the HEV life cycle. TAKE AWAYS: HEV is released as exosome via multivesicular bodies Viral pORF3 mediates release via endosomal complexes required for transport pORF3 modulates various cellular processes in infected cells Elucidation of pORF3-related processes imply novel clinical strategies.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department Virology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
60
|
Horvatits T, Wißmann JE, Johne R, Groschup MH, Gadicherla AK, Schulze Zur Wiesch J, Eiden M, Todt D, Reimer R, Dähnert L, Schöbel A, Horvatits K, Lübke R, Wolschke C, Ayuk F, Rybczynski M, Lohse AW, Addo MM, Herker E, Lütgehetmann M, Steinmann E, Pischke S. Hepatitis E virus persists in the ejaculate of chronically infected men. J Hepatol 2021; 75:55-63. [PMID: 33484776 DOI: 10.1016/j.jhep.2020.12.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Hepatitis E virus (HEV) infections are prevalent worldwide. Various viruses have been detected in the ejaculate and can outlast the duration of viremia, indicating replication beyond the blood-testis barrier. HEV replication in diverse organs, however, is still widely misunderstood. We aimed to determine the occurrence, features and morphology of HEV in the ejaculate. METHODS The presence of HEV in testis was assessed in 12 experimentally HEV-genotype 3-infected pigs. We further tested ejaculate, urine, stool and blood from 3 chronically HEV genotype 3-infected patients and 6 immunocompetent patients with acute HEV infection by HEV-PCR. Morphology and genomic characterization of HEV particles from various human compartments were determined by HEV-PCR, density gradient measurement, immune-electron microscopy and genomic sequencing. RESULTS In 2 of the 3 chronically HEV-infected patients, we observed HEV-RNA (genotype 3c) in seminal plasma and semen with viral loads >2 logs higher than in the serum. Genomic sequencing showed significant differences between viral strains in the ejaculate compared to stool. Under ribavirin-treatment, HEV shedding in the ejaculate continued for >9 months following the end of viremia. Density gradient measurement and immune-electron microscopy characterized (enveloped) HEV particles in the ejaculate as intact. CONCLUSIONS The male reproductive system was shown to be a niche of HEV persistence in chronic HEV infection. Surprisingly, sequence analysis revealed distinct genetic HEV variants in the stool and serum, originating from the liver, compared to variants in the ejaculate originating from the male reproductive system. Enveloped HEV particles in the ejaculate did not morphologically differ from serum-derived HEV particles. LAY SUMMARY Enveloped hepatitis E virus particles could be identified by PCR and electron microscopy in the ejaculate of immunosuppressed chronically infected patients, but not in immunocompetent experimentally infected pigs or in patients with acute self-limiting hepatitis E.
Collapse
Affiliation(s)
- Thomas Horvatits
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany.
| | - Jan-Erik Wißmann
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Martin H Groschup
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Ashish K Gadicherla
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Julian Schulze Zur Wiesch
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| | - Martin Eiden
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Daniel Todt
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lisa Dähnert
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Karoline Horvatits
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rabea Lübke
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Rybczynski
- University Heart Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| | - Marylyn M Addo
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| | - Eva Herker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Steinmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Ruhr University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Sven Pischke
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| |
Collapse
|
61
|
Yang YL, Nan YC. Open reading frame 3 protein of hepatitis E virus: Multi-function protein with endless potential. World J Gastroenterol 2021; 27:2458-2473. [PMID: 34092969 PMCID: PMC8160619 DOI: 10.3748/wjg.v27.i20.2458] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV), a fecal-orally transmitted foodborne viral pathogen, causes acute hepatitis in humans and is responsible for hepatitis E outbreaks worldwide. Since the identification of HEV as a zoonotic agent, this virus has been isolated from a variety of hosts with an ever-expanding host range. HEV-open reading frame (ORF) 3, the smallest ORF in HEV genomes, initially had been perceived as an unremarkable HEV accessory protein. However, as novel HEV-ORF3 function has been discovered that is related to the existence of a putative third virion structural form, referred to as “quasi-enveloped” HEV particles, HEV is challenging the conventional virion structure-based classification scheme, which assigns all viruses to two groups, “enveloped” or “non-enveloped”. In this review, we systematically describe recent progress that has identified multiple pathogenic roles of HEV-ORF3, including roles in HEV virion release, biogenesis of quasi-enveloped virus, regulation of the host innate immune response, and interference with host signaling pathways. In addition, implications of HEV-ORF3-associated quasi-enveloped virions are discussed to guide future development of improved vaccines against zoonotic HEV infection.
Collapse
Affiliation(s)
- Yong-Lin Yang
- Department of Infectious Diseases, Taizhou People's Hospital, The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, Jiangsu Province, China
- Department of General Practice, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu Province, China
| | - Yu-Chen Nan
- Department of Preventive Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
62
|
Tenge VR, Murakami K, Salmen W, Lin SC, Crawford SE, Neill FH, Prasad BVV, Atmar RL, Estes MK. Bile Goes Viral. Viruses 2021; 13:998. [PMID: 34071855 PMCID: PMC8227374 DOI: 10.3390/v13060998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Laboratory cultivation of viruses is critical for determining requirements for viral replication, developing detection methods, identifying drug targets, and developing antivirals. Several viruses have a history of recalcitrance towards robust replication in laboratory cell lines, including human noroviruses and hepatitis B and C viruses. These viruses have tropism for tissue components of the enterohepatic circulation system: the intestine and liver, respectively. The purpose of this review is to discuss how key enterohepatic signaling molecules, bile acids (BAs), and BA receptors are involved in the replication of these viruses and how manipulation of these factors was useful in the development and/or optimization of culture systems for these viruses. BAs have replication-promoting activities through several key mechanisms: (1) affecting cellular uptake, membrane lipid composition, and endocytic acidification; (2) directly interacting with viral capsids to influence binding to cells; and (3) modulating the innate immune response. Additionally, expression of the Na+-taurocholate cotransporting polypeptide BA receptor in continuous liver cell lines is critical for hepatitis B virus entry and robust replication in laboratory culture. Viruses are capable of hijacking normal cellular functions, and understanding the role of BAs and BA receptors, components of the enterohepatic system, is valuable for expanding our knowledge on the mechanisms of norovirus and hepatitis B and C virus replication.
Collapse
Affiliation(s)
- Victoria R. Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Musashi-Murayama, Tokyo 208-0011, Japan;
| | - Wilhelm Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shih-Ching Lin
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
| | - B. V. Venkataram Prasad
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (V.R.T.); (W.S.); (S.-C.L.); (S.E.C.); (F.H.N.); (B.V.V.P.); (R.L.A.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
63
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
64
|
Oshiro Y, Harada H, Hasegawa K, Akutsu N, Yoshizumi T, Kawagishi N, Nanmoku K, Ichimaru N, Okamura K, Ohira M, Itabashi Y, Fujiyama N, Ide K, Okajima H, Ogawa K, Takagi K, Eguchi H, Shinoda M, Nishida K, Shimazaki J, Shimoda M, Takahashi M, Okamoto H, Suzuki S. Loss of antibodies to hepatitis E virus in organ transplant patients with hepatitis E. Hepatol Res 2021; 51:538-547. [PMID: 33749100 DOI: 10.1111/hepr.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/10/2021] [Accepted: 03/14/2021] [Indexed: 02/08/2023]
Abstract
AIM Studies regarding changes in antibodies to hepatitis E virus (HEV) after HEV infection in organ transplant patients are limited. This study aimed to clarify HEV infection trends in organ transplant patients who contracted HEV using data from a previous Japanese nationwide survey. METHODS This study was undertaken from 2012 to 2019. Among 4518 liver, heart, and kidney transplant patients, anti-HEV immunoglobulin G (IgG) antibodies were positive in 164; data were collected from 106 of these patients, who consented to participate in the study. In total, 32 liver transplant patients, seven heart transplant patients, and 67 kidney transplant patients from 16 institutions in Japan were examined for IgG, IgM, and IgM antibodies to HEV and the presence of HEV RNA in the serum. The χ2 -test was used to determine the relationship between the early and late postinfection groups in patients with anti-HEV IgG positive-to-negative conversion rates. The Mann-Whitney U-test was used to compare clinical factors. RESULTS Anti-HEV IgG positive-to-negative conversion occurred in 25 (23.6%) of 106 organ transplant patients. Of eight patients with hepatitis E who tested positive for HEV RNA, one (14.0%) had anti-HEV IgG positive-to-negative conversion. Twenty-four (24.5%) of 98 patients negative for HEV RNA had anti-HEV IgG positive-to-negative conversion. CONCLUSIONS This study revealed, for the first time, the changes in HEV antibodies in organ transplant patients. Loss of anti-HEV IgG could often occur unexpectedly in organ transplant patients with previous HEV infection.
