51
|
Borriello A, Cucciolla V, Criscuolo M, Indaco S, Oliva A, Giovane A, Bencivenga D, Iolascon A, Zappia V, Della Ragione F. Retinoic acid induces p27Kip1 nuclear accumulation by modulating its phosphorylation. Cancer Res 2006; 66:4240-8. [PMID: 16618747 DOI: 10.1158/0008-5472.can-05-2759] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
All-trans-retinoic acid (ATRA), the most biologically active metabolite of vitamin A, controls cell proliferation, apoptosis, and differentiation depending on the cellular context. These activities point to ATRA as a candidate for cancer therapy. A pivotal effect of the molecule is the modulation of p27Kip1, a cyclin-dependent kinase (CDK) inhibitor (CDKI). Here, we investigate the mechanisms by which ATRA regulates p27Kip1 level in LAN-5, a neuroblastoma cell line. When added to the cells, ATRA causes a rapid nuclear increase of p27Kip1, which clearly precedes growth arrest. The early buildup is not due to impairment of the CDKI degradation, in contrast to previous observations. Particularly, we did not detect the down-regulation of Skp2 and Cks1, two proteins involved in the nuclear ubiquitin-dependent p27Kip1 removal. Moreover, the morphogen does not impair the CDKI nuclear export and does not cause CDK2 relocalization. The characterization of CDKI isoforms by two-dimensional PAGE/immunoblotting showed that ATRA induces an early nuclear up-regulation of monophosphorylated p27Kip1. Immunologic studies established that this isoform corresponds to p27Kip1 phosphorylated on S10. The buildup of phospho(S10)p27Kip1 precedes the CDKI accumulation and increases its half-life. Finally, ATRA-treated nuclear LAN-5 extracts showed an enhanced capability of phosphorylating p27Kip1 on S10, thus explaining the nuclear up-regulation of the isoform. In conclusion, our data suggest a novel mechanism of ATRA antiproliferative activity, in which the morphogen rapidly up-regulates a nuclear kinase activity that phosphorylates p27Kip1 on S10. In turn, this event causes the stabilization of p27Kip1 and its accumulation in the nuclear compartment.
Collapse
Affiliation(s)
- Adriana Borriello
- Department of Biochemistry and Biophysics F. Cedrangolo, Second University of Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
In yeast, a single cyclin-dependent kinase (Cdk) is able to regulate diverse cell cycle transitions (S and M phases) by associating with multiple stage-specific cyclins. The evolution of multicellular organisms brought additional layers of cell cycle regulation in the form of numerous Cdks, cyclins and Cdk inhibitors to reflect the higher levels of organismal complexity. Our current knowledge about the mammalian cell cycle emerged from early experiments using human and rodent cell lines, from which we built the current textbook model of cell cycle regulation. In this model, the functions of different cyclin/Cdk complexes were thought to be specific for each cell cycle phase. In the last decade, studies using genetically engineered mice in which cell cycle regulators were targeted revealed many surprises. We discovered the in vivo functions of cell cycle proteins within the context of a living animal and whether they are essential for animal development. In this review, we discuss first the textbook model of cell cycle regulation, followed by a global overview of data obtained from different mouse models. We describe the similarities and differences between the phenotypes of different mouse models including embryonic lethality, sterility, hematopoietic, pancreatic, and placental defects. We also describe the role of key cell cycle regulators in the development of tumors in mice, and the implications of these data for human cancer. Furthermore, animal models in which two or more genes are ablated revealed which cell cycle regulators interact genetically and functionally complement each other. We discuss for example the interaction of cyclin D1 and p27 and the compensation of Cdk2 by Cdc2. We also focus on new functions discovered for certain cell cycle regulators such as the regulation of S phase by Cdc2 and the role of p27 in regulating cell migration. Finally, we conclude the chapter by discussing the limitations of animal models and to what extent can the recent findings be reconciled with the past work to come up with a new model for cell cycle regulation with high levels of redundancy among the molecular players.
Collapse
Affiliation(s)
- Eiman Aleem
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, MD 21702-1201, USA
| | | |
Collapse
|
53
|
Kontny U. Regulation of apoptosis and proliferation in Ewing's sarcoma--opportunities for targeted therapy. Hematol Oncol 2006; 24:14-21. [PMID: 16400699 DOI: 10.1002/hon.766] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Ewing's sarcoma family of tumors are malignant tumors of bone and soft tissue which occur predominantely in children and adolescents. Whereas cure rates for patients with localized tumors are around 70%, survival rates for patients with metastases or relapse are poor in spite of intensive chemo- and radiation therapy, demonstrating a clear need for new, more effective therapies. Insights into the biology of the tumors of the Ewing's sarcoma family with identification of the EWS/ETS gene rearrangement as the key event in malignant transformation and its influence on the regulation of various pathways involved in proliferation, differentiation and apoptosis has led to the identification of potential targets for the development of new molecular therapeutics. This review will focus on the regulation of major pathways of proliferation and apoptosis in tumors of the Ewing's sarcoma family and point out how modulation of these pathways might be of potential use for future therapy.
Collapse
Affiliation(s)
- Udo Kontny
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Germany.
| |
Collapse
|
54
|
Delobel P, Lavenir I, Ghetti B, Holzer M, Goedert M. Cell-cycle markers in a transgenic mouse model of human tauopathy: increased levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:878-87. [PMID: 16507903 PMCID: PMC1606514 DOI: 10.2353/ajpath.2006.050540] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 11/03/2005] [Indexed: 11/20/2022]
Abstract
Recent evidence has suggested that an abnormal reactivation of the cell cycle may precede and cause the hyperphosphorylation and filament formation of tau protein in Alzheimer's disease and other tauopathies. Here we have analyzed the expression and/or activation of proteins involved in cell-cycle progression in the brain and spinal cord of mice transgenic for mutant human P301S tau protein. This mouse line recapitulates the essential molecular and cellular features of the human tauopathies, including hyperphosphorylation and filament formation of tau protein. None of the activators and co-activators of the cell cycle tested were overexpressed or activated in 5-month-old transgenic mice when compared to controls. By contrast, the levels of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 were increased in brain and spinal cord of transgenic mice. Both inhibitors accumulated in the cytoplasm of nerve cells, the majority of which contained inclusions made of hyperphosphorylated tau protein. A similar staining pattern for p21Cip1 and p27Kip1 was also present in the frontal cortex from a case of FTDP-17 with the P301L tau mutation. Thus, reactivation of the cell cycle was not involved in tau hyperphos-phorylation and filament formation, consistent with expression of p21Cip1 and p27Kip1 in tangle-bearing nerve cells.
Collapse
Affiliation(s)
- Patrice Delobel
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | | | |
Collapse
|
55
|
Yun JM, Kweon MH, Kwon H, Hwang JK, Mukhtar H. Induction of apoptosis and cell cycle arrest by a chalcone panduratin A isolated from Kaempferia pandurata in androgen-independent human prostate cancer cells PC3 and DU145. Carcinogenesis 2006; 27:1454-64. [PMID: 16497706 DOI: 10.1093/carcin/bgi348] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because of unsatisfactory treatment options for prostate cancer (CaP) there is a need to develop novel preventive approaches for this malignancy. One such strategy is through chemoprevention by the use of non-toxic dietary substances and botanical products. We have shown previously that panduratin A isolated from the extract of Kaempferia pandurata (Zingiberaceae) is a strong inhibitor of cyclooxygenase-2 in RAW264.7 cells and induces apoptosis in HT-29 cells. In the present study, we provide evidence that panduratin A treatment to androgen-independent human CaP cells PC3 and DU145 result in a time and dose-dependent inhibition of cell growth with an IC50 of 13.5-14 microM and no to little effect on normal human prostate epithelial cells. To define the mechanism of these anti-proliferative effects of panduratin A, we determined its effect on critical molecular events known to regulate the cell cycle and the apoptotic machinery. Annexin V/propidium iodide staining provided the evidence for the induction of apoptosis which was further confirmed by the observation of cleavage of poly (ADP-ribose) polymerase and degradation of acinus. Panduratin A treatment to cells was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax:Bcl-2, suggesting the involvement of a mitochondrial-dependent apoptotic pathway. Panduratin A-mediated apoptosis was accompanied with upregulation of Fas death receptor and TNF-related apoptosis-inducing ligand (TRAIL). Furthermore, cell cycle analysis using flow cytometry showed that panduratin A treatment of cells resulted in a G2/M arrest in a dose-dependent manner. The immunoblot analysis data revealed that in both cell lines panduratin A treatment resulted in a dose-dependent (i) induction of p21WAF1/Cip1 and p27Kip1, (ii) downregulation of cdks 2, 4 and 6 and (iii) decrease in cyclins D1 and E. These findings suggest that panduratin A may be an effective chemopreventive or therapeutic agent against CaP.
Collapse
Affiliation(s)
- Jung-Mi Yun
- Department of Biotechnology, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
56
|
Christman SA, Kong BW, Landry MM, Foster DN. Chicken embryo extract mitigates growth and morphological changes in a spontaneously immortalized chicken embryo fibroblast cell line. Poult Sci 2005; 84:1423-31. [PMID: 16206564 DOI: 10.1093/ps/84.9.1423] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The SC-1 spontaneously immortalized chicken embryo fibroblast (CEF) cell line has been established recently. Although this cell line had been in culture for over 3 yr, its growth rate has remained lower than that of primary CEF cells, and the morphology has not been as uniform as observed in primary cells. In the present study, the SC-1 cell line was treated with chicken embryo extract (CEE) to determine whether growth rates could be increased and cell morphology enhanced. The CEE also was tested on primary CEF cells, another spontaneously immortalized CEF cell line (DF-1), and on 2 other nonvirally and nonchemically immortalized CEF cell lines (BCEFi and HCEFi). Results indicated that concentrations of CEE > or = 100 microg/mL inhibited growth of all cells tested. However, addition of 50 microg of CEE/mL enhanced the growth rate and improved the morphology of the SC-1 cells. Addition of CEE to the other immortal or primary CEF cells did not increase the growth rate or change their morphology. Analysis of mRNA expression revealed that SC-1 cells treated with 50 microg of CEE/mL had lower levels of the p16(INK4a) alternate reading frame sequence (ARF) and E2F-1 than untreated SC-1 cells. The increased growth rate and improved morphology of the SC-1 cells achieved with CEE treatment were retained following removal of CEE, and these improvements should aid in increasing the utility of the SC-1 cell line as a cellular/molecular reagent.
