51
|
CXCL10 production by human monocytes in response to Leishmania braziliensis infection. Infect Immun 2009; 78:301-8. [PMID: 19901067 DOI: 10.1128/iai.00959-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leishmania (subgenus Viannia) braziliensis is the causative agent of mucocutaneous leishmaniasis (ML) in South America, and ML is characterized by excessive T- and B-cell responses to the parasite. We speculate that the unbalanced production of inflammatory mediators in response to L. braziliensis infection contributes to cell recruitment and disease severity. To test this hypothesis, we first examined the response of peripheral blood mononuclear cells (PBMCs) from healthy volunteers to L. braziliensis infection. We observed that while L. braziliensis infection induced the production of chemokine (C-X-C motif) ligand 10 (CXCL10) and interleukin-10 (IL-10) in human PBMCs and macrophages (MPhis), enhanced expression of CXCL10 and its receptor, chemokine CXC receptor (CXCR3), was predominantly detected in CD14(+) monocytes. The chemoattractant factors secreted by L. braziliensis-infected cells were highly efficient in recruiting uninfected PBMCs (predominantly CD14(+) cells) through Transwell membranes. Serum samples from American tegumentary leishmaniasis (ATL) patients (especially the ML cases) had significantly higher levels of CXCL10, CCL4, and soluble tumor necrosis factor (TNF) receptor II (sTNFRII) than did those of control subjects. Our results suggest that, following L. braziliensis infection, the production of multiple inflammatory mediators by the host may contribute to disease severity by increasing cellular recruitment.
Collapse
|
52
|
Qi XF, Kim DH, Yoon YS, Jin D, Huang XZ, Li JH, Deung YK, Lee KJ. Essential involvement of cross-talk between IFN-gamma and TNF-alpha in CXCL10 production in human THP-1 monocytes. J Cell Physiol 2009; 220:690-7. [PMID: 19472212 DOI: 10.1002/jcp.21815] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interferon (IFN)-gamma-induced protein 10 (IP-10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN-gamma depending on cell type, the mechanisms regulating CXCL10 production following treatment with combination of IFN-gamma and TNF-alpha have not been adequately elucidated in human monocytes. In this study, we showed that TNF-alpha had more potential than IFN-gamma to induce CXCL10 production in THP-1 monocytes. Furthermore, IFN-gamma synergistically enhanced the production of CXCL10 in parallel with the activation of NF-kappaB in TNF-alpha-stimulated THP-1 cells. Blockage of STAT1 or NF-kappaB suppressed CXCL10 production. JAKs inhibitors suppressed IFN-gamma plus TNF-alpha-induced production of CXCL10 in parallel with activation of STAT1 and NF-kappaB, while ERK inhibitor suppressed production of CXCL10 as well as activation of NF-kappaB, but not that of STAT1. IFN-gamma-induced phosphorylation of JAK1 and JAK2, whereas TNF-alpha induced phosphorylation of ERK1/2. Interestingly, IFN-gamma alone had no effect on phosphorylation and degradation of IkappaB-alpha, whereas it significantly promoted TNF-alpha-induced phosphorylation and degradation of IkappaB-alpha. These results suggest that TNF-alpha induces CXCL10 production by activating NF-kappaB through ERK and that IFN-gamma induces CXCL10 production by increasing the activation of STAT1 through JAKs pathways. Of note, TNF-alpha-induced NF-kappaB may be the primary pathway contributing to CXCL10 production in THP-1 cells. IFN-gamma potentiates TNF-alpha-induced CXCL10 production in THP-1 cells by increasing the activation of STAT1 and NF-kappaB through JAK1 and JAK2.
Collapse
Affiliation(s)
- Xu-Feng Qi
- Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju 220-701, Gangwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Viral persistence and chronic immunopathology in the adult central nervous system following Coxsackievirus infection during the neonatal period. J Virol 2009; 83:9356-69. [PMID: 19570873 DOI: 10.1128/jvi.02382-07] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Coxsackieviruses are significant human pathogens, and the neonatal central nervous system (CNS) is a major target for infection. Despite the extreme susceptibility of newborn infants to coxsackievirus infection and viral tropism for the CNS, few studies have been aimed at determining the long-term consequences of infection on the developing CNS. We previously described a neonatal mouse model of coxsackievirus B3 (CVB3) infection and determined that proliferating stem cells in the CNS were preferentially targeted. Here, we describe later stages of infection, the ensuing inflammatory response, and subsequent lesions which remain in the adult CNS of surviving animals. High levels of type I interferons and chemokines (in particular MCP-5, IP10, and RANTES) were upregulated following infection and remained at high levels up to day 10 postinfection (p.i). Chronic inflammation and lesions were observed in the hippocampus and cortex of surviving mice for up to 9 months p.i. CVB3 RNA was detected in the CNS up to 3 months p.i at high abundance ( approximately 10(6) genomes/mouse brain), and viral genomic material remained detectable in culture after two rounds of in vitro passage. These data suggest that CVB3 may persist in the CNS as a low-level, noncytolytic infection, causing ongoing inflammatory lesions. Thus, the effects of a relatively common infection during the neonatal period may be long lasting, and the prognosis for newborn infants recovering from acute infection should be reexplored.
Collapse
|
54
|
Williams R, Yao H, Dhillon NK, Buch SJ. HIV-1 Tat co-operates with IFN-gamma and TNF-alpha to increase CXCL10 in human astrocytes. PLoS One 2009; 4:e5709. [PMID: 19479051 PMCID: PMC2684622 DOI: 10.1371/journal.pone.0005709] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 05/01/2009] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurological disorders (HAND) are estimated to affect 60% of the HIV infected population. HIV-encephalitis (HIVE), the pathological correlate of the most severe form of HAND is often characterized by glial activation, cytokine/chemokine dysregulation, and neuronal damage and loss. However, the severity of HIVE correlates better with glial activation rather than viral load. One of the characteristic features of HIVE is the increased amount of the neurotoxic chemokine, CXCL10. This chemokine can be released from astroglia activated with the pro-inflammatory cytokines IFN-γ and TNF-α, in conjunction with HIV-1 Tat, all of which are elevated in HIVE. In an effort to understand the pathogenesis of HAND, this study was aimed at exploring the regulation of CXCL10 by cellular and viral factors during astrocyte activation. Specifically, the data herein demonstrate that the combined actions of HIV-1 Tat and the pro-inflammatory cytokines, IFN-γ and TNF-α, result in the induction of CXCL10 at both the RNA and protein level. Furthermore, CXCL10 induction was found to be regulated transcriptionally by the activation of the p38, Jnk, and Akt signaling pathways and their downstream transcription factors, NF-κB and STAT-1α. Since CXCL10 levels are linked to disease severity, understanding its regulation could aid in the development of therapeutic intervention strategies for HAND.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Honghong Yao
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Navneet K. Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Shilpa J. Buch
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
55
|
Williams R, Dhillon NK, Hegde ST, Yao H, Peng F, Callen S, Chebloune Y, Davis RL, Buch SJ. Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 2009; 57:734-43. [PMID: 18985732 PMCID: PMC2667210 DOI: 10.1002/glia.20801] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
HIV encephalitis (HIVE), the pathologic correlate of HIV-associated dementia (HAD) is characterized by astrogliosis, cytokine/chemokine dysregulation, and neuronal degeneration. Increasing evidence suggests that inflammation is actively involved in the pathogenesis of HAD. In fact, the severity of HAD/HIVE correlates more closely with the presence of activated glial cells than with the presence and amount of HIV-infected cells in the brain. Astrocytes, the most numerous cell type within the brain, provide an important reservoir for the generation of inflammatory mediators, including interferon-gamma inducible peptide-10 (CXCL10), a neurotoxin and a chemoattractant, implicated in the pathophysiology of HAD. Additionally, the proinflammatory cytokines, IFN-gamma and TNF-alpha, are also markedly increased in CNS tissues during HIV-1 infection. In this study, we hypothesized that the interplay of host cytokines and HIV-1 could lead to enhanced expression of the toxic chemokine, CXCL10. Our findings demonstrate a synergistic induction of CXCL10 mRNA and protein in human astrocytes exposed to HIV-1 and the proinflammatory cytokines. Signaling molecules, including JAK, STATs, MAPK (via activation of Erk1/2, AKT, and p38), and NF-kappaB were identified as instrumental in the synergistic induction of CXCL10. Understanding the mechanisms involved in HIV-1 and cytokine-mediated up-regulation of CXCL10 could aid in the development of therapeutic modalities for HAD.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Navneet K. Dhillon
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sonia T. Hegde
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Honghong Yao
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Fuwang Peng
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Shannon Callen
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Yahia Chebloune
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Randall L. Davis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107
| | - Shilpa J. Buch
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
56
|
Hofer MJ, Carter SL, Müller M, Campbell IL. Unaltered neurological disease and mortality in CXCR3-deficient mice infected intracranially with lymphocytic choriomeningitis virus-Armstrong. Viral Immunol 2009; 21:425-33. [PMID: 19115931 DOI: 10.1089/vim.2008.0057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Intracranial infection of mice with lymphocytic choriomeningitis virus (LCMV) results in a lethal neurological disease termed lymphocytic choriomeningitis (LCM) that is mediated by antiviral CD8(+) T cells. Previous studies have implicated the chemokine receptor CXCR3 and its ligand CXCL10 in CD8(+) T cell trafficking in the brain and in the lethal disease following intracranial infection of mice with the LCMV-Traub strain. Here we investigated the role of CXCR3 in LCM following intracranial infection of mice with the LCMV-Armstrong strain. Significant induction of both CXCL9 and CXCL10 RNA and protein was seen in the central nervous system (CNS) in LCM. Cellular localization of the CXCL9 and CXCL10 RNA transcripts was identified predominantly in infiltrating mononuclear cells, as well as in subpial and paraventricular microglia (CXCL9) and astrocytes (CXCL10). Despite a primary role of interferon (IFN)-gamma in inducing the expression of the CXCL9 gene, and to a lesser extent the CXCL10 gene in LCM, the absence of the IFN-gamma receptor did not influence the disease outcome. This finding suggested that these chemokines may not play a major role in the pathogenesis of LCM. To evaluate this possibility further the development of LCM was examined in mice that were deficient for CXCR3. Surprisingly, in the absence of CXCR3 there was no alteration in mortality, cytokine expression, or T cell infiltration in the CNS, demonstrating that in contrast to LCMV-Traub, CXCR3 is not involved in the pathogenesis of LCMV-Armstrong-induced neurological disease in mice. Our findings indicate that despite similar immunopathogenetic mechanisms involving antiviral CD8(+) T cells, whether or not CXCR3 signaling has a role in LCM is dependent upon the infecting strain of LCMV.
