51
|
Nhu NTK, Phan MD, Peters KM, Lo AW, Forde BM, Min Chong T, Yin WF, Chan KG, Chromek M, Brauner A, Chapman MR, Beatson SA, Schembri MA. Discovery of New Genes Involved in Curli Production by a Uropathogenic Escherichia coli Strain from the Highly Virulent O45:K1:H7 Lineage. mBio 2018; 9:e01462-18. [PMID: 30131362 PMCID: PMC6106082 DOI: 10.1128/mbio.01462-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022] Open
Abstract
Curli are bacterial surface-associated amyloid fibers that bind to the dye Congo red (CR) and facilitate uropathogenic Escherichia coli (UPEC) biofilm formation and protection against host innate defenses. Here we sequenced the genome of the curli-producing UPEC pyelonephritis strain MS7163 and showed it belongs to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. MS7163 produced curli at human physiological temperature, and this correlated with biofilm growth, resistance of sessile cells to the human cationic peptide cathelicidin, and enhanced colonization of the mouse bladder. We devised a forward genetic screen using CR staining as a proxy for curli production and identified 41 genes that were required for optimal CR binding, of which 19 genes were essential for curli synthesis. Ten of these genes were novel or poorly characterized with respect to curli synthesis and included genes involved in purine de novo biosynthesis, a regulator that controls the Rcs phosphorelay system, and a novel repressor of curli production (referred to as rcpA). The involvement of these genes in curli production was confirmed by the construction of defined mutants and their complementation. The mutants did not express the curli major subunit CsgA and failed to produce curli based on CR binding. Mutation of purF (the first gene in the purine biosynthesis pathway) and rcpA also led to attenuated colonization of the mouse bladder. Overall, this work has provided new insight into the regulation of curli and the role of these amyloid fibers in UPEC biofilm formation and pathogenesis.IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains are the most common cause of urinary tract infection, a disease increasingly associated with escalating antibiotic resistance. UPEC strains possess multiple surface-associated factors that enable their colonization of the urinary tract, including fimbriae, curli, and autotransporters. Curli are extracellular amyloid fibers that enhance UPEC virulence and promote biofilm formation. Here we examined the function and regulation of curli in a UPEC pyelonephritis strain belonging to the highly virulent O45:K1:H7 neonatal meningitis-associated clone. Curli expression at human physiological temperature led to increased biofilm formation, resistance of sessile cells to the human cationic peptide LL-37, and enhanced bladder colonization. Using a comprehensive genetic screen, we identified multiple genes involved in curli production, including several that were novel or poorly characterized with respect to curli synthesis. In total, this study demonstrates an important role for curli as a UPEC virulence factor that promotes biofilm formation, resistance, and pathogenesis.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Kate M Peters
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Alvin W Lo
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Sciences, University of Malaya, Kuala Lumpur, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang, China
| | - Milan Chromek
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Pediatrics, CLINTEC, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Matthew R Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
- Australian Centre for Ecogenomics, the University of Queensland, Brisbane, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
52
|
Abstract
The field of urology encompasses all benign and malignant disorders of the urinary tract and the male genital tract. Urological disorders convey a huge economic and patient quality-of-life burden. Hospital acquired urinary tract infections, in particular, are under scrutiny as a measure of hospital quality. Given the prevalence of these pathologies, there is much progress still to be made in available therapeutic options in order to minimize side effects and provide effective care. Current drug delivery mechanisms in urological malignancy and the benign urological conditions of overactive bladder (OAB), interstitial cystitis/bladder pain syndrome (IC/BPS), and urinary tract infection (UTI) will be reviewed herein. Both systemic and local therapies will be discussed including sustained release formulations, nanocarriers, hydrogels and other reservoir systems, as well as gene and immunotherapy. The primary focus of this review is on agents which have passed the preclinical stages of development.
Collapse
Affiliation(s)
- Alice Crane
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation 9500 Euclid Ave , Cleveland , Ohio 44195 , United States
| | - Sudhir Isharwal
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation 9500 Euclid Ave , Cleveland , Ohio 44195 , United States
| | - Hui Zhu
- Glickman Urological and Kidney Institute, Cleveland Clinic Foundation 9500 Euclid Ave , Cleveland , Ohio 44195 , United States
| |
Collapse
|
53
|
Allgood SC, Neunuebel MR. The recycling endosome and bacterial pathogens. Cell Microbiol 2018; 20:e12857. [PMID: 29748997 PMCID: PMC5993623 DOI: 10.1111/cmi.12857] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/05/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
Bacterial pathogens have developed a wide range of strategies to survive within human cells. A number of pathogens multiply in a vacuolar compartment, whereas others can rupture the vacuole and replicate in the host cytosol. A common theme among many bacterial pathogens is the use of specialised secretion systems to deliver effector proteins into the host cell. These effectors can manipulate the host's membrane trafficking pathways to remodel the vacuole into a replication-permissive niche and prevent degradation. As master regulators of eukaryotic membrane traffic, Rab GTPases are principal targets of bacterial effectors. This review highlights the manipulation of Rab GTPases that regulate host recycling endocytosis by several bacterial pathogens, including Chlamydia pneumoniae, Chlamydia trachomatis, Shigella flexneri, Salmonella enterica serovar Typhimurium, Uropathogenic Escherichia coli, and Legionella pneumophila. Recycling endocytosis plays key roles in a variety of cellular aspects such as nutrient uptake, immunity, cell division, migration, and adhesion. Though much remains to be understood about the molecular basis and the biological relevance of bacterial pathogens exploiting Rab GTPases, current knowledge supports the notion that endocytic recycling Rab GTPases are differentially targeted to avoid degradation and support bacterial replication. Thus, future studies of the interactions between bacterial pathogens and host endocytic recycling pathways are poised to deepen our understanding of bacterial survival strategies.
Collapse
Affiliation(s)
| | - M. Ramona Neunuebel
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
54
|
Yang RL, Deng CY, Wei JW, He W, Li AN, Qian W. A Large-Scale Mutational Analysis of Two-Component Signaling Systems of Lonsdalea quercina Revealed that KdpD-KdpE Regulates Bacterial Virulence Against Host Poplar Trees. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:724-736. [PMID: 29424663 DOI: 10.1094/mpmi-10-17-0248-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poplar, which is a dominant species in plant communities distributed in the northern hemisphere, is commonly used as a model plant in forestry studies. Poplar production can be inhibited by infections caused by bacteria, including Lonsdalea quercina subsp. populi, which is a gram-negative bacterium responsible for bark canker disease. However, the molecular basis of the pathogenesis remains uncharacterized. In this study, we annotated the two-component signal transduction systems (TCSs) encoded by the L. quercina subsp. populi N-5-1 genome and identified 18 putative histidine kinases and 24 response regulators. A large-scale mutational analysis revealed that 19 TCS genes regulated bacterial virulence against poplar trees. Additionally, the deletion of kdpE or overexpression of kdpD resulted in almost complete loss of bacterial virulence. We observed that kdpE and kdpD formed a bi-cistronic operon. KdpD exhibited autokinase activity and could bind to KdpE (Kd = 5.73 ± 0.64 μM). Furthermore, KdpE is an OmpR family response regulator. A chromatin immunoprecipitation sequencing analysis revealed that KdpE binds to an imperfect palindromic sequence within the promoters of 44 genes, including stress response genes Lqp0434, Lqp3037, and Lqp3270. A comprehensive analysis of TCS functions may help to characterize the regulation of poplar bark canker disease.
Collapse
Affiliation(s)
- Ruo-Lan Yang
- 1 The College of Forestry, Beijing Forestry University, Beijing 100083, China
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Chao-Ying Deng
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| | - Jin-Wei Wei
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
- 3 School of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei He
- 1 The College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Ai-Ning Li
- 1 The College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wei Qian
- 2 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; and
| |
Collapse
|
55
|
Purification of Intracellular Bacterial Communities during Experimental Urinary Tract Infection Reveals an Abundant and Viable Bacterial Reservoir. Infect Immun 2018; 86:IAI.00740-17. [PMID: 29378794 DOI: 10.1128/iai.00740-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) are a major infection of humans, particularly affecting women. Recurrent UTIs can cause significant discomfort and expose patients to high levels of antibiotic use, which in turn contributes to the development of higher antibiotic resistance rates. Most UTIs are caused by uropathogenic Escherichia coli, which is able to form intracellular collections (termed intracellular bacterial communities [IBCs]) within the epithelial cells lining the bladder lumen. IBCs are seen in both infected mice and humans and are a potential cause of recurrent UTI. Genetic and molecular studies of IBCs have been hampered both by the low number of bacteria in IBCs relative to the number extracellular bacteria and by population bottlenecks that occur during IBC formation. We now report the development of a simple and rapid technique for isolating pure IBCs from experimentally infected mice. We verified the specificity and purity of the isolated IBCs via microscopy, gene expression, and culture-based methods. Our results further demonstrated that our isolation technique practically enables specific molecular studies of IBCs. In the first such direct measurement, we determined that a single epithelial cell containing an early IBC typically contains 103 viable bacteria. Our isolation technique complements recent progress in low-input, single-cell genomics to enable future genomic studies of the formation of IBCs and their activation pathways during recurrent UTI, which may lead to novel strategies to eliminate them from the bladder.