Collapse
Affiliation(s)
- Yukio Oshiro
- Department of Gastroenterological Surgery, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Hiroshi Harada
- Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Kiyoshi Hasegawa
- Hepato-Biliary-Pancreatic Surgery Division, Artificial Organs and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naotake Akutsu
- Department of Surgery, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Koji Nanmoku
- Department of Renal Surgery and Transplantation, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Naotsugu Ichimaru
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kenichi Okamura
- Department of Cardiovascular Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Ohira
- Department of Gastroenterology and Metabolism, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Itabashi
- Department of Nephrology, School of Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Nobuhiro Fujiyama
- Center for Kidney Disease and Transplantation, Akita University Hospital, Akita, Japan
| | - Kentaro Ide
- Department of Gastroenterology and Metabolism, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Science, Hiroshima University, Hiroshima, Japan
| | - Hideaki Okajima
- Department of Paediatric Surgery, Kanazawa Medical University, Kahoku, Japan
| | - Kohei Ogawa
- Department of HPB and Breast Surgery, Ehime University Graduate School of Medicine, Toon, Japan
| | - Kosei Takagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masahiro Shinoda
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kiyotaka Nishida
- Department of Gastroenterological Surgery, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Jiro Shimazaki
- Department of Gastroenterological Surgery, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Mitsugi Shimoda
- Department of Gastroenterological Surgery, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | - Masaharu Takahashi
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Shuji Suzuki
- Department of Gastroenterological Surgery, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| |
Collapse
|
65
|
Zhang W, Kataoka M, Doan HY, Wu FT, Takeda N, Muramatsu M, Li TC. Isolation and Characterization of a Subtype 4b of Hepatitis E Virus Using a PLC/PRF/5 cell-derived Cell Line Resistant to Porcine Sapelovirus Infection. Jpn J Infect Dis 2021; 74:573-575. [PMID: 33952773 DOI: 10.7883/yoken.jjid.2021.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A human hepatocarcinoma cell line, PLC/PRF/5, is susceptible to hepatitis E virus (HEV) infection and is used for isolating this virus. It is difficult to use this cell line for the isolation of HEV directly from fecal specimens of swine or wild boar contaminated with porcine sapelovirus (PSV), because PSV infection results in rapid and extensive cytopathic effects in PLC/PRF/5 cells, interrupting the growth of HEV. Herein, we used a PSV infection-resistant cell line, N1380 derived from PLC/PRF/5 cells, and we successfully isolated an HEV-4b strain from a PSV-positive swine fecal specimen. Our results indicate that N1380 cells are a useful tool for the isolation of HEV from swine or wild boar fecal specimens, even when they are co-infected with PSV.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Virology II, National Institute of Infectious Diseases, Japan
| | - Michiyo Kataoka
- Department of Pathology, National Institute of Infectious Diseases, Japan
| | - Hai Yen Doan
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Japan
| | - Fang-Tzy Wu
- Center for Research, Diagnostics and Vaccine Development, Taiwan Centers for Disease Control, Taiwan
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Japan
| | | | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Japan
| |
Collapse
|
66
|
Capozza P, Martella V, Lanave G, Beikpour F, Di Profio F, Palombieri A, Sarchese V, Marsilio F, La Rosa G, Suffredini E, Camero M, Buonavoglia C, Di Martino B. A surveillance study of hepatitis E virus infection in household cats. Res Vet Sci 2021; 137:40-43. [PMID: 33932821 DOI: 10.1016/j.rvsc.2021.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/02/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Hepatitis E virus (HEV) typically causes self-limiting acute viral hepatitis, however chronic infection and extrahepatic manifestations have increasingly become a significant health problem. Domestic pigs and wild boars are the main reservoirs of HEV genotype 3 and genotype 4 for human infections in industrialized countries, although molecular and serological evidence suggest that several additional animal species may act as HEV hosts. In this study, by assessing serologically and molecularly the sera of 324 household cats from Apulia region (Italy), HEV antibodies were detected with an overall prevalence of 3.1%. Viral RNA was not detected in the sera of the animals using both HEV-specific assays and a pan-hepevirus broadly reactive set of primers for Hepeviridae. These findings document a low seroprevalence to HEV in cats in the investigated geographical setting. The exact nature of the HEV-like strains circulating in feline population remains to be established.
Collapse
Affiliation(s)
- Paolo Capozza
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy.
| | - Gianvito Lanave
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Farzad Beikpour
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Federica Di Profio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Andrea Palombieri
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Vittorio Sarchese
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michele Camero
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, Università Aldo Moro di Bari, Valenzano, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Località Piano D'Accio, 64100 Teramo, Italy
| |
Collapse
|
67
|
Owusu IA, Quaye O, Passalacqua KD, Wobus CE. Egress of non-enveloped enteric RNA viruses. J Gen Virol 2021; 102:001557. [PMID: 33560198 PMCID: PMC8515858 DOI: 10.1099/jgv.0.001557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/04/2021] [Indexed: 12/27/2022] Open
Abstract
A long-standing paradigm in virology was that non-enveloped viruses induce cell lysis to release progeny virions. However, emerging evidence indicates that some non-enveloped viruses exit cells without inducing cell lysis, while others engage both lytic and non-lytic egress mechanisms. Enteric viruses are transmitted via the faecal-oral route and are important causes of a wide range of human infections, both gastrointestinal and extra-intestinal. Virus cellular egress, when fully understood, may be a relevant target for antiviral therapies, which could minimize the public health impact of these infections. In this review, we outline lytic and non-lytic cell egress mechanisms of non-enveloped enteric RNA viruses belonging to five families: Picornaviridae, Reoviridae, Caliciviridae, Astroviridae and Hepeviridae. We discuss factors that contribute to egress mechanisms and the relevance of these mechanisms to virion stability, infectivity and transmission. Since most data were obtained in traditional two-dimensional cell cultures, we will further attempt to place them into the context of polarized cultures and in vivo pathogenesis. Throughout the review, we highlight numerous knowledge gaps to stimulate future research into the egress mechanisms of these highly prevalent but largely understudied viruses.
Collapse
Affiliation(s)
- Irene A. Owusu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Karla D. Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
- Henry Ford Health System, Detroit, MI 48202, USA
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| |
Collapse
|
68
|
Dähnert L, Schlosser J, Fast C, Fröhlich A, Gröner A, Lange E, Roth NJ, Schäfer W, Schröder C, Eiden M, Groschup MH. Hepatitis E virus: Efficacy of pasteurization of plasma-derived VWF/FVIII concentrate determined by pig bioassay. Transfusion 2021; 61:1266-1277. [PMID: 33605455 DOI: 10.1111/trf.16298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is the leading cause of acute hepatitis throughout the world. Increasing blood component transfusion-associated HEV infections highlight the need for reliable virus inactivation procedures for plasma derivatives from pooled plasma donations. STUDY DESIGN AND METHODS An animal infection study was conducted to evaluate the efficiency of HEV inactivation by pasteurization during the manufacturing process of the von Willebrand Factor/Factor VIII (VWF/FVIII) concentrate Haemate P/Humate-P (CSL Behring, Marburg, Germany). For this purpose, groups of pigs were inoculated with stabilized VWF/FVIII intermediate spiked with HEV-positive liver homogenate and exposed to increasing incubation times of 0, 3, 6, and 10 h at 60°C. Animals were evaluated for virus replication over 27 days and in a subsequent trial over 92 days. RESULTS Virus replication was detected in animals up to the 6-h pasteurization group. In contrast, pasteurization for 10 h did not reveal virus detection when the observation period was 27 days. In an additional experiment using the 10-h pasteurized material, two individuals started virus excretion and seroconverted when the observation period was extended to 92 days. Based on the total infection rate (2 of 12) of the animals inoculated with the sample pasteurized for 10 h, a virus reduction factor of at least 4.7 log10 is calculated. CONCLUSION This study demonstrates that pasteurization at 60°C for 10 h of an HEV-positive plasma derivative leads to the effective reduction of infectivity, resulting in a VWF/FVIII product with an appropriate margin of safety for HEV.