Collapse
Affiliation(s)
- S A Christman
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
57
|
Affiliation(s)
- Virginia Kaklamani
- Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
58
|
Pignataro L, Sambataro G, Pagani D, Pruneri G. Clinico-prognostic value of D-type cyclins and p27 in laryngeal cancer patients: a review. ACTA OTORHINOLARYNGOLOGICA ITALICA : ORGANO UFFICIALE DELLA SOCIETA ITALIANA DI OTORINOLARINGOLOGIA E CHIRURGIA CERVICO-FACCIALE 2005; 25:75-85. [PMID: 16116829 PMCID: PMC2639874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite recent improvements in surgical and radiation therapy, failures still occur in patients with laryngeal squamous cell carcinomas, which may have a very different clinical outcome even when their clinical and histopathological characteristics are similar. The apparent inadequacy of "traditional" prognostic factors in predicting the clinical evolution of laryngeal squamous cell carcinomas has led to attempts to develop additional markers capable of distinguishing patients with a good prognosis from those who are more likely to relapse. A number of studies have demonstrated a relationship between tumourigenesis and alterations in the expression of cyclins, cyclin-dependent kinases and cyclin-dependent kinase inhibitors, but the data regarding laryngeal squamous cell carcinomas are somewhat conflicting. Herein a review is made of the published literature concerning the clinico-prognostic role of cyclin D1, D3 and p27, and personal data are described concerning laryngeal squamous cell carcinoma patients who underwent surgical resection at the ENT Department of the University of Milan. The results of our multivariate analyses demonstrated that cyclin D1, p27 and cyclin D3 overexpression are statistically significant predictors of disease-free survival (p = 0.0238, p = 0.0001 and p = 0.0217, respectively); the statistical correlation with overall survival was significant in the case of p27 (p = 0.0009) and cyclin D3 (p = 0.0189), and borderline in the case of cyclin D1 (p = 0.0622). In relation to cyclin D1/p27 coexpression, the patients with a cyclin D1-/p27+ phenotype showed the best prognosis, those with a cyclin D1/p27+ or cyclin D1-/p27- phenotype, an intermediate prognosis, and those with a cyclin D1+/p27- phenotype, the poorest prognosis (p = 0.0001 and p = 0.0001 for trend for disease-free survival; p = 0.0015 and p = 0.0008 for trend for overall survival). In the case of cyclin D1/cyclin D3 coexpression, the patients with cyclin D1+/cyclin D3+ tumours had the poorest overall survival, those with cyclin D1/cyclin D3+or cyclin D1+/cyclin D3- tumours showed intermediate course, and those with cyclin D1 /cyclin D3- tumours had the most favourable outcome (p = 0.0002). The findings of this review indicate that both types of cyclin D and p27 are involved in the genesis of laryngeal squamous cell carcinomas, and that immunohistochemical evaluations of biopsy samples may provide useful additional markers capable of identifying subgroups of patients with a poor prognosis who can be treated by means of more aggressive surgery, adjuvant radiotherapy and chemotherapy, as well as those requiring a closer and more prolonged follow-up. Finally, preliminary results suggest that the administration of new molecular therapies that exert their antitumoural activities by functionally subverting the pathways regulated by D-type cyclins and their cyclin-dependent kinase counterparts may represent a further therapeutic modality for patients with refractory head and neck squamous cell carcinomas [corrected]
Collapse
Affiliation(s)
- L Pignataro
- Department of Otorhinolaryngological and Ophthalmological Sciences, Fondazione IRCCS, Ospedale Maggiore Policlinico Mangiagalli e Regina Elena, Italy
| | | | | | | |
Collapse
|
59
|
Sheng W, Wang G, Wang Y, Liang J, Wen J, Zheng PS, Wu Y, Lee V, Slingerland J, Dumont D, Yang BB. The roles of versican V1 and V2 isoforms in cell proliferation and apoptosis. Mol Biol Cell 2005; 16:1330-40. [PMID: 15635104 PMCID: PMC551496 DOI: 10.1091/mbc.e04-04-0295] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 12/10/2004] [Accepted: 12/12/2004] [Indexed: 01/17/2023] Open
Abstract
Versican is a large chondroitin sulfate proteoglycan belonging to the lectican family. Alternative splicing of versican generates at least four isoforms named V0, V1, V2, and V3. We have shown that the versican V1 isoform not only enhanced cell proliferation, but also modulated cell cycle progression and protected the cells from apoptosis. Futhermore, the V1 isoform was able to not only activate proto-oncogene EGFR expression and modulate its downstream signaling pathway, but also induce p27 degradation and enhance CDK2 kinase activity. As well, the V1 isoform down-regulated the expression of the proapoptotic protein Bad. By contrast, the V2 isoform exhibited opposite biological activities by inhibiting cell proliferation and down-regulated the expression of EGFR and cyclin A. Furthermore, V2 did not contribute apoptotic resistance to the cells. In light of these results, we are reporting opposite functions for the two versican isoforms whose expression is differentially regulated. Our studies suggest that the roles of these two isoforms are associated with the subdomains CSbeta and CSalpha, respectively. These results were confirmed by silencing the expression of versican V1 with small interfering RNA (siRNA), which abolished V1-enhanced cell proliferation and V1-induced reduction of apoptosis.
Collapse
Affiliation(s)
- Wang Sheng
- Sunnybrook & Women's College Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Motti ML, Califano D, Baldassarre G, Celetti A, Merolla F, Forzati F, Napolitano M, Tavernise B, Fusco A, Viglietto G. Reduced E-cadherin expression contributes to the loss of p27kip1-mediated mechanism of contact inhibition in thyroid anaplastic carcinomas. Carcinogenesis 2005; 26:1021-34. [PMID: 15718252 DOI: 10.1093/carcin/bgi050] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the present study, we have characterized several human thyroid cancer cell lines of different histotypes for their responsiveness to contact inhibition. We found that cells derived from differentiated carcinoma (TPC-1, WRO) arrest in G(1) phase at confluence, whereas cells derived from anaplastic carcinoma (ARO, FRO and FB1) continue to grow after reaching confluence. Furthermore, we provide experimental evidence that the axis, E-cadherin/beta-catenin/p27(Kip1), represents an integral part of the regulatory mechanism that controls proliferation at a high cell density, whose disruption may play a key role in determining the clinical behaviour of thyroid cancer. This conclusion derives from the finding that: (i) the expression of p27(Kip1) is enhanced at high cell density only in cells responsive to contact inhibition (TPC-1, WRO), but not in contact-inhibition resistant cells (ARO, FRO or FB1 cells); (ii) the increase in p27(Kip1) also resulted in increased levels of p27(Kip1) bound to cyclin E-Cdk2 complex, a reduction in cyclin E-Cdk2 activity and dephosphorylation of the retinoblastoma protein; (iii) antisense inhibition of p27(Kip1) upregulation at high cell density in confluent-sensitive cells completely prevents the confluence-induced growth arrest; (iv) proper expression and/or membrane localization of E-cadherin is observed only in cells responsive to contact inhibition (TPC-1, NPA, WRO) but not in unresponsive cells (ARO, FRO or FB1); (v) disruption of E-cadherin-mediated cell-cell contacts at high cell density induced by an anti-E-cadherin neutralizing antibody, inhibits the induction of p27(kip1) and restores proliferation in contact-inhibited cells; (vi) re-expression of E-cadherin into cells unresponsive to contact inhibition (ARO, FB1) induces a p27(kip1) expression and growth arrest. In summary, our data indicate that the altered response to contact inhibition exhibited by thyroid anaplastic cancer cells is due to the failure to upregulate p27(Kip1) in response to cell-cell interactions.
Collapse
Affiliation(s)
- Maria Letizia Motti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L.Califano Facoltà di Medicina e Chirurgia, Università Federico II, via S. Pansini 5, 80131, Napoli, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kaldis P. The N-terminal peptide of the Kaposi's sarcoma-associated herpesvirus (KSHV)-cyclin determines substrate specificity. J Biol Chem 2005; 280:11165-74. [PMID: 15664993 DOI: 10.1074/jbc.m408887200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cyclin-dependent kinases (Cdks) are activated by cyclin binding and phosphorylation by the Cdk-activating kinase (CAK). Activation of Cdk6 by the D-type cyclins requires phosphorylation of Cdk6 by CAK on threonine 177. In contrast, Cdk6 is activated by the Kaposi's sarcoma-associated herpesvirus (KSHV)-cyclin in the absence and presence of CAK phosphorylation. The activity of Cdk6.KSHV-cyclin complexes was investigated here by analyzing mutants of the KSHV-cyclin and Cdk6 in vitro as well as in U2OS cells. Deletion of the N terminus of the KSHV-cyclin affects the substrate specificity indicating that the N terminus is required for phosphorylation of histone H1 but not for other substrates. Mutation of residues in the region 180-200 of the KSHV-cyclin decreases the binding affinity to Cdk6 in U2OS cells but increases the activity of Cdk6.KSHV-cyclin complexes in vitro indicating that low affinity binding of cyclins to the Cdk subunit might favor increased on- or off-rates of Cdk substrates. Expression of high levels of p16(INK4a) in cells leads to the formation of a heterotrimeric complex composed of Cdk6, KSHV-cyclin, and p16(INK4a). Some of the Cdk6 .KSHV-cyclin.p16 complexes were found to be active indicating that there might be different modes of p16 binding to Cdk6.cyclin complexes.
Collapse
Affiliation(s)
- Philipp Kaldis
- Mouse Cancer Genetics Program, National Cancer Institute, NCI-Frederick, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
62
|
Moritani M, Yamasaki S, Kagami M, Suzuki T, Yamaoka T, Sano T, Hata JI, Itakura M. Hypoplasia of endocrine and exocrine pancreas in homozygous transgenic TGF-beta1. Mol Cell Endocrinol 2005; 229:175-84. [PMID: 15607541 DOI: 10.1016/j.mce.2004.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Revised: 06/30/2004] [Accepted: 08/11/2004] [Indexed: 01/07/2023]
Abstract
We generated the homozygous transgenic mice with expression of the active form of TGF-beta1 by the glucagon promoter (homozygous NOD-TGF-beta1). The homozygous NOD-TGF-beta1 showed severe diabetes in 84.6%, impaired glucose tolerance, and low serum insulin levels. The final size of endocrine and whole pancreas decreased, respectively, to 6 and 34%, compared to wild-type mice. The homozygous N(2) backcross to C57BL/6 (B6-TGF-beta1) showed no diabetes, but impaired glucose tolerance and low serum insulin levels. In homozygous NOD-TGF-beta1, the expression of p15(INK4b) was induced by 3.4-fold in pancreatic islets than that in wild-type mice. Based on these, we conclude first that excessive paracrine TGF-beta1 signaling in islets results in endocrine and exocrine pancreatic hypoplasia, second that TGF-beta1decrease the final size of endocrine and exocrine pancreas presumably through regulating cell cycle via p15(INK4b) at least in endocrine pancreas, and third that hypoplastic action of TGF-beta1 of pancreatic islets is independent of the genetic background.
