51
|
Luo Y, Deng J, Cui Y, Li T, Bai J, Huang L, Sun Y, Dong F, Zhang Q. Long-term instillation to four natural representative chrysotile of China induce the inactivation of P53 and P16 and the activation of C-JUN and C-FOS in the lung tissues of Wistar rats. Toxicol Lett 2020; 333:140-149. [PMID: 32755622 DOI: 10.1016/j.toxlet.2020.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
Abstract
Chrysotile is the only type of asbestos still widely exploited, and all kinds of asbestos including chrysotile was classified as a group I carcinogen by the IARC. There is a wealth of evidence that chrysotile can cause a range of cancers, including cancer of the lung, larynx, ovary, and mesothelioma. As the second largest chrysotile producer, China is at great risk of occupational exposure. Moreover, our previous experiment and some other studies have shown that the toxicity of mineral fibre from various mining areas may be different. To explore the oncogenic potential of chrysotile from different mining areas of China, Wistar rats were administered 0.5 mL chrysotile asbestos suspension of 2.0 mg/mL (from Akesai, Gansu; Mangnai, Qinghai; XinKang, Sichuan; and Shannan, Shaanxi) dissolved in saline by intratracheal instillation once-monthly and were sacrificed at 1 mo, 6 mo, and 12 mo. Our results found that chrysotile caused lung inflammation and lung tissue damage. Moreover, prolonged exposure of chrysotile can induce inactivation of the tumor suppressor gene P53 and P16 and activation of the protooncogene C-JUN and C-FOS both in the messenger RNA and protein level. In addition, chrysotile from Shannan and XinKang has a stronger effect which may link to cancer than that from Akesai and Mangnai.
Collapse
Affiliation(s)
- Yingyu Luo
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jianjun Deng
- Medical Laboratory, Sichuan Mianyang 404 Hospital, No.2 Affiliated Hospital of North Sichuan Medical College, Mianyang 621000, Sichuan Province, China
| | - Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tao Li
- Key Laboratory of Ministry of Education, Myocardial electrical laboratory, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Bai
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liuwen Huang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yaochuan Sun
- School of Earth Science and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, Sichuan, China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
52
|
Optimization of a Luciferase-Expressing Non-Invasive Intrapleural Model of Malignant Mesothelioma in Immunocompetent Mice. Cancers (Basel) 2020; 12:cancers12082136. [PMID: 32752156 PMCID: PMC7465989 DOI: 10.3390/cancers12082136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
Malignant Pleural Mesothelioma (MPM) is an aggressive tumor of the pleural lining that is usually identified at advanced stages and resistant to current therapies. Appropriate pre-clinical mouse tumor models are of pivotal importance to study its biology. Usually, tumor cells have been injected intraperitoneally or subcutaneously. Using three available murine mesothelioma cell lines with different histotypes (sarcomatoid, biphasic, epithelioid), we have set up a simplified model of in vivo growth orthotopically by inoculating tumor cells directly in the thorax with a minimally invasive procedure. Mesothelioma tumors grew along the pleura and spread on the superficial areas of the lungs, but no masses were found outside the thoracic cavity. As observed in human MPM, tumors were highly infiltrated by macrophages and T cells. The luciferase-expressing cells can be visualized in vivo by bioluminescent optical imaging to precisely quantify tumor growth over time. Notably, the bioluminescence signal detected in vivo correctly matched the tumor burden quantified with classical histology. In contrast, the subcutaneous or intraperitoneal growth of these mesothelioma cells was considered either non-representative of the human disease or unreliable to precisely quantify tumor load. Our non-invasive in vivo model of mesothelioma is simple and reproducible, and it reliably recapitulates the human disease.
Collapse
|
53
|
Synergistic Effect of WTC-Particulate Matter and Lysophosphatidic Acid Exposure and the Role of RAGE: In-Vitro and Translational Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124318. [PMID: 32560330 PMCID: PMC7344461 DOI: 10.3390/ijerph17124318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/07/2023]
Abstract
World Trade Center particulate matter (WTC-PM)-exposed firefighters with metabolic syndrome (MetSyn) have a higher risk of WTC lung injury (WTC-LI). Since macrophages are crucial innate pulmonary mediators, we investigated WTC-PM/lysophosphatidic acid (LPA) co-exposure in macrophages. LPA, a low-density lipoprotein metabolite, is a ligand of the advanced glycation end-products receptor (AGER or RAGE). LPA and RAGE are biomarkers of WTC-LI. Human and murine macrophages were exposed to WTC-PM, and/or LPA, and compared to controls. Supernatants were assessed for cytokines/chemokines; cell lysate immunoblots were assessed for signaling intermediates after 24 h. To explore the translatability of our in-vitro findings, we assessed serum cytokines/chemokines and metabolites of symptomatic, never-smoking WTC-exposed firefighters. Agglomerative hierarchical clustering identified phenotypes of WTC-PM-induced inflammation. WTC-PM induced GM-CSF, IL-8, IL-10, and MCP-1 in THP-1-derived macrophages and induced IL-1α, IL-10, TNF-α, and NF-κB in RAW264.7 murine macrophage-like cells. Co-exposure induced synergistic elaboration of IL-10 and MCP-1 in THP-1-derived macrophages. Similarly, co-exposure synergistically induced IL-10 in murine macrophages. Synergistic effects were seen in the context of a downregulation of NF-κB, p-Akt, -STAT3, and -STAT5b. RAGE expression after co-exposure increased in murine macrophages compared to controls. In our integrated analysis, the human cytokine/chemokine biomarker profile of WTC-LI was associated with discriminatory metabolites (fatty acids, sphingolipids, and amino acids). LPA synergistically elaborated WTC-PM’s inflammatory effects in vitro and was partly RAGE-mediated. Further research will focus on the intersection of MetSyn/PM exposure.
Collapse
|
54
|
Alkoussa S, Hulo S, Courcot D, Billet S, Martin PJ. Extracellular vesicles as actors in the air pollution related cardiopulmonary diseases. Crit Rev Toxicol 2020; 50:402-423. [DOI: 10.1080/10408444.2020.1763252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stéphanie Alkoussa
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sébastien Hulo
- IMPact of Environmental ChemicalS on Human Health, ULR 4483 - IMPECS, Univ. Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
- Department of Occupational Health, Lille University Hospital, Lille, France
| | - Dominique Courcot
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Sylvain Billet
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| | - Perrine J. Martin
- Unit of Environmental Chemistry and Interactions with Life, UCEIV EA4492, SFR Condorcet FR CNRS, University of Littoral Côte d’Opale, Dunkerque, France
| |
Collapse
|
55
|
Ventura C, Pereira JFS, Matos P, Marques B, Jordan P, Sousa-Uva A, Silva MJ. Cytotoxicity and genotoxicity of MWCNT-7 and crocidolite: assessment in alveolar epithelial cells versus their coculture with monocyte-derived macrophages. Nanotoxicology 2020; 14:479-503. [PMID: 32046553 DOI: 10.1080/17435390.2019.1695975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 02/08/2023]
Abstract
In the past years, several in vitro studies have addressed the pulmonary toxicity of multi-walled carbon nanotubes (MWCNT) and compared it with that caused by asbestos fibers, but their conclusions have been somewhat inconsistent and difficult to extrapolate to in vivo. Since cell coculture models were proposed to better represent the in vivo conditions than conventional monocultures, this work intended to compare the cytotoxicity and genotoxicity of MWCNT-7 (Mitsui-7) and crocidolite using A549 cells grown in a conventional monoculture or in coculture with THP-1 macrophages. Although a decrease in A549 viability was noted following exposure to a concentration range of MWCNT-7 and crocidolite, no viability change occurred in similarly exposed cocultures. Early events indicating epithelial to mesenchymal transition (EMT) were observed which could explain apoptosis resistance. The comet assay results were similar between the two models, being positive and negative for crocidolite and MWCNT-7, respectively. An increase in the micronucleus frequency was detected in the cocultured A549-treated cells with both materials, but not in the monoculture. On the other hand, exposure of A549 monocultures to MWCNT-7 induced a highly significant increase in nucleoplasmic bridges in which those were found embedded. Our overall results demonstrate that (i) both materials are cytotoxic and genotoxic, (ii) the presence of THP-1 macrophages upholds the viability of A549 cells and increases the aneugenic/clastogenic effects of both materials probably through EMT, and (iii) MWCNT-7 induces the formation of nucleoplasmic bridges in A549 cells.
Collapse
Affiliation(s)
- Célia Ventura
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Department of Occupational and Environmental Health, National School of Public Health, NOVA University of Lisbon (UNL), Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| | - Joana F S Pereira
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Bárbara Marques
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - António Sousa-Uva
- Department of Occupational and Environmental Health, National School of Public Health, NOVA University of Lisbon (UNL), Lisbon, Portugal
- CISP - Public Health Research Center, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School-FCM, UNL, Lisbon, Portugal
| |
Collapse
|
56
|
Loreto C, Caltabiano R, Graziano ACE, Castorina S, Lombardo C, Filetti V, Vitale E, Rapisarda G, Cardile V, Ledda C, Rapisarda V. Defense and protection mechanisms in lung exposed to asbestiform fiber: the role of macrophage migration inhibitory factor and heme oxygenase-1. Eur J Histochem 2020; 64:3073. [PMID: 32312030 PMCID: PMC7171426 DOI: 10.4081/ejh.2020.3073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.
Collapse
Affiliation(s)
- Carla Loreto
- Anatomy and Histology, Department of Biomedical and Biotechnologies Sciences, University of Catania.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Ghosh M, Murugadoss S, Janssen L, Cokic S, Mathyssen C, Van Landuyt K, Janssens W, Carpentier S, Godderis L, Hoet P. Distinct autophagy-apoptosis related pathways activated by Multi-walled (NM 400) and Single-walled carbon nanotubes (NIST-SRM2483) in human bronchial epithelial (16HBE14o-) cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121691. [PMID: 31791862 DOI: 10.1016/j.jhazmat.2019.121691] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/20/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Given the recent development in the field of particle and fibre toxicology, parallels have been drawn between Carbon nanotubes (CNTs) and asbestos. It is now established that both multi-walled (MWCNTs) and single-walled (SWCNTs) carbon nanotubes might contribute to pulmonary disease. Although multiple mechanisms might be involved in CNT induced pathogenesis, systematic understanding of the relationship between different CNT exposure (MWCNT vs SWCNT) and autophagy/ apoptosis/ necrosis, in human lung epithelial cells remains limited. In this study, we demonstrate that exposure to MWCNT (NM-400), but not SWCNT (NIST-SRM2483), leads to an autophagic response after acute exposure (24 h). MWCNT exposure was characterized by an increase in anti-apoptotic BCL2, downregulation of executor Caspase-3/7 and increase in expression of genes from the autophagy machinery. For SWCNT exposure however, we observed an overexpression of executor Caspase-3/7 and upregulation of pro-apoptotic BAX; enrichment for processes like cornification, apoptotic process, cell differentiation from proteomic analysis. These results clearly indicate a major difference in the pathways initiated by the CNTs, in vitro. While the present study design provides mechanistic understanding after an acute exposure for the tested CNTs, we believe that the information obtained here would have relevance in better understanding of CNT toxicity and pathogenesis in general.