Collapse
Affiliation(s)
- Markus J Hofer
- School of Molecular and Microbial Biosciences and the Bosch Institute, The University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
57
|
Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, Reichling TD, Juhlin KD, Fulmer AW, Ho BY, Walanski AA, Poore CL, Mizoguchi H, Jump L, Moore ML, Zukowski CK, Clymer JW. Gene Expression Profiles duringIn VivoHuman Rhinovirus Infection. Am J Respir Crit Care Med 2008; 178:962-8. [DOI: 10.1164/rccm.200805-670oc] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
58
|
Jain V, Armah HB, Tongren JE, Ned RM, Wilson NO, Crawford S, Joel PK, Singh MP, Nagpal AC, Dash AP, Udhayakumar V, Singh N, Stiles JK. Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar J 2008; 7:83. [PMID: 18489763 PMCID: PMC2405803 DOI: 10.1186/1475-2875-7-83] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/19/2008] [Indexed: 01/19/2023] Open
Abstract
Background Plasmodium falciparum in a subset of patients can lead to cerebral malaria (CM), a major contributor to malaria-associated mortality. Despite treatment, CM mortality can be as high as 30%, while 10% of survivors of the disease may experience short- and long-term neurological complications. The pathogenesis of CM is mediated by alterations in cytokine and chemokine homeostasis, inflammation as well as vascular injury and repair processes although their roles are not fully understood. The hypothesis for this study is that CM-induced changes in inflammatory, apoptotic and angiogenic factors mediate severity of CM and that their identification will enable development of new prognostic markers and adjunctive therapies for preventing CM mortalities. Methods Plasma samples (133) were obtained from healthy controls (HC, 25), mild malaria (MM, 48), cerebral malaria survivors (CMS, 48), and cerebral malaria non-survivors (CMNS, 12) at admission to the hospital in Jabalpur, India. Plasma levels of 30 biomarkers ((IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic protein, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, RANTES, TNF-α, Fas-ligand (Fas-L), soluble Fas (sFas), soluble TNF receptor 1 (sTNF-R1) and soluble TNF receptor 2 (sTNFR-2), PDGF bb and VEGF)) were simultaneously measured in an initial subset of ten samples from each group. Only those biomarkers which showed significant differences in the pilot analysis were chosen for testing on all remaining samples. The results were then compared between the four groups to determine their role in CM severity. Results IP-10, sTNF-R2 and sFas were independently associated with increased risk of CM associated mortality. CMNS patients had a significantly lower level of the neuroprotective factor VEGF when compared to other groups (P < 0.0045). The ratios of VEGF to IP-10, sTNF-R2, and sFas distinguished CM survivors from non survivors (P < 0.0001). Conclusion The results suggest that plasma levels of IP-10, sTNF-R2 and sFas may be potential biomarkers of CM severity and mortality. VEGF was found to be protective against CM associated mortality and may be considered for adjunctive therapy to improve the treatment outcome in CM patients.
Collapse
Affiliation(s)
- Vidhan Jain
- National Institute of Malaria Research (ICMR), Jabalpur, India.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Dhillon N, Zhu X, Peng F, Yao H, Williams R, Qiu J, Callen S, Ladner AO, Buch S. Molecular mechanism(s) involved in the synergistic induction of CXCL10 by human immunodeficiency virus type 1 Tat and interferon-gamma in macrophages. J Neurovirol 2008; 14:196-204. [PMID: 18569454 PMCID: PMC2715278 DOI: 10.1080/13550280801993648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synergistic interactions between viral proteins and soluble host factors released from infected mononuclear phagocytes play a critical role in the pathogenesis of human immunodeficiency virus (HIV)-associated dementia (HAD). The chemokine CXCL10 has been found to be closely associated with the progression of HIV-1-related central nervous system (CNS) disease and its related neuropsychiatric impairment. In this report the authors demonstrate that the HIV-1 protein Tat can interact with the proinflammatory cytokine interferon (IFN)-gamma to dramatically induce the expression of CXCL10 in macrophages. Synergistic induction of CXCL10 by both Tat and IFN-gamma was susceptible to inhibition by the MEK1/2 inhibitor U0126 and the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. In addition, JAK/STAT pathway plays a major role in Tat/gamma-mediated CXCL10 induction in macrophages because pretreatment of stimulated macrophages with JAK inhibitor completely abrogated the synergistic induction of the chemokine. Functionality of the synergistically induced CXCL10 was further demonstrated by its chemotactic activity for peripheral blood lymphocytes. Taken together, these findings demonstrate that the cooperative interaction of Tat and IFN-gamma results in enhanced chemokine expression, which in turn can amplify the inflammatory responses within the CNS of HAD patients by recruiting more lymphocytes in the brain.
Collapse
Affiliation(s)
- Navneet Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Scott EP, Branigan PJ, Del Vecchio AM, Weiss SR. Chemokine expression during mouse-hepatitis-virus-induced encephalitis: contributions of the spike and background genes. J Neurovirol 2008; 14:5-16. [PMID: 18300071 PMCID: PMC7094924 DOI: 10.1080/13550280701750635] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2022]
Abstract
Infection of mice with mouse hepatitis virus (MHV) strain JHM (RJHM) induces lethal encephalitis, with high macrophage and neutrophil, but minimal T-cell, infiltration into the brain when compared to the neuroattenuated strain RA59. To determine if chemokine expression corresponds with the cellular infiltrate, chemokine protein and RNA levels from the brains of infected mice were quantified. RJHM-infected mice had lower T-cell (CXCL9, CXCL10), but higher macrophage-attracting (CCL2), chemokine proteins compared to RA59. RJHM also induced significantly higher CXCL2 (a neutrophil chemoattractant) mRNA compared to RA59. The neurovirulent spike gene chimera SJHM/RA59 induces high levels of T cells and macrophages in the brain compared to the attenuated SA59/RJHM chimera. Accordingly, SJHM/RA59 induced higher levels of CXCL9, CXCL10, and CCL2 protein compared to SA59/RJHM. Chemokine mRNA patterns were in general agreement. Thus, chemokine patterns correspond with the cellular infiltrate, and the spike protein influences levels of macrophage, but not T-cell, chemokines.
Collapse
Affiliation(s)
- Erin P Scott
- Department of Microbiology, University of Pennsylvania, School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | | | |
Collapse
|
61
|
Carter SL, Müller M, Manders PM, Campbell IL. Induction of the genes for Cxcl9 and Cxcl10 is dependent on IFN-gamma but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in vitro. Glia 2007; 55:1728-39. [PMID: 17902170 DOI: 10.1002/glia.20587] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chemokines CXCL9 and CXCL10 bind to the common receptor CXCR3 and are implicated in the pathogenesis of T-cell-mediated immunity in the central nervous system (CNS). Here we examined the temporal and spatial regulation of the Cxcl9 and Cxcl10 genes in the CNS of mice with myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and by glial cells in vitro. During peak disease the levels of CXCL9 and CXCL10 mRNA and protein were increased significantly in the cerebellum and spinal cord but were reduced during the recovery phase. Expression of these genes in the CNS was abolished in IFN-gamma-receptor deficient mice with MOG-EAE. In wild-type mice, CXCL9 RNA was localized mainly to infiltrating mononuclear cells including lesion and perilesional microglia, while CXCL10 RNA was seen primarily in more distal astrocytes that surrounded the inflammatory lesions. Examination of cultured glia following treatment with IFN-gamma revealed that while both CXCL9 and CXCL10 mRNA transcripts were induced in microglia, only CXCL10 mRNA was induced in astrocytes. Thus, although IFN-gamma is the pivotal mediator of both Cxcl10 and Cxcl9 gene expression in EAE, this cytokine differentially regulates the expression of these genes by astrocytes and microglia. The differential glial localization of these chemokines in EAE suggests CXCL9 and CXCL10 have specialized functions.
Collapse
Affiliation(s)
- Sally L Carter
- School of Molecular and Microbial Biosciences, The University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
62
|
Müller M, Carter SL, Hofer MJ, Manders P, Getts DR, Getts MT, Dreykluft A, Lu B, Gerard C, King NJC, Campbell IL. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. THE JOURNAL OF IMMUNOLOGY 2007; 179:2774-86. [PMID: 17709491 DOI: 10.4049/jimmunol.179.5.2774] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The chemokine receptor CXCR3 promotes the trafficking of activated T and NK cells in response to three ligands, CXCL9, CXCL10, and CXCL11. Although these chemokines are produced in the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), their role in the pathogenesis of CNS autoimmunity is unresolved. We examined the function of CXCR3 signaling in EAE using mice that were deficient for CXCR3 (CXCR3(-/-)). The time to onset and peak disease severity were similar for CXCR3(-/-) and wild-type (WT) animals; however, CXCR3(-/-) mice had more severe chronic disease with increased demyelination and axonal damage. The inflammatory lesions in WT mice consisted of well-demarcated perivascular mononuclear cell infiltrates, mainly in the spinal cord and cerebellum. In CXCR3(-/-) mice, these lesions were more widespread throughout the CNS and were diffused and poorly organized, with T cells and highly activated microglia/macrophages scattered throughout the white matter. Although the number of CD4(+) and CD8(+) T cells infiltrating the CNS were similar in CXCR3(-/-) and WT mice, Foxp3(+) regulatory T cells were significantly reduced in number and dispersed in CXCR3(-/-) mice. The expression of various chemokine and cytokine genes in the CNS was similar in CXCR3(-/-) and WT mice. The genes for the CXCR3 ligands were expressed predominantly in and/or immediately surrounding the mononuclear cell infiltrates. We conclude that in EAE, CXCR3 signaling constrains T cells to the perivascular space in the CNS and augments regulatory T cell recruitment and effector T cell interaction, thus limiting autoimmune-mediated tissue damage.