Collapse
Affiliation(s)
- Maki Moritani
- Institute for Genome Research, Division of Genetic Information, The University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Matsunobu T, Tanaka K, Matsumoto Y, Nakatani F, Sakimura R, Hanada M, Li X, Oda Y, Naruse I, Hoshino H, Tsuneyoshi M, Miura H, Iwamoto Y. The prognostic and therapeutic relevance of p27kip1 in Ewing's family tumors. Clin Cancer Res 2004; 10:1003-12. [PMID: 14871979 DOI: 10.1158/1078-0432.ccr-0788-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ewing's family tumors (EFTs) display the characteristic fusion gene EWS-Fli1. We have reported EWS-Fli1 may promote the cell cycle progression accompanied by the suppression of the expression of cyclin-dependent kinase inhibitor p27(kip1) in EFT cells. Here, we describe the prognostic and therapeutic relevance of p27 in EFTs. EXPERIMENTAL DESIGN We examined tumor samples taken from 21 patients with primary EFTs for the expression of p27 protein immunohistochemically and evaluated its correlation with clinical outcome. We also investigated the usefulness of p27 as a therapeutic strategy in vitro and in vivo using p27 expression adenovirus. Finally, we examined the process of EWS-Fli1-mediated reduction of p27 expression. RESULTS Immunohistochemical analysis showed that a low expression level of p27 protein was related to poor event-free survival in an univariate analysis and that the expression level of p27 correlated more significantly with patient survival than several clinical factors in a multivariate survival analysis. Overexpression of p27 with the adenoviral vector remarkably inhibited the cell growth in all EFT cells tested and further induced apoptosis in the wild-type p53 EFT cells. In vivo studies demonstrated a reduction in tumor growth of EFT xenograft in nude mice treated with the intratumoral injection of p27-expressing adenovirus. EWS-Fli1 did not significantly affect the p27 promoter activity and p27 mRNA levels. However, the challenge of the proteasome inhibitor caused accumulation of p27 protein in EFT cells. These data strongly suggest EWS-Fli1 might attenuate p27 protein level via activation of the proteasome-mediated degradation pathway. CONCLUSIONS Our findings provide the first evidence of the prognostic relevance of p27 expression in EFTs. We propose p27 as a novel and powerful therapeutic factor for the molecular target therapy of EFTs.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adolescent
- Adult
- Aged
- Animals
- Apoptosis
- Blotting, Western
- Cell Cycle
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Line, Tumor
- Child
- Cyclin-Dependent Kinase Inhibitor p27
- Cysteine Endopeptidases/metabolism
- DNA Fragmentation
- Disease-Free Survival
- Dose-Response Relationship, Drug
- Female
- Humans
- Immunohistochemistry
- Luciferases/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Multienzyme Complexes/metabolism
- Multivariate Analysis
- Neoplasm Transplantation
- Oligonucleotides/chemistry
- Prognosis
- Promoter Regions, Genetic
- Proteasome Endopeptidase Complex
- Protein Processing, Post-Translational
- RNA, Messenger/metabolism
- Recurrence
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Ewing/diagnosis
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/mortality
- Time Factors
- Treatment Outcome
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Tomoya Matsunobu
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-5488, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Matsubara S, Ozawa M. Expression of alpha-catenin in alpha-catenin-deficient cells results in a reduced proliferation in three-dimensional multicellular spheroids but not in two-dimensional monolayer cultures. Oncogene 2004; 23:2694-702. [PMID: 14755240 DOI: 10.1038/sj.onc.1207423] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
alpha-Catenin is an intracellular protein that associates with the carboxy-terminal region of cadherin, a cell adhesion molecule, via beta-catenin or gamma-catenin (plakoglobin). Linkage of cadherin to the cytoskeleton by catenins is required for full cadherin activity. Following transfection of an alpha-catenin-deficient colon carcinoma cell line with a series of alpha-catenin constructs, we discovered that the restoration of alpha-catenin expression results in reduced proliferation in three-dimensional multicellular spheroids, but not in two-dimensional monolayer cultures. The cellular function of alpha-catenin has not been compared between cells in three- and two-dimensional culture; this is the first evidence that growth regulation in three-dimensional cultures requires signaling mediated by alpha-catenin. Two classes of constructs, containing deletions in either the central segment or the COOH terminus of the molecule, both induced morphological changes, including cell compaction, and suppressed cell growth in three-dimensional cultures. In alpha-catenin-expressing cells, inhibition of cadherin cell adhesion by treatment with anti-E-cadherin antibodies resulted in a similar phenotype as that observed following the loss of alpha-catenin. Therefore, both the homophilic interaction of the cadherin extracellular domain and the linkage of the cadherin cytoplasmic domain to the actin cytoskeleton by alpha-catenin are necessary for growth control in three-dimensional culture.
Collapse
Affiliation(s)
- Shyuichiro Matsubara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Science, Kagoshima University, Kagoshima 890-8544, Japan.
| | | |
Collapse
|
65
|
Heine VM, Maslam S, Joëls M, Lucassen PJ. Increased P27KIP1 protein expression in the dentate gyrus of chronically stressed rats indicates G1 arrest involvement. Neuroscience 2004; 129:593-601. [PMID: 15541881 DOI: 10.1016/j.neuroscience.2004.07.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2004] [Indexed: 01/19/2023]
Abstract
Various chronic stress paradigms decrease new cell proliferation in the hippocampal dentate gyrus, yet the exact underlying mechanism is still unclear. In the first gap (G1) phase of the cell cycle, both stimulatory and inhibitory signals derived from the extracellular environment converge. Corticosteroids, which increase during stress and are well-known anti-mitotics, cause cells in vitro to arrest in the G1 phase. Following 3 weeks of unpredictable stress, we therefore expected a change in protein expression of various important G1 cell cycle regulators in the adult rat subgranular zone. Using quantitative immunocytochemistry, we show that particularly cyclin-dependent kinase inhibitor p27Kip1 expression is significantly increased. In addition, 3 weeks of recovery after stress normalized the numbers of p27Kip1-expressing cells, consistent with the recovered adult cell proliferation in these animals. P27Kip1-positive cells do not overlap with GFAP-staining and only to a limited extent with Ki-67-expressing cells. Numbers of cyclin E- and cyclin D1-expressing cells did not change after chronic stress. These results indicate that chronic stress causes cycling cells in the adult hippocampus to arrest in G1, thereby providing more mechanistic insight in the stress-induced decrease in cell proliferation.
Collapse
Affiliation(s)
- V M Heine
- Section Neurobiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM, PO Box 94084, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
66
|
Alkarain A, Slingerland J. Deregulation of p27 by oncogenic signaling and its prognostic significance in breast cancer. Breast Cancer Res 2003; 6:13-21. [PMID: 14680481 PMCID: PMC314445 DOI: 10.1186/bcr722] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
p27 is a key regulator of progression from G1 to S phase. Although the gene encoding p27 is rarely mutated in human cancers, p27 is functionally inactivated in a majority of human cancers through accelerated p27 proteolysis, through sequestration by cyclin D-cyclin-dependent kinase complexes and by cytoplasmic mislocalization. Here we review mechanisms whereby oncogenic activation of receptor tyrosine kinase and Ras pathways lead to accelerated p27 proteolysis and p27 mislocalization in cancer cells. The prognostic significance of p27 in human breast cancer is also reviewed.
Collapse
Affiliation(s)
- Angel Alkarain
- Sunnybrook and Women's Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Joyce Slingerland
- Braman Breast Cancer Institute, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
67
|
Porter LA, Kong-Beltran M, Donoghue DJ. Spy1 interacts with p27Kip1 to allow G1/S progression. Mol Biol Cell 2003; 14:3664-74. [PMID: 12972555 PMCID: PMC196558 DOI: 10.1091/mbc.e02-12-0820] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 04/30/2003] [Accepted: 04/30/2003] [Indexed: 01/24/2023] Open
Abstract
Progression through the G1/S transition commits cells to synthesize DNA. Cyclin dependent kinase 2 (CDK2) is the major kinase that allows progression through G1/S phase and subsequent replication events. p27 is a CDK inhibitor (CKI) that binds to CDK2 to prevent premature activation of this kinase. Speedy (Spy1), a novel cell cycle regulatory protein, has been found to prematurely activate CDK2 when microinjected into Xenopus oocytes and when expressed in mammalian cells. To determine the mechanism underlying Spy1-induced proliferation in mammalian cell cycle regulation, we used human Spy1 as bait in a yeast two-hybrid screen to identify interacting proteins. One of the proteins isolated was p27; this novel interaction was confirmed both in vitro, using bacterially expressed and in vitro translated proteins, and in vivo, through the examination of endogenous and transfected proteins in mammalian cells. We demonstrate that Spy1 expression can overcome a p27-induced cell cycle arrest to allow for DNA synthesis and CDK2 histone H1 kinase activity. In addition, we utilized p27-null cells to demonstrate that the proliferative effect of Spy1 depends on the presence of endogenous p27. Our data suggest that Spy1 associates with p27 to promote cell cycle progression through the G1/S transition.
Collapse
Affiliation(s)
- Lisa A Porter
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0367, USA
| | | | | |
Collapse
|
68
|
Abstract
GOALS The purpose of this review is to look at the evidence presented in the literature on the immunoexpression of p27 in cancers of the gastrointestinal tract and liver. BACKGROUND Cell cycle proteins have been shown to play an important role in the oncogenesis of many tumors. Several of these proteins have been examined in concert and in isolation, and some have been put forward as putative tumor markers. p27, which is an important inhibitory protein in the cell cycle and belonging to a group of cyclin-dependent kinase inhibitors, has also been studied in several malignancies, most notably breast, lung, bladder, and prostate cancers. Considerable work has also been done on the expression of this protein in cancers occurring within the gastrointestinal tract. RESULTS Cancers occurring in the major sites of the gastrointestinal tract (esophagus, stomach, and colorectum) and liver show a similar pattern with regard to p27 protein levels. p27 emerges as a statistically significant predictor of survival and tumor behavior. It has been suggested that p27 loss occurs early in the carcinogenesis process, with dysplastic epithelium having decreased expression. The more aggressive, metastasizing cancers tend to lack p27 expression as well. Some studies have also invoked the subcellular localization of p27 (cytoplasmic versus nuclear) as also being of prognostic value. CONCLUSION Therefore, in gastrointestinal and hepatic cancers, low p27 expression is regarded as an important adverse prognostic factor.
Collapse
|
69
|
Wyllie F, Haughton M, Bartek J, Rowson J, Wynford-Thomas D. Mutant p53 can delay growth arrest and loss of CDK2 activity in senescing human fibroblasts without reducing p21(WAF1) expression. Exp Cell Res 2003; 285:236-42. [PMID: 12706118 DOI: 10.1016/s0014-4827(03)00050-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Functional wild-type p53 is required for human diploid fibroblasts (HDF) to enter an irreversible growth arrest known as replicative senescence. Experimentally, abrogation of p53 function by expression of human papillomavirus type 16 E6 or disruption of a key downstream effector p21 by homologous recombination both extended HDF life span. However, although sufficient to extend life span, p21 down-regulation is not necessary, because expression of a dominant-negative mutant p53 (143(ala)) extends life span without apparently decreasing p21 expression. Given the importance of p53 in cellular senescence and the general assumption that p21 may be the sole mediator of its action in this process, we have investigated how abrogation of p53 function can overcome senescence without lowering expression of p21. We have found up-regulated levels of the cyclin-dependent kinase 2 (cdk2) protein in HDF expressing 143(ala) mutant p53 as compared to senescent controls, together with an increase in p21-free cdk2 which, in conjunction with cyclin E, is able to form an active kinase which can phosphorylate the retinoblastoma protein. However, forced overexpression of cdk2 in near-senescent HDF failed to restore cdk2-associated kinase activity. Our data suggest that p53-mediated senescence depends on factor(s) other than p21 which modulate formation of cyclin E-cdk2 complexes.