Collapse
Affiliation(s)
- Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium.
| | - Sivakumar Murugadoss
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium
| | - Lisa Janssen
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium
| | - Stevan Cokic
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Carolien Mathyssen
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Kirsten Van Landuyt
- KU Leuven (University of Leuven), Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, Kapucijnenvoer 7, 3000, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases, Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | | | - Lode Godderis
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium; IDEWE, External Service for Prevention and Protection at Work, B-3001, 3000, Leuven, Belgium
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
58
|
Dong J. Microenvironmental Alterations in Carbon Nanotube-Induced Lung Inflammation and Fibrosis. Front Cell Dev Biol 2020; 8:126. [PMID: 32185174 PMCID: PMC7059188 DOI: 10.3389/fcell.2020.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/13/2020] [Indexed: 12/30/2022] Open
Abstract
Carbon nanotube (CNT)-induced pulmonary inflammation and fibrosis have been intensively observed and characterized in numerous animal studies in the past decade. Remarkably, CNT-induced fibrotic lesions highly resemble some human fibrotic lung diseases, such as IPF and pneumoconiosis, regarding disease development and pathological features. This notion leads to a serious concern over the health impact of CNTs in exposed human populations, considering the rapidly expanding production of CNT materials for diverse industrial and commercial applications, and meanwhile provides the rationale for exploring CNT-induced pathologic effects in the lung. Accumulating mechanistic understanding of CNT lung pathology at the systemic, cellular, and molecular levels has demonstrated the potential of using CNT-exposed animals as a new disease model for the studies on inflammation, fibrosis, and the interactions between these two disease states. Tissue microenvironment plays critical roles in maintaining homeostasis and physiological functions of organ systems. When aberrant microenvironment forms under intrinsic or extrinsic stimulation, tissue abnormality, organ dysfunction, and pathological outcomes are induced, resulting in disease development. In this article, the cellular and molecular alterations that are induced in tissue microenvironment and implicated in the initiation and progression of inflammation and fibrosis in CNT-exposed lungs, including effector cells, soluble mediators, and functional events exemplified by cell differentiation and extracellular matrix (ECM) modification, are summarized and discussed. This analysis would provide new insights into the mechanistic understanding of lung inflammation and fibrosis induced by CNTs, as well as the development of CNT-exposed animals as a new model for human lung diseases.
Collapse
Affiliation(s)
- Jie Dong
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, United States
| |
Collapse
|
59
|
Cheng YY, Rath EM, Linton A, Yuen ML, Takahashi K, Lee K. The Current Understanding Of Asbestos-Induced Epigenetic Changes Associated With Lung Cancer. LUNG CANCER (AUCKLAND, N.Z.) 2020; 11:1-11. [PMID: 32021524 PMCID: PMC6955579 DOI: 10.2147/lctt.s186843] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Asbestos is a naturally occurring mineral consisting of extremely fine fibres that can become trapped in the lungs after inhalation. Occupational and environmental exposures to asbestos are linked to development of lung cancer and malignant mesothelioma, a cancer of the lining surrounding the lung. This review discusses the factors that are making asbestos-induced lung cancer a continuing problem, including the extensive historic use of asbestos and decades long latency between exposure and disease development. Genomic mutations of DNA nucleotides and gene rearrangements driving lung cancer are well-studied, with biomarkers and targeted therapies already in clinical use for some of these mutations. The genes involved in these mutation biomarkers and targeted therapies are also involved in epigenetic mechanisms and are discussed in this review as it is hoped that identification of epigenetic aberrations in these genes will enable the same gene biomarkers and targeted therapies to be used. Currently, understanding of how asbestos fibres trapped in the lungs leads to epigenetic changes and lung cancer is incomplete. It has been shown that oxidoreduction reactions on fibre surfaces generate reactive oxygen species (ROS) which in turn damage DNA, leading to genetic and epigenetic alterations that reduce the activity of tumour suppressor genes. Epigenetic DNA methylation changes associated with lung cancer are summarised in this review, and some of these changes will be due to asbestos exposure. So far, little research has been carried out to separate the asbestos driven epigenetic changes from those due to non-asbestos causes of lung cancer. Asbestos-associated lung cancers exhibit less methylation variability than lung cancers in general, and in a large proportion of samples variability has been found to be restricted to promoter regions. Epigenetic aberrations in cancer are proving to be promising biomarkers for diagnosing cancers. It is hoped that further understanding of epigenetic changes in lung cancer can result in useful asbestos-associated lung cancer biomarkers to guide treatment. Research is ongoing into the detection of lung cancer epigenetic alterations using non-invasive samples of blood and sputum. These efforts hold the promise of non-invasive cancer diagnosis in the future. Efforts to reverse epigenetic aberrations in lung cancer by epigenetic therapies are ongoing but have not yet yielded success.
Collapse
Affiliation(s)
- Yuen Yee Cheng
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma M Rath
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anthony Linton
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Man Lee Yuen
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Ken Takahashi
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Kenneth Lee
- Asbestos Disease Research Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
60
|
Cox LA. Dose-response modeling of NLRP3 inflammasome-mediated diseases: asbestos, lung cancer, and malignant mesothelioma as examples. Crit Rev Toxicol 2020; 49:614-635. [PMID: 31905042 DOI: 10.1080/10408444.2019.1692779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Can a single fiber of amphibole asbestos increase the risk of lung cancer or malignant mesothelioma (MM)? Traditional linear no-threshold (LNT) risk assessment assumptions imply that the answer is yes: there is no safe exposure level. This paper draws on recent scientific progress in inflammation biology, especially elucidation of the activation thresholds for NLRP3 inflammasomes and resulting chronic inflammation, to model dose-response relationships for malignant mesothelioma and lung cancer risks caused by asbestos exposures. The modeling integrates a physiologically based pharmacokinetics (PBPK) front end with inflammation-driven two-stage clonal expansion (I-TSCE) models of carcinogenesis to describe how exposure leads to chronic inflammation, which in turn promotes carcinogenesis. Together, the combined PBPK and I-TSCE modeling predict that there are practical thresholds for exposure concentration below which asbestos exposure does not cause chronic inflammation in less than a lifetime, and therefore does not increase chronic inflammation-dependent cancer risks. Quantitative examples using model parameter estimates drawn from the literature suggest that practical thresholds may be within about a factor of 2 of some past exposure levels for some workers. The I-TSCE modeling framework explains previous puzzling aspects of asbestos epidemiology, such as why age at first exposure is a better predictor of lifetime MM risk than exposure duration. It may be a valuable tool for risk analysts when LNT assumptions are not justified due to inflammation response thresholds mediating dose-response relationships.
Collapse
|
61
|
Mulay SR, Steiger S, Shi C, Anders HJ. A guide to crystal-related and nano- or microparticle-related tissue responses. FEBS J 2020; 287:818-832. [PMID: 31829497 DOI: 10.1111/febs.15174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Crystals and nano- and microparticles form inside the human body from intrinsic proteins, minerals, or metabolites or enter the body as particulate matter from occupational and environmental sources. Associated tissue injuries and diseases mostly develop from cellular responses to such crystal deposits and include inflammation, cell necrosis, granuloma formation, tissue fibrosis, and stone-related obstruction of excretory organs. But how do crystals and nano- and microparticles trigger these biological processes? Which pathomechanisms are identical across different particle types, sizes, and shapes? In addition, which mechanisms are specific to the atomic or molecular structure of crystals or to specific sizes or shapes? Do specific cellular or molecular mechanisms qualify as target for therapeutic interventions? Here, we provide a guide to approach this diverse and multidisciplinary research domain. We give an overview about the clinical spectrum of crystallopathies, about shared and specific pathomechanisms as a conceptual overview before digging deeper into the specialty field of interest.
Collapse
Affiliation(s)
- Shrikant R Mulay
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Stefanie Steiger
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Chongxu Shi
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| | - Hans-Joachim Anders
- Renal Division, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU Munich, Germany
| |
Collapse
|
62
|
Ghadiri M, Yung AE, Haghi M. Role of Oxidative Stress in Complexity of Respiratory Diseases. ROLE OF OXIDATIVE STRESS IN PATHOPHYSIOLOGY OF DISEASES 2020:67-92. [DOI: 10.1007/978-981-15-1568-2_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
63
|
Beach TA, Groves AM, Williams JP, Finkelstein JN. Modeling radiation-induced lung injury: lessons learned from whole thorax irradiation. Int J Radiat Biol 2020; 96:129-144. [PMID: 30359147 PMCID: PMC6483900 DOI: 10.1080/09553002.2018.1532619] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022]
Abstract
Models of thoracic irradiation have been developed as clinicians and scientists have attempted to decipher the events that led up to the pulmonary toxicity seen in human subjects following radiation treatment. The most common model is that of whole thorax irradiation (WTI), applied in a single dose. Mice, particularly the C57BL/6J strain, has been frequently used in these investigations, and has greatly informed our current understanding of the initiation and progression of radiation-induced lung injury (RILI). In this review, we highlight the sequential progression and dynamic nature of RILI, focusing primarily on the vast array of information that has been gleaned from the murine model. Ample evidence indicates a wide array of biological responses that can be seen following irradiation, including DNA damage, oxidative stress, cellular senescence and inflammation, all triggered by the initial exposure to ionizing radiation (IR) and heterogeneously maintained throughout the temporal progression of injury, which manifests as acute pneumonitis and later fibrosis. It appears that the early responses of specific cell types may promote further injury, disrupting the microenvironment and preventing a return to homeostasis, although the exact mechanisms driving these responses remains somewhat unclear. Attempts to either prevent or treat RILI in preclinical models have shown some success by targeting these disparate radiobiological processes. As our understanding of the dynamic cellular responses to radiation improves through the use of such models, so does the likelihood of preventing or treating RILI.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- These authors contributed equally to this publication
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
64
|
Evans JJ, Alkaisi MM, Sykes PH. Tumour Initiation: a Discussion on Evidence for a "Load-Trigger" Mechanism. Cell Biochem Biophys 2019; 77:293-308. [PMID: 31598831 PMCID: PMC6841748 DOI: 10.1007/s12013-019-00888-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
Appropriate mechanical forces on cells are vital for normal cell behaviour and this review discusses the possibility that tumour initiation depends partly on the disruption of the normal physical architecture of the extracellular matrix (ECM) around a cell. The alterations that occur thence promote oncogene expression. Some questions, that are not answered with certainty by current consensus mechanisms of tumourigenesis, are elegantly explained by the triggering of tumours being a property of the physical characteristics of the ECM, which is operative following loading of the tumour initiation process with a relevant gene variant. Clinical observations are consistent with this alternative hypothesis which is derived from studies that have, together, accumulated an extensive variety of data incorporating biochemical, genetic and clinical findings. Thus, this review provides support for the view that the ECM may have an executive function in induction of a tumour. Overall, reported observations suggest that either restoring an ECM associated with homeostasis or targeting the related signal transduction mechanisms may possibly be utilised to modify or control the early progression of cancers. The review provides a coherent template for discussing the notion, in the context of contemporary knowledge, that tumourigenesis is an alliance of biochemistry, genetics and biophysics, in which the physical architecture of the ECM may be a fundamental component. For more definitive clarification of the concept there needs to be a phalanx of experiments conceived around direct questions that are raised by this paper.
