51
|
Effective simian immunodeficiency virus-specific CD8+ T cells lack an easily detectable, shared characteristic. J Virol 2009; 84:753-64. [PMID: 19889785 DOI: 10.1128/jvi.01596-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The immune correlates of human/simian immunodeficiency virus control remain elusive. While CD8(+) T lymphocytes likely play a major role in reducing peak viremia and maintaining viral control in the chronic phase, the relative antiviral efficacy of individual virus-specific effector populations is unknown. Conventional assays measure cytokine secretion of virus-specific CD8(+) T cells after cognate peptide recognition. Cytokine secretion, however, does not always directly translate into antiviral efficacy. Recently developed suppression assays assess the efficiency of virus-specific CD8(+) T cells to control viral replication, but these assays often use cell lines or clones. We therefore designed a novel virus production assay to test the ability of freshly ex vivo-sorted simian immunodeficiency virus (SIV)-specific CD8(+) T cells to suppress viral replication from SIVmac239-infected CD4(+) T cells. Using this assay, we established an antiviral hierarchy when we compared CD8(+) T cells specific for 12 different epitopes. Antiviral efficacy was unrelated to the disease status of each animal, the protein from which the tested epitopes were derived, or the major histocompatibility complex (MHC) class I restriction of the tested epitopes. Additionally, there was no correlation with the ability to suppress viral replication and epitope avidity, epitope affinity, CD8(+) T-cell cytokine multifunctionality, the percentage of central and effector memory cell populations, or the expression of PD-1. The ability of virus-specific CD8(+) T cells to suppress viral replication therefore cannot be determined using conventional assays. Our results suggest that a single definitive correlate of immune control may not exist; rather, a successful CD8(+) T-cell response may be comprised of several factors.
Collapse
|
52
|
Abstract
Brucella spp. are intracellular bacteria that cause the most frequent zoonosis in the world. Although recent work has advanced the field of Brucella vaccine development, there remains no safe human vaccine. In order to produce a safe and effective human vaccine, the immune response to Brucella spp. requires greater understanding. Induction of Brucella-specific CD8+ T cells is considered an important aspect of the host response; however, the CD8+ T-cell response is not clearly defined. Discovering the epitope containing antigens recognized by Brucella-specific CD8+ T cells and correlating them with microarray data will aid in determining proteins critical for vaccine development that cover a kinetic continuum during infection. Developing tools to take advantage of the BALB/c mouse model of Brucella melitensis infection will help to clarify the correlates of immunity and improve the efficacy of this model. Two H-2(d) CD8+ T-cell epitopes have been characterized, and a group of immunogenic proteins have provoked gamma interferon production by CD8+ T cells. RYCINSASL and NGSSSMATV induced cognate CD8+ T cells after peptide immunization that showed specific killing in vivo. Importantly, we found by microarray analysis that the genes encoding these epitopes are differentially expressed following macrophage infection, further emphasizing that these discordant genes may play an important role in the pathogenesis of B. melitensis infection.
Collapse
|
53
|
Siegismund CS, Hohn O, Kurth R, Norley S. Enhanced T- and B-cell responses to simian immunodeficiency virus (SIV)agm, SIVmac and human immunodeficiency virus type 1 Gag DNA immunization and identification of novel T-cell epitopes in mice via codon optimization. J Gen Virol 2009; 90:2513-2518. [PMID: 19587137 DOI: 10.1099/vir.0.013730-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As a prelude to primate studies, the immunogenicity of wild-type and codon-optimized versions of simian immunodeficiency virus (SIV)agm Gag DNA, with and without co-administered granulocyte-macrophage colony-stimulating factor (GM-CSF) DNA, was directly compared in two strains of mice. Gag-specific T cells in the splenocytes of BALB/c and C57BL/6 mice immunized by gene gun were quantified by ELISpot using panels of overlapping synthetic peptides (15mers) spanning the entire capsid proteins of SIVagm, SIVmac and human immunodeficiency virus type 1. Specific antibodies were measured by ELISA. Codon optimization was shown to significantly increase the immune response to the DNA immunogens, reducing the amount of DNA necessary to induce cellular and antibody responses by one and two orders of magnitude, respectively. Co-administration of murine GM-CSF DNA was necessary for the induction of high level T- and B-cell responses. Finally, it was possible to identify both known and novel T-cell epitopes in the Gag proteins of the three viruses.
Collapse
Affiliation(s)
| | - Oliver Hohn
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Reinhard Kurth
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Stephen Norley
- Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
54
|
Loffredo JT, Sidney J, Bean AT, Beal DR, Bardet W, Wahl A, Hawkins OE, Piaskowski S, Wilson NA, Hildebrand WH, Watkins DI, Sette A. Two MHC class I molecules associated with elite control of immunodeficiency virus replication, Mamu-B*08 and HLA-B*2705, bind peptides with sequence similarity. THE JOURNAL OF IMMUNOLOGY 2009; 182:7763-75. [PMID: 19494300 DOI: 10.4049/jimmunol.0900111] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
HLA-B27- and -B57-positive HIV-infected humans have long been associated with control of HIV replication, implying that CD8(+) T cell responses contribute to control of viral replication. In a similar fashion, 50% of Mamu-B*08-positive Indian rhesus macaques control SIVmac239 replication and become elite controllers with chronic-phase viremia <1000 viral RNA copies/ml. Interestingly, Mamu-B*08-restricted SIV-derived epitopes appeared to match the peptide binding profile for HLA-B*2705 in humans. We therefore defined a detailed peptide-binding motif for Mamu-B*08 and investigated binding similarities between the macaque and human MHC class I molecules. Analysis of a panel of approximately 900 peptides revealed that despite substantial sequence differences between Mamu-B*08 and HLA-B*2705, the peptide-binding repertoires of these two MHC class I molecules share a remarkable degree of overlap. Detailed knowledge of the Mamu-B*08 peptide-binding motif enabled us to identify six additional novel Mamu-B*08-restricted SIV-specific CD8(+) T cell immune responses directed against epitopes in Gag, Vpr, and Env. All 13 Mamu-B*08-restricted epitopes contain an R at the position 2 primary anchor and 10 also possess either R or K at the N terminus. Such dibasic peptides are less prone to cellular degradation. This work highlights the relevance of the Mamu-B*08-positive SIV-infected Indian rhesus macaque as a model to examine elite control of immunodeficiency virus replication. The remarkable similarity of the peptide-binding motifs and repertoires for Mamu-B*08 and HLA-B*2705 suggests that the nature of the peptide bound by the MHC class I molecule may play an important role in control of immunodeficiency virus replication.
Collapse
Affiliation(s)
- John T Loffredo
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Burwitz BJ, Pendley CJ, Greene JM, Detmer AM, Lhost JJ, Karl JA, Piaskowski SM, Rudersdorf RA, Wallace LT, Bimber BN, Loffredo JT, Cox DG, Bardet W, Hildebrand W, Wiseman RW, O'Connor SL, O'Connor DH. Mauritian cynomolgus macaques share two exceptionally common major histocompatibility complex class I alleles that restrict simian immunodeficiency virus-specific CD8+ T cells. J Virol 2009; 83:6011-9. [PMID: 19339351 PMCID: PMC2687399 DOI: 10.1128/jvi.00199-09] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/25/2009] [Indexed: 12/15/2022] Open
Abstract
Vaccines that elicit CD8(+) T-cell responses are routinely tested for immunogenicity in nonhuman primates before advancement to clinical trials. Unfortunately, the magnitude and specificity of vaccine-elicited T-cell responses are variable in currently utilized nonhuman primate populations, owing to heterogeneity in major histocompatibility (MHC) class I genetics. We recently showed that Mauritian cynomolgus macaques (MCM) have unusually simple MHC genetics, with three common haplotypes encoding a shared pair of MHC class IA alleles, Mafa-A*25 and Mafa-A*29. Based on haplotype frequency, we hypothesized that CD8(+) T-cell responses restricted by these MHC class I alleles would be detected in nearly all MCM. We examine here the frequency and functionality of these two alleles, showing that 88% of MCM express Mafa-A*25 and Mafa-A*29 and that animals carrying these alleles mount three newly defined simian immunodeficiency virus-specific CD8(+) T-cell responses. The epitopes recognized by each of these responses accumulated substitutions consistent with immunologic escape, suggesting these responses exert antiviral selective pressure. The demonstration that Mafa-A*25 and Mafa-A*29 restrict CD8(+) T-cell responses that are shared among nearly all MCM indicates that these animals are an advantageous nonhuman primate model for comparing the immunogenicity of vaccines that elicit CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Benjamin J Burwitz
- Department of Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Price DA, Asher TE, Wilson NA, Nason MC, Brenchley JM, Metzler IS, Venturi V, Gostick E, Chattopadhyay PK, Roederer M, Davenport MP, Watkins DI, Douek DC. Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection. J Exp Med 2009; 206:923-36. [PMID: 19349463 PMCID: PMC2715115 DOI: 10.1084/jem.20081127] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 03/16/2009] [Indexed: 01/13/2023] Open
Abstract
Despite the pressing need for an AIDS vaccine, the determinants of protective immunity to HIV remain concealed within the complexity of adaptive immune responses. We dissected immunodominant virus-specific CD8(+) T cell populations in Mamu-A*01(+) rhesus macaques with primary SIV infection to elucidate the hallmarks of effective immunity at the level of individual constituent clonotypes, which were identified according to the expression of distinct T cell receptors (TCRs). The number of public clonotypes, defined as those that expressed identical TCR beta-chain amino acid sequences and recurred in multiple individuals, contained within the acute phase CD8(+) T cell population specific for the biologically constrained Gag CM9 (CTPYDINQM; residues 181-189) epitope correlated negatively with the virus load set point. This independent molecular signature of protection was confirmed in a prospective vaccine trial, in which clonotype engagement was governed by the nature of the antigen rather than the context of exposure and public clonotype usage was associated with enhanced recognition of epitope variants. Thus, the pattern of antigen-specific clonotype recruitment within a protective CD8(+) T cell population is a prognostic indicator of vaccine efficacy and biological outcome in an AIDS virus infection.