Collapse
Affiliation(s)
- Fiona Wyllie
- Department of Pathology, University of Wales College of Medicine, Heath Park, Cardiff, CF14 4XN, United Kingdom.
| | | | | | | | | |
Collapse
|
70
|
Abstract
p27 acts as a critical negative regulator of the cell cycle by inhibiting the activity of cyclin/cdk complexes during G0 and G1. Degradation of p27 is a critical event for the G1/S transition and occurs through ubiquitination by SCF(Skp2) and subsequent degradation by the 26S-proteasome. A tumor suppressing function of p27 has been demonstrated in mouse models and studies of human tumors. More recent evidence suggests that Skp2, the specific recognition factor for p27 ubiquitination, has oncogenic properties. This review will focus on the regulation of p27 proteolysis and its consequences for tumorigenesis.
Collapse
Affiliation(s)
- Joanna Bloom
- Department of Pathology and NYU Cancer Instutute, MSB599, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
71
|
Barnes A, Pinder SE, Bell JA, Paish EC, Wencyk PM, Robertson JFR, Elston CW, Ellis IO. Expression of p27kip1 in breast cancer and its prognostic significance. J Pathol 2003; 201:451-9. [PMID: 14595757 DOI: 10.1002/path.1464] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
p27kip1 is a member of the KIP/CIP family of cyclin-dependent kinase inhibitors and is a negative cell-cycle regulator that is thought to play a role in tumour suppression. Reduced levels of this protein have been observed in a number of human cancers. However, evidence is conflicting as to whether p27kip1 has a role to play in breast cancer, including predicting behaviour and prognosis. The present investigation aimed to provide a definitive study of 830 breast cancer cases with median patient follow-up of 104 months to determine the true prognostic significance, if any. Immunohistochemical analysis of tissue microarrays and three scoring methods were used to assess p27kip1 expression. Univariate analysis showed a significant relationship between reduced p27kip1 expression and increasing tumour grade, nuclear pleomorphism, mitosis, and decreasing tubule formation (all p<0.001). Significant associations between reduced p27, negative oestrogen receptor status, and ductal/no special type tumours were also observed. Survival analysis demonstrated that patients with tumours with high p27kip1 levels had an improved survival compared with those with cancers with low expression. On multivariate analysis, when compared with existing factors, p27kip1 was not, however, an independent prognostic factor. It is concluded that the inverse relationship between p27kip1 levels and histological grade and individual grade components suggests a role for p27kip1 in both cell proliferation and differentiation, but is not clinically useful.
Collapse
Affiliation(s)
- A Barnes
- Department of Histopathology, Nottingham City Hospital Breast Unit, Nottingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Bashir T, Pagano M. Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Adv Cancer Res 2003; 88:101-44. [PMID: 12665054 DOI: 10.1016/s0065-230x(03)88305-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ubiquitin pathway plays a central role in the regulation of cell growth and cell proliferation by controlling the abundance of key cell cycle proteins. Increasing evidence indicates that unscheduled proteolysis of many cell cycle regulators contributes significantly to tumorigenesis and is indeed found in many types of human cancers. Aberrant proteolysis with oncogenic potential is elicited by two major mechanisms: defective degradation of positive cell cycle regulators (i.e., proto-oncoproteins) and enhanced degradation of negative cell cycle regulators (i.e., tumor suppressor proteins). In many cases, increased protein stability is a result of mutations in the substrate that prevent the recognition of the protein by the ubiquitin-mediated degradation machinery. Alternatively, the specific recognition proteins mediating ubiquitination (ubiquitin ligases) are not expressed or harbor mutations rendering them inactive. In contrast, the overexpression of a ubiquitin ligase may result in the enhanced degradation of a negative cell cycle regulator. This chapter aims to review the involvement of the ubiquitin pathway in the scheduled destruction of some important cell cycle regulators and to discuss the implications of their aberrant degradation for the development of cancer.
Collapse
Affiliation(s)
- Tarig Bashir
- Department of Pathology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
73
|
Clarke RB. p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis. Breast Cancer Res 2003; 5:162-3. [PMID: 12793899 PMCID: PMC165008 DOI: 10.1186/bcr596] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Robert B Clarke
- Breast Biology Group, Clinical Research Department, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester, UK.
| |
Collapse
|
74
|
Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell 2003; 14:201-13. [PMID: 12529437 PMCID: PMC140238 DOI: 10.1091/mbc.e02-06-0319] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Revised: 09/27/2002] [Accepted: 10/03/2002] [Indexed: 12/18/2022] Open
Abstract
We show that p27 localization is cell cycle regulated and we suggest that active CRM1/RanGTP-mediated nuclear export of p27 may be linked to cytoplasmic p27 proteolysis in early G1. p27 is nuclear in G0 and early G1 and appears transiently in the cytoplasm at the G1/S transition. Association of p27 with the exportin CRM1 was minimal in G0 and increased markedly during G1-to-S phase progression. Proteasome inhibition in mid-G1 did not impair nuclear import of p27, but led to accumulation of p27 in the cytoplasm, suggesting that export precedes degradation for at least part of the cellular p27 pool. p27-CRM1 binding and nuclear export were inhibited by S10A mutation but not by T187A mutation. A putative nuclear export sequence in p27 is identified whose mutation reduced p27-CRM1 interaction, nuclear export, and p27 degradation. Leptomycin B (LMB) did not inhibit p27-CRM1 binding, nor did it prevent p27 export in vitro or in heterokaryon assays. Prebinding of CRM1 to the HIV-1 Rev nuclear export sequence did not inhibit p27-CRM1 interaction, suggesting that p27 binds CRM1 at a non-LMB-sensitive motif. LMB increased total cellular p27 and may do so indirectly, through effects on other p27 regulatory proteins. These data suggest a model in which p27 undergoes active, CRM1-dependent nuclear export and cytoplasmic degradation in early G1. This would permit the incremental activation of cyclin E-Cdk2 leading to cyclin E-Cdk2-mediated T187 phosphorylation and p27 proteolysis in late G1 and S phase.
Collapse
Affiliation(s)
- Michael K Connor
- Molecular and Cell Biology, Sunnybrook & Women's College Health Science Centre, 2075 Bayview Ave, Toronto, Ontario, Canada, M4N 3M5
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Donovan JCH, Rothenstein JM, Slingerland JM. Non-malignant and tumor-derived cells differ in their requirement for p27Kip1 in transforming growth factor-beta-mediated G1 arrest. J Biol Chem 2002; 277:41686-92. [PMID: 12202478 DOI: 10.1074/jbc.m204307200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor beta (TGF-beta) induces G(1) arrest in susceptible cells by multiple mechanisms that inhibit the G(1) cyclin-dependent kinases (Cdks), including Cdk2, Cdk4, and Cdk6. TGF-beta treatment of early passage finite lifespan human mammary epithelial cells (HMECs) led to an accumulation of p27(Kip1) in cyclin E1-Cdk2 complexes and kinase inhibition. The requirement for p27 in the G(1) arrest by TGF-beta was assessed by transfection of antisense p27 (ASp27) oligonucleotides into TGF-beta-treated HMECs. Despite a reduction in total and cyclin E-Cdk2 bound p27 after ASp27 transfection, HMECs remained arrested in the G(1) phase. Maintenance of the G(1) arrest was accompanied by increased association of the Cdk inhibitor p21(WAF-1/Cip-1) and the retinoblastoma family member p130(Rb2) in cyclin E1-Cdk2 complexes along with kinase inhibition. In contrast to the findings in HMECs, p27 was essential for G(1) arrest by TGF-beta in two tumor-derived lines. ASp27 transfection into two TGF-beta-responsive, cancer-derived lines was not associated with increased compensatory binding of p21 and p130 to cyclin E1-Cdk2, and these cell lines failed to maintain G(1) arrest despite the continued presence of TGF-beta. Progressive cell cycle deregulation leading to impaired checkpoint controls during malignant tumor progression may alter the role of p27 from a redundant to an essential inhibitor of G(1)-to-S phase progression.
Collapse
Affiliation(s)
- Jeffrey C H Donovan
- Department of Molecular and Cell Biology, Sunnybrook & Women's College Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | | | | |
Collapse
|
76
|
Rane SG, Mangan JK, Amanullah A, Wong BC, Vora RK, Liebermann DA, Hoffman B, Graña X, Reddy EP. Activation of the Jak3 pathway is associated with granulocytic differentiation of myeloid precursor cells. Blood 2002; 100:2753-62. [PMID: 12351382 DOI: 10.1182/blood.v100.8.2753] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Jak3, a member of the Janus kinase family of cytoplasmic tyrosine kinases, is expressed at low levels in immature hematopoietic cells and its expression is dramatically up-regulated during the terminal differentiation of these cells. To better understand the role of Jak3 in myeloid cell development, we have investigated the role of Jak3 in myeloid cell differentiation using the 32Dcl3 cell system. Our studies show that Jak3 is a primary response gene for granulocyte colony-stimulating factor (G-CSF) and the accumulation of tyrosine phosphorylated Jak3 correlated with cell growth inhibition and terminal granulocytic differentiation in response to G-CSF. Ectopic overexpression of Jak3 in 32Dcl3 cells resulted in an acceleration of the G-CSF-induced differentiation program that was preceded by G(1) cell cycle arrest, which was associated with the up-regulation of the cyclin-dependent kinase inhibitor p27(Kip1) and down-regulation of Cdk2, Cdk4, Cdk6, and Cyclin E. In addition, ectopic overexpression of Jak3 appears to result in the inactivation of PKB/Akt and Stat3-mediated proliferative pathways in the presence of G-CSF. Similarly, overexpression of Jak3 in primary bone marrow cells resulted in an acceleration of granulocytic differentiation in the presence of granulocyte-macrophage colony-stimulating factor, which was associated with their growth arrest in the G(1) phase of the cell cycle. Taken together, these results indicate that Jak3-mediated signals play an important role in myeloid cell differentiation.
Collapse
Affiliation(s)
- Sushil G Rane
- Department of Biochemistry and Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E, Slingerland JM. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 2002; 8:1153-60. [PMID: 12244302 DOI: 10.1038/nm761] [Citation(s) in RCA: 713] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 08/14/2002] [Indexed: 11/08/2022]
Abstract
Mechanisms linking mitogenic and growth inhibitory cytokine signaling and the cell cycle have not been fully elucidated in either cancer or in normal cells. Here we show that activation of protein kinase B (PKB)/Akt, contributes to resistance to antiproliferative signals and breast cancer progression in part by impairing the nuclear import and action of p27. Akt transfection caused cytoplasmic p27 accumulation and resistance to cytokine-mediated G1 arrest. The nuclear localization signal of p27 contains an Akt consensus site at threonine 157, and p27 phosphorylation by Akt impaired its nuclear import in vitro. Akt phosphorylated wild-type p27 but not p27T157A. In cells transfected with constitutively active Akt(T308DS473D)(PKB(DD)), p27WT mislocalized to the cytoplasm, but p27T157A was nuclear. In cells with activated Akt, p27WT failed to cause G1 arrest, while the antiproliferative effect of p27T157A was not impaired. Cytoplasmic p27 was seen in 41% (52 of 128) of primary human breast cancers in conjunction with Akt activation and was correlated with a poor patient prognosis. Thus, we show a novel mechanism whereby Akt impairs p27 function that is associated with an aggressive phenotype in human breast cancer.