Collapse
Affiliation(s)
- Lisa Dähnert
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Josephine Schlosser
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany.,Department of Veterinary Medicine, Freie Universität Berlin, Institute of Immunology, Berlin, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Andreas Fröhlich
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | | | - Elke Lange
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Nathan J Roth
- Global Pathogen Safety, CSL Behring AG, Bern, Switzerland
| | | | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Germany
| |
Collapse
|
69
|
Advances in Hepatitis E Virus Biology and Pathogenesis. Viruses 2021; 13:v13020267. [PMID: 33572257 PMCID: PMC7915517 DOI: 10.3390/v13020267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is one of the causative agents for liver inflammation across the world. HEV is a positive-sense single-stranded RNA virus. Human HEV strains mainly belong to four major genotypes in the genus Orthohepevirus A, family Hepeviridae. Among the four genotypes, genotype 1 and 2 are obligate human pathogens, and genotype 3 and 4 cause zoonotic infections. HEV infection with genotype 1 and 2 mainly presents as acute and self-limiting hepatitis in young adults. However, HEV infection of pregnant women with genotype 1 strains can be exacerbated to fulminant hepatitis, resulting in a high rate of case fatality. As pregnant women maintain the balance of maternal-fetal tolerance and effective immunity against invading pathogens, HEV infection with genotype 1 might dysregulate the balance and cause the adverse outcome. Furthermore, HEV infection with genotype 3 can be chronic in immunocompromised patients, with rapid progression, which has been a challenge since it was reported years ago. The virus has a complex interaction with the host cells in downregulating antiviral factors and recruiting elements to generate a conducive environment of replication. The virus-cell interactions at an early stage might determine the consequence of the infection. In this review, advances in HEV virology, viral life cycle, viral interference with the immune response, and the pathogenesis in pregnant women are discussed, and perspectives on these aspects are presented.
Collapse
|
70
|
Bove G, Mehnert AK, Dao Thi VL. iPSCs for modeling hepatotropic pathogen infections. IPSCS FOR STUDYING INFECTIOUS DISEASES 2021:149-213. [DOI: 10.1016/b978-0-12-823808-0.00013-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
71
|
Surveillance Study of Hepatitis E Virus (HEV) in Domestic and Wild Ruminants in Northwestern Italy. Animals (Basel) 2020; 10:ani10122351. [PMID: 33317114 PMCID: PMC7764585 DOI: 10.3390/ani10122351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hepatitis E virus (HEV) infection can cause both acute and chronic hepatitis in humans and represents an emerging public health concern worldwide. In developed countries, zoonotic transmission of HEV genotypes 3 and 4 is caused by ingestion of raw or undercooked meat of infected swine or wild boars, the main reservoirs of HEV. However, in the last few years, molecular and serological evidence seem to indicate that several other animal species may act as HEV host, including domestic and wild ruminants. In this study, serum and fecal specimens from sheep, goats, red deer, roe deer, chamois, and Alpine ibex collected in two northwestern Italian regions (Piemonte and Valle d’Aosta) were screened molecularly and serologically. With the exception of chamois, HEV antibodies were found both in the domestic and wild ruminant species investigated with the highest rates in sheep and goats. These findings demonstrate that wild also domestic ruminants may be implicated in the viral cycle transmission. Abstract In industrialized countries, increasing autochthonous infections of hepatitis E virus (HEV) are caused by zoonotic transmission of genotypes (Gts) 3 and 4, mainly through consumption of contaminated raw or undercooked pork meat. Although swine and wild boar are recognized as the main reservoir for Gt3 and Gt4, accumulating evidence indicates that other animal species, including domestic and wild ruminants, may harbor HEV. Herein, we screened molecularly and serologically serum and fecal samples from two domestic and four wild ruminant species collected in Valle d’Aosta and Piemonte regions (northwestern Italy. HEV antibodies were found in sheep (21.6%), goats (11.4%), red deer (2.6%), roe deer (3.1%), and in Alpine ibex (6.3%). Molecular screening was performed using different primer sets targeting highly conserved regions of hepeviruses and HEV RNA, although at low viral loads, was detected in four fecal specimens (3.0%, 4/134) collected from two HEV seropositive sheep herds. Taken together, the data obtained document the circulation of HEV in the geographical area assessed both in wild and domestic ruminants, but with the highest seroprevalence in sheep and goats. Consistently with results from other studies conducted in southern Italy, circulation of HEV among small domestic ruminants seems to occur more frequently than expected.
Collapse
|
72
|
Xu LD, Zhang F, Peng L, Luo WT, Chen C, Xu P, Huang YW. Stable Expression of a Hepatitis E Virus (HEV) RNA Replicon in Two Mammalian Cell Lines to Assess Mechanism of Innate Immunity and Antiviral Response. Front Microbiol 2020; 11:603699. [PMID: 33424806 PMCID: PMC7793998 DOI: 10.3389/fmicb.2020.603699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is one of the major etiological agents responsible for acute hepatitis. Hepatitis E virus does not replicate efficiently in mammalian cell cultures, thus a useful model that mimics persistent HEV replication is needed to dissect the molecular mechanism of pathogenesis. Here we report a genotype-3 HEV RNA replicon expressing an EGFP-Zeocin (EZ) resistant gene (p6-EZ) that persistently self-replicated in cell lines of human (Huh-7-S10-3) or hamster (BHK-21) origin after transfection with in vitro RNA transcripts and subsequent drug screening. Two cell lines, S10-3-EZ and BHK-21-EZ, stably expressed EGFP in the presence of Zeocin during continuous passages. Both genomic and subgenomic HEV RNAs and viral replicase proteins were stably expressed in persistent HEV replicon cells. The values of the cell models in antiviral testing, innate immune RNA sensing and type I IFN in host defense were further demonstrated. We revealed a role of RIG-I like receptor-interferon regulatory factor 3 in host antiviral innate immune sensing during HEV replication. We further demonstrated that treatment with interferon (IFN-α) or ribavirin significantly reduced expression of replicon RNA in a dose-dependent manner. The availability of the models will greatly facilitate HEV-specific antiviral development, and delineate mechanisms of HEV replication.
Collapse
Affiliation(s)
- Ling-Dong Xu
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fei Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lei Peng
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wen-Ting Luo
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Chu Chen
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yao-Wei Huang
- Institute of Preventive Veterinary Science and Key Laboratory of Animal Virology of Ministry of Agriculture, Department of Veterinary Medicine, Zhejiang University, Hangzhou, China.,Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing, China
| |
Collapse
|
73
|
Laugel E, Hartard C, Jeulin H, Berger S, Venard V, Bronowicki JP, Schvoerer E. Full-length genome sequencing of RNA viruses-How the approach can enlighten us on hepatitis C and hepatitis E viruses. Rev Med Virol 2020; 31:e2197. [PMID: 34260779 DOI: 10.1002/rmv.2197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/09/2022]
Abstract
Among the five main viruses responsible for human hepatitis, hepatitis C virus (HCV) and hepatitis E virus (HEV) are different while sharing similarities. Both viruses can be transmitted by blood or derivatives whereas HEV can also follow environmental or zoonotic routes. These highly variable RNA viruses can cause chronic hepatitis potentially leading to hepatocarcinoma. HCV and HEV can develop new structures and functions under selective pressure to adapt to host immunity, human tissues, treatments or even various animal reservoirs. Elsewhere, with directly acting antiviral treatments, HCV can be eradicated whereas HEV is an emerging pathogen against which specific treatments have to be improved. As a unique molecular tool able to explore viral genomic plasticity, full-length genome (FLG) sequencing has become easier, faster and cheaper. The present review will show how FLG sequencing can explore these RNA viruses with the aim to investigate key genomics data to improve basic knowledge, patients' healthcare and preventive tools.