Collapse
Affiliation(s)
- David A. Price
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | - Tedi E. Asher
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Nancy A. Wilson
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53711
| | - Martha C. Nason
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Jason M. Brenchley
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ian S. Metzler
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Vanessa Venturi
- Centre for Vascular Research, University of New South Wales, Kensington 2052, Sydney, Australia
| | - Emma Gostick
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff CF14 4XN, Wales, UK
| | - Pratip K. Chattopadhyay
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Mario Roederer
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Miles P. Davenport
- Centre for Vascular Research, University of New South Wales, Kensington 2052, Sydney, Australia
| | - David I. Watkins
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53711
| | - Daniel C. Douek
- Vaccine Research Center, Biostatistics Research Branch, and Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
57
|
Li J, Srivastava T, Rawal R, Manuel E, Isbell D, Tsark W, La Rosa C, Wang Z, Li Z, Barry PA, Hagen KD, Longmate J, Diamond DJ. Mamu-A01/K(b) transgenic and MHC Class I knockout mice as a tool for HIV vaccine development. Virology 2009; 387:16-28. [PMID: 19249807 DOI: 10.1016/j.virol.2009.01.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 09/23/2008] [Accepted: 01/26/2009] [Indexed: 01/09/2023]
Abstract
We have developed a murine model expressing the rhesus macaque (RM) Mamu-A01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (alpha1 and alpha2 Mamu-A01 domains) and murine (alpha3, transmembrane, and cytoplasmic H-2K(b) domains) MHC Class I molecules were derived by transgenesis of the H-2K(b)D(b) double MHC Class I knockout strain. After immunization of Mamu-A01/K(b) Tg mice with rVV-SIVGag-Pol, the mice generated CD8(+) T-cell IFN-gamma responses to several known Mamu-A01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A01/K(b) Tg mice provide a model system to study the Mamu-A01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.
Collapse
Affiliation(s)
- Jinliang Li
- Division of Translational Vaccine Research, Fox South, 1000B, Beckman Research Institute of the City of Hope, 1500 E. Duarte Rd., Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Ma X, Tang LH, Qu LB, Ma J, Chen L. Identification of 17 novel major histocompatibility complex-A alleles in a population of Chinese-origin rhesus macaques. ACTA ACUST UNITED AC 2009; 73:184-7. [PMID: 19140828 DOI: 10.1111/j.1399-0039.2008.01168.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Rhesus macaques (Macaca mulatta) serve as important animal models for human disease and vaccine research. Although Chinese rhesus macaques are the same species as those of Indian origin, they are from a geographically separated population and possess divergent major histocompatibility complex (MHC) class I A alleles. In an analysis of 65 Chinese rhesus macaques, 17 novel Mamu-A alleles were identified and deposited under the following accession numbers: EU252155-158, EU262737-741, EU418504-505, EU422996, EU418506, EU753185-187, and EU828528. The discovery of these additional MHC class I A sequences indicates a greater diversity and polymorphism of Chinese rhesus macaques in different geographic locations. As the set of Mamu-A alleles in Chinese rhesus macaques differs from the alleles of Indian animals, more work still needs to be carried out to identify these new allele-restricted immune responses with regard to vaccine studies.
Collapse
Affiliation(s)
- X Ma
- Center for Vaccines and Biotherapeutics, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | |
Collapse
|
59
|
Ouyang D, Xu L, Dai Z, Shi H, Zhang G, Zheng Y, He X. Identification of major histocompatibility complex class I alleles in Chinese rhesus macaques. Acta Biochim Biophys Sin (Shanghai) 2008; 40:919-27. [PMID: 18989572 DOI: 10.1111/j.1745-7270.2008.00474.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Major histocompatibility complex (MHC) class I information is vital for understanding variance of immune responses in HIV vaccination and biomedical models. In this study, 9 Mamu-A and 13 Mamu-B alleles were identified from the cDNA products of 10 Chinese-origin rhesus macaques. Except for two alleles that had been reported by others, eight were novel and twelve extended the partial sequences that are available in GenBank. The additional information of MHC class I antigens might be beneficial to the availability of Chinese macaques in human disease studies. Furthermore, the polymorphism of leading peptides and the natural killer receptor recognition motifs in alpha1 domain both implies that Mamu-A and Mamu-B molecules might play key roles in innate immune responses of natural killer cells.
Collapse
Affiliation(s)
- Dongyun Ouyang
- Institute of Tissue Transplantation and Immunology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|
60
|
Valentine LE, Watkins DI. Relevance of studying T cell responses in SIV-infected rhesus macaques. Trends Microbiol 2008; 16:605-11. [PMID: 18964016 DOI: 10.1016/j.tim.2008.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 08/12/2008] [Accepted: 08/26/2008] [Indexed: 11/19/2022]
Abstract
HIV infection, once established, is never cleared. Rare individuals do, however, control viral replication to low levels. These successful immune responses are primarily linked to certain class I MHC alleles (MHC-I). Because of this association, many AIDS vaccines in development are designed to generate virus-specific CD8+ T cells. The Merck STEP phase 2b efficacy trial of one such vaccine was recently halted, and declared a failure. Thus, basic questions regarding what constitutes an effective T cell response and how such responses could be elicited by vaccination remain open. The best animal model available to explore such issues is simian immunodeficiency virus infection of rhesus macaques, which serves as the primary proving ground for AIDS vaccines.
Collapse
Affiliation(s)
- Laura E Valentine
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, 53711 USA
| | | |
Collapse
|
61
|
Reynolds MR, Weiler AM, Weisgrau KL, Piaskowski SM, Furlott JR, Weinfurter JT, Kaizu M, Soma T, León EJ, MacNair C, Leaman DP, Zwick MB, Gostick E, Musani SK, Price DA, Friedrich TC, Rakasz EG, Wilson NA, McDermott AB, Boyle R, Allison DB, Burton DR, Koff WC, Watkins DI. Macaques vaccinated with live-attenuated SIV control replication of heterologous virus. ACTA ACUST UNITED AC 2008; 205:2537-50. [PMID: 18838548 PMCID: PMC2571929 DOI: 10.1084/jem.20081524] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An effective AIDS vaccine will need to protect against globally diverse isolates of HIV. To address this issue in macaques, we administered a live-attenuated simian immunodeficiency virus (SIV) vaccine and challenged with a highly pathogenic heterologous isolate. Vaccinees reduced viral replication by ∼2 logs between weeks 2–32 (P ≤ 0.049) postchallenge. Remarkably, vaccinees expressing MHC-I (MHC class I) alleles previously associated with viral control completely suppressed acute phase replication of the challenge virus, implicating CD8+ T cells in this control. Furthermore, transient depletion of peripheral CD8+ lymphocytes in four vaccinees during the chronic phase resulted in an increase in virus replication. In two of these animals, the recrudescent virus population contained only the vaccine strain and not the challenge virus. Alarmingly, however, we found evidence of recombinant viruses emerging in some of the vaccinated animals. This finding argues strongly against an attenuated virus vaccine as a solution to the AIDS epidemic. On a more positive note, our results suggest that MHC-I–restricted CD8+ T cells contribute to the protection induced by the live-attenuated SIV vaccine and demonstrate that vaccine-induced CD8+ T cell responses can control replication of heterologous challenge viruses.
Collapse
Affiliation(s)
- Matthew R Reynolds
- AIDS Vaccine Research Laboratory, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Goulder PJR, Watkins DI. Impact of MHC class I diversity on immune control of immunodeficiency virus replication. Nat Rev Immunol 2008; 8:619-30. [PMID: 18617886 PMCID: PMC2963026 DOI: 10.1038/nri2357] [Citation(s) in RCA: 370] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The recent failure of the T-cell-based HIV vaccine trial led by Merck & Co., Inc. prompts the urgent need to refocus on the question of which T-cell responses are required to control HIV replication. The well-described association between the expression of particular MHC class I molecules and successful containment of HIV or, in the macaque model, SIV replication provide a valuable starting point from which to evaluate more precisely what might constitute effective CD8(+) T-cell responses. Here, we review recent studies of T-cell-mediated control of HIV and SIV infection, and offer insight for the design of a successful T-cell-based HIV vaccine in the future.
Collapse
Affiliation(s)
- Philip J R Goulder
- Department of Paediatrics, Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, UK.
| | | |
Collapse
|
63
|
|
64
|
Karl JA, Wiseman RW, Campbell KJ, Blasky AJ, Hughes AL, Ferguson B, Read DS, O'Connor DH. Identification of MHC class I sequences in Chinese-origin rhesus macaques. Immunogenetics 2007; 60:37-46. [PMID: 18097659 DOI: 10.1007/s00251-007-0267-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
Abstract
The rhesus macaque (Macaca mulatta) is an excellent model for human disease and vaccine research. Two populations exhibiting distinctive morphological and physiological characteristics, Indian- and Chinese-origin rhesus macaques, are commonly used in research. Genetic analysis has focused on the Indian macaque population, but the accessibility of these animals for research is limited. Due to their greater availability, Chinese rhesus macaques are now being used more frequently, particularly in vaccine and biodefense studies, although relatively little is known about their immunogenetics. In this study, we discovered major histocompatibility complex (MHC) class I cDNAs in 12 Chinese rhesus macaques and detected 41 distinct Mamu-A and Mamu-B sequences. Twenty-seven of these class I cDNAs were novel, while six and eight of these sequences were previously reported in Chinese and Indian rhesus macaques, respectively. We then performed microsatellite analysis on DNA from these 12 animals, as well as an additional 18 animals, and developed sequence specific primer PCR (PCR-SSP) assays for eight cDNAs found in multiple animals. We also examined our cohort for potential admixture of Chinese and Indian origin animals using a recently developed panel of single nucleotide polymorphisms (SNPs). The discovery of 27 novel MHC class I sequences in this analysis underscores the genetic diversity of Chinese rhesus macaques and contributes reagents that will be valuable for studying cellular immunology in this population.