Collapse
|
56
|
A urine-dependent human urothelial organoid offers a potential alternative to rodent models of infection. Sci Rep 2018; 8:1238. [PMID: 29352171 PMCID: PMC5775255 DOI: 10.1038/s41598-018-19690-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Murine models describe a defined host/pathogen interaction for urinary tract infection, but human cell studies are scant. Although recent human urothelial organoid models are promising, none demonstrate long-term tolerance to urine, the natural substrate of the tissue and of the uropathogens that live there. We developed a novel human organoid from progenitor cells which demonstrates key structural hallmarks and biomarkers of the urothelium. After three weeks of transwell culture with 100% urine at the apical interface, the organoid stratified into multiple layers. The apical surface differentiated into enlarged and flattened umbrella-like cells bearing characteristic tight junctions, structures resembling asymmetric unit membrane plaques, and a glycosaminoglycan layer. The apical cells also expressed cytokeratin-20, a spatial feature of the mammalian urothelium. Urine itself was necessary for full development, and undifferentiated cells were urine-tolerant despite the lack of membrane plaques and a glycosaminoglycan layer. Infection with Enterococcus faecalis revealed the expected invasive outcome, including urothelial sloughing and the formation of intracellular colonies similar to those previously observed in patient cells. This new biomimetic model could help illuminate invasive behaviours of uropathogens, and serve as a reproducible test bed for disease formation, treatment and resolution in patients.
Collapse
|
57
|
Wu P, Chen Y, Zhao J, Zhang G, Chen J, Wang J, Zhang H. Urinary Microbiome and Psychological Factors in Women with Overactive Bladder. Front Cell Infect Microbiol 2017; 7:488. [PMID: 29230385 PMCID: PMC5712163 DOI: 10.3389/fcimb.2017.00488] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/13/2017] [Indexed: 01/12/2023] Open
Abstract
Objectives: Emerging evidence indicates that alterations to the urinary microbiome are related to lower urinary tract symptoms. Overactive bladder (OAB) is a common disorder with complex etiologies and usually accompanied by psychological diseases. More information concerning the urinary microbiome and psychological factors in OAB is required. The aim of this study was to characterize the female urinary microbiome associated with OAB and investigate the relationships between urinary microbiome and psychological factors. Methods: Thirty women with OAB and 25 asymptomatic controls were recruited and asked to finish the Overactive Bladder Symptom Score, Self-Rating Anxiety Scale and Self-Rating Depression Scale. Urine specimens were collected by transurethral catheterization and processed for 16S rRNA gene sequencing using Illumina MiSeq. Sequencing reads were processed using QIIME. LEfSe revealed significant differences in bacterial genera between controls and OAB patients. The relationships between the diversity of the urinary microbiome and psychological scores were identified by Pearson's correlation coefficient. Results: We found that bacterial diversity (Simpson index) and richness (Chao1) were lower in OAB samples compared to controls (P both = 0.038). OAB and control bacterial communities were significantly different (based on weighted UniFrac distance metric, R = 0.064, P = 0.037). LEfSe demonstrated that 7 genera were increased (e.g., Proteus and Aerococcus) and 13 were reduced (e.g., Lactobacillus and Prevotella) in OAB group compared to controls. There were negative correlations between scores on Self-Rating Depression Scale and both richness (Chao1, r = −0.458, P = 0.011) and diversity (Shannon index, r = −0.516, P = 0.003) of urinary microbiome in OAB group. Some bacterial genera of OAB women with anxiety or depression were significantly different from those without. Conclusions: The aberrant urinary microbiome with decreased diversity and richness may have strong implications in pathogenesis and treatment of OAB. Psychological conditions were correlated with characteristics of urinary microbiome in women with OAB. Further research is needed to understand the connection between central nervous system and urinary microbiome.
Collapse
Affiliation(s)
- Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guihao Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiawei Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junpeng Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huijian Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
58
|
Women with symptoms of a urinary tract infection but a negative urine culture: PCR-based quantification of Escherichia coli suggests infection in most cases. Clin Microbiol Infect 2017; 23:647-652. [DOI: 10.1016/j.cmi.2017.04.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/06/2023]
|
59
|
Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc Natl Acad Sci U S A 2017; 114:E6632-E6641. [PMID: 28696280 PMCID: PMC5559034 DOI: 10.1073/pnas.1705508114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and resistance to treatment of multiple human respiratory tract diseases including otitis media, chronic rhinosinusitis, and exacerbations of both cystic fibrosis and chronic obstructive pulmonary disease. Extracellular DNA (eDNA) and associated DNABII proteins are essential to the overall architecture and structural integrity of biofilms formed by NTHI and all other bacterial pathogens tested to date. Although cell lysis and outer-membrane vesicle extrusion are possible means by which these canonically intracellular components might be released into the extracellular environment for incorporation into the biofilm matrix, we hypothesized that NTHI additionally used a mechanism of active DNA release. Herein, we describe a mechanism whereby DNA and associated DNABII proteins transit from the bacterial cytoplasm to the periplasm via an inner-membrane pore complex (TraC and TraG) with homology to type IV secretion-like systems. These components exit the bacterial cell through the ComE pore through which the NTHI type IV pilus is expressed. The described mechanism is independent of explosive cell lysis or cell death, and the release of DNA is confined to a discrete subpolar location, which suggests a novel form of DNA release from viable NTHI. Identification of the mechanisms and determination of the kinetics by which critical biofilm matrix-stabilizing components are released will aid in the design of novel biofilm-targeted therapeutic and preventative strategies for diseases caused by NTHI and many other human pathogens known to integrate eDNA and DNABII proteins into their biofilm matrix.
Collapse
Affiliation(s)
- Joseph A Jurcisek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Laura A Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
60
|
Abstract
Many bacteria can infect and persist inside their hosts for long periods of time. This can be due to immunosuppression of the host, immune evasion by the pathogen and/or ineffective killing by antibiotics. Bacteria can survive antibiotic treatment if they are resistant or tolerant to a drug. Persisters are a subpopulation of transiently antibiotic-tolerant bacterial cells that are often slow-growing or growth-arrested, and are able to resume growth after a lethal stress. The formation of persister cells establishes phenotypic heterogeneity within a bacterial population and has been hypothesized to be important for increasing the chances of successfully adapting to environmental change. The presence of persister cells can result in the recalcitrance and relapse of persistent bacterial infections, and it has been linked to an increase in the risk of the emergence of antibiotic resistance during treatment. If the mechanisms of the formation and regrowth of these antibiotic-tolerant cells were better understood, it could lead to the development of new approaches for the eradication of persistent bacterial infections. In this Review, we discuss recent developments in our understanding of bacterial persisters and their potential implications for the treatment of persistent infections.
Collapse
Affiliation(s)
- Robert A Fisher
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Bridget Gollan
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
61
|
Hertting O, Lüthje P, Sullivan D, Aspenström P, Brauner A. Vitamin D-deficient mice have more invasive urinary tract infection. PLoS One 2017; 12:e0180810. [PMID: 28749951 PMCID: PMC5531565 DOI: 10.1371/journal.pone.0180810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022] Open
Abstract
Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.
Collapse
Affiliation(s)
- Olof Hertting
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Mircrobiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Pediatric Infectious Diseases Unit, Astrid Lindgren Children´s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Petra Lüthje
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Mircrobiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Devin Sullivan
- KTH Royal Institute of Technology, Science for Life Laboratory, School of Biotechnology, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Mircrobiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
62
|
Abstract
Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections. Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of urinary tract infections in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of uropathogenic E. coli and other uropathogens.
Collapse
|
63
|
Drake MJ, Morris N, Apostolidis A, Rahnama'i MS, Marchesi JR. The urinary microbiome and its contribution to lower urinary tract symptoms; ICI-RS 2015. Neurourol Urodyn 2017; 36:850-853. [PMID: 28444712 DOI: 10.1002/nau.23006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/07/2016] [Indexed: 12/20/2022]
Abstract
AIMS The microbiome is the term used for the symbiotic microbial colonisation of healthy organs. Studies have found bacterial identifiers within voided urine which is apparently sterile on conventional laboratory culture, and accordingly there may be health and disease implications. METHODS The International Consultation on Incontinence Research Society (ICI-RS) established a literature review and expert consensus discussion focussed on the increasing awareness of the urinary microbiome, and potential research priorities. RESULTS The consensus considered the discrepancy between findings of conventional clinical microbiology methods, which generally rely on culture parameters predisposed towards certain "expected" organisms. Discrepancy between selective culture and RNA sequencing to study species-specific 16S ribosomal RNA is increasingly clear, and highlights the possibility that protective or harmful bacteria may be overlooked where microbiological methods are selective. There are now strong signals of the existence of a "core" urinary microbiome for the human urinary tract, particularly emerging with ageing. The consensus reviewed the potential relationship between a patient's microbiome and lower urinary tract dysfunction, whether low-count bacteriuria may be clinically significant and mechanisms which could associate micro-organisms with lower urinary tract symptoms. CONCLUSIONS Key research priorities identified include the need to establish the scope of microbiome across the range of normality and clinical presentations, and gain consensus on testing protocols. Proteomics to study enzymatic and other functions may be necessary, since different bacteria may have overlapping phenotype. Longitudinal studies into risk factors for exposure, cumulative risk, and emergence of disease need to undertaken. Neurourol. Urodynam. 36:850-853, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcus J Drake
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom.,Bristol Urological Institute, Southmead Hospital, Bristol, United Kingdom
| | - Nicola Morris
- Bristol Urological Institute, Southmead Hospital, Bristol, United Kingdom
| | - Apostolos Apostolidis
- 2nd Department of Urology, Aristotle University of Thessaloniki, Papageorgiou Hospital, Thessaloniki, Greece
| | - Mohammad S Rahnama'i
- Department of Urology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Julian R Marchesi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Centre for Digestive and Gut Health, Imperial College London, London, United Kingdom
| |
Collapse
|
64
|
Sullivan MJ, Leclercq SY, Ipe DS, Carey AJ, Smith JP, Voller N, Cripps AW, Ulett GC. Effect of the Streptococcus agalactiae Virulence Regulator CovR on the Pathogenesis of Urinary Tract Infection. J Infect Dis 2017; 215:475-483. [PMID: 28011914 DOI: 10.1093/infdis/jiw589] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022] Open
Abstract
Background Streptococcus agalactiae can cause urinary tract infection (UTI). The role of the S. agalactiae global virulence regulator, CovR, in UTI pathogenesis is unknown. Methods We used murine and human bladder uroepithelial cell models of UTI and S. agalactiae mutants in covR and related factors, including β-hemolysin/cytolysin (β-h/c), surface-anchored adhesin HvgA, and capsule to study the role of CovR in UTI. Results We found that covR-deficient serotype III S. agalactiae 874391 was significantly attenuated for colonization in mice and adhesion to uroepithelial cells. Mice infected with covR-deficient S. agalactiae produced less proinflammatory cytokines than those infected with wild-type 874391. Acute cytotoxicity in uroepithelial cells triggered by covR-deficient but not wild-type 874391 was associated with significant caspase 3 activation. Mechanistically, covR mutation significantly altered the expression of several genes in S. agalactiae 874391 that encode key virulence factors, including β-h/c and HvgA, but not capsule. Subsequent mutational analyses revealed that HvgA and capsule, but not the β-h/c, exerted significant effects on colonization of the murine urinary tract in vivo. Conclusions S. agalactiae CovR promotes bladder infection and inflammation, as well as adhesion to and viability of uroepithelial cells. The pathogenesis of S. agalactiae UTI is complex, multifactorial, and influenced by virulence effects of CovR, HvgA, and capsule.
