51
|
Abstract
The endothelium acts as the barrier that prevents circulating lipids such as lipoproteins and fatty acids into the arterial wall; it also regulates normal functioning in the circulatory system by balancing vasodilation and vasoconstriction, modulating the several responses and signals. Plasma lipids can interact with endothelium via different mechanisms and produce different phenotypes. Increased plasma-free fatty acids (FFAs) levels are associated with the pathogenesis of atherosclerosis and cardiovascular diseases (CVD). Because of the multi-dimensional roles of plasma FFAs in mediating endothelial dysfunction, increased FFA level is now considered an essential link in the onset of endothelial dysfunction in CVD. FFA-mediated endothelial dysfunction involves several mechanisms, including dysregulated production of nitric oxide and cytokines, metaflammation, oxidative stress, inflammation, activation of the renin-angiotensin system, and apoptosis. Therefore, modulation of FFA-mediated pathways involved in endothelial dysfunction may prevent the complications associated with CVD risk. This review presents details as to how endothelium is affected by FFAs involving several metabolic pathways.
Collapse
|
52
|
Li MM, Zheng YL, Wang WD, Lin S, Lin HL. Neuropeptide Y: An Update on the Mechanism Underlying Chronic Intermittent Hypoxia-Induced Endothelial Dysfunction. Front Physiol 2021; 12:712281. [PMID: 34512386 PMCID: PMC8430344 DOI: 10.3389/fphys.2021.712281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial dysfunction (ED) is a core pathophysiological process. The abnormal response of vascular endothelial (VE) cells to risk factors can lead to systemic consequences. ED caused by intermittent hypoxia (IH) has also been recognized. Neuropeptide Y (NPY) is an important peripheral neurotransmitter that binds to different receptors on endothelial cells, thereby causing ED. Additionally, hypoxia can induce the release of peripheral NPY; however, the involvement of NPY and its receptor in IH-induced ED has not been determined. This review explains the definition of chronic IH and VE function, including the relationship between ED and chronic IH-related vascular diseases. The results showed that that the effect of IH on VE injury is mediated by the VE-barrier structure and endothelial cell dysfunction. These findings offer new ideas for the prevention and treatment of obstructive sleep apnea syndrome and its complications.
Collapse
Affiliation(s)
- Mei-Mei Li
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Li Zheng
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wan-da Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Hui-Li Lin
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
53
|
Akinnola I, Rossi DR, Meyer C, Lindsey A, Haase DR, Fogas S, Ehrhardt MJ, Blue RE, Price AP, Johnson M, Alvarez DF, Taylor DA, Panoskaltsis-Mortari A. Engineering Functional Vasculature in Decellularized Lungs Depends on Comprehensive Endothelial Cell Tropism. Front Bioeng Biotechnol 2021; 9:727869. [PMID: 34485262 PMCID: PMC8415401 DOI: 10.3389/fbioe.2021.727869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering using decellularized whole lungs as matrix scaffolds began as a promise for creating autologous transplantable lungs for patients with end-stage lung disease and can also be used to study strategies for lung regeneration. Vascularization remains a critical component for all solid organ bioengineering, yet there has been limited success in generating functional re-endothelialization of most pulmonary vascular segments. We evaluated recellularization of the blood vessel conduits of acellular mouse scaffolds with highly proliferating, rat pulmonary microvascular endothelial progenitor cells (RMEPCs), pulmonary arterial endothelial cells (PAECs) or microvascular endothelial cells (MVECs). After 8 days of pulsatile perfusion, histological analysis showed that PAECs and MVECs possessed selective tropism for larger vessels or microvasculature, respectively. In contrast, RMEPCs lacked site preference and repopulated all vascular segments. RMEPC-derived endothelium exhibited thrombomodulin activity, expression of junctional genes, ability to synthesize endothelial signaling molecules, and formation of a restrictive barrier. The RMEPC phenotype described here could be useful for identifying endothelial progenitors suitable for efficient vascular organ and tissue engineering, regeneration and repair.
Collapse
Affiliation(s)
- Ifeolu Akinnola
- MSTP, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Daniel R Rossi
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn Meyer
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ashley Lindsey
- Internal Medicine and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Douglas R Haase
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Samuel Fogas
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Ehrhardt
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Rachel E Blue
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrew P Price
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Max Johnson
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Diego F Alvarez
- Internal Medicine and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | | | - Angela Panoskaltsis-Mortari
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States.,Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
54
|
McClung JA, Levy L, Garcia V, Stec DE, Peterson SJ, Abraham NG. Heme-oxygenase and lipid mediators in obesity and associated cardiometabolic diseases: Therapeutic implications. Pharmacol Ther 2021; 231:107975. [PMID: 34499923 DOI: 10.1016/j.pharmthera.2021.107975] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
Obesity-mediated metabolic syndrome remains the leading cause of death worldwide. Among many potential targets for pharmacological intervention, a promising strategy involves the heme oxygenase (HO) system, specifically its inducible form, HO-1. This review collects and updates much of the current knowledge relevant to pharmacology and clinical medicine concerning HO-1 in metabolic diseases and its effect on lipid metabolism. HO-1 has pleotropic effects that collectively reduce inflammation, while increasing vasodilation and insulin and leptin sensitivity. Recent reports indicate that HO-1 with its antioxidants via the effect of bilirubin increases formation of biologically active lipid metabolites such as epoxyeicosatrienoic acid (EET), omega-3 and other polyunsaturated fatty acids (PUFAs). Similarly, HO-1and bilirubin are potential therapeutic targets in the treatment of fat-induced liver diseases. HO-1-mediated upregulation of EET is capable not only of reversing endothelial dysfunction and hypertension, but also of reversing cardiac remodeling, a hallmark of the metabolic syndrome. This process involves browning of white fat tissue (i.e. formation of healthy adipocytes) and reduced lipotoxicity, which otherwise will be toxic to the heart. More importantly, this review examines the activity of EET in biological systems and a series of pathways that explain its mechanism of action and discusses how these might be exploited for potential therapeutic use. We also discuss the link between cardiac ectopic fat deposition and cardiac function in humans, which is similar to that described in obese mice and is regulated by HO-1-EET-PGC1α signaling, a potent negative regulator of the inflammatory adipokine NOV.
Collapse
Affiliation(s)
- John A McClung
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Lior Levy
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America
| | - David E Stec
- Department of Physiology and Biophysics, Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, Jackson, MS 39216, United States of America.
| | - Stephen J Peterson
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States of America; New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY 11215, United States of America
| | - Nader G Abraham
- Department of Medicine, New York Medical College, Valhalla, NY 10595, United States of America; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, United States of America.
| |
Collapse
|
55
|
Kim DY, Piao J, Park JS, Lee D, Hong HS. Substance P ameliorates TNF-α-mediated impairment of human aortic vascular cells in vitro. Clin Exp Pharmacol Physiol 2021; 48:1288-1297. [PMID: 34060109 DOI: 10.1111/1440-1681.13533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/26/2022]
Abstract
Vascular diseases are caused by endothelial dysfunction due to inflammation. On endothelial injury, the expression of extracellular matrix (ECM) is enhanced and nitric oxide (NO) bioavailability becomes deficient. This condition affects endothelial metabolism and leads to vascular destruction. The aim of this investigation was to determine whether substance P (SP) is able to protect the endothelium against inflammatory stress. To this end, aortic endothelial cells were pre-treated with SP, followed by tumour necrosis factor α (TNF-α), and cellular responses were evaluated using a combination of cell biology and quantification assays, as well as western blot analyses. Our results show that TNF-α enhanced ECM expression and reduced NO production within 4 hours, promoting immune cell adhesion to the endothelium and monocyte chemoattractant protein-1 (MCP-1) secretion from aortic smooth muscle cells. However, SP treatment ameliorated TNF-α-induced endothelial impairment by maintaining low ECM levels. Our data suggest that this protective effect is mediated by Akt activation and NO-enriched conditions. The inhibition of aortic endothelial cell injury by SP also reduced MCP-1 production in aortic smooth muscle cells. Together, our data indicate that SP can protect aortic endothelial and smooth muscle cells from inflammatory injury, which suggests that SP may prevent cardiovascular disease.
Collapse
Affiliation(s)
- Do Young Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jiyuan Piao
- Department of Genetic Engineering, College of Life Science and Graduate School of Biotechnology, Kyung Hee University, Seoul, South Korea
| | - Jeong Seop Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Dahyeon Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hyun Sook Hong
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, South Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul, South Korea
- Kyung Hee Institute of Regenerative Medicine (KIRM), Medical Science Research institute, Kyung Hee University Medical Center, Seoul, South Korea
| |
Collapse
|
56
|
Ferreira LLDM, Leão VDF, de Melo CM, Machado TDB, Amaral ACF, da Silva LL, Simas NK, Muzitano MF, Leal ICR, Raimundo JM. Ethyl Acetate Fraction and Isolated Phenolics Derivatives from Mandevilla moricandiana Identified by UHPLC-DAD-ESI-MS n with Pharmacological Potential for the Improvement of Obesity-Induced Endothelial Dysfunction. Pharmaceutics 2021; 13:pharmaceutics13081173. [PMID: 34452134 PMCID: PMC8401510 DOI: 10.3390/pharmaceutics13081173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
Endothelial dysfunction in obesity plays a key role in the development of cardiovascular diseases, and it is characterized by increased vascular tonus and oxidative stress. Thus, this study aimed to investigate the vasodilatory and antioxidant activities of Mandevilla moricandiana ethyl acetate fraction and subfractions. Vascular effects were investigated on aorta isolated from control and monosodium glutamate (MSG) induced-obese Wistar rats, and antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods. The ethyl acetate fraction (MMEAF) induced a concentration-dependent vasodilation on aortic rings through the NO pathway, with the involvement of histamine H1 and estrogen ERα receptors and showed potent antioxidant activity. In aorta of MSG obese rats, maximal relaxation to acetylcholine was increased in the presence of MMEAF (3 µg/mL), indicating that MMEAF ameliorated obesity-induced endothelial dysfunction. Quercetin and kaempferol aglycones and their correspondent glycosides, as well as caffeoylquinic acid derivatives, A-type procyanidin trimer, ursolic and oleanolic triterpenoid acids were identified in subfractions from MMEAF and seem to be the metabolites responsible for the vascular and antioxidant activities of this fraction.