Collapse
Affiliation(s)
- Julie A Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Sauermann U, Siddiqui R, Suh YS, Platzer M, Leuchte N, Meyer H, Mätz-Rensing K, Stoiber H, Nürnberg P, Hunsmann G, Stahl-Hennig C, Krawczak M. Mhc class I haplotypes associated with survival time in simian immunodeficiency virus (SIV)-infected rhesus macaques. Genes Immun 2007; 9:69-80. [PMID: 18094710 DOI: 10.1038/sj.gene.6364448] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In both human immunodeficiency virus-infected humans and simian immunodeficiency virus (SIV)-infected macaques, genes encoded in the major histocompatibility complex (MHC) class I region are important determinants of disease progression. However, compared to the human human lymphocyte antigen complex, the macaque MHC region encodes many more class I genes. Macaques with the same immunodominant class I genes express additional Mhc genes with the potential to influence the disease course. We therefore assessed the association between of the Mhc class I haplotypes, rather than single gene variants, and survival time in SIV-infected rhesus macaques (Macaca mulatta). DNA sequence analysis and Mhc genotyping of 245 pedigreed monkeys identified 17 Mhc class I haplotypes that constitute 10 major genotypes. Among 81 vaccination-naive, SIV-infected macaques, 71 monkeys carried at least one Mhc class I haplotype encoding only MHC antigens that were incapable of inducing an effective anti-SIV cytotoxic T lymphocytes response. Study of these macaques enabled us to relate individual Mhc class I haplotypes to slow, medium and rapid disease progression. In a post hoc analysis, classification according to disease progression was found to explain at least 48% of the observed variation of survival time.
Collapse
Affiliation(s)
- U Sauermann
- Department of Virology and Immunology, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Patterns of CD8+ immunodominance may influence the ability of Mamu-B*08-positive macaques to naturally control simian immunodeficiency virus SIVmac239 replication. J Virol 2007; 82:1723-38. [PMID: 18057253 DOI: 10.1128/jvi.02084-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Certain major histocompatibility complex (MHC) class I alleles are strongly associated with control of human immunodeficiency virus and simian immunodeficiency virus (SIV). CD8(+) T cells specific for epitopes restricted by these molecules may be particularly effective. Understanding how CD8(+) T cells contribute to control of viral replication should yield important insights for vaccine design. We have recently identified an Indian rhesus macaque MHC class I allele, Mamu-B*08, associated with elite control and low plasma viremia after infection with the pathogenic isolate SIVmac239. Here, we infected four Mamu-B*08-positive macaques with SIVmac239 to investigate why some of these macaques control viral replication. Three of the four macaques controlled SIVmac239 replication with plasma virus concentrations below 20,000 viral RNA copies/ml at 20 weeks postinfection; two of four macaques were elite controllers (ECs). Interestingly, two of the four macaques preserved their CD4(+) memory T lymphocytes during peak viremia, and all four recovered their CD4(+) memory T lymphocytes in the chronic phase of infection. Mamu-B*08-restricted CD8(+) T-cell responses dominated the acute phase and accounted for 23.3% to 59.6% of the total SIV-specific immune responses. Additionally, the ECs mounted strong and broad CD8(+) T-cell responses against several epitopes in Vif and Nef. Mamu-B*08-specific CD8(+) T cells accounted for the majority of mutations in the virus at 18 weeks postinfection. Interestingly, patterns of viral variation in Nef differed between the ECs and the other two macaques. Natural containment of AIDS virus replication in Mamu-B*08-positive macaques may, therefore, be related to a combination of immunodominance and viral escape from CD8(+) T-cell responses.
Collapse
|
67
|
Loffredo JT, Friedrich TC, León EJ, Stephany JJ, Rodrigues DS, Spencer SP, Bean AT, Beal DR, Burwitz BJ, Rudersdorf RA, Wallace LT, Piaskowski SM, May GE, Sidney J, Gostick E, Wilson NA, Price DA, Kallas EG, Piontkivska H, Hughes AL, Sette A, Watkins DI. CD8+ T cells from SIV elite controller macaques recognize Mamu-B*08-bound epitopes and select for widespread viral variation. PLoS One 2007; 2:e1152. [PMID: 18000532 PMCID: PMC2062500 DOI: 10.1371/journal.pone.0001152] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 10/12/2007] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND It is generally accepted that CD8+ T cell responses play an important role in control of immunodeficiency virus replication. The association of HLA-B27 and -B57 with control of viremia supports this conclusion. However, specific correlates of viral control in individuals expressing these alleles have been difficult to define. We recently reported that transient in vivo CD8+ cell depletion in simian immunodeficiency virus (SIV)-infected elite controller (EC) macaques resulted in a brief period of viral recrudescence. SIV replication was rapidly controlled with the reappearance of CD8+ cells, implicating that these cells actively suppress viral replication in ECs. METHODS AND FINDINGS Here we show that three ECs in that study made at least seven robust CD8+ T cell responses directed against novel epitopes in Vif, Rev, and Nef restricted by the MHC class I molecule Mamu-B*08. Two of these Mamu-B*08-positive animals subsequently lost control of SIV replication. Their breakthrough virus harbored substitutions in multiple Mamu-B*08-restricted epitopes. Indeed, we found evidence for selection pressure mediated by Mamu-B*08-restricted CD8+ T cells in all of the newly identified epitopes in a cohort of chronically infected macaques. CONCLUSIONS Together, our data suggest that Mamu-B*08-restricted CD8+ T cell responses effectively control replication of pathogenic SIV(mac)239. All seven regions encoding Mamu-B*08-restricted CD8+ T cell epitopes also exhibit amino acid replacements typically seen only in the presence of Mamu-B*08, suggesting that the variation we observe is indeed selected by CD8+ T cell responses. SIV(mac)239 infection of Indian rhesus macaques expressing Mamu-B*08 may therefore provide an animal model for understanding CD8+ T cell-mediated control of HIV replication in humans.
Collapse
Affiliation(s)
- John T Loffredo
- Wisconsin National Primate Research Center (WNPRC), University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Recognition of escape variants in ELISPOT does not always predict CD8+ T-cell recognition of simian immunodeficiency virus-infected cells expressing the same variant sequences. J Virol 2007; 82:575-81. [PMID: 17959674 DOI: 10.1128/jvi.00275-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus (HIV)'s tremendous sequence variability is a major obstacle for the development of cytotoxic-T-lymphocyte-based vaccines, especially since much of this variability is selected for by CD8(+) T cells. We investigated to what extent reactivity to escape variant peptides in standard enzyme-linked immunospot (ELISPOT) assays predicts the recognition of cells infected with corresponding escape variant viruses. Most of the variant peptides tested were recognized in standard ELISPOT and intracellular cytokine stain (ICS) assays. Functional avidity of epitope-specific T cells for some of the variants was, however, markedly reduced. These mutations which reduced avidity also abrogated recognition by epitope-specific CD8(+) T cells in a viral suppression assay. Our results indicate that "cross-reactive" CD8(+) T-cell responses identified in ELISPOT and ICS assays using a single high concentration of variant peptide often fail to predict the recognition of cells infected with variant viruses.
Collapse
|
69
|
Kwissa M, Amara RR, Robinson HL, Moss B, Alkan S, Jabbar A, Villinger F, Pulendran B. Adjuvanting a DNA vaccine with a TLR9 ligand plus Flt3 ligand results in enhanced cellular immunity against the simian immunodeficiency virus. ACTA ACUST UNITED AC 2007; 204:2733-46. [PMID: 17954572 PMCID: PMC2118478 DOI: 10.1084/jem.20071211] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
DNA vaccines offer promising strategies for immunization against infections. However, their clinical use requires improvements in immunogenicity. We explored the efficacy of Toll-like receptor (TLR) ligands (TLR-Ls) on augmenting the immunogenicity of a DNA prime–modified vaccinia virus Ankara (MVA) boost vaccine against SIV. Rhesus macaques were injected with Fms-like tyrosine kinase 3 (Flt3)–ligand (FL) to expand dendritic cells (DCs) and were primed with a DNA vaccine encoding immunodeficiency virus antigens mixed with ligands for TLR9 or TLR7/8. Subsequently, the animals were boosted with DNA and twice with recombinant MVA expressing the same antigens. TLR9-L (CpG DNA) mediated activation of DCs in vivo and enhanced the magnitude of antigen-specific CD8+ interferon (IFN) γ+ T cells and polyfunctional CD8+ T cells producing IFN-γ, tumor necrosis factor α, and interleukin 2. Although this trial was designed primarily as an immunogenicity study, we challenged the animals with pathogenic SIVmac251 and observed a reduction in peak viremia and cumulative viral loads in the TLR9-L plus FL-adjuvanted group relative to the unvaccinated group; however, the study design precluded comparisons between the adjuvanted groups and the group vaccinated with DNA/MVA alone. Viral loads were inversely correlated with the magnitude and quality of the immune response. Thus, the immunogenicity of DNA vaccines can be augmented with TLR9-L plus FL.