Collapse
Affiliation(s)
- Matthew J Sullivan
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Sophie Y Leclercq
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Research and Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, Brazil
| | - Deepak S Ipe
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Alison J Carey
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Joshua P Smith
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Nathan Voller
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,School of Biological Sciences, University of East Anglia, Norwich Research Park, United Kingdom
| | - Allan W Cripps
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Glen C Ulett
- School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
65
|
Basaraba RJ, Ojha AK. Mycobacterial Biofilms: Revisiting Tuberculosis Bacilli in Extracellular Necrotizing Lesions. Microbiol Spectr 2017; 5:10.1128/microbiolspec.TBTB2-0024-2016. [PMID: 28597824 PMCID: PMC7875192 DOI: 10.1128/microbiolspec.tbtb2-0024-2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Indexed: 12/18/2022] Open
Abstract
Under detergent-free in vitro conditions, Mycobacterium tuberculosis, the etiological agent of tuberculosis in humans, spontaneously forms organized multicellular structures called biofilms. Moreover, in vitro biofilms of M. tuberculosis are more persistent against antibiotics than their single-cell planktonic counterparts, thereby raising questions about the occurrence of biofilms in the host tissues and their significance in persistence during chemotherapy of tuberculosis. In this article, we present arguments that extracellular M. tuberculosis in necrotizing lesions likely grows as biofilms.
Collapse
Affiliation(s)
- Randall J Basaraba
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Co 80524
| | - Anil K Ojha
- Wadsworth Center, NY State Department of Health and University at Albany, Albany, NY 12208
| |
Collapse
|
66
|
Delcaru C, Podgoreanu P, Alexandru I, Popescu N, Măruţescu L, Bleotu C, Mogoşanu GD, Chifiriuc MC, Gluck M, Lazăr V. Antibiotic Resistance and Virulence Phenotypes of Recent Bacterial Strains Isolated from Urinary Tract Infections in Elderly Patients with Prostatic Disease. Pathogens 2017; 6:E22. [PMID: 28561794 PMCID: PMC5488656 DOI: 10.3390/pathogens6020022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 11/17/2022] Open
Abstract
Acute bacterial prostatitis is one of the frequent complications of urinary tract infection (UTI). From the approximately 10% of men having prostatitis, 7% experience a bacterial prostatitis. The purpose of this study was to investigate the prevalence of uropathogens associated with UTIs in older patients with benign prostatic hyperplasia and to assess their susceptibility to commonly prescribed antibiotics as well as the relationships between microbial virulence and resistance features. Uropathogenic Escherichia coli was found to be the most frequent bacterial strain isolated from patients with benign prostatic hyperplasia, followed by Enterococcus spp., Enterobacter spp., Klebsiella spp., Proteus spp., Pseudomonas aeruginosa, and Serratia marcescens. Increased resistance rates to tetracyclines, quinolones, and sulfonamides were registered. Besides their resistance profiles, the uropathogenic isolates produced various virulence factors with possible implications in the pathogenesis process. The great majority of the uropathogenic isolates revealed a high capacity to adhere to HEp-2 cell monolayer in vitro, mostly exhibiting a localized adherence pattern. Differences in the repertoire of soluble virulence factors that can affect bacterial growth and persistence within the urinary tract were detected. The Gram-negative strains produced pore-forming toxins-such as hemolysins, lecithinases, and lipases-proteases, siderophore-like molecules resulted from the esculin hydrolysis and amylases, while Enterococcus sp. strains were positive only for caseinase and esculin hydrolase. Our study demonstrates that necessity of investigating the etiology and local resistance patterns of uropathogenic organisms, which is crucial for determining appropriate empirical antibiotic treatment in elderly patients with UTI, while establishing correlations between resistance and virulence profiles could provide valuable input about the clinical evolution and recurrence rates of UTI.
Collapse
Affiliation(s)
- Cristina Delcaru
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Independenţei Avenue, 0500088 Bucharest, Romania.
| | - Paulina Podgoreanu
- Iancului Private Laboratory, 060101 Bucharest, Romania.
- Department of Microbiology & Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Sector 6, 060101 Bucharest, Romania.
| | - Ionela Alexandru
- Iancului Private Laboratory, 060101 Bucharest, Romania.
- Department of Microbiology & Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Sector 6, 060101 Bucharest, Romania.
| | - Nela Popescu
- Iancului Private Laboratory, 060101 Bucharest, Romania.
| | - Luminiţa Măruţescu
- Department of Microbiology & Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Sector 6, 060101 Bucharest, Romania.
| | - Coralia Bleotu
- Ştefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030304 Bucharest, Romania.
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania.
| | - Mariana Carmen Chifiriuc
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Independenţei Avenue, 0500088 Bucharest, Romania.
- Department of Microbiology & Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Sector 6, 060101 Bucharest, Romania.
| | | | - Veronica Lazăr
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest (ICUB), 91-95 Independenţei Avenue, 0500088 Bucharest, Romania.
- Department of Microbiology & Immunology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Lane, Sector 6, 060101 Bucharest, Romania.
| |
Collapse
|
67
|
'Omic' Approaches to Study Uropathogenic Escherichia coli Virulence. Trends Microbiol 2017; 25:729-740. [PMID: 28550944 DOI: 10.1016/j.tim.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/21/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is a pathogen of major significance to global human health and is strongly associated with rapidly increasing antibiotic resistance. UPEC is the primary cause of urinary tract infection (UTI), a disease that involves a complicated pathogenic pathway of extracellular and intracellular lifestyles during interaction with the host. The application of multiple 'omic' technologies, including genomics, transcriptomics, proteomics, and metabolomics, has provided enormous knowledge to our understanding of UPEC biology. Here we outline this progress and present a view for future developments using these exciting forefront technologies to fully comprehend UPEC pathogenesis in the context of infection.
Collapse
|
68
|
Sarshar S, Brandt S, Asadi Karam MR, Habibi M, Bouzari S, Lechtenberg M, Dobrindt U, Qin X, Goycoolea FM, Hensel A. Aqueous extract from Orthosiphon stamineus leaves prevents bladder and kidney infection in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 28:1-9. [PMID: 28478807 DOI: 10.1016/j.phymed.2017.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/08/2016] [Accepted: 02/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Extracts from the leaves of Orthosiphon stamineus are used in phytotherapy for treatment of uncomplicated urinary tract infections. PURPOSES Evaluation of an aqueous extract against infection with uropathogenic Escherichia coli in vivo; investigation of underlying microbiological mechanisms. STUDY DESIGN In vivo studies in mice and in vitro investigations on cytotoxicity, antiadhesive potential, influence on bacterial gene expression and quorum sensing. METHODS Extract OWE was prepared by hot water extraction. For in vivo studies BALB/c mice were used in an UPEC infection model. The effect of OWE on bacterial load in bladder/kidney tissue was monitored in pre- and posttreatment. Cytotoxicity of OWE against different UPEC strains, T24 bladder/A498 kidney cells, gene expression analysis, monitoring of phenotypic motility and quorum sensing was investigated by standard methods of microbiology. RESULTS OWE was quantified (UHPLC) according to the content of rosmarinic acid, cichoric acid, caffeic acid. Three- and 5-day treatment of animals with OWE (750mg/kg) after transurethral infection with UPEC CFT073 reduced the bacterial load in bladder and kidney, similar to norfloxacin. Four- and 7-day pretreatment of mice prior to the infection with UPEC NU14 reduced bacterial bladder colonization. In vitro investigations indicated that OWE (≤2mg/ml) has no cytotoxic or proliferation-inhibiting activity against different UPEC strains as well as against T24 bladder and A498 kidney cells. OWE exerts a dose dependent antiadhesive activity against UPEC strains NU14 and UTI89. OWE reduced gene expression of fimH, but evoked increase of the expression of motility/fitness gene fliC. Increase of bacterial motility on gene level was confirmed by a changed bacterial phenotype by an increased bacterial motility in soft agar assay. OWE inhibited in a concentration-dependent manner bacterial quorum sensing. CONCLUSION OWE is assessed as a strong antiadhesive plant extract for which the traditional use in phytotherapy for UTI might be justified.
Collapse
Affiliation(s)
- S Sarshar
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - S Brandt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - M R Asadi Karam
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Avenue, Teheran 13164, Iran
| | - M Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Avenue, Teheran 13164, Iran
| | - S Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Avenue, Teheran 13164, Iran
| | - M Lechtenberg
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany
| | - U Dobrindt
- University Hospital Münster, Institute of Hygiene, Mendelstraße 7, D-48149 Münster, Germany
| | - X Qin
- University of Münster, Institute of Biology and Plant Biotechnology, Schlossgarten 3, D-48149 Münster, Germany
| | - F M Goycoolea
- University of Münster, Institute of Biology and Plant Biotechnology, Schlossgarten 3, D-48149 Münster, Germany
| | - A Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, D-48149 Münster, Germany.
| |
Collapse
|
69
|
Complete Genome Sequence of the Uropathogenic Escherichia coli Strain NU14. GENOME ANNOUNCEMENTS 2017; 5:5/18/e00306-17. [PMID: 28473396 PMCID: PMC5477200 DOI: 10.1128/genomea.00306-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Escherichia coli is the most common bacterium causing urinary tract infections in humans. We report here the complete genome sequence of the uropathogenic Escherichia coli strain NU14, a clinical pyelonephritis isolate used for studying pathogenesis.