Collapse
Affiliation(s)
- Leticia L. D. M. Ferreira
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Valéria de F. Leão
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Cinthya M. de Melo
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Thelma de B. Machado
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Faculty of Pharmacy, Federal Fluminense University, Niterói 24241-000, RJ, Brazil
| | - Ana Claudia F. Amaral
- Laboratory of Medicinal Plants and Derivatives, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Leandro L. da Silva
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Naomi K. Simas
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Michelle F. Muzitano
- Laboratory of Bioactive Products, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27933-378, RJ, Brazil;
| | - Ivana C. R. Leal
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Correspondence: (I.C.R.L.); (J.M.R.); Tel.: +55-21965620428 (I.C.R.L.); +55-2221414019 (J.M.R.)
| | - Juliana M. Raimundo
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
- Correspondence: (I.C.R.L.); (J.M.R.); Tel.: +55-21965620428 (I.C.R.L.); +55-2221414019 (J.M.R.)
| |
Collapse
|
57
|
Substance-P Inhibits Cardiac Microvascular Endothelial Dysfunction Caused by High Glucose-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10071084. [PMID: 34356317 PMCID: PMC8301094 DOI: 10.3390/antiox10071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes is characterized by high glucose (HG) levels in the blood circulation, leading to exposure of the vascular endothelium to HG conditions. Hyperglycemia causes oxidative stress via excessive reactive oxygen species (ROS) production in the endothelium, which leads to cellular dysfunction and the development of diabetic vascular diseases. Substance-P (SP) is an endogenous peptide involved in cell proliferation and migration by activating survival-related signaling pathways. In this study, we evaluated the role of SP in cardiac microvascular endothelial cells (CMECs) in HG-induced oxidative stress. CMECs were treated with diverse concentrations of glucose, and then the optimal dose was determined. Treatment of CMECs with HG reduced their viability and induced excessive ROS secretion, inactivation of PI3/Akt signaling, and loss of vasculature-forming ability in vitro. Notably, HG treatment altered the cytokine profile of CMECs. However, SP treatment inhibited the HG-mediated aggravation of CMECs by restoring viability, free radical balance, and paracrine potential. SP-treated CMECs retained the capacity to form compact and long stretching-tube structures. Collectively, our data provide evidence that SP treatment can block endothelial dysfunction in hyperglycemia and suggest the possibility of using SP for treating diabetic complications as an antioxidant.
Collapse
|
58
|
Gokina NI, Fairchild RI, Prakash K, DeLance NM, Bonney EA. Deficiency in CD4 T Cells Leads to Enhanced Postpartum Internal Carotid Artery Vasoconstriction in Mice: The Role of Nitric Oxide. Front Physiol 2021; 12:686429. [PMID: 34220551 PMCID: PMC8242360 DOI: 10.3389/fphys.2021.686429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The risk of postpartum (PP) stroke is increased in complicated pregnancies. Deficiency in CD4 T cell subsets is associated with preeclampsia and may contribute to PP vascular disease, including internal carotid artery (ICA) stenosis and stroke. We hypothesized that CD4 T cell deficiency in pregnancy would result in ICA dysregulation, including enhanced ICA vasoconstriction. We characterized the function, mechanical behavior, and structure of ICAs from C57BL/6 (WT) and CD4 deficient (CD4KO) mice, and assessed the role of NO in the control of ICA function at pre-conception and PP. WT and CD4KO mice were housed under pathogen-free conditions, mated to same-strain males, and allowed to litter or left virgin. At 3 days or 4 weeks PP, mice were euthanized. The responses to phenylephrine (PE), high K+ and acetylcholine (ACh) were assessed in pressurized ICAs before and after NOS inhibition. Passive lumen diameters were measured at 3–140 mmHg. eNOS and iNOS expression as well as the presence of T cells were evaluated by immunohistochemistry. Constriction of WT ICAs to PE was not modified PP. In contrast, responses to PE were significantly increased in ICAs from PP as compared to virgin CD4KO mice. Constriction to high K+ was not enhanced PP. ICAs from WT and CD4KO mice were equally sensitive to ACh with a significant rightward shift of dose-response curves after L-NNA treatment. NOS inhibition enhanced PE constriction of ICAs from WT virgin and PP mice. Although a similar effect was detected in ICAs of virgin CD4KO mice, no such changes were observed in vessels from PP CD4KO mice. Passive arterial distensibility at physiological levels of pressure was not modified at PP. ICA diameters were significantly increased in PP with no change in vascular wall thickness. Comparison of eNOS expression in virgin, 3 days and 4 weeks PP revealed a reduced expression in ICA from CD4 KO vs. WT PP vessels which reached significance at 4 weeks PP. iNos expression was similar and decreased over the PP period in vessels from WT and CD4KO mice. Dysregulation of the CD4 T cell population in pregnancy may make ICA vulnerable to vasospasm due to decreased NO-dependent control of ICA constriction. This may lead to cerebral hypoperfusion and increase the risk of maternal PP stroke.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Rebecca I Fairchild
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Kirtika Prakash
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Nicole M DeLance
- Microscopy Imaging Center, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
59
|
Roos CM, Zhang B, Hagler MA, Arghami A, Miller JD. MnSOD protects against vascular calcification independent of changes in vascular function in hypercholesterolemic mice. Atherosclerosis 2021; 331:31-37. [PMID: 34147244 DOI: 10.1016/j.atherosclerosis.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS The overall goal of this study was to determine the effects of MnSOD-deficiency on vascular structure and function in hypercholesterolemic mice. Previous work suggested that increases in mitochondrial-derived reactive oxygen species (ROS) can exacerbate vascular dysfunction and atherosclerosis. It remains unknown, however, how MnSOD-deficiency and local compensatory mechanisms impact atherosclerotic plaque composition. METHODS AND RESULTS We used a hypercholesterolemic mouse model (ldlr-/-/ApoB100/100; LA), either wild-type for MnSOD (LA-MnSOD+/+) or MnSOD-haploinsufficient (LA-MnSOD+/-), that was fed a western diet for either 3 or 6 months. Consistent with previous reports, reductions of MnSOD did not significantly worsen hypercholesterolemia-induced endothelial dysfunction in the aorta. Critically, dramatic impairment of vascular function with Nox2 inhibition or catalase pretreatment suggested the presence of a significant NO-independent vasodilatory mechanism in LA-MnSOD+/- mice (e.g. H2O2). Despite remarkably well-preserved overall vascular relaxation, loss of mitochondrial antioxidant capacity in LA-MnSOD+/- mice significantly increased osteogenic signalling and vascular calcification compared to the LA-MnSOD+/+ littermates. CONCLUSIONS Collectively, these data are the first to suggest that loss of mitochondrial antioxidant capacity in hypercholesterolemic mice results in dramatic upregulation of NADPH oxidase-derived H2O2. While this appears to be adaptive in the context of preserving overall endothelium-dependent relaxation and vascular function, these increases in ROS appear to be remarkably maladaptive and deleterious in the context of vascular calcification.
Collapse
Affiliation(s)
| | - Bin Zhang
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Arman Arghami
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Jordan D Miller
- Departments of Surgery, Mayo Clinic, Rochester, MN, USA; Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
60
|
Nakano H, Shiina K, Tomiyama H. Cardiovascular Outcomes in the Acute Phase of COVID-19. Int J Mol Sci 2021; 22:4071. [PMID: 33920790 PMCID: PMC8071172 DOI: 10.3390/ijms22084071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 02/06/2023] Open
Abstract
The cumulative number of cases in the current global coronavirus disease 19 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has exceeded 100 million, with the number of deaths caused by the infection having exceeded 2.5 million. Recent reports from most frontline researchers have revealed that SARS-CoV-2 can also cause fatal non-respiratory conditions, such as fatal cardiovascular events. One of the important mechanisms underlying the multiple organ damage that is now known to occur during the acute phase of SARS-CoV-2 infection is impairment of vascular function associated with inhibition of angiotensin-converting enzyme 2. To manage the risk of vascular dysfunction-related complications in patients with COVID-19, it would be pivotal to clearly elucidate the precise mechanisms by which SARS-CoV-2 infects endothelial cells to cause vascular dysfunction. In this review, we summarize the current state of knowledge about the mechanisms involved in the development of vascular dysfunction in the acute phase of COVID-19.
Collapse
Affiliation(s)
- Hiroki Nakano
- Department of Cardiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.N.); (K.S.)
| | - Kazuki Shiina
- Department of Cardiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.N.); (K.S.)
| | - Hirofumi Tomiyama
- Department of Cardiology, Tokyo Medical University, Tokyo 160-0023, Japan; (H.N.); (K.S.)
- Department of Cardiology and Division of Pre-Emptive Medicine for Vascular Damage, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
61
|
Hussid MF, Cepeda FX, Jordão CP, Lopes-Vicente RRP, Virmondes L, Katayama KY, de Oliveira EF, Oliveira LVF, Consolim-Colombo FM, Trombetta IC. Visceral Obesity and High Systolic Blood Pressure as the Substrate of Endothelial Dysfunction in Obese Adolescents. Arq Bras Cardiol 2021; 116:795-803. [PMID: 33886731 PMCID: PMC8121384 DOI: 10.36660/abc.20190541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/11/2019] [Accepted: 12/27/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Obesity affects adolescence and may lead to metabolic syndrome (MetS) and endothelial dysfunction, an early marker of cardiovascular risk. Albeit obesity is strongly associated with obstructive sleep apnea (OSA), it is not clear the role of OSA in endothelial function in adolescents with obesity. OBJECTIVE To investigate whether obesity during adolescence leads to MetS and/or OSA; and causes endothelial dysfunction. In addition, we studied the possible association of MetS risk factors and apnea hypopnea index (AHI) with endothelial dysfunction. METHODS We studied 20 sedentary obese adolescents (OA; 14.2±1.6 years, 100.9±20.3kg), and 10 normal-weight adolescents (NWA, 15.2±1.2 years, 54.4±5.3kg) paired for sex. We assessed MetS risk factors (International Diabetes Federation criteria), vascular function (Flow-Mediated Dilation, FMD), functional capacity (VO2peak) and the presence of OSA (AHI>1event/h, by polysomnography). We considered statistically significant a P<0.05. RESULTS OA presented higher waist (WC), body fat, triglycerides, systolic (SBP) and diastolic blood pressure (DBP), LDL-c and lower HDL-c and VO2peak than NWA. MetS was presented in the 35% of OA, whereas OSA was present in 86.6% of OA and 50% of EA. There was no difference between groups in the AHI. The OA had lower FMD than NWA (6.17±2.72 vs. 9.37±2.20%, p=0.005). There was an association between FMD and WC (R=-0.506, p=0.008) and FMD and SBP (R=-0.493, p=0.006). CONCLUSION In adolescents, obesity was associates with MetS and caused endothelial dysfunction. Increased WC and SBP could be involved in this alteration. OSA was observed in most adolescents, regardless of obesity. (Arq Bras Cardiol. 2021; 116(4):795-803).