Collapse
MESH Headings
- Acute Disease
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Chemokines/analysis
- Chemokines/metabolism
- Chronic Disease
- Cytokines/analysis
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Macrophages/immunology
- Mice
- Mice, Mutant Strains
- Microglia/immunology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/physiology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Marcus Müller
- School of Molecular and Microbial Biosciences, School of Medical Sciences, University of Sydney, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Dhillon NK, Peng F, Ransohoff RM, Buch S. PDGF synergistically enhances IFN-gamma-induced expression of CXCL10 in blood-derived macrophages: implications for HIV dementia. THE JOURNAL OF IMMUNOLOGY 2007; 179:2722-30. [PMID: 17709485 DOI: 10.4049/jimmunol.179.5.2722] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is increasing cumulative evidence that activated mononuclear phagocytes (macrophages/microglia) releasing inflammatory mediators in the CNS are a better correlate of HIV-associated dementia (HAD) than the actual viral load in the brain. Earlier studies on simian HIV/rhesus macaque model of NeuroAIDS confirmed that pathological changes in brains of macaques with encephalitis were associated with up-regulation of platelet-derived growth factor (PDGF) and the chemokine, CXCL10. Because the complex interplay of inflammatory mediators released by macrophages often leads to the induction of neurotoxins in HAD, we hypothesized that PDGF could interact with IFN-gamma to modulate the expression of CXCL10 in these primary virus target cells. Although PDGF alone had no effect on the induction of CXCL10 in human macrophages, in conjunction with IFN-gamma, it significantly augmented the expression of CXCL10 RNA & protein through transcriptional and posttranscriptional mechanisms. Signaling molecules, such as JAK and STATs, PI3K, MAPK, and NF-kappaB were found to play a role in the synergistic induction of CXCL10. Furthermore, PDGF via its activation of p38 MAPK was able to increase the stability of IFN-gamma-induced CXCL10 mRNA. Understanding the mechanisms involved in the synergistic up-regulation of CXCL10 could aid in the development of therapeutic modalities for HAD.
Collapse
Affiliation(s)
- Navneet Kaur Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
64
|
Armah HB, Wilson NO, Sarfo BY, Powell MD, Bond VC, Anderson W, Adjei AA, Gyasi RK, Tettey Y, Wiredu EK, Tongren JE, Udhayakumar V, Stiles JK. Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar J 2007; 6:147. [PMID: 17997848 PMCID: PMC2186349 DOI: 10.1186/1475-2875-6-147] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 11/12/2007] [Indexed: 12/04/2022] Open
Abstract
Background Plasmodium falciparum can cause a diffuse encephalopathy known as cerebral malaria (CM), a major contributor to malaria associated mortality. Despite treatment, mortality due to CM can be as high as 30% while 10% of survivors of the disease may experience short- and long-term neurological complications. The pathogenesis of CM and other forms of severe malaria is multi-factorial and appear to involve cytokine and chemokine homeostasis, inflammation and vascular injury/repair. Identification of prognostic markers that can predict CM severity will enable development of better intervention. Methods Postmortem serum and cerebrospinal fluid (CSF) samples were obtained within 2–4 hours of death in Ghanaian children dying of CM, severe malarial anemia (SMA), and non-malarial (NM) causes. Serum and CSF levels of 36 different biomarkers (IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic protein, CRP, G-CSF, GM-CSF, IFN-γ, TNF-α, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, RANTES, SDF-1α, CXCL11 (I-TAC), Fas-ligand [Fas-L], soluble Fas [sFas], sTNF-R1 (p55), sTNF-R2 (p75), MMP-9, TGF-β1, PDGF bb and VEGF) were measured and the results compared between the 3 groups. Results After Bonferroni adjustment for other biomarkers, IP-10 was the only serum biomarker independently associated with CM mortality when compared to SMA and NM deaths. Eight CSF biomarkers (IL-1ra, IL-8, IP-10, PDGFbb, MIP-1β, Fas-L, sTNF-R1, and sTNF-R2) were significantly elevated in CM mortality group when compared to SMA and NM deaths. Additionally, CSF IP-10/PDGFbb median ratio was statistically significantly higher in the CM group compared to SMA and NM groups. Conclusion The parasite-induced local cerebral dysregulation in the production of IP-10, 1L-8, MIP-1β, PDGFbb, IL-1ra, Fas-L, sTNF-R1, and sTNF-R2 may be involved in CM neuropathology, and their immunoassay may have potential utility in predicting mortality in CM.
Collapse
Affiliation(s)
- Henry B Armah
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, Atlanta, Georgia, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Clay CC, Rodrigues DS, Ho YS, Fallert BA, Janatpour K, Reinhart TA, Esser U. Neuroinvasion of fluorescein-positive monocytes in acute simian immunodeficiency virus infection. J Virol 2007; 81:12040-8. [PMID: 17715237 PMCID: PMC2168770 DOI: 10.1128/jvi.00133-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Monocytes and macrophages play a central role in the pathogenesis of human immunodeficiency virus (HIV)-associated dementia. They represent prominent targets for HIV infection and are thought to facilitate viral neuroinvasion and neuroinflammatory processes. However, many aspects regarding monocyte brain recruitment in HIV infection remain undefined. The nonhuman primate model of AIDS is uniquely suited for examination of the role of monocytes in the pathogenesis of AIDS-associated encephalitis. Nevertheless, an approach to monitor cell migration from peripheral blood into the central nervous system (CNS) in primates had been lacking. Here, upon autologous transfer of fluorescein dye-labeled leukocytes, we demonstrate the trafficking of dye-positive monocytes into the choroid plexus stromata and perivascular spaces in the cerebra of rhesus macaques acutely infected with simian immunodeficiency virus between days 12 and 14 postinfection (p.i.). Dye-positive cells that had migrated expressed the monocyte activation marker CD16 and the macrophage marker CD68. Monocyte neuroinvasion coincided with the presence of the virus in brain tissue and cerebrospinal fluid and with the induction of the proinflammatory mediators CXCL9/MIG and CCL2/MCP-1 in the CNS. Prior to neuroinfiltration, plasma viral load levels peaked on day 11 p.i. Furthermore, the numbers of peripheral blood monocytes rapidly increased between days 4 and 8 p.i., and circulating monocytes exhibited increased functional capacity to produce CCL2/MCP-1. Our findings demonstrate acute monocyte brain infiltration in an animal model of AIDS. Such studies facilitate future examinations of the migratory profile of CNS-homing monocytes, the role of monocytes in virus import into the brain, and the disruption of blood-cerebrospinal fluid and blood-brain barrier functions in primates.
Collapse
Affiliation(s)
- Candice C Clay
- Department of Pathology and Laboratory Medicine, Research III Building, Room 3400A, University of California-Davis Medical Center, 4645 2nd Avenue, Sacramento, CA 95817, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Peterson KE, Chesebro B. Influence of proinflammatory cytokines and chemokines on the neuropathogenesis of oncornavirus and immunosuppressive lentivirus infections. Curr Top Microbiol Immunol 2007; 303:67-95. [PMID: 16570857 DOI: 10.1007/978-3-540-33397-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retroviral infection of the CNS can lead to severe debilitating neurological diseases in humans and other animals. Four general types of pathogenic effects with various retroviruses have been observed including: hemorrhage (TR1.3), spongiform encephalopathy (CasBrE, FrCasE, PVC211, NT40, Mol-ts1), demyelination with inflammatory lesions (HTLV-1, visna, CAEV), and encephalopathy with gliosis and proinflammatory chemokines and cytokines, usually with microglial giant cells and nodules [human immunodeficiencyvirus (HIV), feline immunodeficiencyvirus (FIV), simian immunodeficiency virus (SIV), Fr98]. This review focuses on this fourth group of retroviruses. In this latter group, proinflammatory cytokine and chemokine upregulation accompanies the disease process, and may influence pathogenesis by direct effects on resident CNS cells. The review first discusses the Fr98 murine polytropic virus system with particular reference to the roles of cytokines and chemokines in the pathogenic process. The Fr98 data are then compared and contrasted to the cytokine and chemokine data in the lentivirus systems, HIV, SIV, and FIV. Finally, various mechanisms are presented by which tumor necrosis factor (TNF) and several chemokines may alter the pathogenesis of retrovirus infection of the CNS.
Collapse
Affiliation(s)
- K E Peterson
- Dept. of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
67
|
Bennett JL, Elhofy A, Charo I, Miller SD, Dal Canto MC, Karpus WJ. CCR2 regulates development of Theiler's murine encephalomyelitis virus-induced demyelinating disease. Viral Immunol 2007; 20:19-33. [PMID: 17425418 DOI: 10.1089/vim.2006.0068] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease, a murine model for multiple sclerosis, involves recruitment of T cells and macrophages to the CNS after infection. We hypothesized that CCR2, the only known receptor for CCL2, would be required for TMEV-induced demyelinating disease development because of its role in macrophage recruitment. TMEV-infected SJL CCR2 knockout (KO) mice showed decreased long-term clinical disease severity and less demyelination compared with controls. Flow cytometric data indicated that macrophages (CD45(high) CD11b(+) ) in the CNS of TMEV-infected CCR2 KO mice were decreased compared with control mice throughout disease. CD4(+) and CD8(+) T cell percentages in the CNS of TMEV-infected control and CCR2 KO mice were similar over the course of disease. There were no apparent differences between CCR2 KO and control peripheral immune responses. The frequency of interferon-gamma-producing T cells in response to proteolipid protein 139-151 in the CNS was also similar during the autoimmunity stage of TMEV-induced demyelinating disease. These data suggest that CCR2 is important for development of clinical disease by regulating macrophage accumulation after TMEV infection.
Collapse
Affiliation(s)
- Jami L Bennett
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
68
|
Sanz E, Hofer MJ, Unzeta M, Campbell IL. Minimal role for STAT1 in interleukin-6 signaling and actions in the murine brain. Glia 2007; 56:190-9. [DOI: 10.1002/glia.20602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
69
|
Samuel MA, Diamond MS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 2006; 80:9349-60. [PMID: 16973541 PMCID: PMC1617273 DOI: 10.1128/jvi.01122-06] [Citation(s) in RCA: 244] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Melanie A Samuel
- Division of Infectious Diseases, Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
70
|
Chen JP, Lu HL, Lai SL, Campanella GS, Sung JM, Lu MY, Wu-Hsieh BA, Lin YL, Lane TE, Luster AD, Liao F. Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. THE JOURNAL OF IMMUNOLOGY 2006; 177:3185-92. [PMID: 16920957 DOI: 10.4049/jimmunol.177.5.3185] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dengue virus is an arthropod-borne flavivirus that causes a mild febrile illness, dengue fever, or a potentially fatal syndrome, dengue hemorrhagic fever/dengue shock syndrome. Chemokines primarily orchestrate leukocyte recruitment to the areas of viral infection, which makes them critical mediators of immune and inflammatory responses. In the present study, we investigated the induction and function of chemokines in mice early after infection with dengue virus in vivo. We found that CXCL10/IFN-gamma-inducible protein 10 (IP-10) expression was rapidly and transiently induced in liver following infection. The expressed CXCL10/IP-10 likely mediates the recruitment of activated NK cells, given that anti-CXCL10/IP-10-treated mice showed diminished NK cell infiltration and reduced hepatic expression of effector molecules in activated NK cells after dengue virus infection. Of particular interest, we found that CXCL10/IP-10 also was able to inhibit viral binding to target cells in vitro. Further investigation revealed that various CXCL10/IP-10 mutants, in which the residues that mediate the interaction between the chemokine and heparan sulfate were substituted, failed to exert the inhibitory effect on dengue binding, which suggests that CXCL10/IP-10 competes with dengue virus for binding to heparan sulfate on the cell surface. Moreover, subsequent plaque assays showed that this inhibition of dengue binding blocked viral uptake and replication. The inhibitory effect of CXCL10/IP-10 on the binding of dengue virus to cells may represent a novel contribution of this chemokine to the host defense against viral infection.