Collapse
Affiliation(s)
- John J Evans
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, Christchurch, New Zealand.
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand.
| | - Maan M Alkaisi
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Christchurch, New Zealand
- Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
| | - Peter H Sykes
- Department of Obstetrics and Gynaecology, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
65
|
Celsi F, Crovella S, Moura RR, Schneider M, Vita F, Finotto L, Zabucchi G, Zacchi P, Borelli V. Pleural mesothelioma and lung cancer: the role of asbestos exposure and genetic variants in selected iron metabolism and inflammation genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:1088-1102. [PMID: 31755376 DOI: 10.1080/15287394.2019.1694612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two of the major cancerous diseases associated with asbestos exposure are malignant pleural mesothelioma (MPM) and lung cancer (LC). In addition to asbestos exposure, genetic factors have been suggested to be associated with asbestos-related carcinogenesis and lung genotoxicity. While genetic factors involved in the susceptibility to MPM were reported, to date the influence of individual genetic variations on asbestos-related lung cancer risk is still poorly understood. Since inflammation and disruption of iron (Fe) homeostasis are hallmarks of asbestos exposure affecting the pulmonary tissue, this study aimed at investigating the association between Fe-metabolism and inflammasome gene variants and susceptibility to develop LC or MPM, by comparing an asbestos-exposed population affected by LC with an "asbestos-resistant exposed population". A retrospective approach similar to our previous autopsy-based pilot study was employed in a novel cohort of autoptic samples, thus giving us the possibility to corroborate previous findings obtained on MPM by repeating the analysis in a novel cohort of autoptic samples. The protective role of HEPH coding SNP was further confirmed. In addition, the two non-coding SNPs, either in FTH1 or in TF, emerged to exert a similar protective role in a new cohort of LC exposed individuals from the same geographic area of MPM subjects. No association was found between NLRP1 and NLRP3 polymorphisms with susceptibility to develop MPM and LC. Further research into a specific MPM and LC "genetic signature" may be needed to broaden our knowledge of the genetic landscape attributed to result in MPM and LC.
Collapse
Affiliation(s)
- F Celsi
- Lega Italiana per la Lotta contro i Tumori (LILT), Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - S Crovella
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Ospedale di Cattinara, Trieste, Italy
| | - R R Moura
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | - M Schneider
- Laboratory of Pathological Anatomy, AAS2 "Bassa Friulana-Isontina" - S. Polo General Hospital, Monfalcone, Italy
| | - F Vita
- Laboratory of Pathological Anatomy, AAS2 "Bassa Friulana-Isontina" - S. Polo General Hospital, Monfalcone, Italy
| | - L Finotto
- Workplace Safety and Prevention, AAS2 "Bassa Friulana-Isontina" - S. Polo General Hospital, Monfalcone, Italy
| | - G Zabucchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - P Zacchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - V Borelli
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
66
|
Martinotti S, Patrone M, Moccia F, Ranzato E. Targeting Calcium Signalling in Malignant Mesothelioma. Cancers (Basel) 2019; 11:cancers11121839. [PMID: 31766522 PMCID: PMC6966506 DOI: 10.3390/cancers11121839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Calcium ions (Ca2+) are central in cancer development and growth, serving as a major signaling system determining the cell’s fate. Therefore, the investigation of the functional roles of ion channels in cancer development may identify novel approaches for determining tumor prognosis. Malignant mesothelioma is an aggressive cancer that develops from the serosal surface of the body, strictly related to asbestos exposure. The treatment of malignant mesothelioma is complex and the survival outcomes, rather than the overall survival data are, to date, disappointedly daunting. Nevertheless, conventional chemotherapy is almost ineffective. The alteration in the expression and/or activity of Ca2+ permeable ion channels seems to be characteristic of mesothelioma cells. In this review, we explore the involvement of the Ca2+toolkit in this disease. Moreover, the established sensitivity of some Ca2+channels to selective pharmacological modulators makes them interesting targets for mesothelioma cancer therapy.
Collapse
Affiliation(s)
- Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
- Correspondence: ; Tel.: +39-0131-360260; Fax: +39-0131-360243
| | - Mauro Patrone
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
| | - Francesco Moccia
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy;
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy; (M.P.); (E.R.)
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Piazza Sant’Eusebio 5, 13100 Vercelli, Italy
| |
Collapse
|
67
|
Yu S, Choi HH, Kim IW, Kim TJ. Conditioned medium from asbestos-exposed fibroblasts affects proliferation and invasion of lung cancer cell lines. PLoS One 2019; 14:e0222160. [PMID: 31491033 PMCID: PMC6730856 DOI: 10.1371/journal.pone.0222160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/22/2019] [Indexed: 12/28/2022] Open
Abstract
The importance of the role of fibroblasts in cancer microenvironment is well-recognized. However, the relationship between fibroblasts and asbestos-induced lung cancer remains underexplored. To investigate the effect of the asbestos-related microenvironment on lung cancer progression, lung cancer cells (NCI-H358, Calu-3, and A549) were cultured in media derived from IMR-90 lung fibroblasts exposed to 50 mg/L asbestos (chrysotile, amosite, and crocidolite) for 24 h. The kinetics and migration of lung cancer cells in the presence of asbestos-exposed lung fibroblast media were monitored using a real-time cell analysis system. Proliferation and migration of A549 cells increased in the presence of media derived from asbestos-exposed lung fibroblasts than in the presence of media derived from normal lung fibroblasts. We observed no increase in proliferation and migration in lung cancer cells cultured in asbestos-exposed lung cancer cell medium. In contrast, increased proliferation and migration in lung cancer cells exposed to media from asbestos-exposed lung fibroblasts was observed for all types of asbestos. Media derived from lung fibroblasts exposed to other stressors, such as hydrogen peroxide and UV radiation didn't show as similar effect as asbestos exposure. An enzyme-linked immunosorbent assay (ELISA)-based cytokine array identified interleukin (IL)-6 and IL-8, which show pleiotropic regulatory effects on lung cancer cells, to be specifically produced in higher amounts by the three types of asbestos-exposed lung fibroblasts than normal lung fibroblasts. Thus, the present study demonstrated that interaction of lung fibroblasts with asbestos may support the growth and metastasis of lung cancer cells and that chrysotile exposure can lead to lung cancer similar to that caused by amphibole asbestos (amosite and crocidolite).
Collapse
Affiliation(s)
- Seunghye Yu
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Hee-Hyun Choi
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Il Won Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
- * E-mail:
| |
Collapse
|
68
|
Dropwort-induced metabolic reprogramming restrains YAP/TAZ/TEAD oncogenic axis in mesothelioma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:349. [PMID: 31399037 PMCID: PMC6689183 DOI: 10.1186/s13046-019-1352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 02/08/2023]
Abstract
Background Over the past decade, newly designed cancer therapies have not significantly improved the survival of patients diagnosed with Malignant Pleural Mesothelioma (MPM). Among a limited number of genes that are frequently mutated in MPM several of them encode proteins that belong to the HIPPO tumor suppressor pathway. Methods The anticancer effects of the top flower standardized extract of Filipendula vulgaris (Dropwort) were characterized in “in vitro” and “in vivo” models of MPM. At the molecular level, two “omic” approaches were used to investigate Dropwort anticancer mechanism of action: a metabolomic profiling and a phosphoarray analysis. Results We found that Dropwort significantly reduced cell proliferation, viability, migration and in vivo tumor growth of MPM cell lines. Notably, Dropwort affected viability of tumor-initiating MPM cells and synergized with Cisplatin and Pemetrexed in vitro. Metabolomic profiling revealed that Dropwort treatment affected both glycolysis/tricarboxylic acid cycle as for the decreased consumption of glucose, pyruvate, succinate and acetate, and the lipid metabolism. We also document that Dropwort exerted its anticancer effects, at least partially, promoting YAP and TAZ protein ubiquitination. Conclusions Our findings reveal that Dropwort is a promising source of natural compound(s) for targeting the HIPPO pathway with chemo-preventive and anticancer implications for MPM management. Electronic supplementary material The online version of this article (10.1186/s13046-019-1352-3) contains supplementary material, which is available to authorized users.
Collapse
|
69
|
Ospina D, Villegas VE, Rodríguez-Leguizamón G, Rondón-Lagos M. Analyzing biological and molecular characteristics and genomic damage induced by exposure to asbestos. Cancer Manag Res 2019; 11:4997-5012. [PMID: 31239765 PMCID: PMC6556979 DOI: 10.2147/cmar.s205723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/19/2019] [Indexed: 12/24/2022] Open
Abstract
Asbestos is one of the most important occupational carcinogens. Currently, about 125 million people worldwide are exposed to asbestos in the workplace. According to global estimates, at least 107,000 people die each year from lung cancer, mesothelioma, and asbestosis as a result of occupational exposure to asbestos. The high pathogenicity of this material is currently known, being associated with the development of pulmonary diseases, of which lung cancer is the main cause of death due to exposure to this mineral. Pulmonary diseases related to asbestos are a common clinical problem and a major health concern worldwide. Extensive research has identified many important pathogenic mechanisms; however, the precise molecular mechanisms involved, and the generated genomic damage that lead to the development of these diseases, are not completely understood. The modes of action that underlie this type of disease seem to differ depending on the type of fiber, lung clearance, and genetics. This evidences the need to increase our knowledge about these effects on human health. This review focuses on the characteristics of asbestos and the cellular and genomic damage generated in humans via exposure.