Collapse
Affiliation(s)
- Maria Fernanda Hussid
- Universidade Nove de JulhoSão PauloSPBrasilUniversidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.
| | - Felipe Xerez Cepeda
- Universidade Nove de JulhoSão PauloSPBrasilUniversidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.
| | - Camila P. Jordão
- Universidade de São PauloFaculdade de MedicinaHospital das ClínicasSão PauloSPBrasilInstituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil.
| | | | - Leslie Virmondes
- Universidade Nove de JulhoSão PauloSPBrasilUniversidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.
| | - Keyla Y. Katayama
- Universidade Nove de JulhoSão PauloSPBrasilUniversidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.
| | - Ezequiel F. de Oliveira
- Universidade Nove de JulhoSão PauloSPBrasilUniversidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.
| | - Luis V. F. Oliveira
- Centro Universitário de AnápolisAnápolisGOBrasilCentro Universitário de Anápolis (UniEvangélica), Anápolis, GO - Brasil.
| | - Fernanda Marciano Consolim-Colombo
- Universidade Nove de JulhoSão PauloSPBrasilUniversidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.
- Universidade de São PauloFaculdade de MedicinaHospital das ClínicasSão PauloSPBrasilInstituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil.
| | - Ivani Credidio Trombetta
- Universidade Nove de JulhoSão PauloSPBrasilUniversidade Nove de Julho (UNINOVE), São Paulo, SP - Brasil.
- Universidade de São PauloFaculdade de MedicinaHospital das ClínicasSão PauloSPBrasilInstituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil.
| |
Collapse
|
62
|
Kawarazaki W, Fujita T. Role of Rho in Salt-Sensitive Hypertension. Int J Mol Sci 2021; 22:ijms22062958. [PMID: 33803946 PMCID: PMC8001214 DOI: 10.3390/ijms22062958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
A high amount of salt in the diet increases blood pressure (BP) and leads to salt-sensitive hypertension in individuals with impaired renal sodium excretion. Small guanosine triphosphatase (GTP)ase Rho and Rac, activated by salt intake, play important roles in the pathogenesis of salt-sensitive hypertension as key switches of intracellular signaling. Focusing on Rho, high salt intake in the central nervous system increases sodium concentrations of cerebrospinal fluid in salt-sensitive subjects via Rho/Rho kinase and renin-angiotensin system activation and causes increased brain salt sensitivity and sympathetic nerve outflow in BP control centers. In vascular smooth muscle cells, Rho-guanine nucleotide exchange factors and Rho determine sensitivity to vasoconstrictors such as angiotensin II (Ang II), and facilitate vasoconstriction via G-protein and Wnt pathways, leading to increased vascular resistance, including in the renal arteries, in salt-sensitive subjects with high salt intake. In the vascular endothelium, Rho/Rho kinase inhibits nitric oxide (NO) production and function, and high salt amounts further augment Rho activity via asymmetric dimethylarginine, an endogenous inhibitor of NO synthetase, causing aberrant relaxation and increased vascular tone. Rho-associated mechanisms are deeply involved in the development of salt-sensitive hypertension, and their further elucidation can help in developing effective protection and new therapies.
Collapse
|
63
|
Bikov A, Meszaros M, Schwarz EI. Coagulation and Fibrinolysis in Obstructive Sleep Apnoea. Int J Mol Sci 2021; 22:ijms22062834. [PMID: 33799528 PMCID: PMC8000922 DOI: 10.3390/ijms22062834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is a common disease which is characterised by repetitive collapse of the upper airways during sleep resulting in chronic intermittent hypoxaemia and frequent microarousals, consequently leading to sympathetic overflow, enhanced oxidative stress, systemic inflammation, and metabolic disturbances. OSA is associated with increased risk for cardiovascular morbidity and mortality, and accelerated coagulation, platelet activation, and impaired fibrinolysis serve the link between OSA and cardiovascular disease. In this article we briefly describe physiological coagulation and fibrinolysis focusing on processes which could be altered in OSA. Then, we discuss how OSA-associated disturbances, such as hypoxaemia, sympathetic system activation, and systemic inflammation, affect these processes. Finally, we critically review the literature on OSA-related changes in markers of coagulation and fibrinolysis, discuss potential reasons for discrepancies, and comment on the clinical implications and future research needs.
Collapse
Affiliation(s)
- Andras Bikov
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
- Correspondence: ; Tel.: +44-161-291-2493; Fax: +44-161-291-5730
| | - Martina Meszaros
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary;
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Esther Irene Schwarz
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8006 Zurich, Switzerland;
- Centre of Competence Sleep & Health Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
64
|
C-Peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021; 9:biomedicines9030270. [PMID: 33800470 PMCID: PMC8000702 DOI: 10.3390/biomedicines9030270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a complex metabolic disease affecting one-third of the United States population. It is characterized by hyperglycemia, where the hormone insulin is either not produced sufficiently or where there is a resistance to insulin. Patients with Type 1 DM (T1DM), in which the insulin-producing beta cells are destroyed by autoimmune mechanisms, have a significantly increased risk of developing life-threatening cardiovascular complications, even when exogenous insulin is administered. In fact, due to various factors such as limited blood glucose measurements and timing of insulin administration, only 37% of T1DM adults achieve normoglycemia. Furthermore, T1DM patients do not produce C-peptide, a cleavage product from insulin processing. C-peptide has potential therapeutic effects in vitro and in vivo on many complications of T1DM, such as peripheral neuropathy, atherosclerosis, and inflammation. Thus, delivery of C-peptide in conjunction with insulin through a pump, pancreatic islet transplantation, or genetically engineered Sertoli cells (an immune privileged cell type) may ameliorate many of the cardiovascular and vascular complications afflicting T1DM patients.
Collapse
|
65
|
Ma Y, Yan G, Guo J, Li F, Zheng H, Wang C, Chen Y, Ye Y, Dai H, Qi Z, Zhuang G. Berberine Prolongs Mouse Heart Allograft Survival by Activating T Cell Apoptosis via the Mitochondrial Pathway. Front Immunol 2021; 12:616074. [PMID: 33732240 PMCID: PMC7959711 DOI: 10.3389/fimmu.2021.616074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022] Open
Abstract
Berberine, which is a traditional Chinese medicine can inhibit tumorigenesis by inducing tumor cell apoptosis. However, the immunoregulatory of effects berberine on T cells remains poorly understood. Here, we first examined whether berberine can prolong allograft survival by regulating the recruitment and function of T cells. Using a major histocompatibility complex complete mismatch mouse heterotopic cardiac transplantation model, we found that the administration of moderate doses (5 mg/kg) of berberine significantly prolonged heart allograft survival to 19 days and elicited no obvious berberine-related toxicity. Compared to that with normal saline treatment, berberine treatment decreased alloreactive T cells in recipient splenocytes and lymph node cells. It also inhibited the activation, proliferation, and function of alloreactive T cells. Most importantly, berberine treatment protected myocardial cells by decreasing CD4+ and CD8+ T cell infiltration and by inhibiting T cell function in allografts. In vivo and in vitro assays revealed that berberine treatment eliminated alloreactive T lymphocytes via the mitochondrial apoptosis pathway, which was validated by transcriptome sequencing. Taken together, we demonstrated that berberine prolongs allograft survival by inducing apoptosis of alloreactive T cells. Thus, our study provides more evidence supporting the potential use of berberine in translational medicine.
Collapse
Affiliation(s)
- Yunhan Ma
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Guoliang Yan
- School of Medicine, Xiamen University, Xiamen, China
| | - Junjun Guo
- School of Medicine, Xiamen University, Xiamen, China
| | - Fujun Li
- Department of Anesthesiology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiping Zheng
- School of Medicine, Xiamen University, Xiamen, China
| | - Chenxi Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Yingyu Chen
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| | - Yuhan Ye
- Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Helong Dai
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Organ Transplantation in Hunan Province, Changsha, China.,Clinical Immunology Center, Central South University, Changsha, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
| | - Guohong Zhuang
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Organ Transplantation Institute, Xiamen University, Xiamen, China
| |
Collapse
|
66
|
Oteiza PI, Fraga CG, Galleano M. Linking biomarkers of oxidative stress and disease with flavonoid consumption: From experimental models to humans. Redox Biol 2021; 42:101914. [PMID: 33750648 PMCID: PMC8113027 DOI: 10.1016/j.redox.2021.101914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
Identification of the links among flavonoid consumption, mitigation of oxidative stress and improvement of disease in humans has significantly advanced in the last decades. This review used (−)-epicatechin (EC) as an example of dietary flavonoids, and inflammation, endothelial dysfunction/hypertension and insulin resistance/diabetes as paradigms of human disease. In these pathologies, oxidative stress is part of their development and/or their perpetuation. Evidence from both, rodent studies and characterization of mechanisms in cell cultures are encouraging and mostly support indirect antioxidant actions of EC and EC metabolites in endothelial dysfunction and insulin resistance. Human studies also show beneficial effects of EC on these pathologies based on biomarkers of disease. However, there is limited available information on oxidative stress biomarkers and flavonoid consumption to allow establishing conclusive associations. The evolving discovery of metabolites that could serve as reliable markers of intake of specific flavonoids constitutes a powerful tool to link flavonoid consumption to disease and prevention of oxidative stress in human populations. Flavonoid’s metabolism and concentration determine their antioxidant mechanisms. Except for the GI tract, flavonoids are relevant indirect antioxidants in organs and tissues. Flavonoid's health effects are not always linked to biomarkers of oxidative stress. (‒)-Epicatechin mitigates the redox deregulation involved in hypertension/T2D pathogenesis. More human studies will strength links among flavonoids, oxidative stress, and disease.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
67
|
Zhang Y, Luo W, Li H, Yu G, Luo H, Leng J, Ge J, Zeng R, Guo T, Yin Y, Zhou Y, Liu B. Larger endothelium-dependent contractions in iliac arteries of adult SHRs are attributed to differential downregulation of TP and EP3 receptors in the vessels of WKYs and SHRs during the transition from adolescence to adulthood. Eur J Pharmacol 2021; 893:173828. [PMID: 33347824 DOI: 10.1016/j.ejphar.2020.173828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 02/05/2023]
Abstract
This study was to determine how endothelium-dependent contractions (EDCs) change in iliac arteries of Wistar-Kyoto (WKYs) and spontaneously hypertensive rats (SHRs) during the transition from adolescence to adulthood and the underlying mechanism(s). We also aimed to elucidate effects of L-798106, an EP3 receptor antagonist, on EDCs and the blood pressure increase in adolescent SHRs. Blood vessels were isolated for functional and biochemical analyses. EDCs were comparable in adolescent iliac arteries of both strains, and contractions to ACh, prostacyclin (PGI2), the EP3 receptor agonist sulprostone and the TP receptor agonist U46619 in adult vessels were less prominent compared with those in the adolescents, while the attenuation of vasoconstrictions to ACh, PGI2 or U46619 with age was to a lesser extent in SHRs. PGI2 production was decreased to a similar level in adult arteries. TP and EP3 expressions were downregulated in adult vessels, whereas the extent of TP downregulation was less in SHRs. L-798106 partially suppressed the vasoconstrictions to U46619 and attenuated EDCs to a greater extent than SQ29548, and administration of L-798106 blunted the blood pressure increase with age in prehypertensive SHRs. These results demonstrate the comparable EDCs in iliac arteries of the adolescents are decreased in the adults, but relatively larger EDCs in adult SHRs can be a reflection of differential downregulation of TP and EP3 receptors during the transition from adolescence to adulthood. Also, our data suggest that blockade of both TP and EP3 receptors starting from the prehypertensive stage suppresses EDCs and the development of hypertension in SHRs.