Collapse
Affiliation(s)
- Jia-Perng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abel K, Pahar B, Van Rompay KKA, Fritts L, Sin C, Schmidt K, Colón R, McChesney M, Marthas ML. Rapid virus dissemination in infant macaques after oral simian immunodeficiency virus exposure in the presence of local innate immune responses. J Virol 2006; 80:6357-67. [PMID: 16775324 PMCID: PMC1488945 DOI: 10.1128/jvi.02240-05] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A vaccine to protect human immunodeficiency virus (HIV)-exposed infants is an important goal in the global fight against the HIV pandemic. Two major challenges in pediatric HIV vaccine design are the competence of the neonatal/infant immune system in comparison to the adult immune system and the frequent exposure to HIV via breast-feeding. Based on the hypothesis that an effective vaccine needs to elicit antiviral immune responses directly at the site of virus entry, the pattern of virus dissemination in relation to host immune responses was determined in mucosal and lymphoid tissues of infant macaques at 1 week after multiple oral exposures to simian immunodeficiency virus (SIV). The results show that SIV disseminates systemically by 1 week. Infant macaques can respond rapidly to virus challenge and mount strong innate immune responses. However, despite systemic infection, these responses are most pronounced in tissues close to the viral entry site, with the tonsil being the primary site of virus replication and induction of immune responses. Thus, distinct anatomic compartments are characterized by unique cytokine gene expression patterns. Importantly, the early response at mucosal entry sites is dominated by the induction of proinflammatory cytokines, while cytokines with direct antiviral activity, alpha/beta interferons, are only minimally induced. In contrast, both antiviral and proinflammatory cytokines are induced in lymphoid tissues. Thus, although infant macaques can respond quickly to oral viral challenge, the locally elicited immune responses at mucosal entry sites are likely to favor immune activation and thereby virus replication and are insufficient to limit virus replication and dissemination.
Collapse
Affiliation(s)
- Kristina Abel
- CNPRC/CCM, School of Medicine, Division of Infectious Diseases, University of California at Davis, One Shields Ave., Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Shen Q, Zhang R, Bhat NR. MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res 2006; 1086:9-16. [PMID: 16635481 DOI: 10.1016/j.brainres.2006.02.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 02/08/2006] [Accepted: 02/26/2006] [Indexed: 11/26/2022]
Abstract
Interferongamma inducible protein-10 (IP10 or CXCL10), a Th-1 affiliated chemokine, is expressed by activated glial cells and may contribute to the trafficking of immune cells in the inflamed central nervous system. This study examines the regulation of the expression of this chemokine in cultured microglial cells focusing on the roles of mitogen-activated protein (MAP) kinase cascades. Exposure of a mouse microglial cell line, BV-2, to lipopolysaccharide (LPS) and IFNgamma led to an induction of IP10 mRNA and protein as determined by RT-PCR and ELISA, respectively. This induction was suppressed by pharmacological inhibitors of p38 MAPK (i.e., SB203580) and c-Jun N-terminal kinase (JNK, SP600125), suggesting the involvement of the two kinases in IP10 expression. LPS also induced the activity of an IP10 promoter reporter (luciferase) construct transfected into BV-2 cells in a MAP kinase- and NFkappaB-dependent manner. The use of deletion constructs revealed that the kinase-targeted sequences were within the region between -533 bp and -332 bp upstream of the transcriptional start site. Co-transfection of IP10 luciferase with the active forms of the upstream kinases in the MAP kinase cascades, i.e., MAPK kinase-3 (MKK3), MKK6 (the immediately upstream activators of p38 kinase) and a MAP3K, i.e., TGFbeta-activated kinase-1 (TAK1), produced a marked stimulation of the promoter activity. The results of this study indicate that the MAP kinase cascades prominently regulate IP10 gene expression in microglial cells.
Collapse
Affiliation(s)
- Qin Shen
- Department of Neurosciences, Medical University of South Carolina, Charleston, 29425, USA
| | | | | |
Collapse
|
73
|
Widney DP, Breen EC, Boscardin WJ, Kitchen SG, Alcantar JM, Smith JB, Zack JA, Detels R, Martínez-Maza O. Serum levels of the homeostatic B cell chemokine, CXCL13, are elevated during HIV infection. J Interferon Cytokine Res 2006; 25:702-6. [PMID: 16318584 DOI: 10.1089/jir.2005.25.702] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV infection is associated with B cell dysfunction, which includes B cell hyperactivation, hypergammaglobulinemia, impaired production of antibodies against specific antigens, and a loss of B cell memory. Because lymph node architecture is progressively destroyed during HIV infection, it is possible that normal B cell trafficking is impaired as well, which could be a cause or a result of these abnormalities. Because the homeostatic chemokine, CXCL13 (BLC, BCA-1), is a major regulator of B cell trafficking, we assessed circulating levels of this molecule in HIV infection. Serum levels of CXCL13 were seen to be progressively elevated in HIV disease. Serum levels of CXCL13 correlated strongly with those of the inflammation-associated chemokine, inducible protein-10 (IP-10), in subjects who had advanced HIV disease, and more moderately with levels of soluble CD30 (sCD30), sCD27, and sCD23. CXCL13 levels also correlated moderately with viral load and showed a significant decline after use of highly active antiretroviral treatment (HAART). Elevated levels of CXCL13 could cause impaired or altered trafficking of B cells during HIV infection and could contribute to the previously reported loss of CXCR5, the receptor for CXCL13, from the surface of circulating B cells in HIV infection.
Collapse
Affiliation(s)
- Daniel P Widney
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, 27-139 Center for Health Sciences, 10833 Le Conte Avenue, Los Angeles, CA 90095-1740, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, Nath A, Kolson D, Narayan O, Buch S. CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J Neurosci 2006; 23:957-64. [PMID: 16519660 DOI: 10.1111/j.1460-9568.2006.04631.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chemokines play a key role in the regulation of central nervous system disease. CXCL10 over-expression has been observed in several neurodegenerative diseases, including multiple sclerosis, Alzheimer's disease and HIV-associated dementia. More recent studies by others and us have shown that CXCL10 elicits apoptosis in fetal neurons. The mechanism of CXCL10-mediated neurotoxicity, however, remains unclear. In this study, we provide evidence for the direct role of Ca(2+) dysregulation in CXCL10-mediated apoptosis. We demonstrate that treatment of fetal neuronal cultures with exogenous CXCL10 produced elevations in intracellular Ca(2+) and that this effect was modulated via the binding of CXCL10 to its cognate receptor, CXCR3. We further explored the association of intracellular Ca(2+) elevations with the caspases that are involved in CXC10-induced neuronal apoptosis. Our data showed that increased Ca(2+), which is available for uptake by the mitochondria, is associated with membrane permeabilization and cytochrome c release from this compartment. The released cytochrome c then activates the initiator active caspase-9. This initiator caspase sequentially activates the effector caspase-3, ultimately leading to apoptosis. This study identifies the temporal signaling cascade involved in CXCL10-mediated neuronal apoptosis and provides putative targets for pharmaceutical intervention of neurological disorders associated with CXCL10 up-regulation.
Collapse
Affiliation(s)
- Yongjun Sui
- Department of Pathology and Microbiology, Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Matsumo Y, Sakuma H, Miyakoshi A, Tsukada Y, Kohyama K, Park IK, Tanuma N. Characterization of relapsing autoimmune encephalomyelitis and its treatment with decoy chemokine receptor genes. J Neuroimmunol 2005; 170:49-61. [PMID: 16223531 DOI: 10.1016/j.jneuroim.2005.08.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Accepted: 08/26/2005] [Indexed: 11/20/2022]
Abstract
To elucidate the pathomechanisms of relapses of autoimmune disorders and to develop immunotherapy against relapses, we induced acute monophasic and chronic relapsing (CR) experimental autoimmune encephalomyelitis (EAE) in DA rats. Immunopathological and cytokine-chemokine analyses demonstrated that the number of infiltrating macrophages was significantly elevated in the CR-EAE than in acute EAE lesions and that IFN-gamma and IP-10 in the spinal cord were significantly upregulated during the first attack and relapse of CR-EAE, respectively, than at the peak of acute EAE. In vivo administration of decoy chemokine receptor plasmid DNAs encoding the binding sites of CXCR3 and CCR2 suppressed the development of relapse of CR-EAE. Importantly, multiple injections of DNAs did not elicit the antibody production against chemokine receptors. Taken together, these findings demonstrated that neutralization therapy with decoy chemokine receptor DNAs is effective to control autoimmune diseases.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antigens/physiology
- Cell Movement
- Cell Proliferation
- Central Nervous System/pathology
- Chemokines/genetics
- Chemokines/metabolism
- Chronic Disease
- Cytokines/metabolism
- DNA/therapeutic use
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/therapy
- Genetic Therapy
- Immunization
- Immunotherapy
- Macrophages/pathology
- Myelin Basic Protein/immunology
- Myelin Proteins
- Myelin Sheath/immunology
- Myelin-Associated Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred Strains
- Receptors, Chemokine/genetics
- Recurrence
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
Collapse
Affiliation(s)
- Yoh Matsumo
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Musashidai 2-6, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | | | | | |
Collapse
|
76
|
Jones G, Power C. Regulation of neural cell survival by HIV-1 infection. Neurobiol Dis 2005; 21:1-17. [PMID: 16298136 DOI: 10.1016/j.nbd.2005.07.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 02/03/2023] Open
Abstract
Infection by the lentivirus, human immunodeficiency virus type 1 (HIV-1), results in a variety of syndromes involving both the central (CNS) and the peripheral (PNS) nervous systems. Productive HIV-1 infection of the CNS is chiefly detectable in perivascular macrophages and microglia. HIV-1 encoded transcripts and proteins have also been detected in the PNS; however, productive viral replication appears to be sparse and restricted to the macrophage cell population. Despite the absence of productive infection of neurons, HIV-1 infection has been associated with neuronal loss in distinct regions of the brain. Neuronal cell loss may occur through both necrosis and apoptosis, although neuronal apoptosis appears to be a feature of AIDS, as only rare apoptotic neurons have been demonstrated in a few pre-AIDS cases. Although there is no clear consensus as to the underlying mechanism of HIV-induced neuropathogenesis, two complementary concepts predominate. Firstly, HIV-1 encoded proteins injure neurons directly without requiring the intermediary functions of nonneuronal cells. Alternatively, neuronal apoptosis may result indirectly from the secretion of neurotoxic host molecules by resident brain macrophages or microglia in response to HIV-1 infection, stimulation by viral proteins or immune activation. Herein, we review the neurological disorders and their underlying mechanisms associated with HIV infection, focusing on HIV-associated dementia (HAD) and HIV sensory neuropathy (HIV-SN). The evidence that neuronal loss in HIV-1-infected individuals may be due to neuronal apoptosis is then discussed. This review also summarizes the current data supporting both the direct and indirect mechanisms by which neuronal death may occur during infection with HIV-1 or the closely related lentiviruses SIV and FIV. Lastly, strategies are examined for treating or preventing HAD by targeting specific neurotoxic mechanisms.