Collapse
|
70
|
Magistro G, Marcon J, Schubert S, Gratzke C, Stief CG. [Pathogenesis of urinary tract infections : An update]. Urologe A 2017; 56:720-727. [PMID: 28455576 DOI: 10.1007/s00120-017-0391-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Urinary tract infections are among the most common bacterial infections worldwide. The management has become a public health concern of socioeconomic importance. Every second woman will experience at least one episode in her lifetime. Due to the emergence of multiresistant pathogens and the developmental void, treatment has become more challenging over the years. Deciphering the complex molecular interaction between host and pathogen is necessary to identify potent treatment targets for future approaches. The objective of this review is to present novel aspects on the pathogenesis of urinary tract infections and its relevance for clinical practice.
Collapse
Affiliation(s)
- G Magistro
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland.
| | - J Marcon
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland
| | - S Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, München, Deutschland
| | - C Gratzke
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland
| | - C G Stief
- Urologische Klinik und Poliklinik der Universität München, Campus Großhadern, Ludwig-Maximilians-Universität München, Marchioninistr. 15, 81377, München, Deutschland
| |
Collapse
|
71
|
Wu J, Miao Y, Abraham SN. The multiple antibacterial activities of the bladder epithelium. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:35. [PMID: 28217700 DOI: 10.21037/atm.2016.12.71] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The urinary tract is subject to frequent challenges from the gut microflora. Indeed, up to 40% of women will experience at least one urinary tract infection (UTI) during their lifetime. Uropathogenic Escherichia coli (UPEC) contribute to an overwhelming majority of these cases and they typically initiate UTIs by invading the superficial epithelium that lines the bladder lumen. In addition to serving as an effective barrier to noxious agents found in urine, bladder epithelial cells (BECs) play a key physiological role in regulating bladder volume to accommodate urine flow. UPEC appear to coopt this latter property to circumvent this normally impregnable epithelial barrier. However, in spite of this shortcoming, recent studies suggest that BECs possess several immune mechanisms to combat bacterial invasion including expulsion of invading bacteria back into the bladder lumen following infection. These antibacterial activities of BECs are triggered and coordinated by sensory molecules located on the epithelial cell membrane and within the cells. Although, they are the primary targets of microbial attack, BECs appear to be equipped with a diverse repertoire of defense schemes to fend off many of these microbial challenges.
Collapse
Affiliation(s)
- Jianxuan Wu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yuxuan Miao
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N Abraham
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA;; Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, USA;; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA;; Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore
| |
Collapse
|
72
|
Kieckens E, Rybarczyk J, Li RW, Vanrompay D, Cox E. Potential immunosuppressive effects of Escherichia coli O157:H7 experimental infection on the bovine host. BMC Genomics 2016; 17:1049. [PMID: 28003017 PMCID: PMC5178093 DOI: 10.1186/s12864-016-3374-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Enterohaemorrhagic Escherichia coli (EHEC), like E. coli O157:H7 are frequently detected in bovine faecal samples at slaughter. Cattle do not show clinical symptoms upon infection, but for humans the consequences after consuming contaminated beef can be severe. The immune response against EHEC in cattle cannot always clear the infection as persistent colonization and shedding in infected animals over a period of months often occurs. In previous infection trials, we observed a primary immune response after infection which was unable to protect cattle from re-infection. These results may reflect a suppression of certain immune pathways, making cattle more prone to persistent colonization after re-infection. To test this, RNA-Seq was used for transcriptome analysis of recto-anal junction tissue and ileal Peyer's patches in nine Holstein-Friesian calves in response to a primary and secondary Escherichia coli O157:H7 infection with the Shiga toxin (Stx) negative NCTC12900 strain. Non-infected calves served as controls. RESULTS In tissue of the recto-anal junction, only 15 genes were found to be significantly affected by a first infection compared to 1159 genes in the ileal Peyer's patches. Whereas, re-infection significantly changed the expression of 10 and 17 genes in the recto-anal junction tissue and the Peyer's patches, respectively. A significant downregulation of 69 immunostimulatory genes and a significant upregulation of seven immune suppressing genes was observed. CONCLUSIONS Although the recto-anal junction is a major site of colonization, this area does not seem to be modulated upon infection to the same extent as ileal Peyer's patches as the changes in gene expression were remarkably higher in the ileal Peyer's patches than in the recto-anal junction during a primary but not a secondary infection. We can conclude that the main effect on the transcriptome was immunosuppression by E. coli O157:H7 (Stx-) due to an upregulation of immune suppressive effects (7/12 genes) or a downregulation of immunostimulatory effects (69/94 genes) in the ileal Peyer's patches. These data might indicate that a primary infection promotes a re-infection with EHEC by suppressing the immune function.
Collapse
Affiliation(s)
- E. Kieckens
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - J. Rybarczyk
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - R. W. Li
- USDA-ARS, Bovine Functional Genomics Laboratory, Beltsville, MD USA
| | - D. Vanrompay
- Laboratory of Immunology and Animal Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E. Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
73
|
Lipopolysaccharide Domains Modulate Urovirulence. Infect Immun 2016; 84:3131-3140. [PMID: 27528276 DOI: 10.1128/iai.00315-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) accounts for 80 to 90% of urinary tract infections (UTI), and the increasing rate of antibiotic resistance among UPEC isolates reinforces the need for vaccines to prevent UTIs and recurrent infections. Previous studies have shown that UPEC isolate NU14 suppresses proinflammatory NF-κB-dependent cytokines (D. J. Klumpp, A. C. Weiser, S. Sengupta, S. G. Forrestal, R. A. Batler, and A. J. Schaeffer, Infect Immun 69:6689-6695, 2001, http://dx.doi.org/10.1128/IAI.69.11.6689-6695.2001; B. K. Billips, A. J. Schaeffer, and D. J. Klumpp, Infect Immun 76:3891-3900, 2008, http://dx.doi.org/10.1128/IAI.00069-08). However, modification of lipopolysaccharide (LPS) structure by deleting the O-antigen ligase gene (waaL) enhanced proinflammatory cytokine secretion. Vaccination with the ΔwaaL mutant diminished NU14 reservoirs and protected against subsequent infections. Therefore, we hypothesized that LPS structural determinants shape immune responses. We evaluated the contribution of LPS domains to urovirulence corresponding to the inner core (waaP, waaY, and rfaQ), outer core (rfaG), and O-antigen (waaL, wzzE, and wzyE). Deletion of waaP, waaY, and rfaG attenuated adherence to urothelial cells in vitro In a murine UTI model, the ΔrfaG mutant had the most severe defect in colonization. The mutation of rfaG, waaL, wzzE, and wzyE resulted in an inability to form reservoirs in mouse bladders. Infection with the LPS mutant panel resulted in various levels of urinary myeloperoxidase. Since the ΔwaaL mutant promoted Th1-associated adaptive responses in previous studies (B. K. Billips, R. E. Yaggie, J. P. Cashy, A. J. Schaeffer, and D. J. Klumpp, J Infect Dis 200:263-272, 2009, http://dx.doi.org/10.1086/599839), we assessed NU14 for Th2-associated cytokines. We found NU14 infection stimulated TLR4-dependent bladder interleukin-33 (IL-33) production. Inoculation with rfaG, waaL, wzzE, and wzyE mutants showed decreased IL-33 production. We quantified antigen-specific antibodies after infection and found significantly increased IgE and IgG1 in ΔwaaP mutant-infected mice. Our studies show LPS structural constituents mediate multiple aspects of the UPEC life cycle, including the ability to acutely colonize bladders, form reservoirs, and evoke innate and adaptive immune responses.
Collapse
|
74
|
Michiels JE, Van den Bergh B, Verstraeten N, Michiels J. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat 2016; 29:76-89. [PMID: 27912845 DOI: 10.1016/j.drup.2016.10.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Any bacterial population harbors a small number of phenotypic variants that survive exposure to high concentrations of antibiotic. Importantly, these so-called 'persister cells' compromise successful antibiotic therapy of bacterial infections and are thought to contribute to the development of antibiotic resistance. Intriguingly, drug-tolerant persisters have also been identified as a factor underlying failure of chemotherapy in tumor cell populations. Recent studies have begun to unravel the complex molecular mechanisms underlying persister formation and revolve around stress responses and toxin-antitoxin modules. Additionally, in vitro evolution experiments are revealing insights into the evolutionary and adaptive aspects of this phenotype. Furthermore, ever-improving experimental techniques are stimulating efforts to investigate persisters in their natural, infection-associated, in vivo environment. This review summarizes recent insights into the molecular mechanisms of persister formation, explains how persisters complicate antibiotic treatment of infections, and outlines emerging strategies to combat these tolerant cells.