Collapse
MESH Headings
- Age Factors
- Animals
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Disease Models, Animal
- Down-Regulation
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Hypertension/prevention & control
- Iliac Artery/metabolism
- Iliac Artery/physiopathology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Rats, Inbred WKY
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP3 Subtype/antagonists & inhibitors
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Thromboxane/antagonists & inhibitors
- Receptors, Thromboxane/genetics
- Receptors, Thromboxane/metabolism
- Signal Transduction
- Vasoconstriction/drug effects
- Rats
Collapse
Affiliation(s)
- Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China
| | - Hui Li
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Hongjun Luo
- Bio-analytical Laboratory, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ruhui Zeng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yehu Yin
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
68
|
Ivanova IV, Melnyk MI, Dryn DO, Prokhorov VV, Zholos AV, Soloviev AI. Electrophysiological characterization of the activating action of a novel liposomal nitric oxide carrier on Maxi-K channels in pulmonary artery smooth muscle cells. J Liposome Res 2021; 31:399-408. [PMID: 33319630 DOI: 10.1080/08982104.2020.1863424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The aim of this study was to establish the mechanisms of action of a novel liposomal nitric oxide (NO) carrier on large-conductance Ca2+-activated channels (BKCa or Maxi-K) expressed in vascular smooth muscle cells (VSMCs) isolated from the rat main pulmonary artery (MPA). Experimental design comprised of both whole-cell and cell-attached single-channel recordings using the patch-clamp techniques. The liposomal form of NO, Lip(NO), increased whole-cell outward K+ currents in a dose dependent manner while shifting the activation curve negatively by about 50 mV with respect to unstimulated cells with the EC50 value of 0.55 ± 0.17 µM. At the single channel level, Lip(NO) increased the probability of the open state (Po) of Maxi-K channels from 0.0020 ± 0.0008 to 0.74 ± 0.02 with half-maximal activation occurring at 4.91 ± 0.01 μM, while sub-maximal activation was achieved at 10-5 M Lip(NO). Channel activation was mainly due to significant decrease in the mean closed dwell time (about 500-fold), rather than an increase in the mean open dwell time, which was comparatively modest (about twofold). There was also a slight decrease in the amplitude of the elementary Maxi-K currents (approximately 15%) accompanied by an increase in current noise, which might indicate some non-specific effects of Lip(NO) on the plasma membrane itself and/or on the phospholipids environment of the channels. In conclusion, the activating action of Lip(NO) on the Maxi-K channel is due to the destabilization of the closed conformation of the channel protein, which causes its more frequent openings and, accordingly, increases the probability of channel transition to its open state.
Collapse
Affiliation(s)
- Irina V Ivanova
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| | - Mariia I Melnyk
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine.,A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.,Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Dariia O Dryn
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine.,A.A. Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.,Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Alexander V Zholos
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anatoly I Soloviev
- Institute of Pharmacology and Toxicology, National Academy of Medical Sciences, Kyiv, Ukraine
| |
Collapse
|
69
|
Suzuki K, Washio T, Tsukamoto S, Kato K, Iwamoto E, Ogoh S. Habitual cigarette smoking attenuates shear-mediated dilation in the brachial artery but not in the carotid artery in young adults. Physiol Rep 2021; 8:e14369. [PMID: 32061192 PMCID: PMC7023886 DOI: 10.14814/phy2.14369] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/22/2022] Open
Abstract
In the present study, we hypothesized that habitual cigarette smoking attenuates endothelial function in the cerebral circulation as well as that of the peripheral circulation in young adults. To test this hypothesis, we measured cerebrovascular and peripheral flow‐mediated dilation (FMD) in young smokers and nonsmokers in the present study. Ten healthy nonsmokers and 10 smokers participated in the study. We measured blood velocity and diameter in the brachial artery and internal carotid artery (ICA) using Doppler ultrasound. We identified shear‐mediated dilation in the brachial artery and ICA by the percentage change in peak diameter during hyperemia stimulation (reactive hyperemia and hypercapnia). We measured the baseline diameter and the shear rate area under the curve from the onset of hyperemia to peak dilation in the brachial artery and ICA, finding the measurements of the smokers and those of the nonsmokers did not differ (p > .05). In contrast to brachial FMD (5.07 ± 1.79% vs. 7.92 ± 3.01%; smokers vs. nonsmokers, p = .019), FMD in the ICA was not attenuated in the smokers compared with that of the nonsmokers (5.46 ± 2.32% vs. 4.57 ± 2.70%; p = .442). These findings indicate that in young healthy smokers, cerebral endothelial function was preserved, and the response of cerebral endothelial function to smoking was different from that of peripheral vasculature.
Collapse
Affiliation(s)
- Kazuya Suzuki
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Shingo Tsukamoto
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Kazunori Kato
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| |
Collapse
|
70
|
Mishra RC, Kyle BD, Kendrick DJ, Svystonyuk D, Kieser TM, Fedak PWM, Wulff H, Braun AP. KCa channel activation normalizes endothelial function in Type 2 Diabetic resistance arteries by improving intracellular Ca 2+ mobilization. Metabolism 2021; 114:154390. [PMID: 33039407 PMCID: PMC7736096 DOI: 10.1016/j.metabol.2020.154390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Endothelial dysfunction is an early pathogenic event in the progression of cardiovascular disease in patients with Type 2 Diabetes (T2D). Endothelial KCa2.3 and KCa3.1 K+ channels are important regulators of arterial diameter, and we thus hypothesized that SKA-31, a small molecule activator of KCa2.3 and KCa3.1, would positively influence agonist-evoked dilation in myogenically active resistance arteries in T2D. METHODOLOGY Arterial pressure myography was utilized to investigate endothelium-dependent vasodilation in isolated cremaster skeletal muscle resistance arteries from 22 to 24 week old T2D Goto-Kakizaki rats, age-matched Wistar controls, and small human intra-thoracic resistance arteries from T2D subjects. Agonist stimulated changes in cytosolic free Ca2+ in acutely isolated, single endothelial cells from Wistar and T2D Goto-Kakizaki cremaster and cerebral arteries were examined using Fura-2 fluorescence imaging. MAIN FINDINGS Endothelium-dependent vasodilation in response to acetylcholine (ACh) or bradykinin (BK) was significantly impaired in isolated cremaster arteries from T2D Goto-Kakizaki rats compared with Wistar controls, and similar results were observed in human intra-thoracic arteries. In contrast, inhibition of myogenic tone by sodium nitroprusside, a direct smooth muscle relaxant, was unaltered in both rat and human T2D arteries. Treatment with a threshold concentration of SKA-31 (0.3 μM) significantly enhanced vasodilatory responses to ACh and BK in arteries from T2D Goto-Kakizaki rats and human subjects, whereas only modest effects were observed in non-diabetic arteries of both species. Mechanistically, SKA-31 enhancement of evoked dilation was independent of vascular NO synthase and COX activities. Remarkably, SKA-31 treatment improved agonist-stimulated Ca2+ elevation in acutely isolated endothelial cells from T2D Goto-Kakizaki cremaster and cerebral arteries, but not from Wistar control vessels. In contrast, SKA-31 treatment did not affect intracellular Ca2+ release by the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor cyclopiazonic acid. CONCLUSIONS Collectively, our data demonstrate that KCa channel modulation can acutely restore endothelium-dependent vasodilatory responses in T2D resistance arteries from rats and humans, which appears to involve improved endothelial Ca2+ mobilization.
Collapse
Affiliation(s)
- Ramesh C Mishra
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Barry D Kyle
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Dylan J Kendrick
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Daniyil Svystonyuk
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Teresa M Kieser
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Paul W M Fedak
- Dept. of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Heike Wulff
- Dept of Pharmacology, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Andrew P Braun
- Dept. of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
71
|
Jhee JH, Nam BY, Lee CJ, Park JT, Han SH, Kang SW, Park S, Yoo TH. Soluble Urokinase-Type Plasminogen Activator Receptor, Changes of 24-Hour Blood Pressure, and Progression of Chronic Kidney Disease. J Am Heart Assoc 2020; 10:e017225. [PMID: 33325248 PMCID: PMC7955457 DOI: 10.1161/jaha.120.017225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Soluble urokinase‐type plasminogen activator receptor (suPAR) is associated with cardiovascular risks and poor renal outcomes. However, whether elevated suPAR levels are associated with 24‐hour blood pressure patterns or kidney disease progression in patients with chronic kidney disease (CKD) is unclear. Methods and Results A total of 751 patients with CKD stage 1 to 5 were recruited from CMERC‐HI (Cardiovascular and Metabolic Disease Etiology Research Center–High Risk) cohort study (2013–2018). The relationship of serum suPAR levels to 24‐hour blood pressure parameters and CKD progression was analyzed. The median serum suPAR level was 1439.0 (interquartile range, 1026.2–2150.1) pg/mL, and the mean estimated glomerular filtration rate was 52.8±28.5 mL/min per 1.73 m2 at baseline. Patients with higher suPAR levels had significantly higher levels of office, 24‐hour, daytime, and nighttime systolic blood pressure and nighttime diastolic blood pressure than those with lower suPAR levels. The highest suPAR tertile was associated with an increased risk of a reverse dipping pattern (odds ratio, 2.93; 95% CI, 1.27–6.76; P=0.01). During a follow‐up of 43.2 (interquartile range, 27.0–55.6) months, the CKD progression occurred in 271 (36.1%) patients. The highest suPAR tertile was significantly associated with higher risk of CKD progression than the lowest tertile (hazard ratio [HR], 2.09; 95% CI, 1.37–3.21; P=0.001). When the relationship was reevaluated with respect to each dipping pattern (dipper, extreme dipper, nondipper, and reverse dipper), this association was consistent only in reverse dippers in whom the risk of CKD progression increased (HR, 1.43; 95% CI, 1.02–2.01; P=0.03) with every 1‐unit increase in serum suPAR levels. Conclusions Elevated suPAR levels are independently associated with CKD progression, and this association is prominent in reverse dippers.