Collapse
Affiliation(s)
- Gareth Jones
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
77
|
Ledeboer A, Gamanos M, Lai W, Martin D, Maier SF, Watkins LR, Quan N. Involvement of spinal cord nuclear factor κB activation in rat models of proinflammatory cytokine-mediated pain facilitation. Eur J Neurosci 2005; 22:1977-86. [PMID: 16262636 DOI: 10.1111/j.1460-9568.2005.04379.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proinflammatory cytokines, such as interleukin-1beta and tumour necrosis factor-alpha, are released by activated glial cells in the spinal cord and play a major role in pain facilitation. These cytokines exert their actions, at least partially, through the activation of the transcription factor, nuclear factor kappaB (NF-kappaB). In turn, NF-kappaB regulates the transcription of many inflammatory mediators, including cytokines. We have previously shown that intrathecal injection of the human immunodeficiency virus-1 (HIV-1) envelope glycoprotein, gp120, induces mechanical allodynia via the release of proinflammatory cytokines. Here, we investigated whether NF-kappaB is involved in gp120-induced pain behaviour in Sprague-Dawley rats. Intrathecal administration of NF-kappaB inhibitors, pyrrolidinedithiocarbamate (PDTC) and SN50, prior to gp120 partially attenuated gp120-induced allodynia. In addition, PDTC delayed and reversed allodynia in a model of neuropathic pain induced by sciatic nerve inflammation. These observations suggest that intrathecal gp120 may lead to activation of NF-kappaB within the spinal cord. To reveal NF-kappaB activation, we assessed inhibitory factor kappaBalpha (IkappaBalpha) mRNA expression by in situ hybridization, as NF-kappaB activation up-regulates IkappaBalpha gene expression as part of an autoregulatory feedback loop. No or low levels of IkappaBalpha mRNA were detected in the lumbar spinal cord of vehicle-injected rats, whereas IkappaBalpha mRNA expression was markedly induced in the spinal cord following intrathecal gp120 in predominantly astrocytes and endothelial cells. Moreover, IkappaBalpha mRNA expression positively correlated with proinflammatory cytokine protein levels in lumbosacral cerebrospinal fluid. Together, these results demonstrate that spinal cord NF-kappaB activation is involved, at least in part, in exaggerated pain states.
Collapse
Affiliation(s)
- Annemarie Ledeboer
- Department of Psychology & Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309-0345, USA.
| | | | | | | | | | | | | |
Collapse
|
78
|
Navia BA, Rostasy K. The AIDS dementia complex: clinical and basic neuroscience with implications for novel molecular therapies. Neurotox Res 2005; 8:3-24. [PMID: 16260383 DOI: 10.1007/bf03033817] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The AIDS dementia complex (ADC, also referred to as HIV-associated cognitive impairment) is a common disorder among HIV-infected patients associated with both inflammatory and neurodegenerative processes. This review describes recent advances in the clinical and basic neurosciences of HIV infection and discusses the multivariable nature of what has become a chronic disorder in the context of highly active antiretroviral therapies (HAART). Since its initial description twenty years ago, advances in cell and molecular biology along with those in neuroimaging have furthered our understanding of the underlying pathogenic mechanisms. The clinical and neuropsychological profile of ADC is generally consistent with a "frontal-subcortical" pattern of injury. Neuropathogenesis is largely driven by indirect mechanisms mediated by infected, or more commonly, immune activated macrophages, which secrete viral and host-derived factors. Magnetic resonance spectroscopy (MRS) provides a robust in vivo method to measure the inflammatory and neurotoxic events triggered by these factors and their associated signals. Although the use of combined or highly active antiretroviral therapies (HAART) has significantly improved survival rates, cerebral injury and cognitive impairment remain common events. Factors such as aging and chronic infection will likely impact the course of this disease, its pathogenesis, and treatment. The combined observations presented in this review suggest a number of critical areas for future inquiry.
Collapse
Affiliation(s)
- B A Navia
- Department of Community Medicine, Tufts University School of Medicine, Boston MA, USA.
| | | |
Collapse
|
79
|
Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 2005; 79:11457-66. [PMID: 16103196 PMCID: PMC1193600 DOI: 10.1128/jvi.79.17.11457-11466.2005] [Citation(s) in RCA: 337] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The activation and entry of antigen-specific CD8(+) T cells into the central nervous system is an essential step towards clearance of West Nile virus (WNV) from infected neurons. The molecular signals responsible for the directed migration of virus-specific T cells and their cellular sources are presently unknown. Here we demonstrate that in response to WNV infection, neurons secrete the chemokine CXCL10, which recruits effector T cells via the chemokine receptor CXCR3. Neutralization or a genetic deficiency of CXCL10 leads to a decrease in CXCR3(+) CD8(+) T-cell trafficking, an increase in viral burden in the brain, and enhanced morbidity and mortality. These data support a new paradigm in chemokine neurobiology, as neurons are not generally considered to generate antiviral immune responses, and CXCL10 may represent a novel neuroprotective agent in response to WNV infection in the central nervous system.
Collapse
Affiliation(s)
- Robyn S Klein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Cinque P, Bestetti A, Marenzi R, Sala S, Gisslen M, Hagberg L, Price RW. Cerebrospinal fluid interferon-gamma-inducible protein 10 (IP-10, CXCL10) in HIV-1 infection. J Neuroimmunol 2005; 168:154-63. [PMID: 16091292 DOI: 10.1016/j.jneuroim.2005.07.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 07/08/2005] [Indexed: 02/06/2023]
Abstract
Interferon-gamma-inducible protein (IP-10 or CXCL10) is a potent chemoattractant and has been suggested to enhance retrovirus infection and mediate neuronal injury. In order to assess this chemokine in central nervous system (CNS) HIV infection, we measured the cerebrospinal fluid (CSF) and plasma concentrations of CXCL10 by immunoassay in samples derived from 97 HIV-infected subjects across a spectrum of immunological progression and CNS complications and from 16 HIV seronegative control subjects studied at three clinical centers between 1994 and 2001. We also examined changes in the CSF and plasma CXCL10 concentrations in 30 subjects starting and three stopping antiretroviral therapy. CSF CXCL10 concentrations: (1) correlated with CSF HIV RNA and white blood cell (WBC) counts, but not with blood CXCL10, HIV RNA, or CD4 counts; (2) were increased in subjects with primary and asymptomatic HIV infections and AIDS dementia complex, but less frequently in those with more advanced infection, with or without CNS opportunistic diseases except cytomegalovirus encephalitis; (3) decreased in subjects starting antiretroviral in association with decreases in CSF and plasma HIV RNA and CSF WBCs; and (4) conversely, increased in subjects stopping treatment in parallel with CSF HIV RNA and WBCs. These results confirm that CSF CXCL10 associates closely with both CSF HIV and WBCs and suggest that this chemokine may be both a response to and contributing determinant of local infection. High CSF levels may be useful in the diagnosis of ADC in subjects with advanced immunosuppression in whom CMV encephalitis has been ruled out, though this issue requires further study.
Collapse
Affiliation(s)
- Paola Cinque
- Clinic of Infectious Diseases, San Raffaele Hospital, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
81
|
D'Aversa TG, Eugenin EA, Berman JW. NeuroAIDS: Contributions of the human immunodeficiency virus-1 proteins tat and gp120 as well as CD40 to microglial activation. J Neurosci Res 2005; 81:436-46. [PMID: 15954144 DOI: 10.1002/jnr.20486] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microglia are the resident phagocytes of the brain and are an important source of proinflammatory mediators. Human immunodeficiency virus (HIV)-1 infects the central nervous system early in the course of disease, and it is believed that this occurs, in part, through the transmigration of HIV-1-infected cells across the blood-brain barrier. Infected cells release viral proteins, such as Tat and gp120. After microglia interact with these proteins, they become activated and secrete chemokines; up-regulate key surface receptors, such as CD40, and also activate resident cells. This review focuses on the consequences of microglial activation in NeuroAIDS, with an emphasis on chemokine production and CD40 up-regulation after interaction with tat or gp120. The importance of microglial CD40 in two other neurological diseases, Alzheimer's disease and multiple sclerosis, is also discussed.
Collapse
Affiliation(s)
- T G D'Aversa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
82
|
Relucio KI, Beernink HT, Chen D, Israelski DM, Kim R, Holodniy M. Proteomic analysis of serum cytokine levels in response to highly active antiretroviral therapy (HAART). J Proteome Res 2005; 4:227-31. [PMID: 15822897 DOI: 10.1021/pr049930y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A 30-cytokine protein microarray was used to screen for cytokine profile changes in HIV-infected patients in response to highly active antiretroviral therapy (HAART). Serum cytokines showing significant changes were confirmed by enzyme immunoassay. Monokine induced by gamma-interferon (MIG) and interferon-inducible protein-10 (IP-10) levels significantly decreased after 24 weeks of HAART. Protein microarrays are useful for initial screening of novel cytokine expression. Further studies are needed to elucidate the role of MIG and IP-10 in response to HAART.