Collapse
Affiliation(s)
- Elodie Laugel
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| | - Cédric Hartard
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| | - Hélène Jeulin
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| | - Sibel Berger
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Véronique Venard
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Service d'hépato-gastroentérologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France
| | - Evelyne Schvoerer
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564 CNRS-UL, Vandœuvre-lès-Nancy, France
| |
Collapse
|
74
|
Capai L, Hozé N, Chiaroni J, Gross S, Djoudi R, Charrel R, Izopet J, Bosseur F, Priet S, Cauchemez S, de Lamballerie X, Falchi A, Gallian P. Seroprevalence of hepatitis E virus among blood donors on Corsica, France, 2017. ACTA ACUST UNITED AC 2020; 25. [PMID: 32046820 PMCID: PMC7014670 DOI: 10.2807/1560-7917.es.2020.25.5.1900336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background Hepatitis E virus (HEV) is an emerging zoonotic pathogen and an important cause of acute viral hepatitis in European countries. Corsica Island has been previously identified as a hyperendemic area for HEV. Aim Our aim was to characterise the prevalence and titres of IgG antibodies to HEV among blood donors on Corsica and establish a model of the annual force of infection. Methods Between September 2017 and January 2018, 2,705 blood donations were tested for anti-HEV IgG using the Wantai HEV IgG enzyme immunoassay. Results The overall seroprevalence was 56.1%. In multivariate analysis, seroprevalence was higher in men than in women (60.0% vs 52.2%; p < 0.01), increased with age and was significantly higher among donors born on Corsica (60.6% vs 53.2%; p < 0.01). No significant difference was observed between the five districts of the island. IgG anti-HEV titres were mostly low (70% of positive donors had titres < 3 IU/mL). In Corsican natives, increasing seroprevalence by age could be explained by models capturing a loss of immunity (annual probability of infection: 4.5%; duration of immunity: 55 years) or by age-specific probabilities of infection (3.8% for children, 1.3% for adults). Conclusion We confirmed the high HEV seroprevalence on Corsica and identified three aspects that should be further explored: (i) the epidemiology in those younger than 18 years, (ii) common sources of contamination, in particular drinking water, that may explain the wide exposure of the population, and (iii) the actual protection afforded by the low IgG titres observed and the potential susceptibility to secondary HEV infection.
Collapse
Affiliation(s)
- Lisandru Capai
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Nathanaël Hozé
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Jacques Chiaroni
- Etablissement Français du Sang Provence alpes Côte d'Azur et Corse, Marseille, France
| | - Sylvie Gross
- Etablissement Français du Sang, 93210, La Plaine-Saint-Denis, France
| | - Rachid Djoudi
- Etablissement Français du Sang, 93210, La Plaine-Saint-Denis, France
| | - Rémi Charrel
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Jacques Izopet
- Institut National de la Santé et de la Recherche Médicale Unité 1043, Université Toulouse III, Toulouse, France.,Laboratoire de Virologie, Institut Fédératif de Biologie, Centre Hospitalier et Universitaire, Toulouse, France
| | - Frédéric Bosseur
- Sciences Pour l'Environnement - UMR CNRS 6134 Université de Corse, Corte, France
| | - Stéphane Priet
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Simon Cauchemez
- Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France
| | - Alessandra Falchi
- EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Pierre Gallian
- Unité des Virus Émergents (UVE): Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection, Marseille, France.,Etablissement Français du Sang, 93210, La Plaine-Saint-Denis, France.,Etablissement Français du Sang Provence alpes Côte d'Azur et Corse, Marseille, France
| |
Collapse
|
75
|
Tallan A, Feng Z. Virus spread in the liver: mechanisms, commonalities, and unanswered questions. Future Virol 2020; 15:707-715. [PMID: 33250929 DOI: 10.2217/fvl-2020-0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The liver is home to five known human hepatitis viruses (hepatitis A virus-hepatitis E virus). Despite being phylogenetically unrelated, these viruses replicate and spread in the liver without causing apparent cytopathic effects, and all have evolved strategies to counteract antibody-mediated inhibition of virus spread. In this review, we discuss the current understanding regarding the spread mechanisms for these viruses with an attempt to extract common principles and identify key questions for future studies.
Collapse
Affiliation(s)
- Alexi Tallan
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zongdi Feng
- Center for Vaccines & Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics, Ohio State University College of Medicine, Columbus OH 43210, USA
| |
Collapse
|
76
|
Thakur V, Ratho RK, Kumar S, Saxena SK, Bora I, Thakur P. Viral Hepatitis E and Chronicity: A Growing Public Health Concern. Front Microbiol 2020; 11:577339. [PMID: 33133046 PMCID: PMC7550462 DOI: 10.3389/fmicb.2020.577339] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hepatitis E viral infection recently emerges as a global health concern. Over the last decade, the understanding of hepatitis E virus (HEV) had changed with the discovery of new genotypes like genotype-7 and genotype-8 with associated host and mode of infection. Diversification in the mode of hepatitis E infection transmission through blood transfusion, and organ transplants in contrast to classical feco-oral and zoonotic mode is the recent medical concern. The wide spectrum of infection ranging from self-limiting to acute liver failure is now overpowered by HEV genotype-specific chronic infection especially in transplant patients. This concern is further escalated by the extra-hepatic manifestations of HEV targeting the central nervous system (CNS), kidney, heart, and pancreas. However, with the development of advanced efficient cell culture systems and animal models simulating the infection, much clarity toward understanding the pathogenetic mechanism of HEV has been developed. Also this facilitates the development of vaccines research or therapeutics. In this review, we highlight all the novel findings in every aspect of HEV with special emphasis on recently emerging chronic mode of infection with specific diagnosis and treatment regime with an optimistic hope to help virologists and/or liver specialists working in the field of viral hepatitis.
Collapse
Affiliation(s)
- Vikram Thakur
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Kanta Ratho
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Swatantra Kumar
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Shailendra K Saxena
- Centre for Advanced Research, Faculty of Medicine, King George's Medical University, Lucknow, India
| | - Ishani Bora
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pryanka Thakur
- Department of Virology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
77
|
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) infections are the main causes for acute hepatitis worldwide. Both viruses had long been considered as nonenveloped viruses. However, recent work has uncovered that both viruses circulate in the bloodstream as membrane-cloaked, "quasi-enveloped" particles that are, surprisingly, infectious and likely the only form mediating virus spread within the host. The discovery of quasi-enveloped HAV and HEV particles has fundamentally changed the traditional view on the life cycle and pathogenesis of these viruses. However, because HAV and HEV are phylogenetically unrelated and their capsid assembly processes are quite distinct, it is not clear whether they use similar or different mechanisms for envelopment and exit. This review provides an overview of the current knowledge about the assembly and exit processes of HAV and HEV and perspectives for future studies.
Collapse
Affiliation(s)
- Zongdi Feng
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, Ohio State University College of Medicine, Columbus, OH, United States.
| |
Collapse
|
78
|
Intercellular Transmission of Naked Viruses through Extracellular Vesicles: Focus on Polyomaviruses. Viruses 2020; 12:v12101086. [PMID: 32993049 PMCID: PMC7599864 DOI: 10.3390/v12101086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles have recently emerged as a novel mode of viral transmission exploited by naked viruses to exit host cells through a nonlytic pathway. Extracellular vesicles can allow multiple viral particles to collectively traffic in and out of cells, thus enhancing the viral fitness and diversifying the transmission routes while evading the immune system. This has been shown for several RNA viruses that belong to the Picornaviridae, Hepeviridae, Reoviridae, and Caliciviridae families; however, recent studies also demonstrated that the BK and JC viruses, two DNA viruses that belong to the Polyomaviridae family, use a similar strategy. In this review, we provide an update on recent advances in understanding the mechanisms used by naked viruses to hijack extracellular vesicles, and we discuss the implications for the biology of polyomaviruses.
Collapse
|
79
|
Virus-Host Cell Interplay during Hepatitis E Virus Infection. Trends Microbiol 2020; 29:309-319. [PMID: 32828646 PMCID: PMC7437515 DOI: 10.1016/j.tim.2020.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
The molecular interplay between cellular host factors and viral proteins is a continuous process throughout the viral life cycle determining virus host range and pathogenesis. The hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans worldwide. However, the mechanisms of liver pathology and clinical disease remain poorly understood for HEV infection. This review summarizes our current understanding of HEV-host cell interactions and highlights experimental strategies and techniques to identify novel host components required for the viral life cycle as well as restriction factors. Understanding these interactions will provide insight into the viral life cycle of HEV and might further help to devise novel therapeutic strategies and antiviral targets.