Collapse
Affiliation(s)
- Jong Hyun Jhee
- Division of Nephrology Department of Internal Medicine Gangnam Severance HospitalYonsei University College of Medicine Seoul Korea
| | - Bo Young Nam
- Department of Internal Medicine College of Medicine Severance Biomedical Science Institute Brain Korea 21 PLUS Yonsei University Seoul Korea
| | - Chan Joo Lee
- Division of Cardiology Severance Cardiovascular Hospital and Severance Cardiovascular Hospital and Integrated Research Center for Cerebrovascular and Cardiovascular Diseases Yonsei University College of Medicine Seoul Korea
| | - Jung Tak Park
- Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| | - Seung Hyeok Han
- Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| | - Shin-Wook Kang
- Department of Internal Medicine College of Medicine Severance Biomedical Science Institute Brain Korea 21 PLUS Yonsei University Seoul Korea.,Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| | - Sungha Park
- Division of Cardiology Severance Cardiovascular Hospital and Severance Cardiovascular Hospital and Integrated Research Center for Cerebrovascular and Cardiovascular Diseases Yonsei University College of Medicine Seoul Korea
| | - Tae-Hyun Yoo
- Department of Internal Medicine College of Medicine Institute of Kidney Disease Research Yonsei University Seoul Korea
| |
Collapse
|
72
|
Abstract
BACKGROUND Flow-mediated dilation (FMD) is a non-invasive imaging modality used to measure endothelial function but has significant intra- and inter-observer variability. The use of semi-automated FMD devices could overcome this limitation. We assessed the reproducibility of same-day semi-automated FMD measurements by investigators who received basic training on the correct use of the device. METHODS Forty-three healthy volunteers had two brachial artery FMD measurements performed 20 minutes apart using the UNEX EF 38G device, and automated outputs were produced. Images were also manually analysed using edge-detection software. The reproducibility of repeat FMD measurements within individuals was compared for automated and manual readings, and the correlation between analytical techniques was calculated. RESULTS Twenty-five percent of scans were of non-diagnostic quality (n = 32). Automated analyses demonstrated sub-optimal reproducibility and measurement variability [intraclass correlation coefficient (ICCC) = 0.334, coefficient of variation (CV) = 45.87%]. In contrast, manually analysed scans had excellent reproducibility and low measurement variance (ICCC = 0.815, CV = 11.40%). FMD values obtained from automated and manual analysis correlated poorly (r = 0.164), whereas resting (r = 0.955) and maximal brachial artery diameters demonstrated excellent correlation (r = 0.867). CONCLUSION Manually evaluated serial UNEX EF readings have good reproducibility and therefore, the optimal FMD workflow involves manual analyses prior to independent automated interrogation. The high non-diagnostic scan rate is most likely the result of insufficient training and indicates that semi-automatic devices such as UNEX EF should be used by experienced investigators to achieve optimal results.
Collapse
|
73
|
Lin T, Luo W, Li Z, Zhang L, Zheng X, Mai L, Yang W, Guan G, Su Z, Liu P, Li Z, Xie Y. Rhamnocitrin extracted from Nervilia fordii inhibited vascular endothelial activation via miR-185/STIM-1/SOCE/NFATc3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153350. [PMID: 33002827 DOI: 10.1016/j.phymed.2020.153350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/22/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Vascular endothelial activation is pivotal for the pathological development of various infectious and inflammatory diseases. Therapeutic interventions to prevent endothelial activation are of great clinical significance to achieve anti-inflammatory strategy. Previous studies indicate that the total flavonoids from the endemic herbal medicine Nervilia fordii (Hance) Schltr exerts potent anti-inflammatory effect and protective effect against endotoxin lipopolysaccharide (LPS)-induced acute lung injury, and shows clinical benefit in severe acute respiratory syndromes (SARS). However, the exact effective component of Nervilia fordii and its potential mechanism remain unknown. PURPOSE The aim of this study was to investigate the effect and mechanism of rhamnocitrin (RH), a flavonoid extracted from Nervilia fordii, on LPS-induced endothelial activation. METHODS The in vitro endothelial cell activation model was induced by LPS in human umbilical vein endothelial cells (HUVECs). Cell viability was measured to determine the cytotoxicity of RH. RT-PCR, Western blot, fluorescent probe and immunofluorescence were conducted to evaluate the effect and mechanism of RH against endothelial activation. RESULTS RH was extracted and isolated from Nervilia fordii. RH at the concentration from 10-7 M-10-5 M inhibited the expressions of interlukin-6 (IL-6) and -8 (IL-8), monocyte chemotactic protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1), vascular cell-adhesion molecule-1 (VCAM-1), and plasminogen activator inhibitor-1 (PAI-1) in response to LPS challenge. Mechanistically, RH repressed calcium store-operated Ca2+ entry (SOCE) induced by LPS, which is due to downregulation of stromal interaction molecule-1 (STIM-1) following upregulating microRNA-185 (miR-185). Ultimately, RH abrogated LPS-induced activation of SOCE-mediated calcineurin/NFATc3 (nuclear factor of activated T cells, cytoplasmic 3) signaling pathway. CONCLUSION The present study identifies RH as a potent inhibitor of endothelial activation. Since vascular endothelial activation is a pivotal cause of excessive cytokine production, leading to cytokine storm and severe pathology in infectious diseases such as SARS and the ongoing COVID-19 pneumonia disease, RH might suggest promising therapeutic potential in the management of cytokine storm in these diseases.
Collapse
Affiliation(s)
- Tong Lin
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wenwei Luo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Ziqing Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Lili Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xinghan Zheng
- Mathematical Engineering Academy of Chinese Medicine; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Liting Mai
- Mathematical Engineering Academy of Chinese Medicine; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Wanqi Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Guimei Guan
- Department of obstetrics and gynecology, the first affiliated hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Ziren Su
- Mathematical Engineering Academy of Chinese Medicine; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Engineering Laboratoty of Druggability and New Drug Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, P. R. China.
| | - Youliang Xie
- Mathematical Engineering Academy of Chinese Medicine; Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, P. R. China.
| |
Collapse
|
74
|
Ghantous CM, Kamareddine L, Farhat R, Zouein FA, Mondello S, Kobeissy F, Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines 2020; 8:biomedicines8120552. [PMID: 33265898 PMCID: PMC7759775 DOI: 10.3390/biomedicines8120552] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are the leading causes of mortality worldwide. Among them, hypertension and its pathological complications pose a major risk for the development of other cardiovascular diseases, including heart failure and stroke. Identifying novel and early stage biomarkers of hypertension and other cardiovascular diseases is of paramount importance in predicting and preventing the major morbidity and mortality associated with these diseases. Biomarkers of such diseases or predisposition to their development are identified by changes in a specific indicator’s expression between healthy individuals and patients. These include changes in protein and microRNA (miRNA) levels. Protein profiling using mass spectrometry and miRNA screening utilizing microarray and sequencing have facilitated the discovery of proteins and miRNA as biomarker candidates. In this review, we summarized some of the different, promising early stage protein and miRNA biomarker candidates as well as the currently used biomarkers for hypertension and other cardiovascular diseases. Although a number of promising markers have been identified, it is unlikely that a single biomarker will unambiguously aid in the classification of these diseases. A multi-marker panel-strategy appears useful and promising for classifying and refining risk stratification among patients with cardiovascular disease.
Collapse
Affiliation(s)
- Crystal M. Ghantous
- Department of Nursing and Health Sciences, Faculty of Nursing and Health Sciences, Notre Dame University-Louaize, Keserwan 72, Lebanon;
| | - Layla Kamareddine
- Biomedical Sciences Department, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Rima Farhat
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Stefania Mondello
- Oasi Research Institute-IRCCS, 94018 Troina, Italy;
- Department of Biomedical and Dental Sciences and Morpho-functional Imaging, University of Messina, 98125 Messina, Italy
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Asad Zeidan
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
- Department of Basic Medical Science, Faculty of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Correspondence: ; Tel.: +97-431-309-19
| |
Collapse
|
75
|
Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial Damage in Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21228793. [PMID: 33233715 PMCID: PMC7699909 DOI: 10.3390/ijms21228793] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
The pulmonary endothelium is a metabolically active continuous monolayer of squamous endothelial cells that internally lines blood vessels and mediates key processes involved in lung homoeostasis. Many of these processes are disrupted in acute respiratory distress syndrome (ARDS), which is marked among others by diffuse endothelial injury, intense activation of the coagulation system and increased capillary permeability. Most commonly occurring in the setting of sepsis, ARDS is a devastating illness, associated with increased morbidity and mortality and no effective pharmacological treatment. Endothelial cell damage has an important role in the pathogenesis of ARDS and several biomarkers of endothelial damage have been tested in determining prognosis. By further understanding the endothelial pathobiology, development of endothelial-specific therapeutics might arise. In this review, we will discuss the underlying pathology of endothelial dysfunction leading to ARDS and emerging therapies. Furthermore, we will present a brief overview demonstrating that endotheliopathy is an important feature of hospitalised patients with coronavirus disease-19 (COVID-19).
Collapse
Affiliation(s)
- Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 106 76 Athens, Greece; (A.G.V.); (A.K.); (I.D.)