Collapse
Affiliation(s)
- Jiyong Liang
- Molecular and Cell Biology, Sunnybrook and Women's College Health Sciences Centre, St. Mary's Hospital, McGill University, Montreal, Quebec
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Fan G, Ma X, Kren BT, Steer CJ. Unbound E2F modulates TGF-β1-induced apoptosis in HuH-7 cells. J Cell Sci 2002; 115:3181-91. [PMID: 12118073 DOI: 10.1242/jcs.115.15.3181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
E2F is an important target of the retinoblastoma protein (pRb) and plays a critical role in G1/S progression through the cell cycle. TGF-β1 arrests HuH-7 cells in G1 by suppressing phosphorylation of pRb and induces apoptosis by inhibiting its expression. In this study, we examined the downstream effects of TGF-β1-induced apoptosis and the potential roles for pRb and E2F. The results indicated that greater than 90% of the TGF-β1-induced preapoptotic cells were arrested in G1 phase of the cell cycle. This was associated with a significant increase in both E2F-DNA-binding activity and transcription of E2F-responsive reporter constructs. In contrast, no significant changes were observed in E2F mRNA and protein levels, and the overexpression of pRb partially inhibited E2F activation. Gel-shift assays identified more than four E2F complexes from preapoptotic and synchronized G1 HuH-7 cells,each exhibiting different patterns of E2F-associated proteins. The increased E2F activity did not affect the association patterns with pRb, p107 and p130,but altered the formation of an E2F—DP-1 complex. In contrast,E2F—DP-2 exhibited little change in the preapoptotic cells. Moreover,TGF-β1 induced apoptosis at G1 and inhibited entry into S phase irrespective of the increased E2F activity. The release of preapoptotic cells from TGF-β1 resulted in rapid S phase entry and subsequent apoptosis in 33% of cells over a 72 hour period. In conclusion, the results demonstrate that TGF-β1-induced apoptosis in HuH-7 cells is associated with a marked increase in activity of transcription factor E2F that is partially inhibited by overexpression of pRb. Preapoptotic changes are, in part, reversible upon removal of TGF-β1 and the majority of cells re-enter the normal cell cycle. Finally, TGF-β1-induced apoptosis with the associated increase in E2F activity can occur in both the G1and S phases of the cell cycle.
Collapse
Affiliation(s)
- Guangsheng Fan
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
79
|
Kouvaraki M, Gorgoulis VG, Rassidakis GZ, Liodis P, Markopoulos C, Gogas J, Kittas C. High expression levels of p27 correlate with lymph node status in a subset of advanced invasive breast carcinomas: relation to E-cadherin alterations, proliferative activity, and ploidy of the tumors. Cancer 2002; 94:2454-65. [PMID: 12015771 DOI: 10.1002/cncr.10505] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The cyclin-dependent kinase inhibitor p27 plays a central role in cell cycle progression and is deregulated in breast carcinomas. Although its levels are inversely associated with tumor proliferation, overexpression of p27 has been reported in a subset of rapidly proliferating breast carcinoma cell lines. METHODS p27 levels were determined by immunohistochemistry in a series of 52 sporadic invasive breast carcinomas consisting of 47 ductal, 2 lobular, and 3 mixed; most tumors were Grade 2 or 3 (46 of 52) and Tumor Node Metastasis (TNM) Stage II-IV (46 of 52). E-cadherin expression and its gene alterations at 16q22.1 were also studied, because in vitro evidence suggests a biologic association between p27 and E-cadherin-mediated growth suppression. RESULTS The mean p27 labeling index (LI; percentage of p27 positive tumor cells) was 33.3% +/- 25.3% (range, 0.1-85%). High p27 levels (p27 LI, > 50%) were observed in 14 (26.9%) of 52 carcinomas and were significantly associated with metastatic disease in axillary lymph nodes (14 of 33 vs. 0 of 19; P = 0.0007 by Fisher exact test). In addition, p27 LI was higher in the group of lymph node positive vs. lymph node negative tumors (mean p27 LI, 40.9% vs. 20.1%; P = 0.008 by Mann-Whitney test). Reduced or absent E-cadherin expression was found in 27 of 45 (60%) informative cases. Allelic imbalance of the 16q22.1 locus was found in 14 (27.5%) of 51 cases by using the microsatellite markers D16S503, D16S752, and D16S512. p27 LI and E-cadherin alterations were not statistically related. CONCLUSIONS In summary, high p27 levels detected in a subset of advanced breast carcinomas correlate with lymph node metastasis, suggesting that other mechanisms may bypass the cell cycle inhibitory role of p27 and provide growth advantage in these tumors.
Collapse
Affiliation(s)
- Maria Kouvaraki
- Laboratory of Histology and Embryology, University of Athens School of Medicine, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
80
|
Kuo MYP, Hsu HY, Kok SH, Kuo RC, Yang H, Hahn LJ, Chiang CP. Prognostic role of p27(Kip1) expression in oral squamous cell carcinoma in Taiwan. Oral Oncol 2002; 38:172-8. [PMID: 11854065 DOI: 10.1016/s1368-8375(01)00041-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cyclin-dependent kinase inhibitor p27(Kip1) can inhibit the G1 to S transition of the cell cycle and is a putative tumor suppressor. Decreased expression of p27(Kip1) protein has been correlated with poor prognosis in a variety of human tumors. We examined the expression of p27(Kip1) in oral squamous cell carcinoma (SCC), epithelial dysplasia (ED) and normal oral mucosa (NOM) using antibodies to p27(Kip1). Positive p27(Kip1) nuclear staining was detected in all the specimems from ED and NOM, whereas positive p27(Kip1) staining was observed in 16 of the 63 (25%) cases of oral SCC. The labeling index for p27(Kip1) protein was significantly reduced from NOM through ED to oral SCCs, indicating that changes of p27(Kip1) protein expression may be an early event in oral carcinogenesis in Taiwan. The Kaplan-Meier analysis showed patients with p27(Kip1)-positive tumors had significantly higher overall survival than those with p27(Kip1)-negative tumors in a total of 63 patients (P=0.015) and 47 patients with areca quid chewing habit (P=0.026). Multivariate analysis showed decreased p27(Kip1) protein expression was an independent significant predictor of poor overall survival in the patients with oral SCCs. These results indicate that p27(Kip1) protein expression may serve as a putative new adjuvant prognostic marker for routine assessment of oral SCC patients.
Collapse
Affiliation(s)
- Mark Yen-Ping Kuo
- School of Dentistry, College of Medicine, National Taiwan University and Department of Dentistry, National Taiwan University Hospital, 1 Chang-Te Street, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
81
|
Nakato H, Fox B, Selleck SB. dally, a Drosophila member of the glypican family of integral membrane proteoglycans, affects cell cycle progression and morphogenesis via a Cyclin A-mediated process. J Cell Sci 2002; 115:123-30. [PMID: 11801730 DOI: 10.1242/jcs.115.1.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
division abnormally delayed (dally) encodes an integral membrane proteoglycan of the glypican family that affects a number of patterning events during both embryonic and larval development. Earlier studies demonstrated that Dally regulates cellular responses to Wingless (Wg) and Decapentaplegic (Dpp) in a tissue-specific manner, consistent with its proposed role as a growth factor co-receptor. dally mutants also display cell cycle progression defects in specific sets of dividing cells in the developing optic lobe and retina. The affected cells in the retina and lamina show delays in completion of the G2-M segment of the cell cycle. We have investigated the molecular basis of dally-mediated cell division defects by examining the genetic interactions between dally and known cell cycle regulators.
Reductions in cyclin A but not cyclin B or string expression, suppress dally cell division defects in the optic lobe. cycA mutations also dominantly rescue many dally adult morphological defects including lethality, phenotypes that are unaffected by reducing cycB function. dally mutants show abnormal Cyclin A expression in the dividing cells affected, with appreciable levels of Cyclin A remaining in late prophase and metaphase, stages where Cyclin A is normally absent. Given that Dally is known to regulate the activity of secreted growth factors our findings suggest that extracellular cues influence the degradation of Cyclin A in a manner that controls cell cycle progression and ultimately, cell division patterning.
Collapse
Affiliation(s)
- Hiroshi Nakato
- Department of Molecular and Cellular Biology, and The Arizona Cancer Center, Salmon Building, Rm 0975, 1515 N. Campbell Avenue, University of Arizona, Tucson, AZ 85724, USA
| | | | | |
Collapse
|
82
|
Frost V, Delikat S, Al-Mehairi S, Sinclair AJ. Regulation of p27KIP1 in Epstein-Barr virus-immortalized lymphoblastoid cell lines involves non-apoptotic caspase cleavage. J Gen Virol 2001; 82:3057-3066. [PMID: 11714984 DOI: 10.1099/0022-1317-82-12-3057] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cyclin-dependent kinase inhibitor p27KIP1 plays a key role in controlling cell proliferation. Here we show that p27KIP1 is commonly down-regulated in B-cells immortalized by Epstein-Barr virus (EBV) (lymphoblastoid cell lines, LCLs). The significance of this event for the immortal phenotype of LCLs is implied by a requirement for active cdk2-containing complexes for continued proliferation, and by the ability of the residual p27KIP1 to associate with cdk2. The mechanism of p27KIP1 attenuation is post-translational, but inhibitor studies reveal that the mechanism does not rely heavily on the proteasome. Instead we find that LCLs contain an activity that cleaves a caspase recognition site present in p27KIP1 (DPSD139). The activity is not associated with apoptosis and closely resembles a proliferation-associated caspase activity we previously described in the EBV-negative B-lymphoma-derived cell line BJAB. Importantly, proliferating LCLs contain a p27KIP1 product that is consistent with cleavage at this site. Inhibition of caspase(s) in vivo modulates p27KIP1 expression and strongly inhibits proliferation of IB4 cells. This inhibitor profile is identical to that displayed by the DPSD-directed caspase present in BJAB cells, suggesting that the caspase may fulfil a general role in controlling p27KIP1 expression in immortal lymphoid cell lines. Thus, apoptosis-independent cleavage appears to contribute to the maintenance of the low basal levels of p27KIP1 in B-cells immortalized by EBV.
Collapse
Affiliation(s)
- Victoria Frost
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| | - Sylvie Delikat
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| | - Salama Al-Mehairi
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| | - Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex, BN1 9QG, UK1
| |
Collapse
|
83
|
Donovan JC, Milic A, Slingerland JM. Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J Biol Chem 2001; 276:40888-95. [PMID: 11527971 DOI: 10.1074/jbc.m106448200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antiestrogens, such as the drug tamoxifen, inhibit breast cancer growth by inducing cell cycle arrest. Antiestrogens require action of the cell cycle inhibitor p27(Kip1) to mediate G1 arrest in estrogen receptor-positive breast cancer cells. We report that constitutive activation of the mitogen-activated protein kinase (MAPK) pathway alters p27 phosphorylation, reduces p27 protein levels, reduces the cdk2 inhibitory activity of the remaining p27, and contributes to antiestrogen resistance. In two antiestrogen-resistant cell lines that showed increased MAPK activation, inhibition of the MAPK kinase (MEK) by addition of U0126 changed p27 phosphorylation and restored p27 inhibitory function and sensitivity to antiestrogens. Using antisense p27 oligonucleotides, we demonstrated that this restoration of antiestrogen-mediated cell cycle arrest required p27 function. These data suggest that oncogene-mediated MAPK activation, frequently observed in human breast cancers, contributes to antiestrogen resistance through p27 deregulation.