Collapse
Affiliation(s)
| | | | | | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
75
|
Ambite I, Puthia M, Nagy K, Cafaro C, Nadeem A, Butler DSC, Rydström G, Filenko NA, Wullt B, Miethke T, Svanborg C. Molecular Basis of Acute Cystitis Reveals Susceptibility Genes and Immunotherapeutic Targets. PLoS Pathog 2016; 12:e1005848. [PMID: 27732661 PMCID: PMC5061333 DOI: 10.1371/journal.ppat.1005848] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022] Open
Abstract
Tissue damage is usually regarded as a necessary price to pay for successful elimination of pathogens by the innate immune defense. Yet, it is possible to distinguish protective from destructive effects of innate immune activation and selectively attenuate molecular nodes that create pathology. Here, we identify acute cystitis as an Interleukin-1 beta (IL-1β)-driven, hyper-inflammatory condition of the infected urinary bladder and IL-1 receptor blockade as a novel therapeutic strategy. Disease severity was controlled by the mechanism of IL-1β processing and mice with intact inflammasome function developed a moderate, self-limiting form of cystitis. The most severe form of acute cystitis was detected in mice lacking the inflammasome constituents ASC or NLRP-3. IL-1β processing was hyperactive in these mice, due to a new, non-canonical mechanism involving the matrix metalloproteinase 7- (MMP-7). ASC and NLRP-3 served as transcriptional repressors of MMP7 and as a result, Mmp7 was markedly overexpressed in the bladder epithelium of Asc-/- and Nlrp3-/- mice. The resulting IL-1β hyper-activation loop included a large number of IL-1β-dependent pro-inflammatory genes and the IL-1 receptor antagonist Anakinra inhibited their expression and rescued susceptible Asc-/- mice from bladder pathology. An MMP inhibitor had a similar therapeutic effect. Finally, elevated levels of IL-1β and MMP-7 were detected in patients with acute cystitis, suggesting a potential role as biomarkers and immunotherapeutic targets. The results reproduce important aspects of human acute cystitis in the murine model and provide a comprehensive molecular framework for the pathogenesis and immunotherapy of acute cystitis, one of the most common infections in man. Infections continue to threaten human health as pathogenic organisms outsmart available therapies with remarkable genetic versatility. Fortunately, microbial versatility is matched by the flexibility of the host immune system which provide a rich source of novel therapeutic concepts. Emerging therapeutic solutions include substances that strengthen the immune system rather than killing the bacteria directly. Selectivity is a concern, however, as boosting of the antibacterial immune response may cause collateral tissue damage. This study addresses how the host response to urinary bladder infection causes acute cystitis and how this response can be attenuated in patients who suffer from this very common condition. We identify the cytokine Interleukin-1 beta (IL-1β) as a key immune response determinant in acute cystitis and successfully treat mice with severe acute cystitis by inhibiting IL-1β or the enzyme MMP-7 that processes IL-1β to its active form. Finally, we detect elevated levels of these molecules in urine samples from patients with cystitis, suggesting clinical relevance and a potential role of IL-1β and MMP-7 both as therapeutic targets and as biomarkers of infection. These findings provide a much needed, molecular framework for the pathogenesis and treatment of acute cystitis.
Collapse
Affiliation(s)
- Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karoly Nagy
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Caterina Cafaro
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Aftab Nadeem
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel S. C. Butler
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Gustav Rydström
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nina A. Filenko
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Wullt
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thomas Miethke
- Institute of Medical Microbiology and Hygiene, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
76
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|
77
|
Bacillus anthracis Spore Surface Protein BclA Mediates Complement Factor H Binding to Spores and Promotes Spore Persistence. PLoS Pathog 2016; 12:e1005678. [PMID: 27304426 PMCID: PMC4909234 DOI: 10.1371/journal.ppat.1005678] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications. We discovered an immune modulatory mechanism of Bacillus anthracis mediated by the spore surface protein BclA. We showed for the first time that BclA mediated the binding of complement factor H, a major negative regulator of complement, to the surface of spores. The binding led to the down-regulation of complement activities in vitro and in an animal model. Using mice deficient in complement components, we further showed that BclA promoted spore persistence in the mouse lungs and impaired antibody responses against spores in a complement-dependent manner. We further provided evidence suggesting a role of BclA in the development of protective immunity against lethal B. anthracis challenges. These findings draw attention to a previously understudied aspect of the complement system. They suggest that in addition to conferring resistance to complement-mediated killing and phagocytosis, complement inhibition by pathogens have long-term consequences with respect to persistent infections and development of protective immunity. Considering a growing list of microbial pathogens capable of modulating complement activities, our findings have broad implications.
Collapse
|
78
|
García Méndez KB, Bragagnolo G, O'Callaghan D, Lavigne JP, Keriel A. A high-throughput assay for the measurement of uropathogenic Escherichia coli attachment to urinary bladder cells. Int J Exp Pathol 2016; 97:194-201. [PMID: 27273601 DOI: 10.1111/iep.12181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Strains of uropathogenic Escherichia coli (UPEC) are the major causative agent of urinary tract infections (UTI), the most common infectious diseases in the world. Their ability to attach and enter into cells in the urinary tract is a limiting step for their pathogenicity. Many studies are thus focussing on these key mechanisms to propose new therapeutic strategies. To facilitate such studies, we developed a fast and high-throughput assay which makes it possible to monitor the interaction of UPEC with cultured human uroepithelial cells. This assay allows measurement of the in vitro association of fluorescently labelled clinical isolates with bladder epithelial cells using flow cytometry in a microplate format. The assay was sensitive enough to detect variations between isolates expressing different adhesins and virulence factors and the inhibitory effect of proanthocyanidins. Thus we have developed a fast and robust assay which allows us to measure variations in the adhesion properties of UPEC to human bladder cells. This novel assay will be valuable for the study of initial steps of pathogenesis in UTI and for the screening or validation of inhibitory molecules.
Collapse
Affiliation(s)
- Karellen Beren García Méndez
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - Gabriel Bragagnolo
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - David O'Callaghan
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| | - Jean-Philippe Lavigne
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France.,Service de Microbiologie, CHU Carémeau, Nîmes, Cedex, France
| | - Anne Keriel
- U1047, UFR de Médecine, Inserm, Nîmes, Cedex, France.,U1047, Université de Montpellier, Nîmes, Cedex, France
| |
Collapse
|
79
|
Local Generation of Kynurenines Mediates Inhibition of Neutrophil Chemotaxis by Uropathogenic Escherichia coli. Infect Immun 2016; 84:1176-1183. [PMID: 26857571 DOI: 10.1128/iai.01202-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
During epithelial infections, pathogenic bacteria employ an array of strategies to attenuate and evade host immune responses, including the influx of polymorphonuclear leukocytes (PMN; neutrophils). Among the most common bacterial infections in humans are those of the urinary tract, caused chiefly by uropathogenic Escherichia coli (UPEC). During the establishment of bacterial cystitis, UPEC suppresses innate responses via multiple independent strategies. We recently described UPEC attenuation of PMN trafficking to the urinary bladder through pathogen-specific local induction of indoleamine 2,3-dioxygenase (IDO), a tryptophan catabolic enzyme previously shown to have regulatory activity only in adaptive immunity. Here, we investigated the mechanism by which IDO induction attenuates PMN migration. Local tryptophan limitation, by which IDO is known to influence T cell longevity and proliferation, was not involved in its effect on PMN trafficking. Instead, metabolites in the IDO pathway, particularly L-kynurenine, directly suppressed PMN transepithelial migration and induced an attached, spread morphology in PMN both at rest and in the presence of chemotactic stimuli. Finally, kynurenines represent known ligands of the mammalian aryl hydrocarbon receptor (AHR), and UPEC infection of Ahr(-/-)mice recapitulated the derepressed PMN recruitment observed previously in Ido1(-/-)mice. UPEC therefore suppresses neutrophil migration early in bacterial cystitis by eliciting an IDO-mediated increase in local production of kynurenines, which act through the AHR to impair neutrophil chemotaxis.
Collapse
|
80
|
Two Small Molecules Block Oral Epithelial Cell Invasion by Porphyromons gingivalis. PLoS One 2016; 11:e0149618. [PMID: 26894834 PMCID: PMC4760928 DOI: 10.1371/journal.pone.0149618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/03/2016] [Indexed: 11/25/2022] Open
Abstract
Porphyromonas gingivalis is a keystone pathogen of periodontitis. One of its bacterial characteristics is the ability to invade various host cells, including nonphagocytic epithelial cells and fibroblasts, which is known to facilitate P. gingivalis adaptation and survival in the gingival environment. In this study, we investigated two small compounds, Alop1 and dynasore, for their role in inhibition of P. gingivalis invasion. Using confocal microscopy, we showed that these two compounds significantly reduced invasion of P. gingivalis and its outer membrane vesicles into human oral keratinocytes in a dose-dependent manner. The inhibitory effects of dynasore, a dynamin inhibitor, on the bacterial entry is consistent with the notion that P. gingivalis invasion is mediated by a clathrin-mediated endocytic machinery. We also observed that microtubule arrangement, but not actin, was altered in the host cells treated with Alop1 or dynasore, suggesting an involvement of microtubule in this inhibitory activity. This work provides an opportunity to develop compounds against P. gingivalis infection.
Collapse
|
81
|
Moorthy S, Keklak J, Klein EA. Perspective: Adhesion Mediated Signal Transduction in Bacterial Pathogens. Pathogens 2016; 5:pathogens5010023. [PMID: 26901228 PMCID: PMC4810144 DOI: 10.3390/pathogens5010023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 11/25/2022] Open
Abstract
During the infection process, pathogenic bacteria undergo large-scale transcriptional changes to promote virulence and increase intrahost survival. While much of this reprogramming occurs in response to changes in chemical environment, such as nutrient availability and pH, there is increasing evidence that adhesion to host-tissue can also trigger signal transduction pathways resulting in differential gene expression. Determining the molecular mechanisms of adhesion-mediated signaling requires disentangling the contributions of chemical and mechanical stimuli. Here we highlight recent work demonstrating that surface attachment drives a transcriptional response in bacterial pathogens, including uropathogenic Escherichia coli (E. coli), and discuss the complexity of experimental design when dissecting the specific role of adhesion-mediated signaling during infection.