- 2nd Department of Critical Care, School of Medicine, National and Kapodistrian University of Athens, Attikon Hospital, 124 62 Athens, Greece
- Correspondence: or ; Tel.: +30-2107-235-521
| |
Collapse
|
76
|
Li S, Xie Y, Yang B, Huang S, Zhang Y, Jia Z, Ding G, Zhang A. MicroRNA-214 targets COX-2 to antagonize indoxyl sulfate (IS)-induced endothelial cell apoptosis. Apoptosis 2020; 25:92-104. [PMID: 31820187 DOI: 10.1007/s10495-019-01582-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiovascular disease (CVD) serves as the major cause of mortality in chronic kidney disease (CKD) patients. The injury of endothelium associated with the long-term challenge of uremic toxins including the toxic indoxyl sulfate (IS) is one of key pathological factors leading to CVD. However, the mechanisms of uremic toxins, especially the IS, resulting in endothelial injury, remain unclear. miR-214 was reported to contribute to the pathogenesis of cardiovascular diseases, while its role in IS-induced endothelial cell apoptosis is unknown. In this study, we investigated the role of microRNA-214 (miR-214) in IS-induced endothelial cell apoptosis and the underlying mechanisms using mouse aortic endothelial cells (MAECs). Following IS treatment, miR-214 was significantly downregulated in MAECs in line with enhanced cell apoptosis. Meanwhile, COX-2 was upregulated at both mRNA and protein levels along with increased secretion of PGE2 in medium. To define the role of miR-214 in IS-induced endothelial cell apoptosis, we modulated miR-214 level in MAECs and found that overexpression of miR-214 markedly attenuated endothelial cell apoptosis, while antagonism of miR-214 deteriorated cell death after IS challenge. Further analyses confirmed that COX-2 is a target gene of miR-214, and the inhibition of COX-2 by a specific COX-2 inhibitor NS-398 strikingly attenuated IS-induced endothelial cell apoptosis along with a significant blockade of PGE2 secretion. In conclusion, this study demonstrated an important role of miR-214 in protecting against endothelial cell damage induced by IS possibly by direct downregulation of COX-2/PGE2 axis.
Collapse
Affiliation(s)
- Shuzhen Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Bingyu Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, People's Republic of China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
| |
Collapse
|
77
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
78
|
Chia PY, Teo A, Yeo TW. Overview of the Assessment of Endothelial Function in Humans. Front Med (Lausanne) 2020; 7:542567. [PMID: 33117828 PMCID: PMC7575777 DOI: 10.3389/fmed.2020.542567] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The endothelium is recognized to play an important role in various physiological functions including vascular tone, permeability, anticoagulation, and angiogenesis. Endothelial dysfunction is increasingly recognized to contribute to pathophysiology of many disease states, and depending on the disease stimuli, mechanisms underlying the endothelial dysfunction may be markedly different. As such, numerous techniques to measure different aspects of endothelial dysfunction have been developed and refined as available technology improves. Current available reviews on quantifying endothelial dysfunction generally concentrate on a single aspect of endothelial function, although diseases may affect more than one aspect of endothelial function. Here, we aim to provide an overview on the techniques available for the assessment of the different aspects of endothelial function in humans, human tissues or cells, namely vascular tone modulation, permeability, anticoagulation and fibrinolysis, and the use of endothelial biomarkers as predictors of outcomes.
Collapse
Affiliation(s)
- Po Ying Chia
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| | - Andrew Teo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Medicine and Radiology and Doherty Institute, University of Melbourne, Victoria, VIC, Australia
| | - Tsin Wen Yeo
- National Centre for Infectious Diseases, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Infectious Diseases, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
79
|
Li H, Pan K, Meng Y, Deng J, Zhang P, Song W, Li S. Mutual promotions between periodontitis and vascular calcification by rat animal model. J Periodontal Res 2020; 55:810-820. [PMID: 32996601 DOI: 10.1111/jre.12757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 03/09/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE AND BACKGROUND To study the relationship between periodontitis and vascular calcification by establishing rat model of chronic periodontitis and vascular calcification. METHODS Forty male Wistar rats were divided into four groups randomly: control group, periodontitis group, vascular calcification group, and compound periodontitis and calcification group. Each group rats accepted the corresponding manages to establish the animal model. Clinical examinations and hematoxylin and eosin staining of periodontal tissue were taken to test the periodontal model; calcium assay, alkaline phosphatase activity, expression of mineral-related factors including osteopontin, alkaline phosphatase, core-binding factor-α1 and bone sialoprotein, hematoxylin and eosin staining and von Kossa staining of vascular tissue were taken to test the vascular calcification model; inflammatory factors including C-reactive protein, interleukin-1β, tumor necrosis factor-α, interleukin-6, prostaglandin E2, and serum lipid in serum were also detected at the same time. RESULTS The rat model was established. Inflammation of periodontal tissue and alveolar bone resorption in compound group and periodontitis group were more obvious than those in control group and vascular calcification group (P < .05). However, the calcium assay, alkaline phosphatase activity, and mineralized deposition in vascular calcification group and compound group were higher than those in control group and periodontitis group (P < .05), and compound group were the highest (P < .05); as for serum lipid, the level of total cholesterol and low-density lipoprotein-cholesterol in compound group and vascular calcification group were higher than that in control group and periodontitis group (P < .05), and compound group was the highest (P <.05); but the level of high-density lipoprotein cholesterol was higher in control group and periodontitis group. Inflammatory factors expression in serum were higher in compound group and periodontitis group, while mineral-related factors expression were higher in compoundgroup and vascular calcification group. CONCLUSION There are some mutual promotions between periodontitis and vascular calcification, which might be related to the increasing inflammatory factors, lipids level, and mineral-related factors.
Collapse
Affiliation(s)
- Huixu Li
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Department of Endodontics, Tianjin Stomatological Hospital, Hospital of Stomatology, Nankai University, TianJin, China
| | - Keqing Pan
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Yun Meng
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Department of Stomatology, The Traditional Chinese Medicine Hospital of Tianjin Dongli District, Tianjin, China
| | - Jing Deng
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Pengmei Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China.,Department of Stomatology, The Huikang Hospital, Qingdao, China
| | - Wenbin Song
- The Affiliated Hospital of Qingdao University, Qingdao, China.,School of Stomatology of Qingdao University, Qingdao, China
| | - Shu Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
80
|
Topal G, Loesch A, Dashwood MR. COVID-19 - Endothelial Axis and Coronary Artery Bypass Graft Patency: a Target for Therapeutic Intervention? Braz J Cardiovasc Surg 2020; 35:757-763. [PMID: 33118741 PMCID: PMC7598985 DOI: 10.21470/1678-9741-2020-0303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
It has been reported that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces endothelial inflammation, therefore facilitating the progression of endothelial and vascular dysfunction in coronavirus disease 2019 (COVID-19) patients. Coronary artery bypass grafting (CABG) involves mainly the use of the saphenous vein (SV) and internal mammary artery as graft material in the stenosed coronary arteries. Unfortunately, graft patency of the SV is low due to endothelial dysfunction and inflammation. We propose that SARS-CoV-2 might cause vascular inflammation, endothelial dysfunction, and thrombosis in coronary artery bypass graft vessels by binding angiotensin-converting enzyme 2 receptor. Therefore, in this Special Article, we consider the potential influence of COVID-19 on the patency rates of coronary artery bypass graft vessels, mainly with reference to the SV. Moreover, we discuss the technique of SV graft harvesting and the therapeutic potential of focusing on endothelial dysfunction, vascular inflammation, and thrombosis for protecting coronary artery bypass grafts in COVID-19 infected CABG patients.
Collapse
Affiliation(s)
- Gokce Topal
- Istanbul University Faculty of Pharmacy Department of Pharmacology Istanbul Turkey Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
| | - Andrzej Loesch
- University College Medical School Royal Free Hospital Campus Centre for Rheumatology London United Kingdom Centre for Rheumatology, Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Michael R Dashwood
- University College Medical School Royal Free Hospital Campus Department of Surgical and Interventional Sciences London United Kingdom Department of Surgical and Interventional Sciences, Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| |
Collapse
|
81
|
Chronic Mercury Exposure in Prehypertensive SHRs Accelerates Hypertension Development and Activates Vasoprotective Mechanisms by Increasing NO and H 2O 2 Production. Cardiovasc Toxicol 2020; 20:197-210. [PMID: 31338744 DOI: 10.1007/s12012-019-09545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mercury is a heavy metal associated with cardiovascular diseases. Studies have reported increased vascular reactivity without changes in systolic blood pressure (SBP) after chronic mercury chloride (HgCl2) exposure, an inorganic form of the metal, in normotensive rats. However, we do not know whether individuals in the prehypertensive phase, such as young spontaneously hypertensive rats (SHRs), are susceptible to increased arterial blood pressure. We investigated whether chronic HgCl2 exposure in young SHRs accelerates hypertension development by studying the vascular function of mesenteric resistance arteries (MRAs) and SBP in young SHRs during the prehypertensive phase. Four-week-old male SHRs were divided into two groups: the SHR control group (vehicle) and the SHR HgCl2 group (4 weeks of exposure). The results showed that HgCl2 treatment accelerated the development of hypertension; reduced vascular reactivity to phenylephrine in MRAs; increased nitric oxide (NO) generation; promoted vascular dysfunction by increasing the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2); increased Gp91Phox protein levels and in situ levels of superoxide anion (O2·-); and reduced vasoconstrictor prostanoid production compared to vehicle treatment. Although HgCl2 accelerated the development of hypertension, the HgCl2-exposed animals also exhibited a vasoprotective mechanism to counterbalance the rapid increase in SBP by decreasing vascular reactivity through H2O2 and NO overproduction. Our results suggest that HgCl2 exposure potentiates this vasoprotective mechanism against the early establishment of hypertension. Therefore, we are concluding that chronic exposure to HgCl2 in prehypertensive animals could enhance the risk for cardiovascular diseases.
Collapse
|
82
|
Machado-Oliveira G, Ramos C, Marques ARA, Vieira OV. Cell Senescence, Multiple Organelle Dysfunction and Atherosclerosis. Cells 2020; 9:E2146. [PMID: 32977446 PMCID: PMC7598292 DOI: 10.3390/cells9102146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 01/10/2023] Open
Abstract
Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.