Collapse
Affiliation(s)
- J C Donovan
- Molecular and Cell Biology, Sunnybrook and Women's College Health Science Centre, Toronto, Ontario M4N 3M5, Canada
| | | | | |
Collapse
|
84
|
Hu X, Zhang X, Zhong Q, Fisher AB, Bryington M, Zuckerman KS. Differential effects of transforming growth factor on cell cycle regulatory molecules in human myeloid leukemia cells. Oncogene 2001; 20:6840-50. [PMID: 11687963 DOI: 10.1038/sj.onc.1204790] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2001] [Revised: 03/22/2001] [Accepted: 06/26/2001] [Indexed: 12/19/2022]
Abstract
In this report we have studied the mechanism by which Transforming Growth Factor beta (TGF beta) inhibits growth of human myeloid leukemia cell lines. TGF beta 1 arrested cells in G1 phase and significantly downregulated the expression of cyclin D2, cyclin D3, cdk4, cyclin A, and cdk2. The downregulation of the molecules resulted in approximately 50-90% decrease of the molecule-dependent kinase activity, varying with each molecule. Although treatment of cells with TGF beta 1 up-regulated accumulation of p27(kip1) in both nucleus and cytoplasm, the association of the p27(kip1) with cdk2, cyclin A, cyclin D2, cyclin D3, and cdk4 was markedly down-regulated, suggesting that p27(kip1) is not responsible for the downregulation of the kinase activity. In contrast, TGF beta 1 upregulated cyclin E-associated p27(kip1) with no effect on the expression of cyclin E. p27(kip1)-immunodepletion upregulated cyclin E-dependent kinase activity by more than 10-fold in TGF beta 1-treated cells but not in proliferating cells; whereas immunodepletion of p27(kip1) from cdk2-immunoprecipitates markedly downregulated cdk2 kinase activity in the lysates extracted from both proliferating and TGF beta-treated cells. Consistent with this observation, TGF beta 1 and p27(kip1) antisense cDNA had a synergistic or additive inhibitory effect on cdk2 but not cyclin E-dependent kinase activity. Our data suggest that (1) TGF beta 1-mediated growth inhibition is accomplished through multiple pathways and (2) p27(kip1) has opposing effects on cdk2 and cyclin E activity in response to TGF beta 1.
Collapse
Affiliation(s)
- X Hu
- Interdisciplinary Oncology Program, University of South Florida, and H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Esposito G, Pucciarelli S, Alaggio R, Giacomelli L, Marchiori E, Iaderosa GA, Friso ML, Toppan P, Chieco-Bianchi L, Lise M. P27kip1 expression is associated with tumor response to preoperative chemoradiotherapy in rectal cancer. Ann Surg Oncol 2001; 8:311-8. [PMID: 11352304 DOI: 10.1007/s10434-001-0311-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Our aim was to ascertain whether or not the response to preoperative chemoradiotherapy for rectal cancer is associated with p27kip1 and p53 protein expression. METHODS Thirty-eight patients (27 male, 11 female) with a mean age of 59 years (age range 33-87) and stage II-III rectal cancer received preoperative chemoradiotherapy (45-50.4 Gy; 5-FU 350 mg/m2/day and leucovorin 10 mg/m2/day). Thirty-one underwent low anterior resection; seven underwent abdominoperineal excision. Endoscopic tumor biopsies, performed before adjuvant therapy, were evaluated for: histologic type, tumor differentiation, mitotic index, and p27kip1 and p53 protein expression which were immunohistochemically determined. p53 expression was graded as: a) absent or present in < or =10% of tumor cells; b) present in 11-25%; c) present in 26-75%; and d) present in >75% of tumor cells. p27kip1 expression was assessed using both light microscopy (percent of stained cells x10 HPF) and cytometry with an image analysis workstation. Tumor response, ascertained with histology, was classified using a scale from 0 (no response) to 6 (complete pathologic response). RESULTS The mitotic index for the endoscopic biopsies was low in 14 cases, moderate in 17 cases, and high in 7 cases. p53 protein expression was found in 21 (a), 3 (b), 3 (c), and 11 (d) cases. The mean percentage of cells expressing the p27kip1 protein was 34 (range 0-77.14%). A close correlation was found between cytometric and light microscopy findings for p27kip1 (r2 = 0.92, P = .0001). Tumor differentiation was good in 5 cases, poor in 2 cases, and moderate in the remaining 31 cases. While the response to adjuvant therapy was good/complete in 25 (65.78%) cases, it was absent/poor in 13 (34.21%) cases. Univariate analysis associated type of adjuvant therapy (chemoradiotherapy, P = .0428) and p27kip1 protein lower expression (P = .0148) with a poor response to adjuvant treatment. Stepwise linear regression found overexpression of p53 and p27kip1 and young age to be independent variables that were linked to a good response to adjuvant therapy. CONCLUSIONS Lack of p27kip1 and p53 protein expression in rectal cancer is associated with a poor response to preoperative adjuvant therapy.
Collapse
Affiliation(s)
- G Esposito
- Section of Oncology, Department of Oncology and Surgery of the University of Padova, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Viallard JF, Lacombe F, Belloc F, Pellegrin JL, Reiffers J. [Molecular mechanisms controlling the cell cycle: fundamental aspects and implications for oncology]. Cancer Radiother 2001; 5:109-29. [PMID: 11355576 DOI: 10.1016/s1278-3218(01)00087-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Comprehension of cell cycle regulation mechanisms has progressed very quickly these past few years and regulators of the cell cycle have gained widespread importance in cancer. This review first summarizes major advances in the understanding of the control of cell cycle mechanisms. Examples of how this control is altered in tumoral cells are then described. CURRENT KNOWLEDGE AND KEY POINTS The typical mammalian cell cycle consists of four distinct phases occurring in a well-defined order, each of which should be completed successfully before the next begins. Progression of eukaryotic cells through major cell cycle transitions is mediated by sequential assembly and activation of a family of serine-threonine protein kinases, the cyclin dependent kinases (CDK). The timing of their activation is determined by their post-translational modifications (phosphorylations/dephosphorylations), and by the association of a protein called cyclin, which is the regulatory subunit of the kinase complex. The cyclin family is divided into two main classes. The 'G1 cyclins' include cyclins C, D1-3, and E, and their accumulation is rate-limiting for progression from the G1 to S phase. The 'mitotic or G2 cyclins', which include cyclin A and cyclin B, are involved in the control of G2/M transition and mitosis. The cyclins bind to and activate the CDK, which leads to phosphorylation (and then inhibition) of the tumor suppressor protein, pRb. pRb controls commitment to progress from the G1 to S phase, at least in part by repressing the activity of the E2F transcription factors known to promote cell proliferation. Both the D-type cyclins and their partner kinases CDK4/6 have proto-oncogenic properties, and their activity is carefully regulated at multiple levels including negative control by two families of CDK inhibitors. While members of the INK4 family (p16INK4A, p15INK4B, p18INK4C, p19INK4D) interact specifically with CDK4 and CDK6, the CIP/KIP inhibitors p21CIP1/WAF1, p27KIP1 and p57KIP2 inhibit a broader spectrum of CDK. The interplay between p16INK4A, cyclin D/CDK, and pRb/E2F together constitute a functional unit collectively known as the 'pRb pathway'. Each of the major components of this mechanism may become deregulated in cancer, and accumulating evidence points to the 'pRb pathway' as a candidate obligatory target in multistep oncogenesis of possibly all human tumor types. FUTURE PROSPECTS AND PROJECTS Major advances in the understanding of cell cycle regulation mechanisms provided a better knowledge of the molecular interactions involved in human cancer. This progress has led to the promotion of new therapeutic agents presently in clinical trials or under development. Moreover, the components of the cell cycle are probably involved in other non-cancerous diseases and their role must be defined.
Collapse
Affiliation(s)
- J F Viallard
- Service de médecine interne et maladies infectieuses, centre François-Magendie, hôpital du Haut-Lévêque, 5, avenue Magellan, 33604 Pessac, France.
| | | | | | | | | |
Collapse
|
87
|
Lin J, Jinno S, Okayama H. Cdk6-cyclin D3 complex evades inhibition by inhibitor proteins and uniquely controls cell's proliferation competence. Oncogene 2001; 20:2000-9. [PMID: 11360184 DOI: 10.1038/sj.onc.1204375] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Revised: 12/22/2000] [Accepted: 02/12/2001] [Indexed: 12/24/2022]
Abstract
Mammalian cells require a cyclin D-dependent kinase for the cell cycle start, yet many mesenchymal cells express three seemingly redundant D cyclins and similarly, seemingly redundant Cdk4 and Cdk6 as their kinase partners. We have found that the Cdk6-cyclin D3 complex is unique among the D cyclin and kinase combinations in the ability to promote the cell cycle start. In an anchorage-minus G(1)-arrested rat fibroblast, only Cdk6-D3 retains kinase activity due mainly to its ability to evade inhibition by p27(KIP1) and p21(CIP1) with a resemblance to viral cyclin-bound Cdk6. Rodent fibroblasts engineered to overexpress both Cdk6 and cyclin D3 highly resist serum starvation- or cell-cell contact-imposed G(1)-arrest. In BALB/c 3T3 cells, D3 is constitutively expressed, but Cdk6 is markedly induced with concomitant activation upon stimulation with a growth-promoting factor. These results suggest a role for the Cdk6-D3 complex in regulating cell's proliferation ability in response to external stimuli.
Collapse
Affiliation(s)
- J Lin
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
88
|
Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 2001; 20:2927-36. [PMID: 11420705 DOI: 10.1038/sj.onc.1204365] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2000] [Revised: 02/07/2001] [Accepted: 02/12/2001] [Indexed: 12/22/2022]
Abstract
Prostate cancer is one of the most common cancers in men and it is the second leading cause of cancer related death in men in the United States. Recent dietary and epidemiological studies have suggested the benefit of dietary intake of fruits and vegetables in lowering the incidence of prostate cancer. A diet rich in fruits and vegetables provides phytochemicals, particularly indole-3-carbinol (I3C), which may be responsible for the prevention of many types of cancer, including hormone-related cancers such as prostate. Studies to elucidate the role and the molecular mechanism(s) of action of I3C in prostate cancer, however, have not been conducted. In the current study, we investigated whether I3C had any effect against prostate cancer cells and, if so, attempts were made to identify the potential molecular mechanism(s) by which I3C elicits its biological effects on prostate cancer cells. Here we report for the first time that I3C inhibits the growth of PC-3 prostate cancer cells. Induction of G1 cell cycle arrest was also observed in PC-3 cells treated with I3C, which may be due to the observed effects of I3C in the up-regulation of p21(WAF1) and p27(Kip1) CDK inhibitors, followed by their association with cyclin D1 and E and down-regulation of CDK6 protein kinase levels and activity. The induction of p21(WAF1) appears to be transcriptionally upregulated and independent of the p53 responsive element. In addition, I3C inhibited the hyperpohosphorylation of the Retinoblastoma (Rb) protein in PC-3 cells. Induction of apoptosis was also observed in this cell line when treated with I3C, as measured by DNA laddering and poly (ADP-ribose) polymersae (PARP) cleavage. We also found an up-regulation of Bax, and down-regulation of Bcl-2 in I3C-treated cells. These effects may also be mediated by the down-regulation of NF-kappaB observed in I3C treated PC-3 cells. From these results, we conclude that I3C inhibits the growth of PC-3 prostate cancer cells by inducing G1 cell cycle arrest leading to apoptosis, and regulates the expression of apoptosis-related genes. These findings suggest that I3C may be an effective chemopreventive or therapeutic agent against prostate cancer.