Collapse
Affiliation(s)
- Sudha Moorthy
- Biology Department, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
| | - Julia Keklak
- Biology Department, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
| | - Eric A Klein
- Biology Department, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
- Center for Computational and Integrative Biology, Rutgers University-Camden, 200 Federal St., Suite 520, Camden, NJ 08103, USA.
| |
Collapse
|
82
|
Association of O-Antigen Serotype with the Magnitude of Initial Systemic Cytokine Responses and Persistence in the Urinary Tract. J Bacteriol 2016; 198:964-72. [PMID: 26755631 DOI: 10.1128/jb.00664-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Urinary tract infection (UTI) is one of the most common ailments requiring both short-term and prophylactic antibiotic therapies. Progression of infection from the bladder to the kidney is associated with more severe clinical symptoms (e.g., fever and vomiting) as well as with dangerous disease sequelae (e.g., renal scaring and sepsis). Host-pathogen interactions that promote bacterial ascent to the kidney are not completely understood. Prior studies indicate that the magnitude of proinflammatory cytokine elicitation in vitro by clinical isolates of uropathogenic Escherichia coli (UPEC) inversely correlates with the severity of clinical disease. Therefore, we hypothesize that the magnitude of initial proinflammatory responses during infection defines the course and severity of disease. Clinical UPEC isolates obtained from patients with a nonfebrile UTI elicited high systemic proinflammatory responses early during experimental UTI in a murine model and were attenuated in bladder and kidney persistence. Conversely, UPEC isolates obtained from patients with febrile UTI elicited low systemic proinflammatory responses early during experimental UTI and exhibited prolonged persistence in the bladder and kidney. Soluble factors in the supernatant from saturated cultures as well as the lipopolysaccharide (LPS) serotype correlated with the magnitude of proinflammatory responses in vitro. Our data suggest that the structure of the O-antigen sugar moiety of the LPS may determine the strength of cytokine induction by epithelial cells. Moreover, the course and severity of disease appear to be the consequence of the magnitude of initial cytokines produced by the bladder epithelium during infection. IMPORTANCE The specific host-pathogen interactions that determine the extent and course of disease are not completely understood. Our studies demonstrate that modest changes in the magnitude of cytokine production observed using in vitro models of infection translate into significant ramifications for bacterial persistence and disease severity. While many studies have demonstrated that modifications of the LPS lipid A moiety modulate the extent of Toll-like receptor 4 (TLR4) activation, our studies implicate the O-antigen sugar moiety as another potential rheostat for the modulation of proinflammatory cytokine production.
Collapse
|
83
|
Kell DB, Kenny LC. A Dormant Microbial Component in the Development of Preeclampsia. Front Med (Lausanne) 2016; 3:60. [PMID: 27965958 PMCID: PMC5126693 DOI: 10.3389/fmed.2016.00060] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/04/2016] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia (PE) is a complex, multisystem disorder that remains a leading cause of morbidity and mortality in pregnancy. Four main classes of dysregulation accompany PE and are widely considered to contribute to its severity. These are abnormal trophoblast invasion of the placenta, anti-angiogenic responses, oxidative stress, and inflammation. What is lacking, however, is an explanation of how these themselves are caused. We here develop the unifying idea, and the considerable evidence for it, that the originating cause of PE (and of the four classes of dysregulation) is, in fact, microbial infection, that most such microbes are dormant and hence resist detection by conventional (replication-dependent) microbiology, and that by occasional resuscitation and growth it is they that are responsible for all the observable sequelae, including the continuing, chronic inflammation. In particular, bacterial products such as lipopolysaccharide (LPS), also known as endotoxin, are well known as highly inflammagenic and stimulate an innate (and possibly trained) immune response that exacerbates the inflammation further. The known need of microbes for free iron can explain the iron dysregulation that accompanies PE. We describe the main routes of infection (gut, oral, and urinary tract infection) and the regularly observed presence of microbes in placental and other tissues in PE. Every known proteomic biomarker of "preeclampsia" that we assessed has, in fact, also been shown to be raised in response to infection. An infectious component to PE fulfills the Bradford Hill criteria for ascribing a disease to an environmental cause and suggests a number of treatments, some of which have, in fact, been shown to be successful. PE was classically referred to as endotoxemia or toxemia of pregnancy, and it is ironic that it seems that LPS and other microbial endotoxins really are involved. Overall, the recognition of an infectious component in the etiology of PE mirrors that for ulcers and other diseases that were previously considered to lack one.
Collapse
Affiliation(s)
- Douglas B. Kell
- School of Chemistry, The University of Manchester, Manchester, UK
- The Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals, The University of Manchester, Manchester, UK
- *Correspondence: Douglas B. Kell,
| | - Louise C. Kenny
- The Irish Centre for Fetal and Neonatal Translational Research (INFANT), University College Cork, Cork, Ireland
- Department of Obstetrics and Gynecology, University College Cork, Cork, Ireland
| |
Collapse
|
84
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI.
Collapse
Affiliation(s)
- Thomas J Hannan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, 8208, St. Louis, MO, 63110, USA. .,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
85
|
Niller HH, Minarovits J. Patho-epigenetics of Infectious Diseases Caused by Intracellular Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 879:107-130. [PMID: 26659266 DOI: 10.1007/978-3-319-24738-0_6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In multicellular eukaryotes including plants, animals and humans, epigenetic reprogramming may play a role in the pathogenesis of a wide variety of diseases. Recent studies revealed that in addition to viruses, pathogenic bacteria are also capable to dysregulate the epigenetic machinery of their target cells. In this chapter we focus on epigenetic alterations induced by bacteria infecting humans. Most of them are obligate or facultative intracellular bacteria that produce either bacterial toxins and surface proteins targeting the host cell membrane, or synthesise effector proteins entering the host cell nucleus. These bacterial products typically elicit histone modifications, i.e. alter the "histone code". Bacterial pathogens are capable to induce alterations of host cell DNA methylation patterns, too. Such changes in the host cell epigenotype and gene expression pattern may hinder the antibacterial immune response and create favourable conditions for bacterial colonization, growth, or spread. Epigenetic dysregulation mediated by bacterial products may also facilitate the production of inflammatory cytokines and other inflammatory mediators affecting the epigenotype of their target cells. Such indirect epigenetic changes as well as direct interference with the epigenetic machinery of the host cells may contribute to the initiation and progression of malignant tumors associated with distinct bacterial infections.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, Tisza Lajos krt. 64, H-6720, Szeged, Hungary.
| |
Collapse
|
86
|
Abstract
The objective of pharmaceutics is the development of drugs with increased efficacy and reduced side effects. Prolonged exposure of the diseased tissue to the drug is of crucial importance. Drug-delivery systems (DDSs) have been introduced to control rate, time, and place of release. Drugs can easily reach the bladder through a catheter, while systemically administered agents may undergo extensive metabolism. Continuous urine filling and subsequent washout hinder intravesical drug delivery (IDD). Moreover, the low permeability of the urothelium, also described as the bladder permeability barrier, poses a major challenge in the development of the IDD. DDSs increase bioavailability of drugs, therefore improving therapeutic effect and patient compliance. This review focuses on novel DDSs to treat bladder conditions such as overactive bladder, interstitial cystitis, bladder cancer, and recurrent urinary tract infections. The rationale and strategies for both systemic and local delivery methods are discussed, with emphasis on new formulations of well-known drugs (oxybutynin), nanocarriers, polymeric hydrogels, intravesical devices, encapsulated DDSs, and gene therapy. We give an overview of current and future prospects of DDSs for bladder disorders, including nanotechnology and gene therapy.
Collapse
Affiliation(s)
| | | | - Linda Cardozo
- Department of Urogynaecology, King's College Hospital, London, UK
| |
Collapse
|
87
|
Abstract
Urinary tract infections (UTIs), including pyelonephritis, are among the most common and serious infections encountered in nephrology practice. UTI risk is increased in selected patient populations with renal and urinary tract disorders. As the prevalence of antibiotic-resistant uropathogens increases, novel and alternative treatment options will be needed to reduce UTI-associated morbidity. Discoveries over the past decade demonstrate a fundamental role for the innate immune system in protecting the urothelium from bacterial challenge. Antimicrobial peptides, an integral component of this urothelial innate immune system, demonstrate potent bactericidal activity toward uropathogens and might represent a novel class of UTI therapeutics. The urothelium of the bladder and the renal epithelium secrete antimicrobial peptides into the urinary stream. In the kidney, intercalated cells--a cell-type involved in acid-base homeostasis--have been shown to be an important source of antimicrobial peptides. Intercalated cells have therefore become the focus of new investigations to explore their function during pyelonephritis and their role in maintaining urinary tract sterility. This Review provides an overview of UTI pathogenesis in the upper and lower urinary tract. We describe the role of intercalated cells and the innate immune response in preventing UTI, specifically highlighting the role of antimicrobial peptides in maintaining urinary tract sterility.
Collapse
|
88
|
Stærk K, Khandige S, Kolmos HJ, Møller-Jensen J, Andersen TE. Uropathogenic Escherichia coli Express Type 1 Fimbriae Only in Surface Adherent Populations Under Physiological Growth Conditions. J Infect Dis 2015; 213:386-94. [PMID: 26290608 DOI: 10.1093/infdis/jiv422] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/10/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most uropathogenic Escherichia coli (UPEC) strains harbor genes encoding adhesive type 1 fimbria (T1F). T1F is a key factor for successful establishment of urinary tract infection. However, UPEC strains typically do not express T1F in the bladder urine, and little is understood about its induction in vivo. METHODS A flow chamber infection model was used to grow UPEC under conditions simulating distinct infection niches in the bladder. Type 1 fimbriation on isolated UPEC was subsequently determined by yeast cell agglutination and immunofluorescence microscopy, and the results were correlated with the ability to adhere to and invade cultured human bladder cells. RESULTS Although inactive during planktonic growth in urine, T1F expression occurs when UPEC settles on and infects bladder epithelial cells or colonizes catheters. As a result, UPEC in these sessile populations enhances bladder cell adhesion and invasion potential. Only T1F-negative UPEC are subsequently released to the urine, thus limiting T1F expression to surface-associated UPEC alone. CONCLUSIONS Our results demonstrate that T1F expression is strictly regulated under physiological growth conditions with increased expression during surface growth adaptation and infection of uroepithelial cells. This leads to separation of UPEC into low-expression planktonic populations and high-expression sessile populations.