Collapse
Affiliation(s)
- Gisela Machado-Oliveira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| | | | | | - Otília V. Vieira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (C.R.); (A.R.A.M.)
| |
Collapse
|
83
|
Berenji Ardestani S, Eftedal I, Pedersen M, Jeppesen PB, Nørregaard R, Matchkov VV. Endothelial dysfunction in small arteries and early signs of atherosclerosis in ApoE knockout rats. Sci Rep 2020; 10:15296. [PMID: 32943715 PMCID: PMC7499202 DOI: 10.1038/s41598-020-72338-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022] Open
Abstract
Endothelial dysfunction is recognized as a major contributor to atherosclerosis and has been suggested to be evident far before plaque formation. Endothelial dysfunction in small resistance arteries has been suggested to initiate long before changes in conduit arteries. In this study, we address early changes in endothelial function of atherosclerosis prone rats. Male ApoE knockout (KO) rats (11- to 13-weeks-old) were subjected to either a Western or standard diet. The diet intervention continued for a period of 20–24 weeks. Endothelial function of pulmonary and mesenteric arteries was examined in vitro using an isometric myograph. We found that Western diet decreased the contribution of cyclooxygenase (COX) to control the vascular tone of both pulmonary and mesenteric arteries. These changes were associated with early stage atherosclerosis and elevated level of plasma total cholesterol, LDL and triglyceride in ApoE KO rats. Chondroid-transformed smooth muscle cells, calcifications, macrophages accumulation and foam cells were also observed in the aortic arch from ApoE KO rats fed Western diet. The ApoE KO rats are a new model to study endothelial dysfunction during the earlier stages of atherosclerosis and could help us improve preclinical drug development.
Collapse
Affiliation(s)
- Simin Berenji Ardestani
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark. .,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.
| | - Ingrid Eftedal
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU Norwegian University of Science and Technology, Trondheim, Norway.,Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Michael Pedersen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Per Bendix Jeppesen
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Vladimir V Matchkov
- Department of Biomedicine, MEMBRANES, Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
84
|
Muhammad RN, Sallam N, El-Abhar HS. Activated ROCK/Akt/eNOS and ET-1/ERK pathways in 5-fluorouracil-induced cardiotoxicity: modulation by simvastatin. Sci Rep 2020; 10:14693. [PMID: 32895407 PMCID: PMC7477553 DOI: 10.1038/s41598-020-71531-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
5-Fluorouracil (5-FU) is used in the treatment of different solid tumors; however, its use is associated with rare, but serious cardiotoxicity. Nevertheless, the involvement of ROCK/NF-κB, Akt/eNOS and ET-1/ERK1/2 trajectories in the cardiotoxic effect and in the potential cardioprotective upshot of simvastatin has been elusive. Male Wistar rats were allocated into 5-FU (50 mg/kg/week; i.p, 6 weeks), simvastatin (15 mg/kg/day; p.o, 8 weeks) treated groups and simvastatin + 5-FU, besides the normal control group. 5-FU-induced cardiotoxicity boosted the serum level of N-terminal pro-brain (B-type) natriuretic peptide (NT-proBNP), aortic contents of endothelin (ET)-1 and thromboxane (TX) A2, as well as cardiac contents of NADPH oxidases (Nox), cyclooxygenase (COX)-2, malondialdehyde (MDA), phosphorylated Akt (p-Akt), phosphorylated extracellular signal-regulated kinase (p-ERK)1/2 and the protein expressions of rho-kinase (ROCK) and caspase-3. On the other hand, it suppressed cardiac reduced glutathione (GSH) and phosphorylated endothelial nitric oxide synthase (p-eNOS). Contrariwise, co-administration with simvastatin overcame these disturbed events and modulated the ROCK/NF-κB, Akt/eNOS and ET-1/ERK1/2 signaling pathways. This study highlights other mechanisms than coronary artery spasm in the 5-FU cardiotoxicity and reveals that NT-proBNP is a potential early marker in this case. Moreover, the cross-talk between ROCK/ NF-κB, ROS/COX-2/TXA2, Akt/eNOS and ET-1/ERK1/2 pathways contributes via different means to upsetting the vasoconstriction/vasodilatation equilibrium as well as endothelial cell function and finally leads to cardiomyocyte stress and death-the modulation of these trajectories offers simvastatin its potential cardio-protection against 5-FU.
Collapse
Affiliation(s)
- Radwa Nasser Muhammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nada Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hanan Salah El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, 11835, Egypt
| |
Collapse
|
85
|
Sallam NA, Laher I. Redox Signaling and Regional Heterogeneity of Endothelial Dysfunction in db/db Mice. Int J Mol Sci 2020; 21:ijms21176147. [PMID: 32858910 PMCID: PMC7504187 DOI: 10.3390/ijms21176147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
The variable nature of vascular dysfunction in diabetes is not well understood. We explored the functional adaptation of different arteries in db/db mice in relation to increased severity and duration of diabetes. We compared endothelium-dependent and -independent vasodilation in the aortae, as well as the carotid and femoral arteries, of db/db mice at three ages in parallel with increased body weight, oxidative stress, and deterioration of glycemic control. Vascular responses to in vitro generation of reactive oxygen species (ROS) and expression of superoxide dismutase (SOD) isoforms were assessed. There was a progressive impairment of endothelium-dependent and -independent vasorelaxation in the aortae of db/db mice. The carotid artery was resistant to the effects of in vivo and in vitro induced oxidative stress, and it maintained unaltered vasodilatory responses, likely because the carotid artery relaxed in response to ROS. The femoral artery was more reliant on dilation mediated by endothelium-dependent hyperpolarizing factor(s), which was reduced in db/db mice at the earliest age examined and did not deteriorate with age. Substantial heterogeneity exists between the three arteries in signaling pathways and protein expression of SODs under physiological and diabetic conditions. A better understanding of vascular heterogeneity will help develop novel therapeutic approaches for targeted vascular treatments, including blood vessel replacement.
Collapse
Affiliation(s)
- Nada A. Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo 11562, Egypt;
| | - Ismail Laher
- Department of Anesthesiology, Faculty of Medicine, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
- Correspondence: ; Tel.: +1-604-822-5882
| |
Collapse
|
86
|
Schoina M, Loutradis C, Memmos E, Dimitroulas T, Pagkopoulou E, Doumas M, Karagiannis A, Garyfallos A, Papagianni A, Sarafidis P. Microcirculatory function deteriorates with advancing stages of chronic kidney disease independently of arterial stiffness and atherosclerosis. Hypertens Res 2020; 44:179-187. [DOI: 10.1038/s41440-020-0525-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/20/2022]
|
87
|
Malekmohammad K, Sewell RD, Rafieian-Kopaei M. Mechanisms of Medicinal Plant Activity on Nitric Oxide (NO) Bioavailability as Prospective Treatments for Atherosclerosis. Curr Pharm Des 2020; 26:2591-2601. [DOI: 10.2174/1381612826666200318152049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Background and objective:
Atherosclerosis is one of the leading causes of human morbidity globally
and reduced bioavailability of vascular nitric oxide (NO) has a critical role in the progression and development of
the atherosclerotic disease. Loss of NO bioavailability, for example via a deficiency of the substrate (L-arginine)
or cofactors for endothelial nitric oxide synthase (eNOS), invariably leads to detrimental vascular effects such as
impaired endothelial function and increased smooth muscle cell proliferation, deficiency of the substrate (Larginine)
or cofactors for eNOS. Various medicinal plants and their bioactive compounds or secondary metabolites
with fewer side effects are potentially implicated in preventing cardiovascular disease by increasing NO
bioavailability, thereby ameliorating endothelial dysfunction. In this review, we describe the most notable medicinal
plants and their bioactive compounds that may be appropriate for enhancing NO bioavailability, and
treatment of atherosclerosis.
Methods:
The material in this article was obtained from noteworthy scientific databases, including Web of Science,
PubMed, Science Direct, Scopus and Google Scholar.
Results:
Medicinal plants and their bioactive compounds influence NO production through diverse mechanisms
including the activation of the nuclear factor kappa B (NF-κB) signaling pathway, activating protein kinase C
(PKC)-α, stimulating protein tyrosine kinase (PTK), reducing the conversion of nitrite to NO via nitrate-nitrite
reduction pathways, induction of eNOS, activating the phosphatidylinositol 3-kinase (PI3K)/serine threonine
protein kinase B (AKT) (PI3K/AKT/eNOS/NO) pathway and decreasing oxidative stress.
Conclusion:
Medicinal plants and/or their constituent bioactive compounds may be considered as safe therapeutic
options for enhancing NO bioavailability and prospective preventative therapy for atherosclerosis.
Collapse
Affiliation(s)
| | - Robert D.E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, CF10 3NB. Wales, United Kingdom
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
88
|
Ferreira-Duarte M, Sousa JB, Diniz C, Sousa T, Duarte-Araújo M, Morato M. Experimental and Clinical Evidence of Endothelial Dysfunction in Inflammatory Bowel Disease. Curr Pharm Des 2020; 26:3733-3747. [PMID: 32611296 DOI: 10.2174/1381612826666200701212414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
The endothelium has a crucial role in proper hemodynamics. Inflammatory bowel disease (IBD) is mainly a chronic inflammatory condition of the gastrointestinal tract. However, considerable evidence points to high cardiovascular risk in patients with IBD. This review positions the basic mechanisms of endothelial dysfunction in the IBD setting (both clinical and experimental). Furthermore, we review the main effects of drugs used to treat IBD in endothelial (dys)function. Moreover, we leave challenging points for enlarging the therapeutic arsenal for IBD with new or repurposed drugs that target endothelial dysfunction besides inflammation.