Collapse
Affiliation(s)
- S R Chinni
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, MI, USA
| | | | | | | | | |
Collapse
|
89
|
Frey RS, Li J, Singletary KW. Effects of genistein on cell proliferation and cell cycle arrest in nonneoplastic human mammary epithelial cells: involvement of Cdc2, p21(waf/cip1), p27(kip1), and Cdc25C expression. Biochem Pharmacol 2001; 61:979-89. [PMID: 11286989 DOI: 10.1016/s0006-2952(01)00572-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Genistein, a soy isoflavone, has been reported to inhibit the multiplication of numerous neoplastic cells, including those in the breast. However, there is limited information on the effect of genistein on nonneoplastic human breast cells. In the present studies, genistein inhibited proliferation of, and DNA synthesis in, the nonneoplastic human mammary epithelial cell line MCF-10F with an IC(50) of approximately 19-22 microM, and caused a reversible G2/M block in cell cycle progression. Genistein treatment (45 microM) increased the phosphorylation of Cdc2 by 3-fold, decreased the activity of Cdc2 by 70% after 8 hr, and by 24 hr reduced the expression of Cdc2 by 70%. In addition, genistein enhanced the expression of the cell cycle inhibitor p21(waf/cip1) by 10- to 15-fold, increased p21(waf/cip1) association with Cdc2 by 2-fold, and increased the expression of the tumor suppressor p53 by 2.8-fold. Genistein did not alter the expression of p27(kip1) significantly. Furthermore, genistein inhibited the expression of the cell cycle-associated phosphatase Cdc25C by 80%. From these results, we conclude that genistein inhibits the growth of nonneoplastic MCF-10F human breast cells by preventing the G2/M phase transition, induces the expression of the cell cycle inhibitor p21(waf/cip1) as well as its interaction with Cdc2, and inhibits the activity of Cdc2 in a phosphorylation-related manner. Down-regulation of the cell cycle-associated phosphatase Cdc25C combined with up-regulation of p21(waf/cip1) expression appear to be important mechanisms by which genistein decreases Cdc2 kinase activity and causes G2 cell cycle arrest.
Collapse
Affiliation(s)
- R S Frey
- Department of Food Science and Human Nutrition, University of Illinois, 905 South Goodwin Avenue, 61801, Urbana, IL, USA
| | | | | |
Collapse
|
90
|
Salatino M, Labriola L, Schillaci R, Charreau EH, Elizalde PV. Mechanisms of cell cycle arrest in response to TGF-beta in progestin-dependent and -independent growth of mammary tumors. Exp Cell Res 2001; 265:152-66. [PMID: 11281653 DOI: 10.1006/excr.2001.5175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TGF-beta1 modulation of cell cycle components was assessed in an experimental model in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary tumors in Balb/c mice. TGF-beta1 inhibited both MPA-induced proliferation of progestin-dependent C4HD epithelial cells and proliferation of the progestin-independent variant cell type C4HI, arresting cells in G(1) phase of the cell cycle. Progestin-independent 60 epithelial cells evidenced reduced response to TGF-beta1 antiproliferative effects. TGF-beta1 inhibition of cyclins D1 and A expression and up-regulation of p21(CIP1) levels were the common findings in all three cell types. In addition, a significant content reduction of cyclin D1/cdk4 and cyclin A/cdk2 complexes was found after TGF-beta1 inhibition of MPA-dependent and -independent proliferation. TGF-beta1 inhibited cyclin D2 expression and up-regulated p27(KIP1) levels only when acting as inhibitor of MPA-induced proliferation of C4HD cells. Regulation of these two cell cycle components resulted in decreased cyclin D2/cdk2 complex and in increased p27(KIP1) association with cdk2 in C4HD cells treated with TGF-beta1. These two molecular mechanisms, unobserved in progestin-independent growth of C4HI or 60 cells, were associated with a significantly higher degree of inhibition of cdk2 kinase activity in C4HD cells compared to that found in TGF-beta-treated C4HI or 60 cells. Reduced sensitivity of 60 cells to the growth-inhibitory effects of TGF-beta1 correlated with significantly lower levels of p15(INK4B), p21(CIP1), and p27(KIP1) expressed in these cells, compared to the levels present in C4HD or C4HI cells, and correlated as well with lack of expression of p16(INK4). Thus, common targets were found to exist in TGF-beta1 inhibitory action on breast cancer cells, but regulation of specific targets was found when TGF-beta1-inhibited proliferation driven by the progesterone receptor.
Collapse
Affiliation(s)
- M Salatino
- Instituto de Biología y Medicina Experimental, Obligado 2490, Buenos Aires, 1428, Argentina
| | | | | | | | | |
Collapse
|
91
|
Philipp-Staheli J, Payne SR, Kemp CJ. p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 2001; 264:148-68. [PMID: 11237531 DOI: 10.1006/excr.2000.5143] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major function of p27, also known as Kip1, is to bind and inhibit cyclin/cyclin-dependent kinase complexes, thereby blocking cell cycle progression. As p27 operates at the heart of the cell cycle, it is perhaps not surprising that it is emerging as a key player in multiple cell fate decisions including proliferation, differentiation, and cell death. The central role of p27 makes it important in a variety of disease processes that involve aberrations in cellular proliferation and other cell fates. Most notable among these processes is neoplasia. A large number of studies have reported that p27 expression is frequently downregulated in human tumors. In most tumor types, reduced p27 expression correlates with poor prognosis, making p27 a novel and powerful prognostic marker. In addition to these practical implications, murine and tissue culture models have shown that p27 is a potent tumor suppressor gene for multiple epithelially derived neoplasias. Loss of p27 cooperates with mutations in several oncogenes and tumor suppressor genes to facilitate tumor growth, indicating that p27 may be a "nodal point" for tumor suppression. In contrast to most tumor suppressor genes studied to date, which are recessive at the cellular level, p27 is haploinsufficient for tumor suppression. The fact that tumor suppression by p27 is critically dependent on the absolute level of p27 expression indicates that p27 acts as a rheostat rather than as an on/off switch to control growth and neoplasia.
Collapse
Affiliation(s)
- J Philipp-Staheli
- Fred Hutchinson Cancer Research Center, C1-015, 1100 Fairview Avenue North, Seattle, Washington 90109-1024, USA
| | | | | |
Collapse
|
92
|
Kim SG, Kim SN, Jong HS, Kim NK, Hong SH, Kim SJ, Bang YJ. Caspase-mediated Cdk2 activation is a critical step to execute transforming growth factor-beta1-induced apoptosis in human gastric cancer cells. Oncogene 2001; 20:1254-1265. [PMID: 11313870 DOI: 10.1038/sj.onc.1204203] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2000] [Revised: 12/14/2000] [Accepted: 12/19/2000] [Indexed: 01/07/2023]
Abstract
Although TGF-beta1, a growth inhibitor, is known to also induce apoptosis, the molecular mechanism of this apoptosis is largely undefined. Here, we identify the mechanism of TGF-beta1-induced apoptosis in SNU-16 human gastric cancer cells. Cell cycle and TUNEL analysis showed that, upon TGF-beta1 treatment, cells were initially arrested at the G1 phase and then driven into apoptosis. Of note, caspase-3 was activated in accordance with TGF-beta1-induced G1 arrest. Activated caspase-3 is targeted to cleave p21(cip1), p27(kip1), and Rb, which play important roles in TGF-beta-induced G1 arrest, into inactive fragments. Subsequently, Cdk2 was aberrantly activated due to the cleavage of p21 and p27. We found that the inhibition of Cdk2 activity efficiently blocks TGF-beta1-induced apoptosis, whereas it did not prevent caspase-3 activation or the subsequent cleavage of target proteins. In contrast, the suppression of caspase-3 activity inhibited the cleavage of target proteins, the activation of Cdk2, and the induction of apoptosis. Taken together, our results suggest that activation of caspase-3 by TGF-beta1 may initiate the conversion from G1 cell cycle arrest to apoptosis via the cleavage of p21, p27 and Rb, which in turn causes Cdk2 activation and, most significantly, Cdk2 activation as a downstream effector of caspase is a critical step for the execution of TGF-beta1-induced apoptosis.
Collapse
Affiliation(s)
- S G Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 110-744, Korea
| | | | | | | | | | | | | |
Collapse
|
93
|
Fukuda M, Satoh TA, Takanashi M, Hirai K, Ohnishi E, Sairenji T. Inhibition of cell growth and Epstein-Barr virus reactivation by CD40 stimulation in Epstein-Barr virus-transformed B cells. Viral Immunol 2001; 13:215-29. [PMID: 10893001 DOI: 10.1089/vim.2000.13.215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CD40 molecule plays important roles in B cell activation, proliferation, and immunoglobulin (Ig) class switching. In Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines (LCL), CD40 mediates growth inhibition and EBV reactivation via the CD40 signaling pathways. CD40 cross-linking with a monoclonal antibody arrests cell growth in G1 and induces expression of p27kip1 cyclin-dependent kinase inhibitor. CD40 cross-linking also induces EBV reactivation, as detected by the induction of EBV-specific early antigen, immediate early BZLF1 RNA, and its protein product ZEBRA. These results support hypotheses that the proliferation of EBV-infected B cells in vivo can be inhibited by interactions with the CD40 ligand on activated helper T cells, and latent EBV is reactivated via the signaling pathways controlled by CD40 interactions.
Collapse
Affiliation(s)
- M Fukuda
- Department of Biosignaling School of Life Science, Faculty of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | |
Collapse
|
94
|
Schrum LW, Bird MA, Salcher O, Burchardt ER, Grisham JW, Brenner DA, Rippe RA, Behrns KE. Autocrine expression of activated transforming growth factor-beta(1) induces apoptosis in normal rat liver. Am J Physiol Gastrointest Liver Physiol 2001; 280:G139-48. [PMID: 11123207 DOI: 10.1152/ajpgi.2001.280.1.g139] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to determine the differential effects of latent and activated transforming growth factor (TGF)-beta(1) in growth control of normal and proliferating hepatocytes in vivo. Rats were injected with adenoviruses expressing control transgenes (Ctrl), latent TGF-beta(1) [TGF-beta(L)], or activated TGF-beta(1) [TGF-beta(A)]. Additional animals underwent two-thirds partial hepatectomy (PH) 24 h after injection. Increased hepatocyte apoptosis was observed in TGF-beta(A)-injected but not TGF-beta(L)-injected animals 24 h postinjection (10.5%) compared with Ctrl animals (0.37%). The percent of apoptotic cells increased to 32.1% in TGF-beta(A)-injected animals 48 h after injection. Furthermore, TGF-beta(A)-injected rats did not survive 24 h after PH. Four hours after PH, 0.25 and 14.1% apoptotic hepatocytes were seen in Ctrl- and TGF-beta(A)-injected rats, respectively. TGF-beta(A)-induced apoptosis in primary rat hepatocytes was blocked with a pancaspase inhibitor. Thus autocrine expression of TGF-beta(A) but not TGF-beta(L) induces hepatocyte apoptosis in the normal rat liver. Rats overexpressing TGF-beta(A) do not survive two-thirds PH due to hepatic apoptosis. Thus activation of TGF-beta(1) may be a critical step in the growth control of normal and proliferating rat hepatocytes.