Collapse
Affiliation(s)
- Kristian Stærk
- Research Unit of Clinical Microbiology Odense University Hospital, Denmark
| | - Surabhi Khandige
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology Odense University Hospital, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark
| | | |
Collapse
|
89
|
Dikshit N, Bist P, Fenlon SN, Pulloor NK, Chua CEL, Scidmore MA, Carlyon JA, Tang BL, Chen SL, Sukumaran B. Intracellular Uropathogenic E. coli Exploits Host Rab35 for Iron Acquisition and Survival within Urinary Bladder Cells. PLoS Pathog 2015; 11:e1005083. [PMID: 26248231 PMCID: PMC4527590 DOI: 10.1371/journal.ppat.1005083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 07/14/2015] [Indexed: 11/18/2022] Open
Abstract
Recurrent urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC) are common and morbid infections with limited therapeutic options. Previous studies have demonstrated that persistent intracellular infection of bladder epithelial cells (BEC) by UPEC contributes to recurrent UTI in mouse models of infection. However, the mechanisms employed by UPEC to survive within BEC are incompletely understood. In this study we aimed to understand the role of host vesicular trafficking proteins in the intracellular survival of UPEC. Using a cell culture model of intracellular UPEC infection, we found that the small GTPase Rab35 facilitates UPEC survival in UPEC-containing vacuoles (UCV) within BEC. Rab35 plays a role in endosomal recycling of transferrin receptor (TfR), the key protein responsible for transferrin-mediated cellular iron uptake. UPEC enhance the expression of both Rab35 and TfR and recruit these proteins to the UCV, thereby supplying UPEC with the essential nutrient iron. Accordingly, Rab35 or TfR depleted cells showed significantly lower intracellular iron levels and reduced ability to support UPEC survival. In the absence of Rab35, UPEC are preferentially trafficked to degradative lysosomes and killed. Furthermore, in an in vivo murine model of persistent intracellular infection, Rab35 also colocalizes with intracellular UPEC. We propose a model in which UPEC subverts two different vesicular trafficking pathways (endosomal recycling and degradative lysosomal fusion) by modulating Rab35, thereby simultaneously enhancing iron acquisition and avoiding lysosomal degradation of the UCV within bladder epithelial cells. Our findings reveal a novel survival mechanism of intracellular UPEC and suggest a potential avenue for therapeutic intervention against recurrent UTI.
Collapse
Affiliation(s)
- Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Shannon N Fenlon
- Infectious Diseases Group, Genome Institute of Singapore, Singapore; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marci A Scidmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Swaine L Chen
- Infectious Diseases Group, Genome Institute of Singapore, Singapore; Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Bindu Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
90
|
Imidazolium salts as small-molecule urinary bladder exfoliants in a murine model. Antimicrob Agents Chemother 2015; 59:5494-502. [PMID: 26124168 DOI: 10.1128/aac.00881-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/19/2015] [Indexed: 01/19/2023] Open
Abstract
We present a novel family of small-molecule urinary bladder exfoliants that are expected to be of great value in preclinical studies of urologic conditions and have improved potential for translation compared with prior agents. There is broad urologic interest in the therapeutic potential of such exfoliating agents. The primary agent used in preclinical models, the cationic peptide protamine sulfate (PS), has limited translational potential due to concerns including systemic adverse reactions and bladder tissue injury. Intravesical application of a safe, systemically nontoxic exfoliant would have potential utility in the eradication of Escherichia coli and other uropathogens that reside in the bladder epithelium following cystitis, as well as in chronic bladder pain and bladder cancer. Here, we introduce a family of imidazolium salts with potent and focused exfoliating activity on the bladder epithelium. Synthesis and purification were straightforward and scalable, and the compounds exhibited prolonged stability in lyophilized form. Most members of the compound family were cytotoxic to cultured uroepithelial cells, with >10-fold differences in potency across the series. Upon topical (intravesical) administration of selected compounds to the murine bladder, complete epithelial exfoliation was achieved with physiologically relevant imidazolium concentrations and brief contact times. The exfoliative activity of these compounds was markedly improved in comparison to PS, as assessed by microscopy, immunofluorescence, and immunoblotting for uroplakins. Bladder uroepithelium regenerated within days to yield a histologically normal appearance, and no toxicity was observed. Finally, the chemical scaffold offers an opportunity for inclusion of antimicrobials or conjugation with chemotherapeutic or other moieties.
Collapse
|
91
|
Carey AJ, Tan CK, Ipe DS, Sullivan MJ, Cripps AW, Schembri MA, Ulett GC. Urinary tract infection of mice to model human disease: Practicalities, implications and limitations. Crit Rev Microbiol 2015; 42:780-99. [PMID: 26006172 DOI: 10.3109/1040841x.2015.1028885] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Murine models of human UTI are vital experimental tools that have helped to elucidate UTI pathogenesis and advance knowledge of potential treatment and infection prevention strategies. Fundamentally, several variables are inherent in different murine models, and understanding the limitations of these variables provides an opportunity to understand how models may be best applied to research aimed at mimicking human disease. In this review, we discuss variables inherent in murine UTI model studies and how these affect model usage, data analysis and data interpretation. We examine recent studies that have elucidated UTI host-pathogen interactions from the perspective of gene expression, and review new studies of biofilm and UTI preventative approaches. We also consider potential standards for variables inherent in murine UTI models and discuss how these might expand the utility of models for mimicking human disease and uncovering new aspects of pathogenesis.
Collapse
Affiliation(s)
- Alison J Carey
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Chee K Tan
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Deepak S Ipe
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Matthew J Sullivan
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Allan W Cripps
- b Menzies Health Institute Queensland, Griffith University , Gold Coast , Australia , and
| | - Mark A Schembri
- c School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane , Australia
| | - Glen C Ulett
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| |
Collapse
|
92
|
Rosen JM, Klumpp DJ. Mechanisms of pain from urinary tract infection. Int J Urol 2015; 21 Suppl 1:26-32. [PMID: 24807489 DOI: 10.1111/iju.12309] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Abstract
The pain response to urinary tract infection is largely uncharacterized, but the symptomatic response to urinary tract infection contrasts with the lack of pain response among individuals with asymptomatic bacteriuria. Quantifying pelvic pain in a murine urinary tract infection model, uropathogenic Escerichia coli induces transient pelvic pain, whereas an asymptomatic bacteriuria E. coli isolate causes no pain, thus recapitulating the spectrum of clinical responses to intravesical E. coli. These differential pain responses are not correlated with bladder colonization or inflammation, but instead are intrinsic to E. coli lipopolysaccharide and dependent on the lipopolysaccharide receptor, TLR4. Epidemiological data suggest a link between interstitial cystitis and a history of urinary tract infection, so it was evaluated whether repetitive uropathogenic E. coli instillation would result in chronic pain through central sensitization. Although repeated infection with wild type uropathogenic E. coli results in only transient episodes of acute pain, a uropathogenic E. coli mutant lacking O-antigen causes chronic, post-urinary tract infection pelvic pain. Similarly, a K-12 E. coli strain lacking O-antigen induces chronic pain that persisted long after bacterial clearance, and expressing O-antigen nullified the pain phenotype. Spinal cords isolated from mice with post-urinary tract infection chronic pain showed deficits in short-term depression consistent with central sensitization. Deleting O-antigen gene complex from a uropathogenic E. coli strain and subsequent heterologous expression of O-antigen gene clusters shows that a single bacterial isolate can exhibit pain phenotypes ranging from a null phenotype, an acute pain phenotype, to a chronic pain phenotype. Post-urinary tract infection chronic pain is also associated with voiding dysfunction and anxious/depressive behavior. These effects are also mediated by TRPV1 at the level of pain establishment and CCR2 at the level of pain maintenance. Together, these findings show that transient infection with E. coli might result in chronic visceral pain with the hallmarks of neuropathic pain. This pattern of behaviors mimics the spectrum of interstitial cystitis symptoms, thus supporting the possibility of an infectious etiology of interstitial cystitis.
Collapse
Affiliation(s)
- John M Rosen
- Division of Pediatric Gastroenterology, Ann and Robert H Lurie Children's Hospital, Chicago, Illinois, USA
| | | |
Collapse
|
93
|
Mavromatis CH, Bokil NJ, Totsika M, Kakkanat A, Schaale K, Cannistraci CV, Ryu T, Beatson SA, Ulett GC, Schembri MA, Sweet MJ, Ravasi T. The co-transcriptome of uropathogenic Escherichia coli-infected mouse macrophages reveals new insights into host-pathogen interactions. Cell Microbiol 2015; 17:730-46. [PMID: 25410299 PMCID: PMC4950338 DOI: 10.1111/cmi.12397] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/01/2014] [Accepted: 11/11/2014] [Indexed: 12/26/2022]
Abstract
Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host–pathogen co‐transcriptome analyses using RNA sequencing. Mouse bone marrow‐derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow‐derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up‐regulated at 24 h post‐infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co‐cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.
Collapse
Affiliation(s)
- Charalampos Harris Mavromatis
- Division of Biological and Environmental Sciences and Engineering, Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia; Division of Medical Genetics, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Becknell B, Schober M, Korbel L, Spencer JD. The diagnosis, evaluation and treatment of acute and recurrent pediatric urinary tract infections. Expert Rev Anti Infect Ther 2014; 13:81-90. [PMID: 25421102 DOI: 10.1586/14787210.2015.986097] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections encountered by pediatricians. Currently, the diagnosis and management of acute UTI and recurrent UTI in children remain controversial. Recently published guidelines and large clinical trials have attempted to clarify UTI diagnostic and management strategies. In this manuscript, we review the diagnosis and management of acute and recurrent UTI in the pediatric population.