Collapse
Affiliation(s)
- Marcin Kwissa
- Vaccine Research Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Effect of morphine on the neuropathogenesis of SIVmac infection in Indian Rhesus Macaques. J Neuroimmune Pharmacol 2007; 3:12-25. [PMID: 18247128 DOI: 10.1007/s11481-007-9085-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/02/2007] [Indexed: 10/22/2022]
Abstract
Morphine is known to prevent the development of cell-mediated immune (CMI) responses and enhance expression of the CCR5 receptor in monocyte macrophages. We undertook a study to determine the effect of morphine on the neuropathogenesis and immunopathogenesis of simian immunodeficiency virus (SIV) infection in Indian Rhesus Macaques. Hypothetically, the effect of morphine would be to prevent the development of CMI responses to SIV and to enhance the infection in macrophages. Sixteen Rhesus Macaques were divided into three experimental groups: M (morphine only, n = 5), VM (morphine + SIV, n = 6), and V (SIV only, n = 5). Animals in groups M and VM were given 2.5 mg/kg of morphine sulfate, four times daily, for up to 59 weeks. Groups VM and V were inoculated with SIVmacR71/17E 26 weeks after the beginning of morphine administration. Morphine prevented the development of enzyme-linked immunosorbent spot-forming cell CMI responses in contrast to virus control animals, all of which developed CMI. Whereas morphine treatment had no effect on viremia, cerebrospinal fluid viral titers or survival over the time course of the study, the drug was associated with a tendency for greater build-up of virus in the brains of infected animals. Histopathological changes in the brains of animals that developed disease were of a demyelinating type in the VM animals compared to an encephalitic type in the V animals. This difference may have been associated with the immunosuppressive effect of the drug in inhibiting CMI responses.
Collapse
|
71
|
Kaizu M, Borchardt GJ, Glidden CE, Fisk DL, Loffredo JT, Watkins DI, Rehrauer WM. Molecular typing of major histocompatibility complex class I alleles in the Indian rhesus macaque which restrict SIV CD8+ T cell epitopes. Immunogenetics 2007; 59:693-703. [PMID: 17641886 DOI: 10.1007/s00251-007-0233-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 05/21/2007] [Indexed: 01/09/2023]
Abstract
The utility of the rhesus macaque as an animal model in both HIV vaccine development and pathogenesis studies necessitates the development of accurate and efficient major histocompatibility complex (MHC) genotyping technologies. In this paper, we describe the development and application of allele-specific polymerase chain reaction (PCR) amplification for the simultaneous detection of eight MHC class I alleles from the rhesus macaque (Macaca mulatta) of Indian descent. These alleles were selected, as they have been implicated in the restriction of CD8(+) T cell epitopes of simian immunodeficiency virus (SIV). Molecular typing of Mamu-A 01, Mamu-A 02, Mamu-A 08, Mamu-A 11, Mamu-B 01, Mamu-B 03, Mamu-B 04, and Mamu-B 17 was conducted in a high throughput fashion using genomic DNA. Our amplification strategy included a conserved internal control target to minimize false negative results and can be completed in less than 5 h. We have genotyped over 4,000 animals to establish allele frequencies from colonies all over the western hemisphere. The ability to identify MHC-defined rhesus macaques will greatly enhance investigation of the immune responses, which are responsible for the control of viral replication. Furthermore, application of this technically simple and accurate typing method should facilitate selection, utilization, and breeding of rhesus macaques for AIDS virus pathogenesis and vaccine studies.
Collapse
Affiliation(s)
- Masahiko Kaizu
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
O’Connor SL, Blasky AJ, Pendley CJ, Becker EA, Wiseman RW, Karl JA, Hughes AL, O’Connor DH. Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques. Immunogenetics 2007; 59:449-62. [PMID: 17384942 PMCID: PMC2836927 DOI: 10.1007/s00251-007-0209-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 02/26/2007] [Indexed: 11/29/2022]
Abstract
There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.
Collapse
Affiliation(s)
- Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Alex J. Blasky
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chad J. Pendley
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Ericka A. Becker
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Roger W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Julie A. Karl
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Austin L. Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
73
|
Fuller DH, Shipley T, Allen TM, Fuller JT, Wu MS, Horton H, Wilson N, Widera G, Watkins DI. Immunogenicity of hybrid DNA vaccines expressing hepatitis B core particles carrying human and simian immunodeficiency virus epitopes in mice and rhesus macaques. Virology 2007; 364:245-55. [PMID: 17428516 PMCID: PMC6286304 DOI: 10.1016/j.virol.2007.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 12/20/2006] [Accepted: 02/20/2007] [Indexed: 02/08/2023]
Abstract
An effective HIV vaccine will likely need to induce broad and potent CTL responses. Epitope-based vaccines offer significant potential for inducing multi-specific CTL, but often require conjugation to T helper epitopes or carrier moieties to induce significant responses. We tested hybrid DNA vaccines encoding one or more HIV or SIV CTL epitopes fused to a hepatitis B core antigen (HBcAg) carrier gene as a means to improve the immunogenicity of epitope-based DNA vaccines. Immunization of mice with a HBcAg-HIV epitope DNA vaccine induced CD8(+) T cell responses that significantly exceeded levels induced with DNA encoding either the whole HIV antigen or the epitope alone. In rhesus macaques, a multi-epitope hybrid HBcAg-SIV DNA vaccine induced CTL responses to 13 different epitopes, including 3 epitopes that were previously not detected in SIV-infected macaques. These data demonstrate that immunization with hybrid HBcAg-epitope DNA vaccines is an effective strategy to increase the magnitude and breadth of HIV-specific CTL responses.
Collapse
|
74
|
Asquith B, McLean AR. In vivo CD8+ T cell control of immunodeficiency virus infection in humans and macaques. Proc Natl Acad Sci U S A 2007; 104:6365-70. [PMID: 17404226 PMCID: PMC1851058 DOI: 10.1073/pnas.0700666104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Forty million people are estimated to be infected with HIV-1, and only a small fraction of those have access to life-prolonging antiretroviral treatment. As the epidemic grows there is an urgent need for effective therapeutic and prophylactic vaccines. Nonhuman primate models of immunodeficiency virus infection are essential for the preclinical evaluation of candidate vaccines. To interpret the results of these trials, comparative studies of the human and macaque immune responses are needed. Despite the widespread use of macaques to evaluate vaccines designed to elicit a CD8(+) cytotoxic T lymphocyte (CTL) response, the efficiency with which CTL control immunodeficiency virus infections has not been compared between humans and macaques, largely because of difficulties in assaying the functional CTL response. We recently developed a method for estimating the rate at which CTLs kill cells productively infected with HIV-1 in humans in vivo. Here, using the same technique, we quantify the rate at which CTLs kill infected cells in macaque models of HIV infection. We show that CTLs kill productively infected cells significantly faster (P = 0.004) and that escape variants have significantly higher fitness costs (P = 0.003) in macaques compared with humans. These results suggest that it may be easier to elicit a protective CTL response in macaques than in humans and that vaccine studies conducted in macaques need to be interpreted accordingly.
Collapse
Affiliation(s)
- Becca Asquith
- Department of Immunology, Imperial College London, London W2 1PG, UK.
| | | |
Collapse
|
75
|
Lafont BAP, McGraw CM, Stukes SA, Buckler-White A, Plishka RJ, Byrum RA, Hirsch VM, Martin MA. The locus encoding an oligomorphic family of MHC-A alleles (Mane-A*06/Mamu-A*05) is present at high frequency in several macaque species. Immunogenetics 2007; 59:211-23. [PMID: 17256149 DOI: 10.1007/s00251-007-0190-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
Several macaques species are used for HIV pathogenesis and vaccine studies, and the characterization of their major histocompatibility complex (MHC) class I genes is required to rigorously evaluate the cellular immune responses induced after immunization and/or infection. In this study, we demonstrate that the gene expressing the Mane-A*06 allele of pig-tailed macaques is an orthologue of the locus encoding the Mamu-A*05 allele family in rhesus macaques. Analysis of the distribution of this locus in a cohort of 63 pig-tailed macaques revealed that it encodes an oligomorphic family of alleles, highly prevalent (90%) in the pig-tailed macaque population. Similarly, this locus was very frequently found (62%) in a cohort of 80 Indian rhesus macaques. An orthologous gene was also detected in cynomolgus monkeys originating from four different geographical locations, but was absent in two African monkey species. Expression analysis in pig-tailed macaques revealed that the Mane-A*06 alleles encoded by this locus are transcribed at 10- to 20-fold lower levels than other MHC-A alleles (Mane-A*03 or Mane-A*10). Despite their conservation and high prevalence among Asian macaque species, the alleles of the Mane-A*06 family and, by extension their orthologues in rhesus and cynomolgus monkeys, may only modestly contribute to cellular immune responses in macaques because of their low level of expression.
Collapse
Affiliation(s)
- Bernard A P Lafont
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Chu F, Lou Z, Chen YW, Liu Y, Gao B, Zong L, Khan AH, Bell JI, Rao Z, Gao GF. First glimpse of the peptide presentation by rhesus macaque MHC class I: crystal structures of Mamu-A*01 complexed with two immunogenic SIV epitopes and insights into CTL escape. THE JOURNAL OF IMMUNOLOGY 2007; 178:944-52. [PMID: 17202356 DOI: 10.4049/jimmunol.178.2.944] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The infection of rhesus macaques (Macaca mulatta) by the SIV is the best animal model for studying HIV infection and for AIDS vaccine development. A prevalent MHC class I allele, Mamu-A*01, is known to correlate with containment of SIV, which has been extensively explored in studies of CTL-based vaccination concepts. We determined the crystal structures of Mamu-A*01 complexed with two immunodominant SIV epitopes: the nonamer CM9 of group-specific Ag (Gag, 181-189; CTPYDINQM) and the octamer TL8 of transcription activator (Tat, 28-35; TTPESANL). The overall structures of the two Mamu-A*01 complexes are similar to other MHC class I molecules. Both structures confirm the presence of an absolutely conserved proline anchor residue in the P3 position of the Ag, bound to a D pocket of the Mamu-A*01 H chain with optimal surface complementarity. Like other MHC/peptide complex structures, the P2 and C-terminal residues of the epitopes are also important for anchoring to the MHC molecule, whereas the middle residues form an arch and their side chains are directed into solvent. These two structures reveal details of how Mamu-A*01 interacts with two well-studied epitopes at the atomic level. We discuss the structural basis of CTL escape, based on molecular models made possible by these two structures. The results we present in this study are most relevant for the rational design of Mamu-A*01-restricted CTL epitopes with improved binding, as a step toward development of AIDS vaccines.