Collapse
Affiliation(s)
- L W Schrum
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7210, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Djaborkhel R, Tvrdík D, Eckschlager T, Raska I, Müller J. Cyclin A down-regulation in TGFbeta1-arrested follicular lymphoma cells. Exp Cell Res 2000; 261:250-9. [PMID: 11082295 DOI: 10.1006/excr.2000.5047] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor beta1 (TGFbeta1) induces growth arrest in many cell types, including B lymphocytes. We examined the effect of TGF on cell cycle progression of a non-Hodgkin lymphoma cell line of follicular lymphoma subtype (FL). After 48 h of TGFbeta1 (10 ng/ml) treatment, a significantly increased number of DoHH2 cells was retained in G(0)/G(1) phase. We examined the level of cell cycle components, cyclins, cyclin-dependent kinases (cdk), and their inhibitors. We found that the expression of cyclin A and p21(WAF1) molecules was primarily modulated by TGFbeta1 treatment while the expression of other regulatory components, like cyclins D, cyclin E, cdk2, cdk4, and cdk6 or p15(INK4B), p16(INK4A), and p27(KIP1) was not significantly affected. We further examined expression and activity of CREB/ATF family members to examine their roles in cyclin A inhibition. The binding activity of CREB-1 and ATF-2 to the CRE region of the cyclin A promoter was almost completely abolished due to the treatment. The total level of CREB-1, ATF-2, and ATF-3 was notably reduced. Moreover, CREB-1 was dephosphorylated due to the treatment as revealed by immunoblotting. We assume that down-regulation of cyclin A was mediated by the absence of CREB/ATF activation dimers. The profound effect on the ATF family of transcription factors indicates the complexity of TGFbeta1 action on FL B malignant cells.
Collapse
Affiliation(s)
- R Djaborkhel
- Department of Cell Biology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
96
|
Sandhu C, Donovan J, Bhattacharya N, Stampfer M, Worland P, Slingerland J. Reduction of Cdc25A contributes to cyclin E1-Cdk2 inhibition at senescence in human mammary epithelial cells. Oncogene 2000; 19:5314-23. [PMID: 11103932 DOI: 10.1038/sj.onc.1203908] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replicative senescence may be an important tumor suppressive mechanism for human cells. We investigated the mechanism of cell cycle arrest at senescence in human mammary epithelial cells (HMECs) that have undergone a period of 'self-selection', and as a consequence exhibit diminished p16INK4A levels. As HMECs approached senescence, the proportion of cells with a 2N DNA content increased and that in S phase decreased progressively. Cyclin D1-cdk4, cyclin E-cdk2 and cyclin A-cdk2 activities were not abruptly inhibited, but rather diminished steadily with increasing population age. In contrast to observations in fibroblast, p21Cip1 was not increased at senescence in HMECs. There was no increase in p27Kip1 levels nor in KIP association with targets cdks. While p15INK4B and its binding to both cdk4 and cdk6 increased with increasing passage, some cyclin D1-bound cdk4 and cdk6 persisted in senescent cells, whose inhibition could not be attributed to p15INK4B. The inhibition of cyclin E-cdk2 in senescent HMECs was accompanied by increased inhibitory phosphorylation of cdk2, in association with a progressive loss of Cdc25A. Recombinant Cdc25A strongly reactivated cyclin E-cdk2 from senescent HMECs suggesting that reduction of Cdc25A contributes to cyclin E-cdk2 inhibition and G1 arrest at senescence. Although ectopic expression of Cdc25A failed to extend the lifespan of HMECs, the exogenous Cdc25A appeared to lack activity in these cells, since it neither shortened the G1-to-S phase interval nor activated cyclin E-cdk2. In contrast, in the breast cancer-derived MCF-7 line, Cdc25A overexpression increased both cyclin E-cdk2 activity and the S phase fraction. Thus, mechanisms leading to HMEC immortalization may involve not only the re-induction of Cdc25A expression, but also activation of this phosphatase.
Collapse
Affiliation(s)
- C Sandhu
- Cancer Research, Sunnybrook and Women's College Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
97
|
Petrocelli T, Slingerland J. UVB induced cell cycle checkpoints in an early stage human melanoma line, WM35. Oncogene 2000; 19:4480-90. [PMID: 11002421 DOI: 10.1038/sj.onc.1203808] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activation of cell cycle checkpoints in response to genotoxic stressors is essential for the maintenance of genomic integrity. Although most prior studies of cell cycle effects of UV irradiation have used UVC, this UV range does not penetrate the earth's atmosphere. Thus, we have investigated the mechanisms of ultraviolet B (UVB) irradiation-induced cell cycle arrest in a biologically relevant target cell type, the early stage human melanoma cell line, WM35. Irradiation of WM35 cells with UVB resulted in arrests throughout the cell cycle: at the G1/S transition, in S phase and in G2. G1 arrest was accompanied by increased association of p21 with cyclin E/cdk2 and cyclin A/cdk2, increased binding of p27 to cyclin E/cdk2 and inhibition of these kinases. A loss of Cdc25A expression was associated with an increased inhibitory phosphotyrosine content of cyclin E- and cyclin A-associated cdk2 and may also contribute to G1 arrest following UVB irradiation. The association of Cdc25A with 14-3-3 was increased by UVB. Reduced cyclin D1 protein and increased binding of p21 and p27 to cyclin D1/cdk4 complexes were also observed. The loss of cyclin D1 could not be attributed to inhibition of either MAPK or PI3K/PKB pathways, since both were activated by UVB. Cdc25B levels fell and the remaining protein showed an increased association with 14-3-3 in response to UVB. Losses in cyclin B1 expression and an increased binding of p21 to cyclin B1/cdk1 complexes also contributed to inhibition of this kinase activity, and G2/M arrest. Oncogene (2000) 19, 4480 - 4490.
Collapse
Affiliation(s)
- T Petrocelli
- Division of Cancer Biology Research, Toronto Sunnybrook Regional Cancer Centre, Sunnybrook and Women's College Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
98
|
Abstract
In order to survive, cells need tight control of cell cycle progression. The control mechanisms are often lost in human cancer cells. The cell cycle is driven forward by cyclin-dependent kinases (CDKs). The CDK inhibitors (CKIs) are important regulators of the CDKs. As the name implies, CKIs were initially shown to negatively regulate CDK activity. However, recent data indicates that the members of the Kip/Cip family of CKIs, including p27, exert both positive and negative regulation of CDK activity at the G1/S phase transition. Mutations of Kip/Cip genes are rare, but p27 knockout mice are tumor prone when challenged with carcinogenic stimuli. Numerous studies of various human non-hematological tumors have identified low expression of p27 as a predictor of poor prognosis. In non-Hodgkin's lymphoma (NHL), we and others have also shown the independent prognostic value of p27 expression. In distinct NHL entities however, shortened survival seems to correlate with high expression of p27. For definitive assessment of the role played by p27 in lymphomagenesis, and the prognostic value of p27 in these tumors, further studies of distinct NHL entities are needed. This review addresses the function of p27 and the other Kip/Cip proteins in G1/S phase transition and their possible role in tumorigenesis with emphasis on p27 and NHL.
Collapse
Affiliation(s)
- M B Møller
- Department of Pathology, University of Southern Denmark-Odense University.
| |
Collapse
|
99
|
Miyazawa K, Himi T, Garcia V, Yamagishi H, Sato S, Ishizaki Y. A role for p27/Kip1 in the control of cerebellar granule cell precursor proliferation. J Neurosci 2000; 20:5756-63. [PMID: 10908616 PMCID: PMC6772521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
During development, control of proliferation of neuronal precursor cells plays a crucial role in determining the number of neurons. Proliferation is driven by mitogens, but how it is terminated remains a mystery. In this study, we examined the role of cyclin-dependent kinase inhibitors in the control of proliferation of cerebellar granule cell precursors (GCPs). Among the inhibitors we examined, only p27/Kip1 (p27) was expressed at significant levels in cells of the granule cell lineage in the developing and adult cerebellum. In developing cerebella, p27 was expressed in the external germinal layer (the deeper regions), the molecular layer, and the granule layer. In adult cerebella, p27 was expressed in the cells of the granule layer. We isolated and purified GCPs from cerebella of developing mice and examined their bromodeoxyuridine (BrdU) uptake and p27 expression at various times. We found that there was an inverse correlation between BrdU uptake and p27 expression. Even in the presence of saturating amounts of Sonic hedgehog, a potent mitogen, the cells eventually stopped dividing and differentiated, expressing p27 strongly. We also examined mice in which one or both copies of the p27 gene have been inactivated by targeted gene disruption and found that their cerebella were larger than those of wild-type mice. In cell cultures, GCPs prepared from p27-deficient mice showed enhanced proliferation compared with GCPs from wild-type mice. Taken together, these results suggest that there is an intracellular mechanism that stops GCP division and causes GCPs to differentiate and that p27 is part of this mechanism.
Collapse
Affiliation(s)
- K Miyazawa
- Department of Hygiene, Kobe University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
100
|
Hu X, Zuckerman KS. Cell cycle and transcriptional control of human myeloid leukemic cells by transforming growth factor beta. Leuk Lymphoma 2000; 38:235-46. [PMID: 10830731 DOI: 10.3109/10428190009087015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
TGFbeta1 is a potent growth inhibitor of both primitive and more differentiated human myeloid leukemic cells. The extent of the growth inhibitory response to TGFbeta varies with cell type, and is not linked to stages of differentiation of cell lines. Downregulation of multiple cell cycle-regulatory molecules is a dominant event in TGFbeta1-mediated growth inhibition of human MV4-11 myeloid leukemia cells. Both G1-phase and G2-phase cyclins and cdks participate in the regulation of TGFbeta1-mediated growth inhibition of MV4-11 cells. By both depressing cdk2 synthesis and up-regulating cyclin E-associated p27, TGFbeta1 may magnify its inhibitory efficiency. TGFbeta1 also rapidly inhibits phosphorylation of pRb at several serine and threonine residues. The underphosphorylated pRb associates with E2F-4 in G1 phase, whereas the phosphorylated pRb mainly binds to E2F-1 and E2F-3 in proliferating MV4-11 cells. Since TGFbeta1 upregulates p130/E2F-4 complex formation and downregulates p107/E2F-4 complex formation, with E2F-4 levels remaining constant, our results suggest that E2F-4 is switched from p107 to pRb and p130 when cells exit from the cell cycle and arrest in G1 by TGFbeta1. In summary, TGFbeta1 inhibits growth of human myeloid leukemic cells through multiple pathways, whereas the "cdk inhibitor" p27 is both a positive and negative regulator.
Collapse
Affiliation(s)
- X Hu
- Department of Internal Medicine, University of South Florida, and H. Lee Moffitt Cancer Center and Research Institute, Tampa 33612, USA.
| | | |
Collapse
|