Collapse
|
80
|
Kapsch AM, Farcet MR, Wieser A, Ahmad MQ, Miyabayashi T, Baylis SA, Blümel J, Kreil TR. Antibody-enhanced hepatitis E virus nanofiltration during the manufacture of human immunoglobulin. Transfusion 2020; 60:2500-2507. [PMID: 32794187 PMCID: PMC7754313 DOI: 10.1111/trf.16014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/09/2020] [Accepted: 07/04/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Circulation of hepatitis E virus (HEV) in areas where plasma is sourced for the manufacture of plasma-derived medicinal products (PDMPs) has prompted verification of HEV clearance. HEV exists as quasi lipid-enveloped (LE) and non-lipid-enveloped (NLE) forms, which might be of relevance for HEV clearance from manufacturing processes of antibody-containing PDMPs with solvent/detergent (S/D) treatment upstream of further clearance steps. STUDY DESIGN AND METHODS Presence of different HEV particles in stocks used in clearance studies was investigated, with nanofilters graded around the assumed HEV particle sizes and by gradient centrifugation. HEV removal by 35-nm nanofiltration was investigated in the presence or absence of HEV antibodies, in buffer as well as in immunoglobulin (IG) manufacturing process intermediates. RESULTS HEV particles consistent with LE, NLE, and an "intermediate" (IM) phenotype, obtained after S/D treatment, were seen in different HEV stocks. In the absence of HEV antibodies, log reduction factors (LRFs) of 4.0 and 2.5 were obtained by 35-nm nanofiltration of LE and IM HEV, consistent with the larger and smaller sizes of these phenotypes. Addition of HEV antibodies enhanced IM HEV removal around 1000-fold (LRF, 5.6). Effective (LRF, >4.8 and >4.0) HEV removal was obtained for the nanofiltration processing step for IG intermediates with varying HEV antibody content. CONCLUSION HEV spikes used in clearance studies should be carefully selected, as differences in physicochemical properties might affect HEV clearance. Antibody-mediated enhancement of HEV nanofiltration was demonstrated in IG process intermediates even at low HEV antibody concentration, illustrating the robustness of this manufacturing step.
Collapse
Affiliation(s)
- Anna-Maria Kapsch
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| | - Maria R Farcet
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| | - Andreas Wieser
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| | | | | | - Sally A Baylis
- Division Virology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Thomas R Kreil
- Global Pathogen Safety, Baxter AG, now part of Takeda, Vienna, Austria
| |
Collapse
|
81
|
Cimmino I, Faggiano A, Perruolo G, Modica R, Bottiglieri F, Covelli B, Colao A, Beguinot F, Formisano P, Oriente F. Diagnosis of Flier's syndrome in a patient with nondiabetic hypoglycemia: a case report and critical appraisal of the literature. Endocrine 2020; 69:73-78. [PMID: 32274699 DOI: 10.1007/s12020-020-02287-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Autoimmune hypoglycemia includes rare syndromes characterized by the presence of either anti-insulin antibodies (IAA) (Hirata's disease) or anti-insulin receptor (anti-ISR) antibodies (Flier's syndrome). Diagnosis is usually based on identification of the specific antibodies, in presence of the Whipple triad. However, most of these cases are classified as idiopathic diseases due to the difficulty to define the pathogenic culprit. METHODS Basic research methodologies, including Western Blot and ELISA tests, have been used in this study. RESULTS We describe a 21-year-old young woman (PT), non-obese and non-diabetic, with a positive history of autoimmune diseases, admitted to the hospital for recurrent episodes of severe symptomatic hypoglycemia. Counterregulatory response to hypoglycemia was normal as well as the fasting test, so excluding both hormone deficiencies and insulinoma. Since an autoimmune hypoglycemic syndrome was suspected, the hyperactivation of the insulin pathway was experimentally evaluated. At this purpose, human hepatocarcinoma (HepG2) cells were incubated with serum obtained from the patient (PT) and from control individuals. Interestingly, a significant increase of phosphorylation of insulin receptor, Akt, and ERK1/2 was observed in the HepG2 cells incubated with PT serum compared with the controls. ELISA tests revealed significantly increased levels of anti-ISR antibodies in PT serum, while IAA were similar both in PT and in control sera, supporting diagnosis of Flier's syndrome. CONCLUSIONS This study emphasizes the importance to identify new strategies for the differential diagnosis of hypoglycemia, not always possible with the routinely used diagnostic tests.
Collapse
Affiliation(s)
- Ilaria Cimmino
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | | | - Giuseppe Perruolo
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Roberta Modica
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Filomena Bottiglieri
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Bianca Covelli
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy.
| | - Francesco Oriente
- Department of Translational Medicine, Federico II University of Naples and URT "Genomic of Diabetes" of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), Naples, Italy
| |
Collapse
|
82
|
Goel A, Aggarwal R. Hepatitis E: Epidemiology, Clinical Course, Prevention, and Treatment. Gastroenterol Clin North Am 2020; 49:315-330. [PMID: 32389365 DOI: 10.1016/j.gtc.2020.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Hepatitis E virus is a common cause of acute hepatitis and acute liver failure in resource-constrained parts of the world. The disease is particularly severe when the infection occurs during pregnancy. In developed countries, human infections occur primarily through zoonotic transmission from animal reservoirs; however, clinical disease is less frequent than in the developing world. The virus strains prevalent in these areas also cause chronic infection in immunocompromised persons, which, if untreated, can progress to cirrhosis; such infection responds well to oral ribavirin. A safe and highly effective recombinant vaccine is available in China, but is not available elsewhere.
Collapse
Affiliation(s)
- Amit Goel
- Department of Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Rakesh Aggarwal
- Department of Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India.
| |
Collapse
|
83
|
Giannecchini S. Evidence of the Mechanism by Which Polyomaviruses Exploit the Extracellular Vesicle Delivery System during Infection. Viruses 2020; 12:v12060585. [PMID: 32471033 PMCID: PMC7354590 DOI: 10.3390/v12060585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that human viruses can hijack extracellular vesicles (EVs) to deliver proteins, mRNAs, microRNAs (miRNAs) and whole viral particles during viral persistence in the host. Human polyomavirus (PyV) miRNAs, which downregulate large T-antigen expression and target host factors, help the virus escape immune elimination and may have roles in the success of viral persistence/replication and the development of diseases. In this context, several investigations have detected PyV miRNAs in EVs obtained from cell culture supernatants after viral infection, demonstrating the ability of these vesicles to deliver miRNAs to uninfected cells, potentially counteracting new viral infection. Additionally, PyV miRNAs have been identified in EVs derived from the biological fluids of clinical samples obtained from patients with or at risk of severe PyV-associated diseases and from asymptomatic control healthy subjects. Interestingly, PyV miRNAs were found to be circulating in blood, urine, cerebrospinal fluid, and saliva samples from patients despite their PyV DNA status. Recently, the association between EVs and PyV viral particles was reported, demonstrating the ability of PyV viral particles to enter the cell without natural receptor-mediated entry and evade antibody-mediated neutralization or to be neutralized at a step different from that of the neutralization of naked whole viral particles. All these data point toward a potential role of the association between PyVs with EVs in viral persistence, suggesting that further work to define the implication of this interaction in viral reactivation is warranted.
Collapse
Affiliation(s)
- Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, I-50134 Florence, Italy
| |
Collapse
|
84
|
Scribano S, Guerrini M, Arvia R, Guasti D, Nardini P, Romagnoli P, Giannecchini S. Archetype JC polyomavirus DNA associated with extracellular vesicles circulates in human plasma samples. J Clin Virol 2020; 128:104435. [PMID: 32442760 DOI: 10.1016/j.jcv.2020.104435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/21/2020] [Accepted: 05/10/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND JC polyomavirus (JCPyV) establishes a stable and successful interaction with the host, causing progressive multifocal leukoencephalopathy (PML) in immunocompromised subjects. Recently, it has been reported that JCPyV, like other viruses, may exploit extracellular vesicles (EV) in cell cultures. OBJECTIVE To investigate the presence of JCPyV-DNA in EV circulating in human plasma obtained from patients at risk for PML. STUDY DESIGN JCPyV-DNA status was studied in EV obtained from 170 plasma samples collected from 120 HIV positive patients and 50 healthy donors. EV were extracted from plasma and characterized by Nanoparticle tracking analysis, by western blot for presence of tetraspanin CD63, CD81, annexin II, cythocrome C protein and, finally, by immunoelectron microscopy (IEM). Presence and quantitation of JCPyV-DNA were assessed with Multiplex real-time TaqMan PCR assay. RESULTS The JCPyV-DNA plasma prevalence in 120 HIV positive patients and 50 healthy donors was 28% and 4%, respectively. The investigation performed on well-characterized plasma EV reported JCPyV-DNA detection in 15 out of 36 (42%) of the viremic samples (14 were from HIV patients and 1 from healthy people) at a mean level of 23.5 copies/mL. The examination of EV selected samples reported the percentage of JCPyV-DNA in EV of 5.4% of the total viral load. Moreover, IEM reported the presence of JCPyV Vp1 antigen in plasma-derived EV. CONCLUSION The potential role of EV-associated JCPyV-DNA open new avenues and mechanistic insights into the molecular strategies adopted by this polyomavirus to persist in the host and spread to the central nervous system.