Collapse
Affiliation(s)
- Fuliang Chu
- Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, 13 Beiyitiao, Zhongguancun, Beijing 100080, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Friedrich TC, Valentine LE, Yant LJ, Rakasz EG, Piaskowski SM, Furlott JR, Weisgrau KL, Burwitz B, May GE, León EJ, Soma T, Napoe G, Capuano SV, Wilson NA, Watkins DI. Subdominant CD8+ T-cell responses are involved in durable control of AIDS virus replication. J Virol 2007; 81:3465-76. [PMID: 17251286 PMCID: PMC1866056 DOI: 10.1128/jvi.02392-06] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Elite controllers" are individuals that durably control human immunodeficiency virus or simian immunodeficiency virus replication without therapeutic intervention. The study of these rare individuals may facilitate the definition of a successful immune response to immunodeficiency viruses. Here we describe six Indian-origin rhesus macaques that have controlled replication of the pathogenic virus SIVmac239 for 1 to 5 years. To determine which lymphocyte populations were responsible for this control, we transiently depleted the animals' CD8+ cells in vivo. This treatment resulted in 100- to 10,000-fold increases in viremia. When the CD8+ cells returned, control was reestablished and the levels of small subsets of previously subdominant CD8+ T cells expanded up to 2,500-fold above pre-depletion levels. This wave of CD8+ T cells was accompanied by robust Gag-specific CD4 responses. In contrast, CD8+ NK cell frequencies changed no more than threefold. Together, our data suggest that CD8+ T cells targeting a small number of epitopes, along with broad CD4+ T-cell responses, can successfully control the replication of the AIDS virus. It is likely that subdominant CD8+ T-cell populations play a key role in maintaining this control.
Collapse
Affiliation(s)
- Thomas C Friedrich
- Wisconsin National Primate Research Center, 1220 Capitol Court, Madison, WI 53715-1299, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Pahar B, Cantu MA, Zhao W, Kuroda MJ, Veazey RS, Montefiori DC, Clements JD, Aye PP, Lackner AA, Lovgren-Bengtsson K, Sestak K. Single epitope mucosal vaccine delivered via immuno-stimulating complexes induces low level of immunity against simian-HIV. Vaccine 2006; 24:6839-49. [PMID: 17050045 DOI: 10.1016/j.vaccine.2006.06.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Revised: 06/07/2006] [Accepted: 06/20/2006] [Indexed: 11/16/2022]
Abstract
The difficulty in developing an effective vaccine to contain the HIV/AIDS epidemic coupled with the fact that primary HIV-1 infection typically occurs via mucosal sites has increased emphasis on vaccine approaches that protect at mucosal surfaces. In this study we employed HIV and simian-HIV (SHIV)-derived T helper (Th) and cytotoxic T lymphocyte (CTL) single epitopes incorporated into immuno-stimulating complexes (ISCOM) as a candidate immunogens. Immunized rhesus macaques (Macaca mulatta) were challenged with CCR5-tropic SHIV(SF162p4). On the day of challenge, low levels of virus-neutralizing antibodies (Ab) and CTLs were detected in ISCOM-immunized macaques. Greater than 10(5) viral RNA copies per ml of plasma in 2/5 immunized and 3/4 control macaques were detected within 3 weeks post-challenge. Depletion of CD4+ T cells from gut-associated lymphoid tissues (GALT) was observed by post-challenge day (PCD) 14 in all macaques regardless immunization. Nonetheless, lower viral loads and relatively better preservation of peripheral CD4+ T cells following the SHIV infection was observed in ISCOM-immunized macaques. We predict that if coadministered with additional epitopes and/or more efficacious mucosal delivery system or route, HIV/SIV-derived peptide vaccines may have potential to elicit heterologous protection.
Collapse
Affiliation(s)
- Bapi Pahar
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Im EJ, Nkolola JP, di Gleria K, McMichael AJ, Hanke T. Induction of long-lasting multi-specific CD8+T cells by a four-component DNA-MVA/HIVA-RENTA candidate HIV-1 vaccine in rhesus macaques. Eur J Immunol 2006; 36:2574-84. [PMID: 17013988 DOI: 10.1002/eji.200636482] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As a part of a long-term effort to develop vaccine against HIV-1 clade A inducing protective T cell responses in humans, we run mutually complementing studies in humans and non-human primates (NHP) with the aim to maximize vaccine immunogenicity. The candidate vaccine under development has four components, pTHr.HIVA and pTH.RENTA DNA, and modified vaccinia virus Ankara (MVA).HIVA and MVA.RENTA, delivered in a heterologous DNA prime-MVA boost regimen. While the HIVA (Gag/epitopes) components have been tested in NHP and over 300 human subjects, we plan to test in humans the RENTA (reverse transcriptase, gp41, Nef, Tat) vaccines designed to broaden HIVA-induced responses in year 2007. Here, we investigated the four-component vaccine long-term immunogenicity in Mamu-A*01-positive rhesus macaques and demonstrated that the vaccine-induced T cells were multi-specific, multi-functional, readily proliferated to recall peptides and were circulating in the peripheral blood of vaccine recipients over 1 year after vaccine administration. The consensus clade A-elicited T cells recognized 50% of tested epitope variants from other HIV-1 clades. Thus, the DNA-MVA/HIVA-RENTA vaccine induced memory T cells of desirable characteristics and similarities to those induced in humans by HIVA vaccines alone; however, single-clade vaccines may not elicit sufficiently cross-reactive responses.
Collapse
Affiliation(s)
- Eung-Jun Im
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
80
|
Wilson NA, Reed J, Napoe GS, Piaskowski S, Szymanski A, Furlott J, Gonzalez EJ, Yant LJ, Maness NJ, May GE, Soma T, Reynolds MR, Rakasz E, Rudersdorf R, McDermott AB, O'Connor DH, Friedrich TC, Allison DB, Patki A, Picker LJ, Burton DR, Lin J, Huang L, Patel D, Heindecker G, Fan J, Citron M, Horton M, Wang F, Liang X, Shiver JW, Casimiro DR, Watkins DI. Vaccine-induced cellular immune responses reduce plasma viral concentrations after repeated low-dose challenge with pathogenic simian immunodeficiency virus SIVmac239. J Virol 2006; 80:5875-85. [PMID: 16731926 PMCID: PMC1472612 DOI: 10.1128/jvi.00171-06] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4(+) memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication.
Collapse
Affiliation(s)
- Nancy A Wilson
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53711, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Steckbeck JD, Grieser HJ, Sturgeon T, Taber R, Chow A, Bruno J, Murphy-Corb M, Montelaro RC, Cole KS. Dynamic evolution of antibody populations in a rhesus macaque infected with attenuated simian immunodeficiency virus identified by surface plasmon resonance. J Med Primatol 2006; 35:248-60. [PMID: 16872288 PMCID: PMC3361734 DOI: 10.1111/j.1600-0684.2006.00173.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Increasing evidence suggests that an effective AIDS vaccine will need to elicit broadly neutralizing antibody responses. However, the mechanisms of antibody-mediated neutralization have not been defined. Previous studies from our lab have identified significant differences in the rates of antibody binding to trimeric SIV envelope proteins that correlate with neutralization sensitivity. Importantly, these results demonstrate differences in monoclonal antibody (MAb) binding to neutralization-sensitive and neutralization-resistant envelope proteins, suggesting that one mechanism for virus neutralization may be related to the stability of antibody binding. To date, little has been done to evaluate the binding properties of polyclonal serum antibodies elicited by SIV infection or vaccination. METHODS In the current study, we translate these findings with MAbs to study antibody binding properties of polyclonal serum antibody responses generated in rhesus macaques infected with attenuated SIV. Quantitative and qualitative binding properties of well-characterized longitudinal serum samples to trimeric, recombinant SIV gp140 envelope proteins were analyzed using surface plasmon resonance (SPR) technology (Biacore). RESULTS Results from these studies identified two antibody populations in most of the samples analyzed; one antibody population exhibited fast association/dissociation rates (unstable) while the other population demonstrated slower association/dissociation rates (stable). Over time, the percentage of the total binding response of each antibody population evolved, demonstrating a dynamic evolution of the antibody response that was consistent with the maturation of antibody responses defined using our standard panel of serological assays. However, the current studies provided a higher resolution analysis of polyclonal antibody binding properties, particularly with respect to the early time-points post-infection (PI), that is not possible with standard serological assays. More importantly, the increased stability of the antibody population with time PI corresponded with potent neutralization of homologous SIV in vitro. CONCLUSIONS These results suggest that the stability of the antibody-envelope interaction may be an important mechanism of serum antibody virus neutralization. In addition, measurements of the 'apparent' rates of association and dissociation may offer unique numerical descriptors to characterize the level of antibody maturation achieved by candidate vaccine strategies capable of eliciting broadly neutralizing antibody responses.