Collapse
Affiliation(s)
- Karen I Relucio
- Divison of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
83
|
Foley JF, Yu CR, Solow R, Yacobucci M, Peden KWC, Farber JM. Roles for CXC chemokine ligands 10 and 11 in recruiting CD4+ T cells to HIV-1-infected monocyte-derived macrophages, dendritic cells, and lymph nodes. THE JOURNAL OF IMMUNOLOGY 2005; 174:4892-900. [PMID: 15814716 DOI: 10.4049/jimmunol.174.8.4892] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated roles for chemoattractants in dissemination of HIV-1 by examining the induction of T cell-active chemokines in HIV-1-infected human monocyte-derived macrophages and dendritic cells. Of the 12 chemokines analyzed, mRNAs for two, CXCL10 and CXCL11, ligands for the chemokine receptor CXCR3, were up-regulated in both cell types upon infection by HIV-1. Induction of these chemokine genes in infected cultures was dependent on both viral entry and reverse transcriptase activity, but not on the HIV-1 envelope glycoprotein. Conditioned medium from infected cells was chemotactic for freshly isolated human CD4+ T cells, and chemotaxis was abolished by pretreatment with an Ab against CXCR3. A lymph node from an HIV-1-infected individual expressed CXCL10 and CXCL11 mRNAs in the paracortex, including venules, as detected by in situ hybridization, whereas neither mRNA was detected after highly active antiretroviral therapy. Because CCR5 on CD4+ T cells is found predominantly on cells that also express CXCR3, these data implicate CXCL10 and CXCL11 in the recruitment of susceptible T cells to HIV-1-infected lymph nodes, macrophages, and dendritic cells. This recruitment might enhance the sequestration of T cells in infected lymphoid organs and the spread of infection between cells, contributing to the immunopathology of AIDS.
Collapse
Affiliation(s)
- John F Foley
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
84
|
Hauser IA, Spiegler S, Kiss E, Gauer S, Sichler O, Scheuermann EH, Ackermann H, Pfeilschifter JM, Geiger H, Gröne HJ, Radeke HH. Prediction of Acute Renal Allograft Rejection by Urinary Monokine Induced by IFN-γ (MIG). J Am Soc Nephrol 2005; 16:1849-58. [PMID: 15857922 DOI: 10.1681/asn.2004100836] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Early diagnosis of acute allograft rejection (AR) is still decisive for long-term renal allograft survival. The aim of this study was to define the role of the chemokine monokine induced by IFN-gamma (MIG) (CXCL9) and IFN-gamma-inducible protein 10 (IP-10) (CXCL10) as early markers of AR in renal transplantation (NTX). In a prospective study, 69 de novo renal transplant recipients were monitored and urine samples were collected after NTX for a median of 29 d. In pH-adjusted urine, MIG and IP-10 were determined by modified ELISA. AR was clinically diagnosed in 15 of 69 recipients and confirmed by biopsy in 14 of 15 AR patients (Banff classification). Corresponding to CXCR3-positive infiltrates in renal tissue, urinary MIG was elevated in 14 of 15 AR patients with a median of 2809 pg/ml (quartile 25% and 75% = 870 and 13,000; n = 15), being significantly (P < 0.0001) different from both nonrejecting allograft patients (NO-AR) (median, 25%, and 75%: 96, 1.0, and 161, n = 54) and healthy controls (median, 25%, and 75%: 144, 19, and 208, n = 13). Urinary MIG predicted AR with a sensitivity of 93% and a specificity of 89%. In AR and NO-AR groups, MIG values correlated well with IP-10 (P < 0.001). MIG values indicated both imminent rejection and response to successful antirejection therapy. MIG was not related to intercurrent infections or other causes for impairment of renal function. In a multivariate analysis, MIG correlated best (P < 0.001) with AR from all AR-associated parameters. In conclusion, urinary MIG serves as a very sensitive and specific predictor for AR, mirrors response to antirejection therapy, and thus may contribute to improved long-term renal allograft survival.
Collapse
Affiliation(s)
- Ingeborg A Hauser
- Medical Clinic IV, Department of Nephrology, Clinic of the J.W. Goethe University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Sui Y, Li S, Pinson D, Adany I, Li Z, Villinger F, Narayan O, Buch S. Simian human immunodeficiency virus-associated pneumonia correlates with increased expression of MCP-1, CXCL10, and viral RNA in the lungs of rhesus macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:355-65. [PMID: 15681820 PMCID: PMC1602335 DOI: 10.1016/s0002-9440(10)62259-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulmonary disorders are the most frequent cause of death in HIV-1-infected individuals with AIDS and remain important even in the current era of potent antiretroviral therapy. Macaques infected with Simian/Human Immunodeficiency Virus (SHIV) develop pulmonary disease and concurrent opportunistic infections similar to those observed in HIV-infected individuals, thereby providing an excellent working model to elucidate the pathogenesis of the human lung disease. Since chemokines play a crucial role in the recruitment of inflammatory cells to tissues, we investigated the relationship between respiratory disease and the levels of chemokines, monocyte chemotactic protein-1 (MCP-1) and CXCL10, in the lungs of SHIV-infected rhesus macaques. We found that lung pathology in infected macaques was closely associated with overexpression of MCP-1 and CXCL10. In addition, these chemokines could, in part, be responsible for the recruitment of inflammatory cells infiltrating into the diseased lungs as demonstrated by chemotactic assays. Lung pathology and increased levels of MCP-1 and CXCL10 correlated with high viral loads in the lung parenchyma. Using confocal microscopy, we identified SHIV-infected macrophages as the major producers of MCP-1 and CXCL10 in the diseased lungs. These data suggest that chemokine overexpression plays an important role in the pathogenesis of SHIV-associated pulmonary disease in macaques.
Collapse
Affiliation(s)
- Yongjun Sui
- Department of Microbiology, Immunology, and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, 5000 Wahl Hall East, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005; 289:L85-95. [PMID: 15764644 DOI: 10.1152/ajplung.00397.2004] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human rhinovirus (HRV) infections trigger exacerbations of asthma and chronic obstructive pulmonary disease (COPD) and are associated with lymphocytic infiltration of the airways. We demonstrate that infection of primary cultures of human airway epithelial cells, or of the BEAS-2B human bronchial epithelial cell line, with human rhinovirus type 16 (HRV-16) induces expression of CXCL10 [IFN-gamma-inducible protein 10 (IP-10)], a ligand for the CXCR3 receptor found on activated type 1 T lymphocytes and natural killer cells. IP-10 mRNA reached maximal levels 24 h after HRV-16 infection then declined, whereas protein levels peaked 48 h after infection with no subsequent new synthesis. Cytosolic levels of AU-rich factor 1, a protein associated with mRNA destabilization, increased beginning 24 h after HRV-16 infection. Generation of IP-10 required virus capable of replication but was not dependent on prior induction of type 1 interferons. Transfection of synthetic double-stranded RNA into epithelial cells induced robust production of IP-10, whereas transfection of single-stranded RNA had no effect. Induction of IP-10 gene expression by HRV-16 depended upon activation of NF-kappaB, as well as other transcription factor recognition sequences further upstream in the IP-10 promoter. In vivo infection of human volunteers with HRV-16 strikingly increased IP-10 protein in nasal lavages during symptomatic colds. Levels of IP-10 correlated with symptom severity, viral titer, and numbers of lymphocytes in airway secretions. Thus IP-10 may play a role in the pathogenesis of HRV-induced colds and in HRV-induced exacerbations of COPD and asthma.
Collapse
Affiliation(s)
- Jason C L Spurrell
- Respiratory Research Group and Department of Physiology and Biophysics, University of Calgary, Alberta
| | | | | | | | | |
Collapse
|
87
|
van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, Holden J, McArthur JC, Gill MJ, Power C. Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology 2005; 329:302-18. [PMID: 15518810 DOI: 10.1016/j.virol.2004.08.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 07/22/2004] [Accepted: 08/12/2004] [Indexed: 02/01/2023]
Abstract
HIV-1 Nef is expressed in astrocytes, but a contribution to neuropathogenesis and the development of HIV-associated dementia (HAD) remains uncertain. To determine the neuropathogenic actions of the HIV-1 Nef protein, the brain-derived (YU-2) and blood-derived (NL4-3) Nef proteins were expressed in neural cells using an alphavirus vector, which resulted in astrocyte death (P < 0.001). Supernatants from Nef-expressing astrocytes also caused neuronal death, suggesting the release of neurotoxic molecules by astrocytes. Analysis of pro-inflammatory gene induction in astrocytes expressing Nef revealed increased IP-10 mRNA expression (4000-fold) that was Nef sequence dependent. Recombinant IP-10 caused selective cell death in neurons (P < 0.001) but not astrocytes, and the cytotoxicity of supernatant from astrocytes expressing Nef YU-2 was blocked by an antibody directed against the chemokine receptor CXCR3 (P < 0.001). SCID/NOD mice implanted with a Nef YU-2-expressing vector displayed abnormal motor behavior (P < 0.05), neuroinflammation, and neuronal loss relative to controls. Analysis of mRNA levels in brains from patients with HAD also revealed increased expression of IP-10 (P < 0.05), which was confirmed by immunoreactivity detected principally in astrocytes. Phylogenetic and protein structure analyses of Nef sequences derived from HIV/AIDS patients with and without HAD suggested viral evolution toward a neurotropic Nef protein. These results indicate that HIV-1 Nef contributes to neuropathogenesis by directly causing astrocyte death together with indirect neuronal death through the cytotoxic actions of IP-10 on neurons. Furthermore, Nef molecular diversity was evident in brain tissue among patients with neurological disease and which may influence IP-10 production by astrocytes.
Collapse
MESH Headings
- AIDS Dementia Complex/metabolism
- AIDS Dementia Complex/physiopathology
- Animals
- Animals, Genetically Modified
- Astrocytes/metabolism
- Astrocytes/virology
- Cell Death
- Cells, Cultured
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Chemokine CXCL10
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/pharmacology
- Chemokines, CXC/physiology
- Gene Products, nef/biosynthesis
- Gene Products, nef/genetics
- Genetic Vectors
- HIV-1/genetics
- HIV-1/pathogenicity
- Humans
- Interleukin-1/biosynthesis
- Interleukin-1/genetics
- Interleukin-1beta
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Molecular Sequence Data
- Neurons/drug effects
- Neurons/metabolism
- Neurons/pathology
- Neurotoxins/pharmacology
- Peptide Fragments/biosynthesis
- Peptide Fragments/genetics
- RNA, Messenger/analysis
- Recombinant Proteins/pharmacology
- nef Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Guido van Marle
- Department of Clinical Neurosciences, University of Calgary, Calgary AB, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Speth C, Dierich MP, Sopper S. HIV-infection of the central nervous system: the tightrope walk of innate immunity. Mol Immunol 2005; 42:213-28. [PMID: 15488609 DOI: 10.1016/j.molimm.2004.06.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of the central nervous system (CNS) by HIV is a frequent and sometimes very early event in the course of HIV pathogenesis. Possible consequences are diverse symptoms of neurological dysfunction, but also the establishment of a lifelong latent viral reservoir in the brain. Whereas in the periphery innate and adaptive immunity are equal partners, the blood-brain barrier (BBB) with its restricted access of peripheral immune effectors shifts this balance in favour of the local innate immunity. Four main elements of cerebral innate immunity are discussed in the present article, including two cell types with immunological functions and two soluble immune systems: (1) the stimulation of microglial cells as the predominant brain-resident immune cell and the main local reservoir for the virus; (2) the reaction of astrocytes in response to viral infection; (3) the activation of the local complement system as important soluble immune cascade; and (4) the role of chemokines and cytokines which help to conduct and cross-link the interplay between the different immune elements. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. A dual role of these components with both harmful and protective effects further enhances the complexity of the mutual interactions.