Collapse
Affiliation(s)
- Stefano Scribano
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Guerrini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Romagnoli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
85
|
Marion O, Lhomme S, Nayrac M, Dubois M, Pucelle M, Requena M, Migueres M, Abravanel F, Peron JM, Carrere N, Suc B, Delobel P, Kamar N, Izopet J. Hepatitis E virus replication in human intestinal cells. Gut 2020; 69:901-910. [PMID: 31727684 DOI: 10.1136/gutjnl-2019-319004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hepatitis E virus (HEV), one of the most common agent of acute hepatitis worldwide, is mainly transmitted enterically, via contaminated water for HEV genotypes 1 (HEV1) and HEV2, or by eating raw or undercooked infected meat for HEV genotype 3 (HEV3) and HEV4. However, little is known about how the ingested HEV reaches the liver or its ability to replicate in intestinal cells. DESIGN We developed human primary cultures of small intestine epithelial cells and intestinal explants obtained from small bowel resections. The epithelial cells were also polarised on transwells. Cells were infected with Kernow-p6 strain or clinically derived virions. RESULTS Primary intestinal cells supported the growth of Kernow-p6 strain and HEV1 and HEV3 clinically derived virions. Polarised enterocytes infected with HEV1 and HEV3 strains released HEV particles vectorially: mostly into the apical compartment with a little basally. Iodixanol density gradient centrifugation of enterocyte-derived HEV virions gave bands at a density of 1.06-1.08 g/cm3, corresponding to that of quasi-enveloped HEV particles. Ribavirin therapy inhibited HEV excretion from the basal surface but not from the apical side of infected human enterocytes. HEV virions also infected intestinal tissue explants. Lastly, HEV RNA and antigen were detected in the intestinal crypts of a chronically infected patient. CONCLUSION HEV can replicate in intestinal cells and reaches the liver as quasi-enveloped virions.
Collapse
Affiliation(s)
- Olivier Marion
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, Toulouse, France.,INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Sebastien Lhomme
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Manon Nayrac
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France
| | - Martine Dubois
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Mélanie Pucelle
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Mary Requena
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Marion Migueres
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Florence Abravanel
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| | - Jean Marie Peron
- Paul Sabatier University, Toulouse, France.,Hepatology and Gastroenterology Department, Toulouse Rangueil University Hospital, Toulouse, France
| | - Nicolas Carrere
- Paul Sabatier University, Toulouse, France.,Digestive Surgery Department, Toulouse Rangueil University Hospital, Toulouse, France
| | - Bertrand Suc
- Paul Sabatier University, Toulouse, France.,Digestive Surgery Department, Toulouse Rangueil University Hospital, Toulouse, France
| | - Pierre Delobel
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France.,Department of Infectious and Tropical Diseases, Toulouse Purpan University Hospital, Toulouse, France
| | - Nassim Kamar
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, Toulouse, France.,INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France.,Paul Sabatier University, Toulouse, France
| | - Jacques Izopet
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, Toulouse, France .,Paul Sabatier University, Toulouse, France.,Virology Laboratory, National Reference Center for hepatitis E virus, Toulouse Purpan University Hospital, Toulouse, France
| |
Collapse
|
86
|
Janahi EM, Parkar SFD, Mustafa S, Eisa ZM. Implications of Hepatitis E Virus in Blood Transfusions, Hemodialysis, and Solid Organ Transplants. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E206. [PMID: 32344807 PMCID: PMC7279256 DOI: 10.3390/medicina56050206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 01/05/2023]
Abstract
Hepatitis E Virus (HEV) is emerging as the primary cause of acute viral hepatitis in humans. The virus is commonly transmitted by the fecal-oral route via contaminated water in endemic regions or through the consumption of inadequately cooked swine products or game meats in industrialized regions. HEV genotypes 1 and 2 are predominantly associated with waterborne transmission in developing countries, whereas HEV3 and HEV4 are mainly zoonotically transmitted in industrialized countries. Seroprevalence in populations determined by detecting anti-HEV antibodies and serum HEV RNA is commonly used to analyze the presence of HEV. Although HEV RNA-based detection is now standardized, there is a lack of agreement between the assaying methods used for gathering seroprevalence data. Since 2004, HEV has been considered as a transmissible infectious agent through blood transfusion. Recent seroprevalence studies in European countries indicate an underestimated risk for blood transfusion and hence warrant testing the blood supply. HEV infection is usually self-limiting and spontaneously cleared. However, in about 60% of recipients of solid organ transplants, HEV progresses to chronic hepatitis. Immunosuppressive drugs such as tacrolimus are a major cause of chronic hepatitis and reducing its dosage results in viral clearance in about 30% of patients. In hemodialysis patients, the parenteral route is implicated as an important mechanism of transmission. In this review, we explore the clinical and epidemiological characteristics of various HEV genotypes in blood donors, hemodialysis patients, and transplant recipients.
Collapse
Affiliation(s)
- Essam M. Janahi
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain; (S.F.D.P.); (S.M.)
| | - Saba F. D. Parkar
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain; (S.F.D.P.); (S.M.)
| | - Sakina Mustafa
- Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain; (S.F.D.P.); (S.M.)
| | - Zaki M. Eisa
- The National Center for Disease Prevention and Control, Jazan 82722-2476, Saudi Arabia;
| |
Collapse
|
87
|
Dao Thi VL, Wu X, Belote RL, Andreo U, Takacs CN, Fernandez JP, Vale-Silva LA, Prallet S, Decker CC, Fu RM, Qu B, Uryu K, Molina H, Saeed M, Steinmann E, Urban S, Singaraja RR, Schneider WM, Simon SM, Rice CM. Stem cell-derived polarized hepatocytes. Nat Commun 2020; 11:1677. [PMID: 32245952 PMCID: PMC7125181 DOI: 10.1038/s41467-020-15337-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Human stem cell-derived hepatocyte-like cells (HLCs) offer an attractive platform to study liver biology. Despite their numerous advantages, HLCs lack critical in vivo characteristics, including cell polarity. Here, we report a stem cell differentiation protocol that uses transwell filters to generate columnar polarized HLCs with clearly defined basolateral and apical membranes separated by tight junctions. We show that polarized HLCs secrete cargo directionally: Albumin, urea, and lipoproteins are secreted basolaterally, whereas bile acids are secreted apically. Further, we show that enterically transmitted hepatitis E virus (HEV) progeny particles are secreted basolaterally as quasi-enveloped particles and apically as naked virions, recapitulating essential steps of the natural infectious cycle in vivo. We also provide proof-of-concept that polarized HLCs can be used for pharmacokinetic and drug-drug interaction studies. This novel system provides a powerful tool to study hepatocyte biology, disease mechanisms, genetic variation, and drug metabolism in a more physiologically relevant setting.
Collapse
Affiliation(s)
- Viet Loan Dao Thi
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany.