Collapse
Affiliation(s)
- Diana Ospina
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá111221,Colombia
| | - Victoria Eugenia Villegas
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Bogotá111221,Colombia
| | - Giovanni Rodríguez-Leguizamón
- Hospital Universitario Mayor Méderi – Universidad del Rosario. School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja150003, Colombia
| |
Collapse
|
70
|
Raeis-Abdollahi E, Nabavizadeh F, Tajik L, Sadeghipour HR. Effects of prenatal exposure to chrysotile asbestos on hippocampal neurogenesis and long-term behavioral changes in adult male rat offspring. Behav Brain Res 2019; 371:111962. [PMID: 31116961 DOI: 10.1016/j.bbr.2019.111962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
Prenatal development is a critical period of life that many environmental pollutants have been suggested to influence fetal growth. Nevertheless, there are still a few investigations into the prenatal exposure to chrysotile asbestos and its neurodevelopmental and behavioral outcome in offspring. In this study, twenty-eight pregnant Wistar rats were divided into four groups and received three-times repeated intraperitoneal injections of normal saline, chrysotile, ascorbic acid and the combination of chrysotile and ascorbic acid on gestational days 11, 14 and 17. The maternal serum levels of malondialdehyde (MDA) and prooxidant-antioxidant balance (PAB) and hippocampal MDA content in adult male offspring were measured. At postnatal day (PND) 60, elevated plus maze was performed to determine anxiety-like behavior, also depression-like behavior was examined using a forced swim test at PND 61- 62. Thereafter, the quantitative analysis of Ki-67, NeuN and GFAP positive cells in the hippocampal dentate gyrus were studied by immunostaining. Our data showed that prenatal exposure to chrysotile increased the maternal serum level of MDA and PAB as well as hippocampal MDA content in adult male offspring, also increased the depression- and anxiety-like behaviors of adult male offspring and decreased the hippocampal Ki-67+, NeuN+ and GFAP+ cells in dantate gyrus of adult male offspring. However, co-administration of ascorbic acid and chrysotile decreased hippocampal lipid peroxidation and increased the Ki-67+, NeuN+ and GFAP+ cells in adult male offspring. In summary, these results indicated that oxidative stress induced by prenatal exposure to chrysotile, lead to the long-lasting decrease of the hippocampal cell proliferation and neuronal differentiation as well as astrogliosis of adult male offspring that exhibit more depression- and anxiety-like behaviors in adulthood and co-treatment of ascorbic acid with chrysotile asbestos attenuated the changes.
Collapse
Affiliation(s)
- Ehsan Raeis-Abdollahi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Tajik
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Electrophysiology Research Centre, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
71
|
On the mechanism of the electrophysiological changes and membrane lesions induced by asbestos fiber exposure in Xenopus laevis oocytes. Sci Rep 2019; 9:2014. [PMID: 30765791 PMCID: PMC6376119 DOI: 10.1038/s41598-019-38591-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/10/2018] [Indexed: 01/09/2023] Open
Abstract
The so-called amphibole asbestos fibers are enriched with mineral iron ions, able to stimulate ROS production. We recently reported that crocidolite asbestos was able to interact with the cell membranes of Xenopus laevis oocytes, to alter their electrical membrane properties. Here, we found that applied iron ions (Fe3+) or H2O2 (for ROS generation) mimicked these effects, suggesting that at least one effect of iron-containing asbestos fiber exposure was mediated by ROS production. Furthermore, combined Fe3+ and H2O2 acted synergistically, producing a membrane effect stronger than that induced by these factors alone. Similar to crocidolite, these changes peaked within 30 minutes of incubation and vanished almost completely after 120 min. However, in the presence of cytochalasin D, which inhibits membrane actin repair mechanisms, crocidolite or applied Fe3+/H2O2 invariably produced oocyte cell death. While the electrophysiological modifications induced by crocidolite suggested a modification of an intrinsic chloride ion channel, the morphological appearance of the treated oocytes also indicated the formation of membrane “pores”; the effects of asbestos exposure may therefore consist of multiple (not necessarily exclusive) underlying mechanisms. In conclusion, using Xenopus oocytes allowed us for the first time, to focus on a specific membrane effect of crocidolite asbestos exposure, which deserves to be tested also on human lung cell lines. Much available evidence suggests that asbestos fibers damage cells through the production of ROS. Our present data confirm that crocidolite fibers can indeed trigger ROS-mediated damaging effects in the oocyte cell membrane, provided iron ions and H2O2 are available for ROS production.
Collapse
|
72
|
DNA Repair Protein OGG1 in Pulmonary Infection and Other Inflammatory Lung Diseases. OXIDATIVE STRESS IN LUNG DISEASES 2019. [PMCID: PMC7121726 DOI: 10.1007/978-981-13-8413-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the last decades, extensive research has uncovered functional roles and underlying mechanisms of DNA repair enzyme 8-oxoguanine DNA glycosylase (OGG1) in the pathogenesis of inflammatory response in infection and other diseases in the lung. OGG1 excises 8-oxo-7,8-dihydroguanine (8-oxo-dG) lesion on DNA that is often induced by generation of reactive oxygen species (ROS) and has been linked to mutations, cancer development, and tissue damage. Most, if not all, environmental toxic agents and mammalian cellular metabolites elicit the generation of ROS, either directly, indirectly, or both, which is among the first cellular responses. ROS in combination with other oxidative molecules/moieties are recognized as a major factor for killing invading pathogens but meanwhile can cause tissue damage. ROS potentially modify proteins, lipids, and DNA due to the strong molecular reactivity. While oxidative stress causes increased levels of all types of oxidatively modified DNA bases, accumulation of 8-oxo-dG in the DNA has been singled out to be a main culprit linking to various inflammatory disease processes. Oxidatively damaged DNA bases such as 8-oxo-dG are primarily repaired by the base excision repair (BER) mechanism, in which OGG1, as the lesion recognition enzyme, plays a fundamental role in fixing this DNA damage. In this chapter, we summarize the roles and potential mechanistic analyses of OGG1 in lung infection and other inflammatory diseases.
Collapse
|
73
|
Beach TA, Groves AM, Johnston CJ, Williams JP, Finkelstein JN. Recurrent DNA damage is associated with persistent injury in progressive radiation-induced pulmonary fibrosis. Int J Radiat Biol 2018; 94:1104-1115. [PMID: 30238842 PMCID: PMC6309234 DOI: 10.1080/09553002.2018.1516907] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Radiation-induced lung injuries (RILI), namely radiation pneumonitis and/or fibrosis, are dose-limiting outcomes following treatment for thoracic cancers. As part of a search for mitigation targets, we sought to determine if persistent DNA damage is a characteristic of this progressive injury. METHODS C57BL/6J female mice were sacrificed at 24 h, 1, 4, 12, 16, 24 and 32 weeks following a single dose of 12.5 Gy thorax only gamma radiation; their lungs were compared to age-matched unirradiated animals. Tissues were examined for DNA double-strand breaks (DSBs) (γ-H2A.X and p53bp1), cellular senescence (senescence-associated beta-galactosidase and p21) and oxidative stress (malondialdehyde). RESULTS Data revealed consistently higher numbers of DSBs compared to age-matched controls, with increases in γ-H2A.X positivity beyond 24 h post-exposure, particularly during the pathological phases, suggesting periods of recurrent DNA damage. Additional intermittent increases in both cellular senescence and oxidative stress also appeared to coincide with pneumonitis and fibrosis. CONCLUSIONS These novel, long-term data indicate (a) increased and persistent levels of DSBs, oxidative stress and cellular senescence may serve as bioindicators of RILI, and (b) prevention of genotoxicity, via mitigation of free radical production, continues to be a potential strategy for the prevention of pulmonary radiation injury.
Collapse
Affiliation(s)
- Tyler A. Beach
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
| | - Angela M. Groves
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Carl J. Johnston
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
74
|
Soltani N, Keshavarzi B, Sorooshian A, Moore F, Dunster C, Dominguez AO, Kelly FJ, Dhakal P, Ahmadi MR, Asadi S. Oxidative potential (OP) and mineralogy of iron ore particulate matter at the Gol-E-Gohar Mining and Industrial Facility (Iran). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1785-1802. [PMID: 28281141 PMCID: PMC5610107 DOI: 10.1007/s10653-017-9926-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 02/23/2017] [Indexed: 05/05/2023]
Abstract
Concentrations of total suspended particulate matter, particulate matter with aerodynamic diameter <2.5 μm (PM2.5), particulate matter <10 μm (PM10), and fallout dust were measured at the Iranian Gol-E-Gohar Mining and Industrial Facility. Samples were characterized in terms of mineralogy, morphology, and oxidative potential. Results show that indoor samples exceeded the 24-h PM2.5 and PM10 mass concentration limits (35 and 150 µg m-3, respectively) set by the US National Ambient Air Quality Standards. Calcite, magnetite, tremolite, pyrite, talc, and clay minerals such as kaolinite, vermiculite, and illite are the major phases of the iron ore PM. Accessory minerals are quartz, dolomite, hematite, actinolite, biotite, albite, nimite, laumontite, diopside, and muscovite. The scanning electron microscope structure of fibrous-elongated minerals revealed individual fibers in the range of 1.5 nm to 71.65 µm in length and 0.2 nm to 3.7 µm in diameter. The presence of minerals related to respiratory diseases, such as talc, crystalline silica, and needle-shaped minerals like amphibole asbestos (tremolite and actinolite), strongly suggests the need for detailed health-based studies in the region. The particulate samples show low to medium oxidative potential per unit of mass, in relation to an urban road side control, being more reactive with ascorbate than with glutathione or urate. However, the PM oxidative potential per volume of air is exceptionally high, confirming that the workers are exposed to a considerable oxidative environment. PM released by iron ore mining and processing activities should be considered a potential health risk to the mine workers and nearby employees, and strategies to combat the issue are suggested.
Collapse
Affiliation(s)
- Naghmeh Soltani
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, 85721, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| | - Christina Dunster
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Ana Oliete Dominguez
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Frank J Kelly
- MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Prakash Dhakal
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Mohamad Reza Ahmadi
- Gol-E-Gohar Iron Ore and Steel Research Institute, Gol-E-Gohar Mining and Industrial Co., Sirjan, Iran
| | - Sina Asadi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, 71454, Iran
| |
Collapse
|
75
|
Cui Y, Wang Y, Deng J, Hu G, Dong F, Zhang Q. Chrysotile effects on the expression of anti-oncogene P53 and P16 and oncogene C-jun and C-fos in Wistar rats' lung tissues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22378-22388. [PMID: 28905283 DOI: 10.1007/s11356-017-0063-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Chrysotile is the most widely used form of asbestos worldwide. China is the world's largest consumer and second largest producer of chrysotile. The carcinogenicity of chrysotile has been extensively documented, and accumulative evidence has shown that chrysotile is capable of causing lung cancer and other forms of cancer. However, molecular mechanisms underlying the tumorigenic effects of chrysotile remained poorly understood. To explore the carcinogenicity of chrysotile, Wistar rats were administered by intratracheal instillation (by an artificial route of administration) for 0, 0.5, 2, or 8 mg/ml of natural chrysotile (from Mangnai, Qinghai, China) dissolved in saline, repeated once a month for 6 months (a repeated high-dose exposure which may have little bearing on the effects following human exposure). The lung tissues were analyzed for viscera coefficients and histopathological alterations. Expression of P53, P16, C-JUN, and C-FOS was measured by western blotting and qRT-PCR. Our results found that chrysotile exposure leads the body weight to grow slowly and lung viscera coefficients to increase in a dose-dependent manner. General sample showed white nodules, punctiform asbestos spots, and irregular atrophy; moreover, HE staining revealed inflammatory infiltration, damage of alveolar structures, agglomerations, and pulmonary fibrosis. In addition, chrysotile can induce inactivation of the anti-oncogene P53 and P16 and activation of the proto-oncogenes C-JUN and C-FOS both in the messenger RNA and protein level. In conclusion, chrysotile induced an imbalanced expression of cancer-related genes in rats' lung tissue. These results contribute to our understanding of the carcinogenic mechanism of chrysotile.