Collapse
Affiliation(s)
- J D Steckbeck
- Department of Medicine, Infectious Diseases Division, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Taber R, Rajakumar PA, Fuller DH, Trichel AM, Dowling P, Meleason D, Amedee A, Murphey-Corb M. Effects of monotherapy with (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) on the evolution of a primary Simian immunodeficiency virus (SIV) isolate. Virology 2006; 354:116-31. [PMID: 16884757 DOI: 10.1016/j.virol.2006.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/05/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Determining the impact of antiretroviral therapy on virus evolution could advance the development of improved therapeutics/vaccines against HIV. Toward this goal, we analyzed virus burden, quasispecies complexity, and T cell responses in SIV/DeltaB670-infected rhesus macaques+/-treatment for 7 months with PMPA (2-30 weeks postinfection). Treatment divided the animals into two groups: poor responders (a reduction of < or =1 log) and responders (> or =2 log reduction) in virus burden. Virus evolution in poor responders and untreated controls was characterized by expression of a complex quasispecies that evolved as the disease progressed. This included the universal loss of a viral genotype selected against by in vitro passage in monkey cells and selected for by propagation in human cells. In contrast, a good response to PMPA was characterized by infection with a less complex quasispecies that evolved more slowly. Interestingly, in 2 of the best responders, the human-preferred genotype persisted until the study was discontinued (89 weeks p.i.). Neither virus burden nor the magnitude of the T cell response at 2 weeks postinfection predicted PMPA responsiveness. However, responders expressed a less complex quasispecies than nonresponders prior to treatment. These data suggest a role for intrinsic host factors in treatment responsiveness, and lend support for therapeutic vaccination as an adjunct to effective therapy.
Collapse
Affiliation(s)
- Rachel Taber
- Department of Molecular Genetics and Biochemistry, BSTWR E1240, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Belyakov IM, Kuznetsov VA, Kelsall B, Klinman D, Moniuszko M, Lemon M, Markham PD, Pal R, Clements JD, Lewis MG, Strober W, Franchini G, Berzofsky JA. Impact of vaccine-induced mucosal high-avidity CD8+ CTLs in delay of AIDS viral dissemination from mucosa. Blood 2006; 107:3258-64. [PMID: 16373659 PMCID: PMC1895757 DOI: 10.1182/blood-2005-11-4374] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/09/2005] [Indexed: 01/17/2023] Open
Abstract
Natural HIV transmission occurs through mucosa, but it is debated whether mucosal cytotoxic T lymphocytes (CTLs) can prevent or reduce dissemination from the initial mucosal site to the systemic circulation. Also, the role of CTL avidity in mucosal AIDS viral transmission is unknown. To address these questions, we used delay in acute-phase peak viremia after intrarectal challenge as an indicator of systemic dissemination. We found that a peptide-prime/poxviral boost vaccine inducing high levels of high-avidity mucosal CTLs can have an impact on dissemination of intrarectally administered pathogenic SHIV-ku2 in macaques and that such protection correlates better with mucosal than with systemic CTLs and particularly with levels of high-avidity mucosal CTLs.
Collapse
Affiliation(s)
- Igor M Belyakov
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Fuller DH, Rajakumar PA, Wu MS, McMahon CW, Shipley T, Fuller JT, Bazmi A, Trichel AM, Allen TM, Mothe B, Haynes JR, Watkins DI, Murphey-Corb M. DNA immunization in combination with effective antiretroviral drug therapy controls viral rebound and prevents simian AIDS after treatment is discontinued. Virology 2006; 348:200-15. [PMID: 16439000 DOI: 10.1016/j.virol.2005.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/28/2005] [Accepted: 12/06/2005] [Indexed: 11/20/2022]
Abstract
DNA immunization in conjunction with antiretroviral therapy was evaluated in SIV-infected rhesus macaques treated with [R]-9-[2-phosphonylmethoxypropyl]adenine (PMPA). Macaques were immunized monthly with DNA vaccines expressing either SIV gag/tat or SIV gag/tat and 19 CD8+ T cell epitopes during 7 months of therapy. Half the animals from each group were additionally immunized before infection. Only 60% of the animals (4 controls, 20 vaccinated) responded to PMPA (ART responders). All 4 ART responder controls demonstrated viral rebound or CD4 decline after PMPA was withdrawn. In contrast, 17 of 20 vaccinated ART responders contained viral rebound for over 7 months after PMPA was withdrawn. Viral control correlated with stable CD4 counts, higher lymphoproliferation and an increase in the magnitude and breadth of the CD8+ T cell response. Immunizing before infection or with multi-epitopes enhanced these effects. These results demonstrate that DNA immunization during antiretroviral therapy may be an effective strategy to treat HIV infection.
Collapse
MESH Headings
- Adenine/administration & dosage
- Adenine/analogs & derivatives
- Adenine/therapeutic use
- Animals
- Anti-HIV Agents/administration & dosage
- Anti-HIV Agents/therapeutic use
- CD4 Lymphocyte Count
- CD8-Positive T-Lymphocytes/immunology
- Cell Proliferation
- Disease Progression
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, tat/genetics
- Gene Products, tat/immunology
- Immunotherapy, Active/methods
- Macaca mulatta
- Organophosphonates/administration & dosage
- Organophosphonates/therapeutic use
- RNA, Viral/blood
- Simian Acquired Immunodeficiency Syndrome/drug therapy
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Immunodeficiency Virus/drug effects
- Simian Immunodeficiency Virus/immunology
- Statistics as Topic
- Tenofovir
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viremia/prevention & control
- Withholding Treatment
Collapse
|
85
|
McDermott AB, O'Connor DH, Fuenger S, Piaskowski S, Martin S, Loffredo J, Reynolds M, Reed J, Furlott J, Jacoby T, Riek C, Dodds E, Krebs K, Davies ME, Schleif WA, Casimiro DR, Shiver JW, Watkins DI. Cytotoxic T-lymphocyte escape does not always explain the transient control of simian immunodeficiency virus SIVmac239 viremia in adenovirus-boosted and DNA-primed Mamu-A*01-positive rhesus macaques. J Virol 2006; 79:15556-66. [PMID: 16306626 PMCID: PMC1315992 DOI: 10.1128/jvi.79.24.15556-15566.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adenovirus 5 (Ad5) vectors show promise as human immunodeficiency virus vaccine candidates. Indian rhesus macaques vaccinated with Ad5-gag controlled simian-human immunodeficiency virus SHIV89.6P viral replication in the absence of Env immunogens that might elicit humoral immunity. Here we immunized 15 macaques using either a homologous Ad5-gag/Ad5-gag (Ad5/Ad5) or a heterologous DNA-gag/Ad5-gag (DNA/Ad5) prime-boost regimen and challenged them with a high dose of simian immunodeficiency virus SIVmac239. Macaques vaccinated with the DNA/Ad5 regimen experienced a brief viral load nadir of less than 10,000 viral copies per ml blood plasma that was not seen in Mamu-A*01-negative DNA/Ad5 vaccinees, Mamu-A*01-positive Ad5/Ad5 vaccinees, or vaccine-naive controls. Interestingly, most of these animals were not durably protected from disease progression when challenged with SIVmac239. To investigate the reasons underlying this short-lived vaccine effect, we investigated breadth of the T-cell response, immunogenetic background, and viral escape from CD8+ lymphocytes that recognize immunodominant T-cell epitopes. We show that these animals do not mount unusually broad cellular immune response, nor do they express unusual major histocompatibility complex class I alleles. Viral recrudescence occurred in four of the five Mamu-A*01-positive vaccinated macaques. However, only a single animal in this group demonstrated viral escape in the immunodominant Gag181-189 CM9 response. These results suggest that viral "breakthrough" in vaccinated animals and viral escape are not inextricably linked and underscore the need for additional research into the mechanisms of vaccine failure.
Collapse
Affiliation(s)
- Adrian B McDermott
- Wisconsin National Primate Center, 1220 Capitol Court, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Newberg MH, McEvers KJ, Gorgone DA, Lifton MA, Baumeister SHC, Veazey RS, Schmitz JE, Letvin NL. Immunodomination in the evolution of dominant epitope-specific CD8+ T lymphocyte responses in simian immunodeficiency virus-infected rhesus monkeys. THE JOURNAL OF IMMUNOLOGY 2006; 176:319-28. [PMID: 16365424 DOI: 10.4049/jimmunol.176.1.319] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Because the control of HIV-1 replication is largely dependent on CD8+ T lymphocyte responses specific for immunodominant viral epitopes, vaccine strategies that increase the breadth of dominant epitope-specific responses should contribute to containing HIV-1 spread. Developing strategies to elicit such broad immune responses will require an understanding of the mechanisms responsible for focusing CD8+ T lymphocyte recognition on a limited number of epitopes. To explore this biology, we identified cohorts of rhesus monkeys that expressed the MHC class I molecules Mamu-A*01, Mamu-A*02, or both, and assessed the evolution of their dominant epitope-specific CD8+ T lymphocyte responses (Gag p11C- and Tat TL8-specific in the Mamu-A*01+ and Nef p199RY-specific in the Mamu-A*02+ monkeys) following acute SIV infection. The Mamu-A*02+ monkeys that also expressed Mamu-A*01 exhibited a significant delay in the evolution of the CD8+ T lymphocyte responses specific for the dominant Mamu-A*02-restricted SIV epitope, Nef p199RY. This delay in kinetics was not due to differences in viral load kinetics or magnitude or in viral escape mutations, but was associated with the evolution of the Mamu-A*01-restricted CD8+ T lymphocyte responses to the highly dominant SIV epitopes Gag p11C and Tat TL8. Thus, the evolution of dominant epitope-specific CD8+ T lymphocyte responses can be suppressed by other dominant epitope-specific responses, and this immunodomination is important in determining the kinetics of dominant epitope-specific responses.