| | - Xianfang Wu
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| | - Rachel L Belote
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84105, USA
| | - Ursula Andreo
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Constantin N Takacs
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
- Department of Molecular, Cellular and Developmental Biology, Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Joseph P Fernandez
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Luis Andre Vale-Silva
- Department of Biology, New York University, New York, NY, USA
- Department of Bioinformatics and Functional Genomics, Biomedical Computer Vision Group, BIOQUANT, IPMB, University of Heidelberg, Heidelberg, Germany
| | - Sarah Prallet
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Charlotte C Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Rebecca M Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
| | - Bingqian Qu
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Urban
- Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, TTU Hepatitis, Germany
| | - Roshni R Singaraja
- A*STAR (Agency for Science, Technology and Research) Institute and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - William M Schneider
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
88
|
BK Polyomavirus Hijacks Extracellular Vesicles for En Bloc Transmission. J Virol 2020; 94:JVI.01834-19. [PMID: 31896595 PMCID: PMC7158717 DOI: 10.1128/jvi.01834-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Reactivation of BKPyV is responsible for nephropathies in kidney transplant recipients, which frequently lead to graft loss. The mechanisms of persistence and immune evasion used by this virus remain poorly understood, and a therapeutic option for transplant patients is still lacking. Here, we show that BKPyV can be released into EVs, enabling viral particles to infect cells using an alternative entry pathway. This provides a new view of BKPyV pathogenesis. Even though we did not find any decreased sensitivity to neutralizing antibodies when comparing EV-associated particles and naked virions, our study also raises important questions about developing prevention strategies based on the induction or administration of neutralizing antibodies. Deciphering this new release pathway could enable the identification of therapeutic targets to prevent BKPyV nephropathies. It could also lead to a better understanding of the pathophysiology of other polyomaviruses that are associated with human diseases. Most people are asymptomatic carriers of the BK polyomavirus (BKPyV), but the mechanisms of persistence and immune evasion remain poorly understood. Furthermore, BKPyV is responsible for nephropathies in kidney transplant recipients. Unfortunately, the sole therapeutic option is to modulate immunosuppression, which increases the risk of transplant rejection. Using iodixanol density gradients, we observed that Vero and renal proximal tubular epithelial infected cells release two populations of infectious particles, one of which cosediments with extracellular vesicles (EVs). Electron microscopy confirmed that a single vesicle could traffic tens of viral particles. In contrast to naked virions, the EV-associated particles (eBKPyVs) were not able to agglutinate red blood cells and did not use cell surface sialylated glycans as an attachment factor, demonstrating that different entry pathways were involved for each type of infectious particle. However, we also observed that naked BKPyV and eBKPyV were equally sensitive to neutralization by the serum of a seropositive patient or commercially available polyvalent immunoglobulin preparations, which occurred at a postattachment step, after endocytosis. In conclusion, our work shows a new mechanism that likely plays a critical role during the primary infection and in the persistence, but also the reactivation, of BKPyV. IMPORTANCE Reactivation of BKPyV is responsible for nephropathies in kidney transplant recipients, which frequently lead to graft loss. The mechanisms of persistence and immune evasion used by this virus remain poorly understood, and a therapeutic option for transplant patients is still lacking. Here, we show that BKPyV can be released into EVs, enabling viral particles to infect cells using an alternative entry pathway. This provides a new view of BKPyV pathogenesis. Even though we did not find any decreased sensitivity to neutralizing antibodies when comparing EV-associated particles and naked virions, our study also raises important questions about developing prevention strategies based on the induction or administration of neutralizing antibodies. Deciphering this new release pathway could enable the identification of therapeutic targets to prevent BKPyV nephropathies. It could also lead to a better understanding of the pathophysiology of other polyomaviruses that are associated with human diseases.
Collapse
|
89
|
Capelli N, Dubois M, Pucelle M, Da Silva I, Lhomme S, Abravanel F, Chapuy-Regaud S, Izopet J. Optimized Hepatitis E Virus (HEV) Culture and its Application to Measurements of HEV Infectivity. Viruses 2020; 12:v12020139. [PMID: 31991673 PMCID: PMC7077187 DOI: 10.3390/v12020139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is a major concern in public health worldwide. Infections with HEV genotypes 3, 4, or 7 can lead to chronic hepatitis while genotype 1 infections can trigger severe hepatitis in pregnant women. Infections with all genotypes can worsen chronic liver diseases. As virions are lipid-associated in blood and naked in feces, efficient methods of propagating HEV clinical strains in vitro and evaluating the infectivity of both HEV forms are needed. We evaluated the spread of clinical strains of HEV genotypes 1 (HEV1) and 3 (HEV3) by quantifying viral RNA in culture supernatants and cell lysates. Infectivity was determined by endpoint dilution and calculation of the tissue culture infectious dose 50 (TCID50). An enhanced HEV production could be obtained varying the composition of the medium, including fetal bovine serum (FBS) and dimethylsulfoxide (DMSO) content. This increased TCID50 from 10 to 100-fold and allowed us to quantify HEV1 infectivity. These optimized methods for propagating and measuring HEV infectivity could be applied to health safety processes and will be useful for testing new antiviral drugs.
Collapse
Affiliation(s)
- Nicolas Capelli
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Martine Dubois
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Mélanie Pucelle
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
| | - Isabelle Da Silva
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
| | - Sébastien Lhomme
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Florence Abravanel
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| | - Sabine Chapuy-Regaud
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
- Correspondence: ; Tel.: +33-567-690-431
| | - Jacques Izopet
- Department of Virology, National Reference Center for HEV, CHU Purpan, 31059 Toulouse, France
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Institut National de la Santé et de la Recherche Médicale, Inserm UMR1043, Centre National de la Recherche Scientifique, CNRS UMR5282, Université de Toulouse, 31024 Toulouse, France
| |
Collapse
|
90
|
Multivesicular body sorting and the exosomal pathway are required for the release of rat hepatitis E virus from infected cells. Virus Res 2020; 278:197868. [PMID: 31962066 DOI: 10.1016/j.virusres.2020.197868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/14/2023]
Abstract
Recent reports have shown that rat hepatitis E virus (HEV) is capable of infecting humans. We also successfully propagated rat HEV into human PLC/PRF/5 cells, raising the possibility of a similar mechanism shared by human HEV and rat HEV. Rat HEV has the proline-rich sequence, PxYPMP, in the open reading frame 3 (ORF3) protein that is indispensable for its release. However, the release mechanism remains unclear. The overexpression of dominant-negative (DN) mutant of vacuolar protein sorting (Vps)4A or Vps4B decreased rat HEV release to 23.9 % and 18.0 %, respectively. The release of rat HEV was decreased to 8.3 % in tumor susceptibility gene 101 (Tsg101)-depleted cells and to 31.5 % in apoptosis-linked gene 2-interacting protein X (Alix)-depleted cells. Although rat HEV ORF3 protein did not bind to Tsg101, we found a 90-kDa protein capable of binding to wild-type rat HEV ORF3 protein but not to ORF3 mutant with proline to leucine mutations in the PxYPMP motif. Rat HEV release was also decreased in Ras-associated binding 27A (Rab27A)- or hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-depleted cells (to 20.1 % and 18.5 %, respectively). In addition, the extracellular rat HEV levels in the infected PLC/PRF/5 cells were increased after treatment with Bafilomycin A1 and decreased after treatment with GW4869. These results indicate that rat HEV utilizes multivesicular body (MVB) sorting for its release and that the exosomal pathway is required for rat HEV egress. A host protein alternative to Tsg101 that can bind to rat HEV ORF3 should be explored in further study.
Collapse
|
91
|
Li Y, Huang X, Zhang Z, Li S, Zhang J, Xia N, Zhao Q. Prophylactic Hepatitis E Vaccines: Antigenic Analysis and Serological Evaluation. Viruses 2020; 12:v12010109. [PMID: 31963175 PMCID: PMC7020013 DOI: 10.3390/v12010109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) infection causes sporadic outbreaks of acute hepatitis worldwide. HEV was previously considered to be restricted to resource-limited countries with poor sanitary conditions, but increasing evidence implies that HEV is also a public health problem in developed countries and regions. Fortunately, several vaccine candidates based on virus-like particles (VLPs) have progressed into the clinical development stage, and one of them has been approved in China. This review provides an overview of the current HEV vaccine pipeline and future development with the emphasis on defining the critical quality attributes for the well-characterized vaccines. The presence of clinically relevant epitopes on the VLP surface is critical for eliciting functional antibodies against HEV infection, which is the key to the mechanism of action of the prophylactic vaccines against viral infections. Therefore, the epitope-specific immunochemical assays based on monoclonal antibodies (mAbs) for HEV vaccine antigen are critical methods in the toolbox for epitope characterization and for in vitro potency assessment. Moreover, serological evaluation methods after immunization are also discussed as biomarkers for clinical performance. The vaccine efficacy surrogate assays are critical in the preclinical and clinical stages of VLP-based vaccine development.