Collapse
Affiliation(s)
- Cornelia Speth
- Institute of Hygiene and Social Medicine, Medical University Innsbruck and Ludwig-Boltzmann-Institute for AIDS Research, Fritz-Pregl-Str. 3, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
89
|
Uicker WC, Doyle HA, McCracken JP, Langlois M, Buchanan KL. Cytokine and chemokine expression in the central nervous system associated with protective cell-mediated immunity againstCryptococcus neoformans. Med Mycol 2005; 43:27-38. [PMID: 15712606 DOI: 10.1080/13693780410001731510] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cryptococcus neoformans is a yeast that causes cryptococcosis, a life-threatening disease that develops following inhalation and dissemination of the organisms. C. neoformans has a predilection for the central nervous system (CNS) and mortality is most frequently associated with meningoencephalitis. Susceptibility to cryptococcosis is increased in patients with deficiencies in cell-mediated immunity (CMI). Because cryptococcal CNS infections are associated with mortality and diagnosis of cryptococcosis is often not made until after dissemination to the CNS, a better understanding of host defense mechanisms against C. neoformans in the CNS is needed to design improved therapies for immunocompromised individuals suffering from cryptococcosis. Using a mouse model, we previously described a protective cell-mediated immune response induced in the periphery that limited the growth of C. neoformans in the CNS. In the current investigation, we examined cytokine and chemokine expression in the CNS to identify factors important in achieving protective immunity. We observed increased expression of IL-1beta, TNF-alpha, IFN-gamma, MCP-1, RANTES, and IP-10 in C. neoformans-infected brains of immune mice compared to control mice suggesting that these cytokines and chemokines are associated with the protective immune response. Furthermore, the Th1-type cytokines TNF-alpha and IFN-gamma, but not the Th2 cytokines IL-4 and IL-5, were secreted at significantly higher levels in C. neoformans-infected brains of immune mice compared to control mice. Our results demonstrate that cytokines and chemokines associated with CMI are produced following infection in the CNS of immunized mice, and the expression of these factors correlates with protection against C. neoformans in the CNS.
Collapse
Affiliation(s)
- William C Uicker
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
90
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2664-2667. [DOI: 10.11569/wcjd.v12.i11.2664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
91
|
Holguin A, O'Connor KA, Biedenkapp J, Campisi J, Wieseler-Frank J, Milligan ED, Hansen MK, Spataro L, Maksimova E, Bravmann C, Martin D, Fleshner M, Maier SF, Watkins LR. HIV-1 gp120 stimulates proinflammatory cytokine-mediated pain facilitation via activation of nitric oxide synthase-I (nNOS). Pain 2004; 110:517-530. [PMID: 15288392 DOI: 10.1016/j.pain.2004.02.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 12/31/2003] [Accepted: 02/17/2004] [Indexed: 10/26/2022]
Abstract
It has become clear that spinal cord glia (microglia and astrocytes) importantly contribute to the creation of exaggerated pain responses. One model used to study this is peri-spinal (intrathecal, i.t.) administration of gp120, an envelope protein of HIV-1 known to activate glia. Previous studies demonstrated that i.t. gp120 produces pain facilitation via the release of glial proinflammatory cytokines. The present series of studies tested whether spinal nitric oxide (NO) contributes to i.t. gp120-induced mechanical allodynia and, if so, what effect NO has on spinal proinflammatory cytokines. gp120 stimulation of acutely isolated lumbar dorsal spinal cords released NO as well as proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1beta (IL1), interleukin-6 (IL6)), thus identifying NO as a candidate mediator of gp120-induced behavioral effects. Behaviorally, identical effects were observed when gp120-induced mechanical allodynia was challenged by i.t. pre-treatment with either a broad-spectrum nitric oxide synthase (NOS) inhibitor (L-NAME) or 7-NINA, a selective inhibitor of NOS type-I (nNOS). Both abolished gp120-induced mechanical allodynia. While the literature pre-dominantly documents that proinflammatory cytokines stimulate the production of NO rather than the reverse, here we show that gp120-induced NO increases proinflammatory cytokine mRNA levels (RT-PCR) and both protein expression and protein release (serial ELISA). Furthermore, gp120 increases mRNA for IL1 converting enzyme and matrix metalloproteinase-9, enzymes responsible for activation and release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Adelina Holguin
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309, USA Department of Kinesiology and Applied Physiology, and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO 80309, USA Department of Pharmacology, Amgen, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Vlkolinský R, Siggins GR, Campbell IL, Krucker T. Acute exposure to CXC chemokine ligand 10, but not its chronic astroglial production, alters synaptic plasticity in mouse hippocampal slices. J Neuroimmunol 2004; 150:37-47. [PMID: 15081247 DOI: 10.1016/j.jneuroim.2004.01.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 01/12/2004] [Accepted: 01/12/2004] [Indexed: 11/18/2022]
Abstract
Brain levels of CXC chemokine ligand 10 (CXCL10) are elevated in a number of neuropathological conditions. To determine its impact on neuronal function, we measured synaptic transmission and plasticity in hippocampal slices prepared from transgenic (TG) mice with chronic astroglial production of CXCL10. We also tested the acute effect of recombinant CXCL10 applied to slices from normal C57Bl/6J mice, CXCL10 TG mice and CXCR3 knock out (KO) mice. Chronic production of CXCL10 did not alter synaptic plasticity. By contrast, exogenous CXCL10 (10 ng/ml) significantly inhibited long-term potentiation (LTP) in slices from normal C57Bl/6J mice and CXCL10 TG. The effect was probably receptor-mediated because CXCL10-induced inhibition of LTP was not observed in CXCR3 KO mice. Our findings suggest that acute exposure to CXCL10 alters synaptic plasticity via CXCR3 in mouse hippocampus.
Collapse
MESH Headings
- Animals
- Astrocytes/immunology
- Astrocytes/metabolism
- Astrocytes/physiology
- Chemokine CXCL10
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/pharmacology
- Chemokines, CXC/physiology
- Excitatory Postsynaptic Potentials/genetics
- Excitatory Postsynaptic Potentials/immunology
- In Vitro Techniques
- Long-Term Potentiation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neural Inhibition/genetics
- Neural Inhibition/immunology
- Neuronal Plasticity/genetics
- Neuronal Plasticity/immunology
- Receptors, CXCR3
- Receptors, Chemokine/deficiency
- Receptors, Chemokine/genetics
- Receptors, Chemokine/physiology
- Recombinant Proteins/pharmacology
- Synapses/genetics
- Synapses/immunology
- Time Factors
Collapse
Affiliation(s)
- Roman Vlkolinský
- Department of Neuropharmacology, CVN-12, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
93
|
Kato A, Ogasawara T, Homma T, Batchelor J, Imai S, Wakiguchi H, Saito H, Matsumoto K. CpG oligodeoxynucleotides directly induce CXCR3 chemokines in human B cells. Biochem Biophys Res Commun 2004; 320:1139-47. [PMID: 15249208 DOI: 10.1016/j.bbrc.2004.06.059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Indexed: 11/30/2022]
Abstract
CpG oligodeoxynucleotides (CpG ODN) are known to elicit Th1 immune responses via TLR9. However, the precise mechanisms through which B cells are involved in this phenomenon are not fully understood. We investigated the effect of CpG ODN on the induction of Th1-chemoattractant CXCR3 chemokines, IP-10, Mig, and I-TAC, in B cells. Cells from the RPMI 8226 human B cell line and human peripheral B cells were stimulated with three distinct classes of CpG ODN. As a result, CXCR3 chemokines were strongly up-regulated by CpG-B and CpG-C, but only weakly by CpG-A. Though CXCR3 chemokines are known to be induced by IFNs, blocking mAbs against IFN receptors did not inhibit their induction by CpG-B. Induction of CXCR3 chemokines was blocked by two NF-kappaB inhibitors and a p38 inhibitor. These results strongly suggest that CXCR3 chemokines are directly induced by CpG ODN via NF-kappaB- and p38-dependent pathways in human B cells.
Collapse
Affiliation(s)
- Atsushi Kato
- Department of Allergy and Immunology, National Research Institute for Child Health and Development, 3-35-31 Taishido, Setagaya-ku, Tokyo 154-8567, Japan
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Schultz J, Schwarz A, Neidhold S, Burwinkel M, Riemer C, Simon D, Kopf M, Otto M, Baier M. Role of interleukin-1 in prion disease-associated astrocyte activation. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:671-8. [PMID: 15277240 PMCID: PMC1618583 DOI: 10.1016/s0002-9440(10)63331-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prion-induced chronic neurodegeneration has a substantial inflammatory component, and the activation of glia cells may play an important role in disease development and progression. However, the functional contribution of cytokines to the development of the gliosis in vivo was never systematically studied. We report here that the expression of interleukin-1beta (IL-1beta), IL-1beta-converting enzyme, and IL-1 receptor type 1 (IL-1RI) is up-regulated in a murine scrapie model. The scrapie-induced gliosis in IL-1RI(-/-) mice was characterized by an attenuated activation of astrocytes in the asymptomatic stage of the disease and a reduced expression of CXCR3 ligands. Furthermore, the accumulation of the misfolded isoform of the prion protein PrP(Sc) was significantly delayed in the IL-1RI(-/-) mice. These observations indicate that IL-1 is a driver of the scrapie-associated astrocytosis and possibly the accompanying amyloid deposition. In addition, scrapie-infected IL-1RI-deficient (IL-1RI(-/-)) mice showed a delayed disease onset and significantly prolonged survival times suggesting that an anti-inflammatory therapeutical approach to suppress astrocyte activation and/or glial IL-1 expression may help to delay disease onset in established prion infections of the central nervous system.