Collapse
Affiliation(s)
- Yan Cui
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yuchan Wang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jianjun Deng
- Department of Clinical Laboratory, 404 Hospital of Mianyang, Mianyang, 621000, Sichuan, People's Republic of China
| | - Gongli Hu
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and the Resource Recycle, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, People's Republic of China.
| | - Qingbi Zhang
- School of Public Health, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
76
|
Dymacek JM, Snyder-Talkington BN, Raese R, Dong C, Singh S, Porter DW, Ducatman B, Wolfarth MG, Andrew ME, Battelli L, Castranova V, Qian Y, Guo NL. Similar and Differential Canonical Pathways and Biological Processes Associated With Multiwalled Carbon Nanotube and Asbestos-Induced Pulmonary Fibrosis: A 1-Year Postexposure Study. Int J Toxicol 2018; 37:276-284. [PMID: 29916280 DOI: 10.1177/1091581818779038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Respiratory exposure to multiwalled carbon nanotubes (MWCNT) or asbestos results in fibrosis; however, the mechanisms to reach this end point may be different. A previous study by our group identified pulmonary effects and significantly altered messenger RNA (mRNA) signaling pathways following exposure to 1, 10, 40, and 80 µg MWCNT and 120 µg crocidolite asbestos on mouse lungs over time at 1-month, 6-month, and 1-year postexposure following pulmonary aspiration. As a continuation to the above study, this current study took an in-depth look at the signaling pathways involved in fibrosis development at a single time point, 1 year, and exposure, 40 µg MWCNT, the lowest exposure at which fibrosis was pathologically evident. The 120 µg asbestos exposure was included to compare MWCNT-induced fibrosis with asbestos-induced fibrosis. A previously validated computational model was used to identify mRNAs with expression profiles matching the fibrosis pathology patterns from exposed mouse lungs. mRNAs that matched the pathology patterns were then input into ingenuity pathway analysis to determine potential signaling pathways and physiological disease functions inherent to MWCNT and asbestos exposure. Both MWCNT and asbestos exposure induced changes in mouse lungs regarding gene expression, cell proliferation, and survival, while MWCNT uniquely induced alterations in pathways involved in oxidative phosphorylation, mitochondrial dysfunction, and transcription. Asbestos exposure produced unique alterations in pathways involved in sustained inflammation. Although typically considered similar due to scale and fiber-like appearance, the different compositional properties inherent to either MWCNT or asbestos may play a role in their ability to induce fibrosis after pulmonary exposure.
Collapse
Affiliation(s)
- Julian M Dymacek
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA.,2 Department of Mathematics and Computer Science, Longwood University, Farmville, VA, USA
| | | | - Rebecca Raese
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Chunlin Dong
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Salvi Singh
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Dale W Porter
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Barbara Ducatman
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA.,4 Department of Pathology, West Virginia University, Morgantown, WV, USA
| | - Michael G Wolfarth
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Michal E Andrew
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Lori Battelli
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Vincent Castranova
- 5 Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Yong Qian
- 3 National Institute of Occupational and Environmental Safety and Health, Morgantown, WV, USA
| | - Nancy L Guo
- 1 West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA.,6 Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
77
|
Ndika JDT, Sund J, Alenius H, Puustinen A. Elucidating differential nano-bio interactions of multi-walled andsingle-walled carbon nanotubes using subcellular proteomics. Nanotoxicology 2018; 12:554-570. [PMID: 29688820 DOI: 10.1080/17435390.2018.1465141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the relationship between adverse exposure events and specific material properties will facilitate predictive classification of carbon nanotubes (CNTs) according to their mechanisms of action, and a safe-by-design approach for the next generation of CNTs. Mass-spectrometry-based proteomics is a reliable tool to uncover the molecular dynamics of hazardous exposures, yet challenges persist with regards to its limited dynamic range when sampling whole organisms, tissues or cell lysates. Here, the simplicity of the sub-cellular proteome was harnessed to unravel distinctive adverse exposure outcomes at the molecular level, between two CNT subtypes. A549, MRC9 and human macrophage cells, were exposed for 24h to non-cytotoxic doses of single-walled or multi-walled CNTs (swCNTs or mwCNTs). Label-free proteomics on enriched cytoplasmic fractions was complemented with analyses of reactive oxygen species (ROS) production and mitochondrial integrity. The extent/number of modulated proteoforms indicated the single-walled variant was more bioactive. Greater enrichment of pathways corresponding to oxido-reductive activity was consistent with greater intracellular ROS induction and mitochondrial dysfunction capacities of swCNTs. Other compromised cellular functions, as revealed by pathway analysis were; ribosome, spliceosome and DNA repair. Highly upregulated proteins (fold change in abundance >6) such as, APOC3, RBP4 and INS are also highlighted as potential markers of hazardous CNT exposure. We conclude that, changes in cytosolic proteome abundance resulting from nano-bio interactions, elucidate adverse response pathways and their distinctive molecular components. Our results indicate that CNT-protein interactions might have a thus far unappreciated significance for protein trafficking, and this warrants further investigation.
Collapse
Affiliation(s)
- Joseph D T Ndika
- a Department of Bacteriology and Immunology, Medicum , University of Helsinki , Helsinki , Finland
| | - Jukka Sund
- b Systems Immunotoxicology, Finnish Institute of Occupational Health , Helsinki , Finland
| | - Harri Alenius
- a Department of Bacteriology and Immunology, Medicum , University of Helsinki , Helsinki , Finland.,c Institute of Environmental Medicine, Karolinska Institutet , Stockholm , Sweden
| | - Anne Puustinen
- d Department of Clinical Chemistry , Helsinki University Hospital and University of Helsinki , Helsinki , Finland
| |
Collapse
|
78
|
Environmental and Health: The Importance of Tremolite Occurence in the Pollino Geopark (Southern Italy). GEOSCIENCES 2018. [DOI: 10.3390/geosciences8030098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
79
|
Abstract
Background Malignant mesothelioma is a rare cancer with poor outcome, associated with asbestos exposure. Reactive oxygen species may play an important role in the mechanism of carcinogenesis; therefore, genetic variability in antioxidative defence may modify an individual’s susceptibility to this cancer. This study investigated the influence of functional polymorphisms of NQO1, CAT, SOD2 and hOGG1 genes, gene-gene interactions and gene-environment interactions on malignant mesothelioma risk. Patients and methods In total, 150 cases with malignant mesothelioma and 122 controls with no asbestos-related disease were genotyped for NQO1, CAT, SOD2 and hOGG1 polymorphisms. Results The risk of malignant mesothelioma increased with smoking, odds ratio (OR) 9.30 [95% confidence interval (CI): 4.83–17.98] and slightly with age, OR 1.10 (95% CI: 1.08–1.14). Medium and high asbestos exposures represented 7-times higher risk of malignant mesothelioma compared to low exposure, OR 7.05 (95% CI 3.59–13.83). NQO1 rs1800566 was significantly associated with increased malignant mesothelioma risk, OR 1.73 (95% CI 1.02–2.96). Although there was no independent association between either CAT rs1001179 or hOGG1 rs1052133 polymorphism and malignant mesothelioma, interaction between both polymorphisms showed a protective effect, ORint 0.27 (95% CI 0.10–0.77). Conclusions Our findings suggest a role of both genetic variability in antioxidative defence and repair as well as the impact of gene-gene interactions in the development of malignant mesothelioma. The results of this study could add to our understanding of pathogenesis of malignant mesothelioma and contribute to prevention and earlier diagnosis of this aggressive cancer.
Collapse
|
80
|
The Secretory Response of Rat Peritoneal Mast Cells on Exposure to Mineral Fibers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15010104. [PMID: 29320402 PMCID: PMC5800203 DOI: 10.3390/ijerph15010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 01/03/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Exposure to mineral fibers is of substantial relevance to human health. A key event in exposure is the interaction with inflammatory cells and the subsequent generation of pro-inflammatory factors. Mast cells (MCs) have been shown to interact with titanium oxide (TiO₂) and asbestos fibers. In this study, we compared the response of rat peritoneal MCs challenged with the asbestos crocidolite and nanowires of TiO₂ to that induced by wollastonite employed as a control fiber. METHODS Rat peritoneal MCs (RPMCs), isolated from peritoneal lavage, were incubated in the presence of mineral fibers. The quantities of secreted enzymes were evaluated together with the activity of fiber-associated enzymes. The ultrastructural morphology of fiber-interacting RPMCs was analyzed with electron microscopy. RESULTS Asbestos and TiO₂ stimulate MC secretion. Secreted enzymes bind to fibers and exhibit higher activity. TiO₂ and wollastonite bind and improve enzyme activity, but to a lesser degree than crocidolite. CONCLUSIONS (1) Mineral fibers are able to stimulate the mast cell secretory process by both active (during membrane interaction) and/or passive (during membrane penetration) interaction; (2) fibers can be found to be associated with secreted enzymes-this process appears to create long-lasting pro-inflammatory environments and may represent the active contribution of MCs in maintaining the inflammatory process; (3) MCs and their enzymes should be considered as a therapeutic target in the pathogenesis of asbestos-induced lung inflammation; and (4) MCs can contribute to the inflammatory effect associated with selected engineered nanomaterials, such as TiO₂ nanoparticles.
Collapse
|
81
|
Solbes E, Harper RW. Biological responses to asbestos inhalation and pathogenesis of asbestos-related benign and malignant disease. J Investig Med 2018; 66:721-727. [PMID: 29306869 DOI: 10.1136/jim-2017-000628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 01/28/2023]
Abstract
Asbestos comprises a group of fibrous minerals that are naturally occurring in the environment. Because of its natural properties, asbestos gained popularity for commercial applications in the late 19th century and was used throughout the majority of the 20th century, with predominant use in the construction, automotive, and shipbuilding industries. Asbestos has been linked to a spectrum of pulmonary diseases, such as pleural fibrosis and plaques, asbestosis, benign asbestos pleural effusion, small cell lung carcinoma, non-small cell lung carcinoma, and malignant mesothelioma. There are several mechanisms through which asbestos can lead to both benign and malignant disease, and they include alterations at the chromosomal level, activation of oncogenes, loss of tumor suppressor genes, alterations in cellular signal transduction pathways, generation of reactive oxygen and nitrogen species, and direct mechanical damage to cells from asbestos fibers. While known risk factors exist for the development of asbestos-related malignancies, there are currently no effective means to determine which asbestos-exposed patients will develop malignancy and which will not. There are also no established screening strategies to detect asbestos-related malignancies in patients who have a history of asbestos exposure. In this article, we present a case that highlights the different biological responses in human hosts to asbestos exposure.