Collapse
Affiliation(s)
- Brian Becknell
- Department of Pediatrics, Division of Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | |
Collapse
|
95
|
Asymptomatic bacteriuria Escherichia coli are live biotherapeutics for UTI. PLoS One 2014; 9:e109321. [PMID: 25405579 PMCID: PMC4236008 DOI: 10.1371/journal.pone.0109321] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/29/2014] [Indexed: 12/30/2022] Open
Abstract
Urinary tract infections (UTI) account for approximately 8 million clinic visits annually with symptoms that include acute pelvic pain, dysuria, and irritative voiding. Empiric UTI management with antimicrobials is complicated by increasing antimicrobial resistance among uropathogens, but live biotherapeutics products (LBPs), such as asymptomatic bacteriuria (ASB) strains of E. coli, offer the potential to circumvent antimicrobial resistance. Here we evaluated ASB E. coli as LBPs, relative to ciprofloxacin, for efficacy against infection and visceral pain in a murine UTI model. Visceral pain was quantified as tactile allodynia of the pelvic region in response to mechanical stimulation with von Frey filaments. Whereas ciprofloxacin promoted clearance of uropathogenic E. coli (UPEC), it did not reduce pelvic tactile allodynia, a measure of visceral pain. In contrast, ASB E. coli administered intravesically or intravaginally provided comparable reduction of allodynia similar to intravesical lidocaine. Moreover, ASB E. coli were similarly effective against UTI allodynia induced by Proteus mirabilis, Enterococccus faecalis and Klebsiella pneumoniae. Therefore, ASB E. coli have anti-infective activity comparable to the current standard of care yet also provide superior analgesia. These studies suggest that ASB E. coli represent novel LBPs for UTI symptoms.
Collapse
|
96
|
Danka ES, Hunstad DA. Cathelicidin augments epithelial receptivity and pathogenesis in experimental Escherichia coli cystitis. J Infect Dis 2014; 211:1164-73. [PMID: 25336727 DOI: 10.1093/infdis/jiu577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cathelicidin is a proposed defender against infection of the urinary tract via its antimicrobial properties, but its activity has not been delineated in a dedicated cystitis model. METHODS Female C57Bl/6 mice, wild type or deficient in cathelin-related antimicrobial peptide (CRAMP; an ortholog of the sole human cathelicidin, LL-37), were infected transurethrally with the cystitis-derived uropathogenic Escherichia coli (UPEC) strain UTI89. Infection course was evaluated by bladder titers, intracellular bacterial community quantification, and histological analysis. Immune responses and resolution were characterized through cytokine profiling, microscopy, and quantitation of epithelial recovery from exfoliation. RESULTS CRAMP-deficient mice exhibited significantly lower bladder bacterial loads and fewer intracellular bacterial communities during acute cystitis. Although differences in bacterial titers were evident as early as 1 hour after infection, CRAMP-deficient mice showed no baseline alterations in immune activation, uroepithelial structure, apical expression of uroplakins (which serve as bacterial receptors), or intracellular bacterial growth rate. CRAMP-deficient hosts demonstrated less intense cytokine responses, diminished neutrophil infiltration, and accelerated uroepithelial recovery. CONCLUSIONS Mice lacking the antimicrobial peptide cathelicidin experienced less severe infection than wild-type mice in a well-established model of cystitis. Although CRAMP exhibits in vitro antibacterial activity against UPEC, it may enhance UPEC infection in the bladder by promoting epithelial receptivity and local inflammation.
Collapse
Affiliation(s)
- Elizabeth S Danka
- Department of Pediatrics Division of Biology and Biomedical Sciences
| | - David A Hunstad
- Department of Pediatrics Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
97
|
Otto M. Physical stress and bacterial colonization. FEMS Microbiol Rev 2014; 38:1250-70. [PMID: 25212723 DOI: 10.1111/1574-6976.12088] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 02/07/2023] Open
Abstract
Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria--in particular gut and urinary tract pathogens--use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multilayered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion.
Collapse
Affiliation(s)
- Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
98
|
Saha S, Nayak S, Bhattacharyya I, Saha S, Mandal AK, Chakraborty S, Bhattacharyya R, Chakraborty R, Franco OL, Mandal SM, Basak A. Understanding the patterns of antibiotic susceptibility of bacteria causing urinary tract infection in West Bengal, India. Front Microbiol 2014; 5:463. [PMID: 25278932 PMCID: PMC4166956 DOI: 10.3389/fmicb.2014.00463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infection (UTI) is one of the most common infectious diseases at the community level. In order to assess the adequacy of empirical therapy, the susceptibility of antibiotics and resistance pattern of bacteria responsible for UTI in West Bengal, India, were evaluated throughout the period of 2008-2013. The infection reports belonging to all age groups and both sexes were considered. Escherichia coli was the most abundant uropathogen with a prevalence rate of 67.1%, followed by Klebsiella spp. (22%) and Pseudomonas spp. (6%). Penicillin was least effective against UTI-causing E. coli and maximum susceptibility was recorded for the drugs belonging to fourth generation cephalosporins. Other abundant uropathogens, Klebsiella spp., were maximally resistant to broad-spectrum penicillin, followed by aminoglycosides and third generation cephalosporin. The antibiotic resistance pattern of two principal UTI pathogens, E. coli and Klebsiella spp. in West Bengal, appears in general to be similar to that found in other parts of the Globe. Higher than 50% resistance were observed for broad-spectrum penicillin. Fourth generation cephalosporin and macrolides seems to be the choice of drug in treating UTIs in Eastern India. Furthermore, improved maintenance of infection incident logs is needed in Eastern Indian hospitals in order to facilitate regular surveillance of the occurrence of antibiotic resistance patterns, since such levels continue to change.
Collapse
Affiliation(s)
- Sunayana Saha
- Microbiology Laboratory, Department of Biological Sciences, Presidency University Kolkata, India
| | - Sridhara Nayak
- Department of Chemistry, Central Research Facility, Indian Institute of Technology Kharagpur Kharagpur, India
| | | | - Suman Saha
- Ocular Microbiology & Molecular Biology Laboratory, Priyamvada Birla Aravind Eye Hospital Kolkata, India
| | - Amit K Mandal
- Department of Biotechnology, North Bengal University Siliguri, India ; Department of Microbiology, Vidyasagar University Midnapore, India
| | | | | | | | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasilia, Brazil ; Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo-Grande, Brazil
| | - Santi M Mandal
- Department of Chemistry, Central Research Facility, Indian Institute of Technology Kharagpur Kharagpur, India ; Department of Microbiology, Vidyasagar University Midnapore, India
| | - Amit Basak
- Department of Chemistry, Central Research Facility, Indian Institute of Technology Kharagpur Kharagpur, India
| |
Collapse
|
99
|
Bacterial lysis liberates the neutrophil migration suppressor YbcL from the periplasm of uropathogenic Escherichia coli. Infect Immun 2014; 82:4921-30. [PMID: 25183735 DOI: 10.1128/iai.01838-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) modulates aspects of the innate immune response during urinary tract infection to facilitate bacterial invasion of the bladder epithelium, a requirement for the propagation of infection. For example, UPEC-encoded YbcL suppresses the traversal of bladder epithelia by neutrophils in both an in vitro model and an in vivo murine cystitis model. The suppressive activity of YbcL requires liberation from the bacterial periplasm, though the mechanism of release is undefined. Here we present findings on the site of action of YbcL and demonstrate a novel mode of secretion for a UPEC exoprotein. Suppression of neutrophil migration by purified YbcL(UTI), encoded by cystitis isolate UTI89, required the presence of a uroepithelial layer; YbcL(UTI) did not inhibit neutrophil chemotaxis directly. YbcL(UTI) was released to a greater extent during UPEC infection of uroepithelial cells than during that of neutrophils. Release of YbcL(UTI) was maximal when UPEC and bladder epithelial cells were in close proximity. Established modes of secretion, including outer membrane vesicles, the type II secretion system, and the type IV pilus, were dispensable for YbcL(UTI) release from UPEC. Instead, YbcL(UTI) was liberated during bacterial death, which was augmented upon exposure to bladder epithelial cells, as confirmed by detection of bacterial cytoplasmic proteins and DNA in the supernatant and enumeration of bacteria with compromised membranes. As YbcL(UTI) acts on the uroepithelium to attenuate neutrophil migration, this mode of release may represent a type of altruistic cooperation within a UPEC population during colonization of the urinary tract.
Collapse
|
100
|
Suneeva SC, Prasanth R, Rajesh NG, Viswanathan P. Transformation of Brevibacillus, a soil microbe to an uropathogen with hemagglutination trait. World J Microbiol Biotechnol 2014; 30:1837-1844. [PMID: 24464621 DOI: 10.1007/s11274-014-1605-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/15/2014] [Indexed: 02/05/2023]
Abstract
An urinary tract infection (UTI) with Brevibacillus agri, an aerobic soil bacteria is discussed. The preliminary urine analysis tested negative for UTI, while the patient was diagnosed with focal pyelonephritis. The urine sample was analyzed for the presence of possible micro-organisms. The isolated micro-organism was phenotypically characterized and compared with a standard B. agri strain and an established uropathogen Eschericia coli, CFT073. Each experimental mouse was trans-urethrally infected using 2.5 × 10(8) c.f.u. for the generation of an UTI model. The kidney tissues were stored in buffered 10 % formaldehyde solution for histopathological analysis. The destruction of the glomerular and tubular morphology with prominent hemagglutination in the tubular region in the mouse kidneys were confirmed by light microscopic examination of the H&E stained sections. Hence, the identity of pathogen was confirmed using the 16S rRNA gene sequencing. The phylogenetic tree constructed using the 16S rRNA sequence obtained from the isolated microbial strain showed 99 % similarity with the strain, B. agri AB112716. Finally this study concludes based on the phenotypic characteristics, production of lipopolysaccharide, the ability to aggregate in the presence of ammonium sulphate, agglutinate erythrocytes in the presence of mannose, and the potential to resist the interactions of serum, the possibility that the soil microbe could have undergone genotypic modification to cause UTI. However, further detailed and in-depth genetic analysis are required to point out exactly how the soil bacterium has adapted itself to cause infection in a human subject.
Collapse
Affiliation(s)
- S C Suneeva
- Renal Research Lab, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India
| | | | | | | |
Collapse
|