Collapse
Affiliation(s)
- Julia Schultz
- Project "Neurodegenerative Diseases," Robert-Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Shi X, Cao S, Mitsuhashi M, Xiang Z, Ma X. Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. THE JOURNAL OF IMMUNOLOGY 2004; 172:4111-22. [PMID: 15034023 PMCID: PMC2956987 DOI: 10.4049/jimmunol.172.7.4111] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 is a major activator of tumor-killing NK cells and CTL. IFN-gamma mediates most of the well-known immunological activities of IL-12. In this study, we report IFN-gamma-independent activities induced by therapeutic application of rIL-12 in restricting tumor growth and metastasis in the 4T1 murine mammary carcinoma model. IFN-gamma-deficient mice carrying 4T1 tumor exhibit no gross defect in the number of tumor-infiltrating lymphocytes but have exaggerated angiogenesis in the tumor. Administration of IL-12 is able to constrict blood vessels in the tumor in the absence of IFN-gamma, and retains certain therapeutic efficacy even when applied late during tumor progression. IL-12 exposure in vivo does not irreversibly alter the immunogenicity of the tumor. Finally, global gene expression analysis of primary tumors reveals IL-12-induced molecular patterns and changes, implicating a number of novel genes potentially important for IFN-gamma-independent immune responses against the tumor, for IL-12-mediated antiproliferation, antimetastasis, and antiangiogenesis activities.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Chemokines/biosynthesis
- Chemokines/genetics
- Female
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/immunology
- Growth Inhibitors/administration & dosage
- Growth Inhibitors/therapeutic use
- Interferon-gamma/deficiency
- Interferon-gamma/genetics
- Interferon-gamma/physiology
- Interleukin-12/administration & dosage
- Interleukin-12/therapeutic use
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/prevention & control
- Lung Neoplasms/secondary
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Neoplasm Transplantation
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/prevention & control
- Oligonucleotide Array Sequence Analysis/methods
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
| | | | | | | | - Xiaojing Ma
- Address correspondence and reprint requests to Dr. Xiaojing Ma, Department of, Microbiology and Immunology, Weill Medical College of Cornell University, 1300, York Avenue, New York, NY 10021.
| |
Collapse
|
96
|
Ambrosini E, Aloisi F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 2004. [PMID: 15139300 DOI: 10.1023/b: nere.0000021246.96864.89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemokines are small secreted proteins that are essential for the recruitment and activation of specific leukocyte subsets at sites of inflammation and for the development and homeostasis of lymphoid and nonlymphoid tissues. During the past decade, chemokines and their receptors have also emerged as key signaling molecules in neuroinflammatory processes and in the development and functioning of the central nervous system. Neurons and glial cells, including astrocytes, oligodendrocytes, and microglia, have been identified as cellular sources and/or targets of chemokines produced in the central nervous system in physiological and pathological conditions. In this article, we provide an update of chemokines and chemokine receptors expressed by glial cells focusing on their biological functions and implications in neurological diseases.
Collapse
Affiliation(s)
- Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | |
Collapse
|
97
|
Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, Anderson C, Turchan J, Kolson D, Narayan O, Buch S. Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1557-66. [PMID: 15111302 PMCID: PMC1615658 DOI: 10.1016/s0002-9440(10)63714-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammatory mediators play a crucial role in the pathophysiology of several neurodegenerative diseases including acquired immune deficiency syndrome dementia complex. In the present study we identified a link between CXCL10 overexpression in the brain and human immunodeficiency virus dementia and demonstrated the presence of the chemokine CXCL10 and its receptor, CXCR3, in the neurons in the brains of macaques with simian human immunodeficiency virus encephalitis. Using human fetal brain cultures, we showed that treatment of these cells with either SHIV89.6P or viral gp120 resulted in induction of CXCL10 in neurons. Cultured neurons treated with the chemokine developed increased membrane permeability followed by apoptosis via activation of caspase-3. We confirmed the relevance of these findings in sections of human and macaque brains with encephalopathy demonstrating that neurons expressing CXCL10 also expressed caspase-3.
Collapse
Affiliation(s)
- Yongjun Sui
- Department of Microbiology, Immunology, and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Abel K, La Franco-Scheuch L, Rourke T, Ma ZM, De Silva V, Fallert B, Beckett L, Reinhart TA, Miller CJ. Gamma interferon-mediated inflammation is associated with lack of protection from intravaginal simian immunodeficiency virus SIVmac239 challenge in simian-human immunodeficiency virus 89.6-immunized rhesus macaques. J Virol 2004; 78:841-54. [PMID: 14694116 PMCID: PMC368742 DOI: 10.1128/jvi.78.2.841-854.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although gamma interferon (IFN-gamma) is a key mediator of antiviral defenses, it is also a mediator of inflammation. As inflammation can drive lentiviral replication, we sought to determine the relationship between IFN-gamma-related host immune responses and challenge virus replication in lymphoid tissues of simian-human immunodeficiency virus 89.6 (SHIV89.6)-vaccinated and unvaccinated rhesus macaques 6 months after challenge with simian immunodeficiency virus SIVmac239. Vaccinated-protected monkeys had low tissue viral RNA (vRNA) levels, vaccinated-unprotected animals had moderate tissue vRNA levels, and unvaccinated animals had high tissue vRNA levels. The long-term challenge outcome in vaccinated monkeys was correlated with the relative balance between SIV-specific IFN-gamma T-cell responses and nonspecific IFN-gamma-driven inflammation. Vaccinated-protected monkeys had slightly increased tissue IFN-gamma mRNA levels and a high frequency of IFN-gamma-secreting T cells responding to in vitro SIVgag peptide stimulation; thus, it is likely that they could develop effective anti-SIV cytotoxic T lymphocytes in vivo. In contrast, both high tissue IFN-gamma mRNA levels and strong in vitro SIV-specific IFN-gamma T-cell responses were detected in lymphoid tissues of vaccinated-unprotected monkeys. Unvaccinated monkeys had increased tissue IFN-gamma mRNA levels but weak in vitro anti-SIV IFN-gamma T-cell responses. In addition, in lymphoid tissues of vaccinated-unprotected and unvaccinated monkeys, the increased IFN-gamma mRNA levels were associated with increased Mig/CXCL9, IP-10/CXCL10, and CXCR3 mRNA levels, suggesting that increased Mig/CXCL9 and IP-10/CXCL10 expression resulted in recruitment of CXCR3(+) activated T cells. Thus, IFN-gamma-driven inflammation promotes SIV replication in vaccinated-unprotected and unvaccinated monkeys. Unlike all unvaccinated monkeys, most monkeys vaccinated with SHIV89.6 did not develop IFN-gamma-driven inflammation, but they did develop effective antiviral CD8(+)-T-cell responses.
Collapse
Affiliation(s)
- Kristina Abel
- Center for Comparative Medicine, California National Primate Research Center, University of California-Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Sarkar S, Kalia V, Murphey-Corb M, Montelaro RC, Reinhart TA. Expression of IFN-gamma induced CXCR3 agonist chemokines and compartmentalization of CXCR3+ cells in the periphery and lymph nodes of rhesus macaques during simian immunodeficiency virus infection and acquired immunodeficiency syndrome. J Med Primatol 2003; 32:247-64. [PMID: 14498985 DOI: 10.1034/j.1600-0684.2003.00031.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dysregulation of cytokines and chemokines during human immunodeficiency virus 1 (HIV-1) and simian immunodeficiency virus (SIV) infection is thought to be critical in the progression of acquired immunodeficiency syndrome (AIDS). To evaluate the potential role of Th1-agonist chemokines in disease progression during AIDS, we assessed CXCL9/MIG and CXCL10/IP-10 expression simultaneously in the periphery and lymphoid tissues of SIV-infected animals at a single-cell level by flow cytometry. We optimized intracellular staining and analysis of CXCL9/MIG and CXCL10/IP-10 production in human leukocyte antigen (HLA)-DR+ macaque cells by flow cytometry using cross-reactive antibodies against human chemokines. We observed an upregulation of CXCL9/MIG and CXCL10/IP-10 production in both the periphery and lymph nodes of infected animals compared with naïve controls. Animals with higher viral loads had higher levels of CXCL9/MIG and CXCL10/IP-10 producing cells compared with animals with low viral loads. Analysis of cells bearing the receptor (CXCR3) for CXCL9/MIG and CXCL10/IP-10 revealed increased number of CXCR3+ cells in the lymph nodes of infected animals. Importantly, an inverse correlation (P < 0.05) between CXCL9/MIG and CXCL10/IP-10 production, both in the periphery and lymph nodes, and peripheral CD4+ T-cell numbers was observed. These findings provide further evidence that dysregulation of Th1 agonist chemokines might contribute to the ultimate immunopathology during AIDS.
Collapse
Affiliation(s)
- Surojit Sarkar
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburg, PA 15261, USA
| | | | | | | | | |
Collapse
|
100
|
Kobayashi N, Bagheri N, Nedrud JG, Strieter RM, Tomino Y, Lamm ME, Emancipator SN. Differential effects of Sendai virus infection on mediator synthesis by mesangial cells from two mouse strains. Kidney Int 2003; 64:1675-84. [PMID: 14531800 DOI: 10.1046/j.1523-1755.2003.00258.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Recently, we observed that the severity of glomerulonephritis in an experimental model of immunoglobulin A nephropathy (IgAN) induced by Sendai virus differs between C57BL/6 and BALB/c mouse strains. The determinants of differing renal insufficiency are not understood. In the present study, we examine the capacity for mesangial cells to support Sendai viral replication and assess the direct effects of Sendai virus on the production of selected cytokines, chemokines, and eicosanoids by mesangial cells, comparing C57BL/6 to BALB/c mouse strains. METHODS Sendai virus replication was measured by viral plaque assay using LLCMK2 cells. Production of cytokines [interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha)], chemokines (JE and KC), and eicosanoids [prostaglandin E2 (PGE2) and thromboxane B2 (TxB2)] in culture medium was evaluated by sandwich enzyme-linked immunosorbent assay (ELISA) or competitive enzyme immunoassay (EIA) after 48 hours' incubation with infectious or inactivated Sendai virus. RESULTS Sendai virus replicates equally well in mesangial cells from both strains, and infection evokes increased IL-6, JE, KC, and PGE2 production in relation to viral dose. BALB/c mesangial cells produce significantly more IL-6 and JE than those from C57BL/6, and the dose response for KC is steeper in BALB/c mesangial cells than those from C57BL/6. Synthesis of PGE2 in BALB/c mesangial cells is higher than that of C57BL/6 mesangial cells, both under basal conditions and in response to infectious Sendai virus, again in a dose-dependent manner. There is no TNF-alpha or thromboxane response to viral stimulation. CONCLUSION We conclude that different mesangial cell responses to this common mucosal viral pathogen might influence the severity of IgAN in our model system.
Collapse
Affiliation(s)
- Noriyoshi Kobayashi
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|