Collapse
Affiliation(s)
- Eduardo Solbes
- Internal Medicine - Division of Pulmonary and Critical Care Medicine, UC Davis Medical Center, Sacramento, California, USA
| | - Richart W Harper
- Internal Medicine - Division of Pulmonary and Critical Care Medicine, UC Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
82
|
Crovella S, Moura RR, Cappellani S, Celsi F, Trevisan E, Schneider M, Brollo A, Nicastro EM, Vita F, Finotto L, Zabucchi G, Borelli V. A genetic variant of NLRP1 gene is associated with asbestos body burden in patients with malignant pleural mesothelioma. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 81:98-105. [PMID: 29265930 DOI: 10.1080/15287394.2017.1416911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The presence of asbestos bodies (ABs) in lung parenchyma is considered a histopathologic hallmark of past exposure to asbestos fibers, of which there was a population of longer fibers. The mechanisms underlying AB formation are complex, involving inflammatory responses and iron (Fe) metabolism. Thus, the responsiveness to AB formation is variable, with some individuals appearing to be poor AB formers. The aim of this study was to disclose the possible role of genetic variants of genes encoding inflammasome and iron metabolism proteins in the ability to form ABs in a population of 81 individuals from North East Italy, who died after having developed malignant pleural mesothelioma (MPM). This study included 86 genetic variants distributed in 10 genes involved in Fe metabolism and 7 genetic variants in two genes encoding for inflammasome molecules. Genotypes/haplotypes were compared according to the number of lung ABs. Data showed that the NLRP1 rs12150220 missense variant (H155L) was significantly correlated with numbers of ABs in MPM patients. Specifically, a low number of ABs was detected in individuals carrying the NLRP1 rs12150220 A/T genotype. Our findings suggest that the NLRP1 inflammasome might contribute in the development of lung ABs. It is postulated that the NLRP1 missense variant may be considered as one of the possible host genetic factors contributing to individual variability in coating efficiency, which needs to be taken when assessing occupational exposure to asbestos.
Collapse
Affiliation(s)
- S Crovella
- a Institute for Maternal and Child Health , IRCCS Burlo Garofolo , Trieste , Italy
- b Department of Medical, Surgical and Health Sciences , University of Trieste, Ospedale di Cattinara , Trieste , Italy
| | - R R Moura
- c Department of Genetics , Federal University of Pernambuco , Recife , Brazil
| | - S Cappellani
- a Institute for Maternal and Child Health , IRCCS Burlo Garofolo , Trieste , Italy
| | - F Celsi
- a Institute for Maternal and Child Health , IRCCS Burlo Garofolo , Trieste , Italy
| | - E Trevisan
- d Department of Life Sciences , University of Trieste , Trieste , Italy
| | - M Schneider
- e Laboratory of Pathological Anatomy , AAS2 "Bassa Friulana-Isontina" - S. Polo General Hospital , Monfalcone , Italy
| | - A Brollo
- e Laboratory of Pathological Anatomy , AAS2 "Bassa Friulana-Isontina" - S. Polo General Hospital , Monfalcone , Italy
| | - E M Nicastro
- e Laboratory of Pathological Anatomy , AAS2 "Bassa Friulana-Isontina" - S. Polo General Hospital , Monfalcone , Italy
| | - F Vita
- d Department of Life Sciences , University of Trieste , Trieste , Italy
| | - L Finotto
- f Workplace Safety and Prevention , AAS2 "Bassa Friulana-Isontina" - S. Polo General Hospital , Monfalcone , Italy
| | - G Zabucchi
- d Department of Life Sciences , University of Trieste , Trieste , Italy
| | - V Borelli
- d Department of Life Sciences , University of Trieste , Trieste , Italy
| |
Collapse
|
83
|
SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma. DISEASE MARKERS 2017; 2017:2536187. [PMID: 29386699 PMCID: PMC5745727 DOI: 10.1155/2017/2536187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56%) and SFRP5 (70%) in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A) via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.
Collapse
|
84
|
Lin Z, Xu W, Li C, Wang Y, Yang L, Zou B, Gao S, Yao W, Song Z, Liu G. β-8-Oxoguanine DNA Glycosylase Overexpression Reduces Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis Through the JNK Signaling Pathway in Human Bronchial Epithelial Cells. DNA Cell Biol 2017; 36:1071-1080. [PMID: 29227732 DOI: 10.1089/dna.2017.3769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Ziying Lin
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wenya Xu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunyan Li
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yahong Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lawei Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bao'an Zou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shenglan Gao
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weimin Yao
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zeqing Song
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Gang Liu
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
85
|
West AP. Mitochondrial dysfunction as a trigger of innate immune responses and inflammation. Toxicology 2017; 391:54-63. [DOI: 10.1016/j.tox.2017.07.016] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/22/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
|
86
|
Andreozzi GB, Pacella A, Corazzari I, Tomatis M, Turci F. Surface reactivity of amphibole asbestos: a comparison between crocidolite and tremolite. Sci Rep 2017; 7:14696. [PMID: 29089634 PMCID: PMC5665974 DOI: 10.1038/s41598-017-14480-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/11/2017] [Indexed: 01/12/2023] Open
Abstract
Among asbestos minerals, fibrous riebeckite (crocidolite) and tremolite share the amphibole structure but largely differ in terms of their iron content and oxidation state. In asbestos toxicology, iron-generated free radicals are largely held as one of the causes of asbestos malignant effect. With the aim of clarifying i) the relationship between Fe occurrence and asbestos surface reactivity, and ii) how free-radical generation is modulated by surface modifications of the minerals, UICC crocidolite and fibrous tremolite from Maryland were leached from 1 day to 1 month in an oxidative medium buffered at pH 7.4 to induce redox alterations and surface rearrangements that may occur in body fluids. Structural and chemical modifications and free radical generation were monitored by HR-TEM/EDS and spin trapping/EPR spectroscopy, respectively. Free radical yield resulted to be dependent on few specific Fe2+ and Fe3+ surface sites rather than total Fe content. The evolution of reactivity with time highlighted that low-coordinated Fe ions primarily contribute to the overall reactivity of the fibre. Current findings contribute to explain the causes of the severe asbestos-induced oxidative stress at molecular level also for iron-poor amphiboles, and demonstrate that asbestos have a sustained surface radical activity even when highly altered by oxidative leaching.
Collapse
Affiliation(s)
- Giovanni B Andreozzi
- Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy
- CNR-IGG, U.O. Roma, c/o Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Alessandro Pacella
- Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Ingrid Corazzari
- Dipartimento di Chimica, Università di Torino, via Pietro Giuria 7, I-10125, Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, Università di Torino, via Pietro Giuria 9, I-10125, Torino, Italy
| | - Maura Tomatis
- Dipartimento di Chimica, Università di Torino, via Pietro Giuria 7, I-10125, Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, Università di Torino, via Pietro Giuria 9, I-10125, Torino, Italy
| | - Francesco Turci
- Dipartimento di Chimica, Università di Torino, via Pietro Giuria 7, I-10125, Torino, Italy.
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, Università di Torino, via Pietro Giuria 9, I-10125, Torino, Italy.
| |
Collapse
|
87
|
Liu X, Chen Z. The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 2017; 15:207. [PMID: 29029603 PMCID: PMC5640915 DOI: 10.1186/s12967-017-1306-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/30/2017] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are critically involved in reactive oxygen species (ROS)-dependent lung diseases, such as lung fibrosis, asbestos, chronic airway diseases and lung cancer. Mitochondrial DNA (mtDNA) encodes mitochondrial proteins and is more sensitive to oxidants than nuclear DNA. Damage to mtDNA causes mitochondrial dysfunction, including electron transport chain impairment and mitochondrial membrane potential loss. Furthermore, damaged mtDNA also acts as a damage-associated molecular pattern (DAMP) that drives inflammatory and immune responses. In this review, crosstalk among alveolar epithelial cells, alveolar macrophages and mitochondria is examined. ROS-related transcription factors and downstream cell signaling pathways are also discussed. We conclude that targeting oxidative stress with antioxidant agents, such as thiol molecules, polyphenols and superoxide dismutase (SOD), and promoting mitochondrial biogenesis should be considered as novel strategies for treating lung diseases that currently have no effective treatment options.
Collapse
Affiliation(s)
- Xiaojing Liu
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.,Geriatric Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No 600 Yishan Road, Shanghai, China
| | - Zhihong Chen
- Respiratory Division of Zhongshan Hospital, Shanghai Institute of Respiratory Diseases, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
88
|
Eukaryotic translation initiation factor 2 subunit α (eIF2α) inhibitor salubrinal attenuates paraquat-induced human lung epithelial-like A549 cell apoptosis by regulating the PERK-eIF2α signaling pathway. Toxicol In Vitro 2017; 46:58-65. [PMID: 28986289 DOI: 10.1016/j.tiv.2017.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 08/16/2017] [Accepted: 10/02/2017] [Indexed: 11/21/2022]
Abstract
Paraquat (PQ), as one of the most widely used herbicides in the world, can cause severe lung damage in humans and animals. This study investigated the underlying molecular mechanism of PQ-induced lung cell damage and the protective role of salubrinal. Human lung epithelial-like A549 cells were treated with PQ for 24h and were pre-incubated with salubrinal for 2h, followed by 500μM of PQ treatment. Silencing eIF2α gene of the A549 cells with siRNA interference method was conducted. Cell morphology, cell viability, apoptosis and caspase-3 activity were assessed by different assays accordingly thereafter. The expression of PERK, p-PERK, ATF6, c-ATF6, IRE1α, p-IRE1α, CHOP, GRP78, p-eIF2α and β-actin was assayed by western blot. The data showed that PQ significantly reduced A549 cell viability, changed cell morphology, induced cell apoptosis and significantly upregulated the levels of GRP78, CHOP, p-PERK, c-ATF6 and p-IRE1α. However, 30μM salubrinal could attenuate the effects of PQ on damages to A549 cells through upregulating p-eIF2α. In contrast, knocking down eIF2α gene inhabited the effects of salubrinal. These results suggest that PQ-induced A549 cell apoptosis involved endoplasmic reticulum (ER) stress, specially the PERK-eIF2α pathway. Salubrinal attenuated A549 cells from PQ-induced damages through regulation of the PERK-eIF2α signaling.