Collapse
Affiliation(s)
- Michael H Newberg
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Loffredo JT, Rakasz EG, Giraldo JP, Spencer SP, Grafton KK, Martin SR, Napoé G, Yant LJ, Wilson NA, Watkins DI. Tat(28-35)SL8-specific CD8+ T lymphocytes are more effective than Gag(181-189)CM9-specific CD8+ T lymphocytes at suppressing simian immunodeficiency virus replication in a functional in vitro assay. J Virol 2006; 79:14986-91. [PMID: 16282500 PMCID: PMC1287586 DOI: 10.1128/jvi.79.23.14986-14991.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Epitope-specific CD8+ T lymphocytes may play an important role in controlling human immunodeficiency virus (HIV)/simian immunodeficiency virus replication. Unfortunately, standard cellular assays do not measure the antiviral efficacy (the ability to suppress virus replication) of CD8+ T lymphocytes. Certain epitope-specific CD8+ T lymphocytes may be better than others at suppressing viral replication. We compared the antiviral efficacy of two immunodominant CD8+ T lymphocyte responses--Tat(28-35)SL8 and Gag(181-189)CM9--by using a functional in vitro assay. Viral suppression by Tat-specific CD8+ T lymphocytes was consistently greater than that of Gag-specific CD8+ T lymphocytes. Such differences in antigen-specific CD8+-T-lymphocyte efficacy may be important for selecting CD8+ T lymphocyte epitopes for inclusion in future HIV vaccines.
Collapse
Affiliation(s)
- John T Loffredo
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Smith MZ, Fernandez CS, Chung A, Dale CJ, De Rose R, Lin J, Brooks AG, Krebs KC, Watkins DI, O'Connor DH, Davenport MP, Kent SJ. The pigtail macaque MHC class I allele Mane-A*10 presents an immundominant SIV Gag epitope: identification, tetramer development and implications of immune escape and reversion. J Med Primatol 2005; 34:282-93. [PMID: 16128923 DOI: 10.1111/j.1600-0684.2005.00126.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pigtail macaque (Macaca nemestrina) is a common model for the study of AIDS. The pigtail major histocompatibility complex class I allele Mane-A*10 restricts an immunodominant simian immunodeficiency virus (SIV) Gag epitope (KP9) which rapidly mutates to escape T cell recognition following acute simian/human immunodeficiency virus infection. Two technologies for the detection of Mane-A*10 in outbred pigtail macaques were developed: reference strand-mediated conformational analysis and sequence-specific primer polymerase chain reaction. A Mane-A*10/KP9 tetramer was then developed to quantify CD8(+) T lymphocytes primed by multigenic DNA vaccination, which have previously been difficult to detect using standard interferon-gamma-based T cell assays. We also demonstrate mutational escape at KP9 following acute SIV infection. Mane-A*10(+) animals have lower set point SIV levels than Mane-A*10(-) animals, suggesting a significant fitness cost of escape. These studies pave the way for a more robust understanding of HIV vaccines in pigtail macaques.
Collapse
Affiliation(s)
- Miranda Z Smith
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Pasquetto V, Bui HH, Giannino R, Banh C, Mirza F, Sidney J, Oseroff C, Tscharke DC, Irvine K, Bennink JR, Peters B, Southwood S, Cerundolo V, Grey H, Yewdell JW, Sette A. HLA-A*0201, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. THE JOURNAL OF IMMUNOLOGY 2005; 175:5504-15. [PMID: 16210659 DOI: 10.4049/jimmunol.175.8.5504] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In virus models explored in detail in mice, CTL typically focus on a few immunodominant determinants. In this study we use a multipronged approach to understand the diversity of CTL responses to vaccinia virus, a prototypic poxvirus with a genome approximately 20-fold larger than that of the model RNA viruses typically studied in mice. Based on predictive computational algorithms for peptide binding to HLA supertypes, we synthesized a panel of 2889 peptides to begin to create an immunomic map of human CTL responses to poxviruses. Using this panel in conjunction with CTLs from vaccinia virus-infected HLA transgenic mice, we identified 14 HLA-A*0201-, 4 HLA-A*1101-, and 3 HLA-B*0702-restricted CD8(+) T cell determinants distributed over 20 distinct proteins. These peptides were capable of binding one or multiple A2, A3, and B7 supertype molecules with affinities typical of viral determinants. Surprisingly, many of the viral proteins recognized are predicted to be late gene products, in addition to the early intermediate gene products expected. Nearly all of the determinants identified have identical counterparts encoded by modified vaccinia virus Ankara as well as variola virus, the agent of smallpox. These findings have implications for the design of new smallpox vaccines and the understanding of immune responses to large DNA viruses in general.
Collapse
Affiliation(s)
- Valerie Pasquetto
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Loffredo JT, Sidney J, Piaskowski S, Szymanski A, Furlott J, Rudersdorf R, Reed J, Peters B, Hickman-Miller HD, Bardet W, Rehrauer WM, O'Connor DH, Wilson NA, Hildebrand WH, Sette A, Watkins DI. The high frequency Indian rhesus macaque MHC class I molecule, Mamu-B*01, does not appear to be involved in CD8+ T lymphocyte responses to SIVmac239. THE JOURNAL OF IMMUNOLOGY 2005; 175:5986-97. [PMID: 16237093 DOI: 10.4049/jimmunol.175.9.5986] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the SIV-infected Indian rhesus macaque (Macaca mulatta) is the animal model most widely used for studying HIV infection, our current understanding of the functional macaque MHC class I molecules is limited. To date, SIV-derived CD8+ T lymphocyte epitopes from only three high frequency macaque MHC class I molecules have been extensively characterized. In this study, we defined the peptide-binding properties of the high frequency Indian rhesus macaque class I molecule, Mamu-B*01 ( approximately 26%). We first identified a preliminary binding motif by eluting and sequencing endogenously bound Mamu-B*01 ligands. We further characterized the peptide-binding characteristics using panels of single amino acid substitution analogs. Using this detailed motif, 507 peptides derived from SIV(mac)239 were identified and tested for their Mamu-B*01 binding capacity. Surprisingly, only 11 (2.2%) of these motif-containing peptides bound with IC50 values < or =500 nM. We assessed the immunogenicity of these peptides using freshly isolated PBMC from ten Mamu-B*01+ SIV-infected rhesus macaques in IFN-gamma ELISPOT and IFN-gamma/TNF-alpha intracellular cytokine staining assays. Lymphocytes from these SIV-infected macaques responded to none of these peptides. Furthermore, there was no sequence variation indicative of escape in the regions of the virus that encoded these peptides. Additionally, we could not confirm previous reports of SIV-derived Mamu-B*01-restricted epitopes in the Env and Gag proteins. Our results suggest that the high frequency MHC class I molecule, Mamu-B*01, is not involved in SIV-specific CD8+ T lymphocyte responses.
Collapse
Affiliation(s)
- John T Loffredo
- Wisconsin National Primate Research Center (WNPRC), University of Wisconsin, Madison, WI 53715, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Strayer DS, Akkina R, Bunnell BA, Dropulic B, Planelles V, Pomerantz RJ, Rossi JJ, Zaia JA. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther 2005; 11:823-42. [PMID: 15922953 DOI: 10.1016/j.ymthe.2005.01.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/21/2022] Open
Abstract
Progress in developing effective gene transfer approaches to treat HIV-1 infection has been steady. Many different transgenes have been reported to inhibit HIV-1 in vitro. However, effective translation of such results to clinical practice, or even to animal models of AIDS, has been challenging. Among the reasons for this failure are uncertainty as to the most effective cell population(s) to target, the diffuseness of these target cells in the body, and ineffective or insufficiently durable gene delivery. Better understanding of the HIV-1 replicative cycle, host factors involved in HIV-1 infection, vector biology and application, transgene technology, animal models, and clinical study design have all contributed vastly to planning current and future strategies for application of gene therapeutic approaches to the treatment of AIDS. This review focuses on the newest developments in these areas and provides a strong basis for renewed optimism that gene therapy will have an important role to play in treating people infected with HIV-1.
Collapse
Affiliation(s)
- David S Strayer
- Department of Pathology, Jefferson Medical College, 1020 Locust Street, Room 251, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Krebs KC, Jin Z, Rudersdorf R, Hughes AL, O'Connor DH. Unusually High Frequency MHC Class I Alleles in Mauritian Origin Cynomolgus Macaques. THE JOURNAL OF IMMUNOLOGY 2005; 175:5230-9. [PMID: 16210628 DOI: 10.4049/jimmunol.175.8.5230] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute shortages of Indian origin Rhesus macaques significantly hinder HIV/AIDS research. Cellular immune responses are particularly difficult to study because only a subset of animals possess MHC class I (MHC I) alleles with defined peptide-binding specificities. To expand the pool of nonhuman primates suitable for studies of cellular immunity, we defined 66 MHC I alleles in Cynomolgus macaques (Macaca fascicularis) of Chinese, Vietnamese, and Mauritian origin. Most MHC I alleles were found only in animals from a single geographic origin, suggesting that Cynomolgus macaques from different origins are not interchangeable in studies of cellular immunity. Animals from Mauritius may be particularly valuable because >50% of these Cynomolgus macaques share the MHC class I allele combination Mafa-B*430101, Mafa-B*440101, and Mafa-B*460101. The increased MHC I allele sharing of Mauritian origin Cynomolgus macaques may dramatically reduce the overall number of animals needed to study cellular immune responses in nonhuman primates while simultaneously reducing the confounding effects of genetic heterogeneity in HIV/AIDS research.
Collapse
Affiliation(s)
- Kendall C Krebs
- Wisconsin National Primate Research Center, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
93
|
Peters B, Bui HH, Sidney J, Weng Z, Loffredo JT, Watkins DI, Mothé BR, Sette A. A computational resource for the prediction of peptide binding to Indian rhesus macaque MHC class I molecules. Vaccine 2005; 23:5212-24. [PMID: 16137805 DOI: 10.1016/j.vaccine.2005.07.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 07/28/2005] [Indexed: 11/20/2022]
Abstract
Non-human primates, in general, and Indian rhesus macaques, specifically, play an important role in the development and testing of vaccines and diagnostics destined for human use. To date, several frequently expressed macaque MHC molecules have been identified and their binding specificities characterized in detail. Here, we report the development of computational algorithms to predict peptide binding and potential T cell epitopes for the common MHC class I alleles Mamu-A*01, -A*02, -A*11, -B*01 and -B*17, which cover approximately two thirds of the captive Indian rhesus macaque populations. We validated this method utilizing an SIV derived data set encompassing 59 antigenic peptides. Of all peptides contained in the SIV proteome, the 2.4% scoring highest in the prediction contained 80% of the antigenic peptides. The method was implemented in a freely accessible and user friendly website at . Thus, we anticipate that our approach can be utilized to rapidly and efficiently identify CD8+ T cell epitopes recognized by rhesus macaques and derived from any pathogen of interest.