Collapse
Affiliation(s)
- Yike Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
- Correspondence: ; Tel.: +86-59-2218-0936
| |
Collapse
|
92
|
Takaoka Y, Morimoto N, Miura K, Nomoto H, Watanabe S, Tsukui M, Maeda H, Goka R, Isoda N, Muroi K, Yamamoto H. A case of acute hepatitis E caused by HEV-contaminated blood transfusion in a patient with anti-HEV IgG. ACTA ACUST UNITED AC 2020. [DOI: 10.2957/kanzo.61.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yoshinari Takaoka
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Naoki Morimoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Kouichi Miura
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Hiroaki Nomoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Shunji Watanabe
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Mamiko Tsukui
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Hiroshi Maeda
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Rie Goka
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Norio Isoda
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| | - Kazuo Muroi
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital
| | - Hironori Yamamoto
- Division of Gastroenterology, Department of Medicine, Jichi Medical University
| |
Collapse
|
93
|
Sayed IM, Meuleman P. Updates in Hepatitis E virus (HEV) field; lessons learned from human liver chimeric mice. Rev Med Virol 2019; 30:e2086. [PMID: 31835277 DOI: 10.1002/rmv.2086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is the most common cause of viral hepatitis globally, and it is an emerging pathogen in developed countries. In vivo studies of HEV have long been hindered due to the lack of an efficient small animal model. Recently, human liver chimeric mice were described as an elegant model to study chronic HEV infection. HEV infection was established in mice with humanized liver that were challenged with stool preparations containing HEV genotype (gt)1 and/or gt3. An increase in viral load and the level of HEV Ag in mouse samples were markers of active infection. Plasma-derived HEV preparations were less infectious. The kinetics of HEV ORF2 Ag during HEV infection and its impact on HEV diagnosis were described in this model. In addition, the nature of HEV particles and HEV ORF2 Ag were characterized. Moreover, humanized mice were used to study the impact of HEV infection on the hepatic innate transcriptome and evaluation of anti-HEV therapies. This review highlights recent advances in the HEV field gathered from well-established experimental mouse models, with an emphasis on this model as a tool for elucidating the course of HEV infection, the study of the HEV life cycle, the interaction of the virus with the host, and the evaluation of new anti-HEV therapies.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, School of Medicine, University of California, San Diego, San Diego, California, USA.,Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
94
|
Hepatitis E virus infections in Europe. J Clin Virol 2019; 120:20-26. [PMID: 31536936 DOI: 10.1016/j.jcv.2019.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
|
95
|
Development of a World Health Organization International Reference Panel for different genotypes of hepatitis E virus for nucleic acid amplification testing. J Clin Virol 2019; 119:60-67. [DOI: 10.1016/j.jcv.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 12/27/2022]
|
96
|
Abstract
Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. It is transmitted enterically but replicates in the liver. Recent studies indicate that HEV exists in two forms: naked, nonenveloped virions that are shed into feces to mediate inter-host transmission, and membrane-cloaked, quasienveloped virions that circulate in the bloodstream to mediate virus spread within a host. Both virion types are infectious, but differ in the way they infect cells. Elucidating the entry mechanism for both virion types is essential to understand HEV biology and pathogenesis, and is relevant to the development of treatments and preventions for HEV. This review summarizes the current understanding of the cell entry mechanism for these two HEV virion types.
Collapse
Affiliation(s)
- Xin Yin
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Zongdi Feng
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA.
| |
Collapse
|
97
|
Walker CM. Adaptive Immune Responses in Hepatitis A Virus and Hepatitis E Virus Infections. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033472. [PMID: 29844218 DOI: 10.1101/cshperspect.a033472] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both hepatitis A virus (HAV) and hepatitis E virus (HEV) cause self-limited infections in humans that are preventable by vaccination. Progress in characterizing adaptive immune responses against these enteric hepatitis viruses, and how they contribute to resolution of infection or liver injury, has therefore remained largely frozen for the past two decades. How HAV and HEV infections are so effectively controlled by B- and T-cell immunity, and why they do not have the same propensity to persist as HBV and HCV infections, cannot yet be adequately explained. The objective of this review is to summarize our understanding of the relationship between patterns of virus replication, adaptive immune responses, and acute liver injury in HAV and HEV infections. Gaps in knowledge, and recent studies that challenge long-held concepts of how antibodies and T cells contribute to control and pathogenesis of HAV and HEV infections, are highlighted.
Collapse
Affiliation(s)
- Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's, Columbus, Ohio 43004
| |
Collapse
|
98
|
Quintero-Gil C, Mirazo S, Parra-Suescún J, López-Herrera A, Mainardi V, Arbiza J, Orduz S. Cell culture isolation of Hepatitis E Virus Genotype 3 Strain obtained from human feces. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Hepatitis E virus (HEV) is considered one of the leading causes of acute viral hepatitis worldwide, and about 20 million infections and approximately 57 000 deaths occurred every year. However, little is known about the replicative virus cycle due to the absence of a consensus cell culture model. A549 cell line is considered susceptible to HEV genotype 3, however, both viral strain and cell culture conditions could affect the viral isolation in vitro. The objective of this work was to isolate in vitro an HEV-3 strain obtained from human feces. To this, a genotype 3 HEV strain previously identified by genetic characterization was inoculated in A549 monolayers, and incubated for two hours at 37 °C. Five days post-infection, cells were passaged (subcultured) for the first time, and serial passages were done on average every four days during 41 days. HEV replication was evaluated through RT-qPCR in each passage, and reinfection of the cell line with the viral progeny derived from A549 infected monolayers was assessed through immunofluorescence and RT-qPCR. Viral RNA was detected in each passage from infected monolayers, and the highest amount was found after 26 days (2 x 106 copies/μL). In reinfection assay, capsid antigen was detected perinuclearly and forming foci, and 1x104 copies/μL of viral RNA was detected after 96 hours post infection. This shows that HEV recovered from the cell lysate monolayers was infectious. This viral isolate offers a critical tool to study the unknown aspect of HEV infection.
Collapse
|
99
|
LeDesma R, Nimgaonkar I, Ploss A. Hepatitis E Virus Replication. Viruses 2019; 11:E719. [PMID: 31390784 PMCID: PMC6723718 DOI: 10.3390/v11080719] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Hepatitis E virus (HEV) is a small quasi-enveloped, (+)-sense, single-stranded RNA virus belonging to the Hepeviridae family. There are at least 20 million HEV infections annually and 60,000 HEV-related deaths worldwide. HEV can cause up to 30% mortality in pregnant women and progress to liver cirrhosis in immunocompromised individuals and is, therefore, a greatly underestimated public health concern. Although a prophylactic vaccine for HEV has been developed, it is only licensed in China, and there is currently no effective, non-teratogenic treatment. HEV encodes three open reading frames (ORFs). ORF1 is the largest viral gene product, encoding the replicative machinery of the virus including a methyltransferase, RNA helicase, and an RNA-dependent RNA polymerase. ORF1 additionally contains a number of poorly understood domains including a hypervariable region, a putative protease, and the so-called 'X' and 'Y' domains. ORF2 is the viral capsid essential for formation of infectious particles and ORF3 is a small protein essential for viral release. In this review, we focus on the domains encoded by ORF1, which collectively mediate the virus' asymmetric genome replication strategy. We summarize what is known, unknown, and hotly debated regarding the coding and non-coding regions of HEV ORF1, and present a model of how HEV replicates its genome.
Collapse
Affiliation(s)
- Robert LeDesma
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Ila Nimgaonkar
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
100
|
Shiota T, Li TC, Nishimura Y, Yoshizaki S, Sugiyama R, Shimojima M, Saijo M, Shimizu H, Suzuki R, Wakita T, Muramatsu M, Ishii K. Integrin α3 is involved in non-enveloped hepatitis E virus infection. Virology 2019; 536:119-124. [PMID: 31421623 DOI: 10.1016/j.virol.2019.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
Hepatitis E virus (HEV) causes acute and fulminant hepatitis worldwide. Although enveloped (e) and non-enveloped (ne) forms of HEV have been discovered, host factors involved in infection, including receptors, remain to be elucidated. Here, we identified integrin α3 (encoded by ITGA3), a protein that binds and responds to the extracellular matrix, as an essential host factor for HEV infection. Integrin α3 expression was lower in four HEV-non-permissive cell subclones than in an HEV-permissive subclone. ITGA3 knockout cells lost HEV permissibility, suggesting that integrin α3 is critical for HEV infection. Stable expression of integrin α3 in an HEV-non-permissive subclone provided permissibility only to infection by neHEV; expression of integrin α3 lacking the ectodomain did not. Direct interaction between neHEV and the integrin α3 ectodomain was confirmed by co-precipitation using a soluble integrin α3-Fc. These results strongly suggest that integrin α3 is a key molecule for cellular attachment and entry of neHEV.
Collapse
Affiliation(s)
- Tomoyuki Shiota
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Tian-Cheng Li
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Yorihiro Nishimura
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Sayaka Yoshizaki
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Koji Ishii
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo, 208-0011, Japan.
| |
Collapse
|