Collapse
|
89
|
Gao Q, Wei G, Wu Y, Yao N, Zhou C, Wang K, Wang K, Sun X, Li X. Paeoniflorin prevents postoperative peritoneal adhesion formation in an experimental rat model. Oncotarget 2017; 8:93899-93911. [PMID: 29212197 PMCID: PMC5706843 DOI: 10.18632/oncotarget.21333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022] Open
Abstract
Although materials and modern surgical techniques have been developed to suppress postoperative adhesions, adhesion formation can still occur, and thus, a novel effective anti-adhesion drug is greatly needed. In the present study, we explored the efficacy of paeoniflorin treatment against postoperative peritoneal adhesions and examined the anti-oxidative stress and anti-inflammatory properties of PE. Forty-eight male Sprague-Dawley rats were randomly divided into 6 groups for the study: the sham, control, hyaluronan and three concentrations (10, 20 and 40 mg/kg/d) paeoniflorin groups. Abdominal adhesions were created by abrasion of the caecum and its opposite abdominal wall. In the paeoniflorin groups, the rats were administered daily oral doses of paeoniflorin for 7 days. The abdominal cavities of the rats were reopened with a U-shaped incision to macroscopically grade the adhesions. Histologic analysis was performed, and oxidative stress, inflammatory cytokine, collagen fiber degradation and cytokeratin levels were measured. Macroscopic and histopathological measurements revealed that paeoniflorin reduced peritoneal adhesion and inflammation. Notably, treatment with paeoniflorin reduced the protein levels of TGF-β1, IL-6 and COX-2. The collagen fiber fractions were distinctly lower in the PE groups than in the control group. Western blotting analyses showed that paeoniflorin increased MMP-9 and superoxide dismutase-2 protein expression and sharply reduced α-SMA and COX-2 protein expression. Peritoneal mesothelium cells were more continuous and complete in animals treated with paeoniflorin. Our study suggests that paeoniflorin can be used to ameliorate peritoneal adhesions via anti-oxidative stress and anti-inflammatory actions during the postoperative period.
Collapse
Affiliation(s)
- Qi Gao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Guangbing Wei
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yunhua Wu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Na Yao
- College of Nursing, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China
| | - Cancan Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kai Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Kang Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xuejun Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| |
Collapse
|
90
|
Mozzoni P, Ampollini L, Goldoni M, Alinovi R, Tiseo M, Gnetti L, Carbognani P, Rusca M, Mutti A, Percesepe A, Corradi M. MicroRNA Expression in Malignant Pleural Mesothelioma and Asbestosis: A Pilot Study. DISEASE MARKERS 2017; 2017:9645940. [PMID: 28757678 PMCID: PMC5512053 DOI: 10.1155/2017/9645940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/21/2017] [Accepted: 06/05/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND The identification of diagnostic/prognostic biomarkers for asbestos-related diseases is relevant for early diagnosis and patient survival and may contribute to understanding the molecular mechanisms underlying the disease development and progression. AIMS To identify a pattern of miRNAs as possible diagnostic biomarkers for patients with malignant pleural mesothelioma (MPM) and asbestosis (ASB) and as prognostic biomarkers for MPM patients. METHODS miRNA-16, miRNA-17, miRNA-126, and miRNA-486 were quantified in plasma and formalin-fixed paraffin-embedded samples to evaluate their diagnostic and prognostic roles compared to patients with other noncancerous pulmonary diseases (controls). Results. The expression of all the miRNAs was significantly lower in patients with MPM and ASB than that in controls. miRNA-16, miRNA-17, and miRNA-486 in plasma and tissue of MPM patients were significantly correlated. Furthermore, the expression of miRNA-16 in plasma and tissue, and miRNA-486 only in tissue, was positively related with cumulative survival in MPM patients. CONCLUSIONS All the miRNA levels were decreased in patients with MPM or ASB, supporting the role of circulating miRNAs as a potential tool for diseases associated with exposure to asbestos fibers. miRNA-16 was directly related to MPM patient prognosis, suggesting its possible use as a prognostic marker in MPM patients.
Collapse
Affiliation(s)
- Paola Mozzoni
- Molecular Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Luca Ampollini
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Letizia Gnetti
- Pathological Anatomy and Histology, University Hospital of Parma, Parma, Italy
| | - Paolo Carbognani
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Michele Rusca
- Thoracic Surgery, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Percesepe
- Molecular Genetics, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
91
|
Glycoprotein YKL-40 Levels in Plasma Are Associated with Fibrotic Changes on HRCT in Asbestos-Exposed Subjects. Mediators Inflamm 2017; 2017:1797512. [PMID: 28588347 PMCID: PMC5446868 DOI: 10.1155/2017/1797512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
YKL-40 is a chitinase-like glycoprotein produced by alternatively activated macrophages that are associated with wound healing and fibrosis. Asbestosis is a chronic asbestos-induced lung disease, in which injury of epithelial cells and activation of alveolar macrophages lead to enhanced collagen production and fibrosis. We studied if YKL-40 is related to inflammation, fibrosis, and/or lung function in subjects exposed to asbestosis. Venous blood samples were collected from 85 men with moderate or heavy occupational asbestos exposure and from 28 healthy, age-matched controls. Levels of plasma YKL-40, CRP, IL-6, adipsin, and MMP-9 were measured with enzyme-linked immunosorbent assay (ELISA). Plasma YKL-40 levels were significantly higher in subjects with asbestosis (n = 19) than in those with no fibrotic findings in HRCT following asbestos exposure (n = 66) or in unexposed healthy controls. In asbestos-exposed subjects, plasma YKL-40 correlated negatively with lung function capacity parameters FVC (Pearson's r −0.259, p = 0.018) and FEV1 (Pearson's r −0.240, p = 0.028) and positively with CRP (Spearman's rho 0.371, p < 0.001), IL-6 (Spearman's rho 0.314, p = 0.003), adipsin (Spearman's rho 0.459, p < 0.001), and MMP-9 (Spearman's rho 0.243, p = 0.025). The present finding suggests YKL-40 as a biomarker associated with fibrosis and inflammation in asbestos-exposed subjects.
Collapse
|
92
|
Lipińska-Ojrzanowska A, Marcinkiewicz A, Walusiak-Skorupa J. Usefulness of Biomarkers in Work-Related Airway Disease. CURRENT TREATMENT OPTIONS IN ALLERGY 2017; 4:181-190. [PMID: 28680796 PMCID: PMC5488075 DOI: 10.1007/s40521-017-0121-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Determination of biomarkers may be useful in the surveillance of occupational exposure and workers' health. The possibility of predicting development/clinical course of specific disorders or current disease, diagnosing in early steps, and health condition monitoring is a real necessity. Various agents present in the workplace environment (or their metabolites) can be measured in samples possessed from human body (blood and urine, saliva, etc.). On the other hand, inhalant exposure may induce specific or non-specific, local or systemic, acute or chronic biological response expressed by synthesis or releasing specific or non-specific substances/mediators that also can be determined in blood, nasal and bronchial lavage or sputum, tear fluid, exhaled breath, etc. The least is known about genetic markers which may predict individual susceptibility to develop some work-related disorders under the influence of occupational exposure. Due to common exposure to inhalant agents at workplace, researches on biomarkers that allow to inspect the impact of exposure to humans' health are still needed. The authors of this article summarize the utility of biomarkers' determination in work-related airway diseases in a recent clinical approach.
Collapse
Affiliation(s)
- Agnieszka Lipińska-Ojrzanowska
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 8 St. Teresy, 91-348 Lodz, Poland
| | - Andrzej Marcinkiewicz
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 8 St. Teresy, 91-348 Lodz, Poland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, 8 St. Teresy, 91-348 Lodz, Poland
| |
Collapse
|
93
|
Mensi C, Ciullo F, Barbieri GP, Riboldi L, Somigliana A, Rasperini G, Pesatori AC, Consonni D. Pleural malignant mesothelioma in dental laboratory technicians: A case series. Am J Ind Med 2017; 60:443-448. [PMID: 28409856 DOI: 10.1002/ajim.22716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 11/11/2022]
Abstract
Asbestos was used in dentistry as a binder in periodontal dressings and as lining material for casting rings and crucible. However, until now, only one case of malignant mesothelioma with occupational exposure to asbestos in dental practice has been reported. We present 4 pleural mesotheliomas out of 5344 cases identified in Lombardy, Italy, in 2000-2014. Three men had been working as dental laboratory technicians, with asbestos exposure for 10, 34, and 4 years, and one woman had been helping her husband for 30 years in manufacturing dental prostheses. The men described the use of asbestos as a lining material for casting rings, while the woman was not able to confirm this use. We confirm the association of malignant mesothelioma with dental technician work. Dental technicians suffering from mesothelioma should be questioned about past occupational asbestos exposure.
Collapse
Affiliation(s)
- Carolina Mensi
- Department of Preventive Medicine; Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico; Milan Italy
| | - Francesco Ciullo
- Department of Clinical Sciences and Community Health; Università degli Studi di Milano; Milan Italy
| | - Gino Pietro Barbieri
- Formerly Mesothelioma Registry; Occupational Health Unit, Local Health Authority; Brescia Italy
| | - Luciano Riboldi
- Department of Preventive Medicine; Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico; Milan Italy
| | - Anna Somigliana
- Center of Electron Microscopy; Lombardy Environmental Protection Agency (ARPA); Milan Italy
| | - Giulio Rasperini
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
| | - Angela Cecilia Pesatori
- Department of Preventive Medicine; Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico; Milan Italy
- Department of Clinical Sciences and Community Health; Università degli Studi di Milano; Milan Italy
| | - Dario Consonni
- Department of Preventive Medicine; Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinico; Milan Italy
| |
Collapse
|
94
|
Kim SJ, Cheresh P, Eren M, Jablonski RP, Yeldandi A, Ridge KM, Budinger GRS, Kim DH, Wolf M, Vaughan DE, Kamp DW. Klotho, an antiaging molecule, attenuates oxidant-induced alveolar epithelial cell mtDNA damage and apoptosis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L16-L26. [PMID: 28428174 DOI: 10.1152/ajplung.00063.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
Alveolar epithelial cell (AEC) apoptosis and inadequate repair resulting from "exaggerated" lung aging and mitochondrial dysfunction are critical determinants promoting lung fibrosis. α-Klotho, which is an antiaging molecule that is expressed predominantly in the kidney and secreted in the blood, can protect lung epithelial cells against hyperoxia-induced apoptosis. We reasoned that Klotho protects AEC exposed to oxidative stress in part by maintaining mitochondrial DNA (mtDNA) integrity and mitigating apoptosis. We find that Klotho levels are decreased in both serum and alveolar type II (AT2) cells from asbestos-exposed mice. We show that oxidative stress reduces AEC Klotho mRNA and protein expression, whereas Klotho overexpression is protective while Klotho silencing augments AEC mtDNA damage. Compared with wild-type, Klotho heterozygous hypomorphic allele (kl/+) mice have increased asbestos-induced lung fibrosis due in part to increased AT2 cell mtDNA damage. Notably, we demonstrate that serum Klotho levels are reduced in wild-type but not mitochondrial catalase overexpressing (MCAT) mice 3 wk following exposure to asbestos and that EUK-134, a MnSOD/catalase mimetic, mitigates oxidant-induced reductions in AEC Klotho expression. Using pharmacologic and genetic silencing studies, we show that Klotho attenuates oxidant-induced AEC mtDNA damage and apoptosis via mechanisms dependent on AKT activation arising from upstream fibroblast growth factor receptor 1 activation. Our findings suggest that Klotho preserves AEC mtDNA integrity in the setting of oxidative stress necessary for preventing apoptosis and asbestos-induced lung fibrosis. We reason that strategies aimed at augmenting AEC Klotho levels may be an innovative approach for mitigating age-related lung diseases.