Collapse
Affiliation(s)
- B Peters
- La Jolla Institute for Allergy and Immunology, Vaccine Discovery - I, Suite 326, San Diego, CA 92109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
One of the main host factors controlling resistance to disease appears to be the MHC. The recent poor results in HIV-1/AIDS Phase 3 vaccine field trials underline the importance of non-human primate models for AIDS. These models have been, and will continue to be, important for the definition of protective immune responses relevant to successful vaccine design because they supply essential information on the basic biology of lentivirus infections, mechanisms of resistance, escape and vaccine development.
Collapse
Affiliation(s)
- Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre, P.O Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | |
Collapse
|
95
|
Tangri S, Mothé BR, Eisenbraun J, Sidney J, Southwood S, Briggs K, Zinckgraf J, Bilsel P, Newman M, Chesnut R, Licalsi C, Sette A. Rationally engineered therapeutic proteins with reduced immunogenicity. THE JOURNAL OF IMMUNOLOGY 2005; 174:3187-96. [PMID: 15749848 DOI: 10.4049/jimmunol.174.6.3187] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic administration of protein therapeutics may elicit unacceptable immune responses to the specific protein. Our hypothesis is that the immunogenicity of protein drugs can be ascribed to a few immunodominant helper T lymphocyte (HTL) epitopes, and that reducing the MHC binding affinity of these HTL epitopes contained within these proteins can generate drugs with lower immunogenicity. To test this hypothesis, we studied the protein therapeutic erythropoietin (Epo). Two regions within Epo, designated Epo 91-120 and Epo 126-155, contained HTL epitopes that were recognized by individuals with numerous HLA-DR types, a property common to immunodominant HTL epitopes. We then engineered analog epitopes with reduced HLA binding affinity. These analog epitopes were associated with reduced in vitro immunogenicity. Two modified forms of Epo containing these substitutions were shown to be bioactive and nonimmunogenic in vitro. These findings support our hypothesis and demonstrate that immunogenicity of protein drugs can be reduced in a systematic and predictable manner.
Collapse
|
96
|
Moniuszko M, Bogdan D, Pal R, Venzon D, Stevceva L, Nacsa J, Tryniszewska E, Edghill-Smith Y, Wolinsky SM, Franchini G. Correlation between viral RNA levels but not immune responses in plasma and tissues of macaques with long-standing SIVmac251 infection. Virology 2005; 333:159-68. [PMID: 15708601 DOI: 10.1016/j.virol.2005.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 12/07/2004] [Accepted: 01/04/2005] [Indexed: 11/21/2022]
Abstract
Plasma virus in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection most likely results from the combination of viruses produced in different tissues. As immunological pressure may be higher in effector sites than secondary lymphoid tissues, we investigated quantitative and qualitative changes in viral RNA in blood and tissues of 10 Mamu-A*01-positive SIV-infected macaques in parallel with the frequency of CD8+ T cells recognizing the dominant Gag181-189 CM9 epitope. The plasma virus level in these macaques directly correlated with the viral RNA levels in lymph nodes, spleen, lungs, colon, and jejunum. In contrast, the frequency of the Gag181-189 CM9 tetramer did not correlate with SIV RNA levels in any compartment. We investigated the presence of viral immune escape in RNA from several tissues. The complete substitution of wild-type genotype with viral immune-escape variant within the Gag181-189 CM9 epitope was associated with low tetramer response in all tissues and blood of two macaques. In one macaque, the replacement of wild type with an immune-escape mutant was asynchronous. While the mutant virus was prevalent in blood and effector tissues (lungs, jejunum, and colon), secondary lymphoid organs such as spleen and lymph nodes still retained 80% and 40%, respectively, of the wild-type virus. These results may imply that there are differences in the immunological pressure exerted by cytotoxic T lymphocytes (CTLs) in tissue compartments of SIVmac251-infected macaques.
Collapse
Affiliation(s)
- Marcin Moniuszko
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, 41/D804, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Sette A, Sidney J, Bui HH, del Guercio MF, Alexander J, Loffredo J, Watkins DI, Mothé BR. Characterization of the peptide-binding specificity of Mamu-A*11 results in the identification of SIV-derived epitopes and interspecies cross-reactivity. Immunogenetics 2005; 57:53-68. [PMID: 15747117 DOI: 10.1007/s00251-004-0749-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2004] [Revised: 11/10/2004] [Indexed: 11/25/2022]
Abstract
The SIV-infected Indian rhesus macaque is the most established model of HIV infection, providing insight into pathogenesis and a system for testing novel vaccines. However, only a limited amount of information is available regarding the peptide-binding motifs and epitopes bound by their class I and class II MHC molecules. In this study, we utilized a library of over 1,000 different peptides and a high throughput MHC-peptide binding assay to detail the binding specificity of the rhesus macaque class I molecule Mamu-A*11. These studies defined the fine specificity of primary anchor positions, and dissected the role of secondary anchors, for peptides of 8-11 residues in length. This detailed information was utilized to develop size-specific polynomial algorithms to predict Mamu-A*11 binding capacity. Testing SIVmac239-derived Mamu-A*11 binding peptides for recognition by peripheral blood mononuclear cells (PBMC) from Mamu-A*11-positive, SIV-infected macaques, identified five novel SIV-derived Mamu-A*11 epitopes. Finally, we detected extensive cross-reactivity at the binding level between Mamu-A*11 and the mouse H-2 class I molecule Kk. Further experiments revealed that three out of four Mamu-A*11 binding peptides which bound Kk and were immunogenic in Kk mice were also recognized in Mamu-A*11-infected macaques. This is the first detailed description of mouse-macaque interspecies cross-reactivity, potentially useful in testing novel vaccines in mice and macaques.
Collapse
Affiliation(s)
- Alessandro Sette
- La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
|
99
|
Smith MZ, Dale CJ, De Rose R, Stratov I, Fernandez CS, Brooks AG, Weinfurter J, Krebs K, Riek C, Watkins DI, O'connor DH, Kent SJ. Analysis of pigtail macaque major histocompatibility complex class I molecules presenting immunodominant simian immunodeficiency virus epitopes. J Virol 2005; 79:684-95. [PMID: 15613296 PMCID: PMC538543 DOI: 10.1128/jvi.79.2.684-695.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 09/03/2004] [Indexed: 11/20/2022] Open
Abstract
Successful human immunodeficiency virus (HIV) vaccines will need to induce effective T-cell immunity. We studied immunodominant simian immunodeficiency virus (SIV) Gag-specific T-cell responses and their restricting major histocompatibility complex (MHC) class I alleles in pigtail macaques (Macaca nemestrina), an increasingly common primate model for the study of HIV infection of humans. CD8+ T-cell responses to an SIV epitope, Gag164-172KP9, were present in at least 15 of 36 outbred pigtail macaques. The immunodominant KP9-specific response accounted for the majority (mean, 63%) of the SIV Gag response. Sequencing from six macaques identified 7 new Mane-A and 13 new Mane-B MHC class I alleles. One new allele, Mane-A*10, was common to four macaques that responded to the KP9 epitope. We adapted reference strand-mediated conformational analysis (RSCA) to MHC class I genotype M. nemestrina. Mane-A*10 was detected in macaques presenting KP9 studied by RSCA but was absent from non-KP9-presenting macaques. Expressed on class I-deficient cells, Mane-A*10, but not other pigtail macaque MHC class I molecules, efficiently presented KP9 to responder T cells, confirming that Mane-A*10 restricts the KP9 epitope. Importantly, naive pigtail macaques infected with SIVmac251 that respond to KP9 had significantly reduced plasma SIV viral levels (log10 0.87 copies/ml; P=0.025) compared to those of macaques not responding to KP9. The identification of this common M. nemestrina MHC class I allele restricting a functionally important immunodominant SIV Gag epitope establishes a basis for studying CD8+ T-cell responses against AIDS in an important, widely available nonhuman primate species.
Collapse
Affiliation(s)
- Miranda Z Smith
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
O'Connor DH, McDermott AB, Krebs KC, Dodds EJ, Miller JE, Gonzalez EJ, Jacoby TJ, Yant L, Piontkivska H, Pantophlet R, Burton DR, Rehrauer WM, Wilson N, Hughes AL, Watkins DI. A dominant role for CD8+-T-lymphocyte selection in simian immunodeficiency virus sequence variation. J Virol 2004; 78:14012-22. [PMID: 15564508 PMCID: PMC533930 DOI: 10.1128/jvi.78.24.14012-14022.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8(+) T lymphocytes (CD8-TL) select viral escape variants in both human immunodeficiency virus and simian immunodeficiency virus (SIV) infections. The frequency of CD8-TL viral escape as well as the contribution of escape to overall virus diversification has not been assessed. We quantified CD8-TL selection in SIV infections by sequencing viral genomes from 35 SIVmac239-infected animals at the time of euthanasia. Here we show that positive selection for sequences encoding 46 known CD8-TL epitopes is comparable to the positive selection observed for the variable loops of env. We also found that >60% of viral variation outside of the viral envelope occurs within recognized CD8-TL epitopes. Therefore, we conclude that CD8-TL selection is the dominant cause of SIV diversification outside of the envelope.
Collapse
Affiliation(s)
- David H O'Connor
- Wisconsin Primate Research Center, Department of Pathology, Laboratoty of Medicine, University of Wisconsin, 1300 University Ave., Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|