Collapse
Affiliation(s)
- Seok-Jo Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Paul Cheresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mesut Eren
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Renea P Jablonski
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Anjana Yeldandi
- Department of Pathology, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Dong-Hyun Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; and
| | - Myles Wolf
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Douglas E Vaughan
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - David W Kamp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois; .,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
95
|
Jablonski RP, Kim SJ, Cheresh P, Williams DB, Morales-Nebreda L, Cheng Y, Yeldandi A, Bhorade S, Pardo A, Selman M, Ridge K, Gius D, Budinger GRS, Kamp DW. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis. FASEB J 2017; 31:2520-2532. [PMID: 28258190 DOI: 10.1096/fj.201601077r] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
Abstract
Alveolar epithelial cell (AEC) mitochondrial dysfunction and apoptosis are important in idiopathic pulmonary fibrosis and asbestosis. Sirtuin 3 (SIRT3) detoxifies mitochondrial reactive oxygen species, in part, by deacetylating manganese superoxide dismutase (MnSOD) and mitochondrial 8-oxoguanine DNA glycosylase. We reasoned that SIRT3 deficiency occurs in fibrotic lungs and thereby augments AEC mtDNA damage and apoptosis. Human lungs were assessed by using immunohistochemistry for SIRT3 activity via acetylated MnSODK68 Murine AEC SIRT3 and cleaved caspase-9 (CC-9) expression were assayed by immunoblotting with or without SIRT3 enforced expression or silencing. mtDNA damage was measured by using quantitative PCR and apoptosis via ELISA. Pulmonary fibrosis after asbestos or bleomycin exposure was evaluated in 129SJ/wild-type and SIRT3-knockout mice (Sirt3-/- ) by using fibrosis scoring and lung collagen levels. Idiopathic pulmonary fibrosis lung alveolar type II cells have increased MnSODK68 acetylation compared with controls. Asbestos and H2O2 diminished AEC SIRT3 protein expression and increased mitochondrial protein acetylation, including MnSODK68 SIRT3 enforced expression reduced oxidant-induced AEC OGG1K338/341 acetylation, mtDNA damage, and apoptosis, whereas SIRT3 silencing promoted these effects. Asbestos- or bleomycin-induced lung fibrosis, AEC mtDNA damage, and apoptosis in wild-type mice were amplified in Sirt3-/- animals. These data suggest a novel role for SIRT3 deficiency in mediating AEC mtDNA damage, apoptosis, and lung fibrosis.-Jablonski, R. P., Kim, S.-J., Cheresh, P., Williams, D. B., Morales-Nebreda, L., Cheng, Y., Yeldandi, A., Bhorade, S., Pardo, A., Selman, M., Ridge, K., Gius, D., Budinger, G. R. S., Kamp, D. W. SIRT3 deficiency promotes lung fibrosis by augmenting alveolar epithelial cell mitochondrial DNA damage and apoptosis.
Collapse
Affiliation(s)
- Renea P Jablonski
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Seok-Jo Kim
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Paul Cheresh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David B Williams
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luisa Morales-Nebreda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuan Cheng
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anjana Yeldandi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sangeeta Bhorade
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Annie Pardo
- Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, Mexico
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City, Mexico
| | - Karen Ridge
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David Gius
- Department of Radiation Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - G R Scott Budinger
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA.,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - David W Kamp
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA; .,Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
96
|
Gualtieri AF, Gandolfi NB, Pollastri S, Pollok K, Langenhorst F. Where is iron in erionite? A multidisciplinary study on fibrous erionite-Na from Jersey (Nevada, USA). Sci Rep 2016; 6:37981. [PMID: 27892512 PMCID: PMC5125093 DOI: 10.1038/srep37981] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/31/2016] [Indexed: 01/21/2023] Open
Abstract
Fibrous erionite is a mineral fibre of great concern but to date mechanisms by which it induces cyto- and geno-toxic damage, and especially the role of iron associated to this zeolite species, remain poorly understood. One of the reasons is that we still don't know exactly where iron is in natural erionite. This work is focused on fibrous erionite-Na from Jersey (Nevada, USA) and attempts to draw a general model of occurrence of iron in erionite and relationship with toxicity mechanisms. It was found that iron is present as 6-fold coordinated Fe3+ not part of the zeolite structure. The heterogeneous nature of the sample was revealed as receptacle of different iron-bearing impurities (amorphous iron-rich nanoparticles, micro-particles of iron oxides/hydroxides, and flakes of nontronite). If iron is not part of the structure, its role should be considered irrelevant for erionite toxicity, and other factors like biopersistence should be invoked. An alternative perspective to the proposed model is that iron rich nano-particles and nontronite dissolve in the intracellular acidic environment, leaving a residue of iron atoms at specific surface sites anchored to the windows of the zeolite channels. These sites may be active later as low nuclearity groups.
Collapse
Affiliation(s)
- Alessandro F Gualtieri
- Chemistry and Earth Sciences Department, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena (Italy)
| | - Nicola Bursi Gandolfi
- Chemistry and Earth Sciences Department, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena (Italy)
| | - Simone Pollastri
- Chemistry and Earth Sciences Department, The University of Modena and Reggio Emilia, Via Campi 103, I-41125 Modena (Italy)
| | - Kilian Pollok
- Institut für Geowissenschaften Mineralogie, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany)
| | - Falko Langenhorst
- Institut für Geowissenschaften Mineralogie, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany)
| |
Collapse
|
97
|
Chen Z, Wang Q, Asmani M, Li Y, Liu C, Li C, Lippmann JM, Wu Y, Zhao R. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes. Sci Rep 2016; 6:31304. [PMID: 27510174 PMCID: PMC4980669 DOI: 10.1038/srep31304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
Due to their excellent physical and chemical characteristics, multi-wall carbon nanotubes (MWCNT) have the potential to be used in structural composites, conductive materials, sensors, drug delivery and medical imaging. However, because of their small-size and light-weight, the applications of MWCNT also raise health concerns. In vivo animal studies have shown that MWCNT cause biomechanical and genetic alterations in the lung tissue which lead to lung fibrosis. To screen the fibrogenic risk factor of specific types of MWCNT, we developed a human lung microtissue array device that allows real-time and in-situ readout of the biomechanical properties of the engineered lung microtissue upon MWCNT insult. We showed that the higher the MWCNT concentration, the more severe cytotoxicity was observed. More importantly, short type MWCNT at low concentration of 50 ng/ml stimulated microtissue formation and contraction force generation, and caused substantial increase in the fibrogenic marker miR-21 expression, indicating the high fibrogenic potential of this specific carbon nanotube type and concentration. The presented microtissue array system provides a powerful tool for high-throughput examination of the therapeutic and toxicological effects of target compounds in realistic tissue environment.
Collapse
Affiliation(s)
- Zhaowei Chen
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Qixin Wang
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Mohammadnabi Asmani
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Yan Li
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Chang Liu
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Changning Li
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA.,State University of New York at Buffalo, Department of Chemical and Biological Engineering, Buffalo, New York, 14260, USA
| | - Julian M Lippmann
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Yun Wu
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| | - Ruogang Zhao
- State University of New York at Buffalo, Department of Biomedical Engineering, Buffalo, New York, 14260, USA
| |
Collapse
|
98
|
Affiliation(s)
- Shrikant R Mulay
- From Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hans-Joachim Anders
- From Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
99
|
Burger J, Gochfeld M. Health Risks to Ecological Workers on Contaminated Sites - the Department of Energy as a Case Study. JOURNAL OF COMMUNITY MEDICINE & HEALTH EDUCATION 2016; 6:427. [PMID: 27668128 PMCID: PMC5035110 DOI: 10.4172/2161-0711.1000427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND At most contaminated sites the risk to workers focuses on those 'hazardous waste workers' directly exposed to chemicals or radionuclides, and to the elaborate approaches implemented to protecting their health and safety. Ecological workers generally are not considered. OBJECTIVES To explore the risks to the health and safety of ecological workers on sites with potential chemical and radiological exposures before, during or after remediation of contamination. To use the U.S. Department of Energy as a case study, and to develop concepts that apply generally to sites contaminated with hazardous or nuclear wastes. METHODS Develop categories of ecological workers, describe their usual jobs, and provide information on the kinds of risks they face. Ecological activities include continued surveillance and monitoring work on any sites with residual contamination, subject to institutional controls and engineered barriers following closure as well as the restoration. RESULTS The categories of ecological workers and their tasks include 1) Ecological characterization, mapping and monitoring, 2) biodiversity studies, 2) Contaminant fate and transport, 3) On-going industrial activities 4) Remediation activities (environmental management), 5) Environmental restoration, 6) Post-cleanup surveillance and monitoring, and 7) Post-closure future site activities. There are a set of functional activities that can occur with different frequencies and intensities, including visual inspection, collecting biological samples, collecting media physical samples, collecting biological debris, restoration planting, and maintaining ecosystems. CONCLUSIONS Ecological workers face different exposures and risks than other environmental cleanup workers. Many of their tasks mimic shift work with long hours leading to fatigue, and they are exposed to biological as well as chemical/radiological hazards. DOE and other entities need to examine the risks to ecological workers on site with an eye to risk reduction.
Collapse
Affiliation(s)
- Joanna Burger
- Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854; Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University and Vanderbilt University, Nashville, Tennessee; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| | - Michael Gochfeld
- Consortium for Risk Evaluation with Stakeholder Participation, Rutgers University and Vanderbilt University, Nashville, Tennessee; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854
| |
Collapse
|
100
|
Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget 2016; 6:16848-65. [PMID: 26078352 PMCID: PMC4627278 DOI: 10.18632/oncotarget.4253] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/29/2015] [Indexed: 12/13/2022] Open
Abstract
It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10-15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display 'asbestos-like' pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review.
Collapse
Affiliation(s)
- Serena Benedetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Barbara Nuvoli
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| | - Simona Catalani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Rossella Galati
- Molecular Medicine Area, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|