Collapse
Affiliation(s)
| | | | - Carmen Diniz
- LAQV@REQUIMTE, University of Porto, Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | |
Collapse
|
89
|
Guan GY, Wei N, Song T, Zhao C, Sun Y, Pan RX, Zhang LL, Xu YY, Dai YM, Han H. miR-448-3p alleviates diabetic vascular dysfunction by inhibiting endothelial-mesenchymal transition through DPP-4 dysregulation. J Cell Physiol 2020; 235:10024-10036. [PMID: 32542696 DOI: 10.1002/jcp.29817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/17/2020] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) often causes vascular endothelial damage and alters vascular microRNA (miR) expression. miR-448-3p has been reported to be involved in the development of DM, but whether miR-448-3p regulates diabetic vascular endothelial dysfunction remains unclear. To investigate the molecular mechanism of diabetic vascular endothelial dysfunction and the role of miR-448-3p therein, Sprague-Dawley rats were injected with streptozotocin (STZ) to establish diabetic animal model and the rat aortic endothelial cells were treated with high glucose to establish diabetic cell model. For the treatment group, after the induction of diabetes, the miR-448-3p levels in vivo and in vitro were upregulated by adeno-associated virus serotype 2 (AAV2)-miR-448-3p injection and miR-448-3p mimic transfection, respectively. Our results showed that AAV2-miR-448-3p injection alleviated the body weight loss and blood glucose level elevation induced by STZ injection. The miR-448-3p level was significantly decreased and the dipeptidyl peptidase-4 (DPP-4) messenger RNA level was increased in diabetic animal and cell models, which was reversed by miR-448-3p treatment. Moreover, the diabetic rats exhibited endothelial damage and endothelial-mesenchymal transition (EndMT), while AAV2-miR-448-3p injection relieved those situations. In vitro experiments demonstrated that miR-448-3p overexpression in endothelial cells alleviated endothelial damage by inhibiting EndMT through blocking the transforming growth factor-β/Smad pathway. We further proved that miR-448-3p negatively regulated DPP-4 by binding to its 3'-untranslated region, and DPP-4 overexpression reversed the effect of miR-448-3p overexpression on EndMT. Overall, we conclude that miR-448-3p overexpression inhibits EndMT via targeting DPP-4 and further ameliorates diabetic vascular endothelial dysfunction, indicating that miR-448-3p may serve as a promising therapeutic target for diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Guo-Ying Guan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nan Wei
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Song
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chao Zhao
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Sun
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ru-Xin Pan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lu-Lu Zhang
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying-Ying Xu
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ya-Mei Dai
- Physical Examination Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Han
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
90
|
Sanches E, Topal B, Proczko M, Stepaniak PS, Severin R, Phillips SA, Sabbahi A, Pujol Rafols J, Pouwels S. Endothelial function in obesity and effects of bariatric and metabolic surgery. Expert Rev Cardiovasc Ther 2020; 18:343-353. [DOI: 10.1080/14779072.2020.1767594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Elijah Sanches
- Department of Surgery, Haaglanden Medical Center, The Hague, The Netherlands
| | - Besir Topal
- Department of Cardiothoracic Surgery, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Monika Proczko
- Department of General, Endocrine and Transplant Surgery, University Medical Center, Gdansk University, Gdansk, Poland
| | - Pieter S. Stepaniak
- Department of Operating Rooms, Catharina Hospital, Eindhoven, The Netherlands
| | - Rich Severin
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Doctor of Physical Therapy Program, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, USA
| | - Shane A. Phillips
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ahmad Sabbahi
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Physical Therapy, Integrative Physiologic Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Sjaak Pouwels
- Department of Intensive Care Medicine, Elisabeth-Tweesteden Hospital, Tilburg, The Netherlands
| |
Collapse
|
91
|
Yuan Y, Zhou X, Wang Y, Wang Y, Teng X, Wang S. Cardiovascular Modulating Effects of Magnolol and Honokiol, Two Polyphenolic Compounds from Traditional Chinese Medicine-Magnolia Officinalis. Curr Drug Targets 2020; 21:559-572. [PMID: 31749425 DOI: 10.2174/1389450120666191024175727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 01/09/2023]
Abstract
Honokiol and its isomer magnolol are poly-phenolic compounds isolated from the Magnolia officinalis that exert cardiovascular modulating effects via a variety of mechanisms. They are used as blood-quickening and stasis-dispelling agents in Traditional Chinese Medicine and confirmed to have therapeutic potential in atherosclerosis, thrombosis, hypertension, and cardiac hypertrophy. This comprehensive review summarizes the current data regarding the cardioprotective mechanisms of those compounds and identifies areas for further research.
Collapse
Affiliation(s)
- Yuan Yuan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaocui Zhou
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yuanyuan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Yan Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Xiangyan Teng
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Shuaiyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
92
|
Yamagata K. Polyphenols Regulate Endothelial Functions and Reduce the Risk of Cardiovascular Disease. Curr Pharm Des 2020; 25:2443-2458. [PMID: 31333108 DOI: 10.2174/1381612825666190722100504] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Previous studies have shown that intake of polyphenols through the consumption of vegetables and fruits reduces the risk of Cardiovascular Disease (CVD) by potentially influencing endothelial cell function. OBJECTIVE In this review, the effects and molecular mechanisms of plant polyphenols, particularly resveratrol, epigallocatechin gallate (EGCG), and quercetin, on endothelial functions, and their putative protective effects against CVD are described. METHODS Epidemiologic studies examined the effect of the CVD risk of vegetables and the fruit. Furthermore, studies within vitro models investigated the underlying molecular mechanisms of the action of the flavonoid class of polyphenols. These findings help elucidate the effect of polyphenols on endothelial function and CVD risk reduction. RESULTS Epidemiologic and in vitro studies have demonstrated that the consumption of vegetables and fruits decreases the incidence of CVDs. Furthermore, it has also been indicated that dietary polyphenols are inversely related to the risk of CVD. Resveratrol, EGCG, and quercetin prevent oxidative stress by regulating the expression of oxidase and the antioxidant enzyme genes, contributing to the prevention of stroke, hypertension, heart failure, and ischemic heart disease. CONCLUSION High intake of dietary polyphenols may help prevent CVD. Polyphenols inhibit endothelial dysfunction and induce vascular endothelium-dependent vascular relaxation viz. redox regulation and nitric oxide production. The polyphenol-induced healthy endothelial cell function may be related to CVD prevention.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health Science of Food, Department of Food Science & Technology, Nihon University (NUBS), 1866 Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| |
Collapse
|
93
|
Byon CH, Kim SW. Regulatory Effects of O-GlcNAcylation in Vascular Smooth Muscle Cells on Diabetic Vasculopathy. J Lipid Atheroscler 2020; 9:243-254. [PMID: 32821734 PMCID: PMC7379086 DOI: 10.12997/jla.2020.9.2.243] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022] Open
Abstract
Vascular complications from uncontrolled hyperglycemia are the leading cause of death in patients with diabetes mellitus. Previous reports have shown a strong correlation between hyperglycemia and vascular calcification, which increases mortality and morbidity in individuals with diabetes. However, the precise underlying molecular mechanisms of hyperglycemia-induced vascular calcification remain largely unknown. Transdifferentiation of vascular smooth muscle cells (VSMC) into osteoblast-like cells is a known culprit underlying the development of vascular calcification in the diabetic vasculature. Pathological conditions such as high glucose levels and oxidative stress are linked to enhanced osteogenic differentiation of VSMC both in vivo and in vitro. It has been demonstrated that increased expression of runt-related transcription factor 2 (Runx2), a bone-related transcription factor, in VSMC is necessary and sufficient for the induction of VSMC calcification. Addition of a single O-linked β-N-acetylglucosamine (O-GlcNAc) moiety to the serine/threonine residues of target proteins (O-GlcNAcylation) has been observed in the arteries of diabetic patients, as well as in animal models in association with the enhanced expression of Runx2 and aggravated vascular calcification. O-GlcNAcylation is a dynamic and tightly regulated process, that is mediated by 2 enzymes, O-GlcNAc transferase and O-GlcNAcase. Glucose is metabolized into UDP-β-D-N-acetylglucosamine, an active sugar donor of O-GlcNAcylation via the hexosamine biosynthetic pathway. Overall increases in the O-GlcNAcylation of cellular proteins have been closely associated with cardiovascular complications of diabetes. In this review, the authors provide molecular insights into cardiovascular complications, including diabetic vasculopathy, that feature increased O-GlcNAcylation in people with diabetes.
Collapse
Affiliation(s)
- Chang Hyun Byon
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
94
|
Vandana UK, Barlaskar NH, Gulzar ABM, Laskar IH, Kumar D, Paul P, Pandey P, Mazumder PB. Linking gut microbiota with the human diseases. Bioinformation 2020; 16:196-208. [PMID: 32405173 PMCID: PMC7196170 DOI: 10.6026/97320630016196] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
The human gut is rich in microbes. Therefore, it is of interest to document data to link known human diseases with the gut microbiota. Various factors like hormones, metabolites and dietary habitats are responsible for shaping the microbiota of the gut. Imbalance in the gut microbiota is responsible for the pathogenesis of various disease types including rheumatoid arthritis, different types of cancer, diabetes mellitus, obesity, and cardiovascular disease. We report a review of known data for the correction of dysbiosis (imbalance in microbe population) towards improved human health.
Collapse
Affiliation(s)
| | | | | | | | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Prosenjit Paul
- Department of Biotechnology, Assam University, Silchar, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, Assam, India
| | | |
Collapse
|
95
|
Li YP, Fan ZX, Gao J, Sun XP, Zhu GH, Zhang YH, Si J, Zuo XB, Liu Z, Hua Q, Li J. Influencing factors of vascular endothelial function in patients with non-obstructive coronary atherosclerosis: a 1-year observational study. BMC Cardiovasc Disord 2020; 20:40. [PMID: 32000667 PMCID: PMC6993456 DOI: 10.1186/s12872-020-01326-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/03/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelial dysfunction may play a key role in non-obstructive coronary artery atherosclerosis. Our study aimed to evaluate the vascular endothelial function and its influencing factors in patients with non-obstructive coronary artery atherosclerosis. METHODS A total of 131 consecutive patients with non-obstructive coronary artery atherosclerosis were enrolled. Flow-mediated dilatation (FMD) was measured at baseline and 1-year follow-up. Endothelial progenitor cells (EPCs) were counted by staining the fasting venous blood with antibodies against CD34 and vascular endothelial growth factor receptor 2. RESULTS Systolic blood pressure, pulse pressure and the levels of HbA1c in participants with baseline FMD < 6% (n = 65) were significantly higher than those with baseline FMD ≥ 6% (n = 66). Baseline FMD was negatively associated with EPC counts (r = - 0.199, P < 0.05) and systolic blood pressure (r = - 0.315, P < 0.01). The 1-year FMD was significantly increased compared to the baseline FMD [(9.31 ± 5.62) % vs (7.31 ± 5.26) %, P < 0.001]. Independent predictors of FMD improvement included elevated EPC counts (OR = 1.104, 95% CI: 1.047-1.165, P < 0.001) and decreased levels of serum creatinine (OR = 0.915, 95% CI: 0.843-0.993, P = 0.034). CONCLUSIONS Family history of premature cardiovascular diseases, hypertension, elevated systolic pressure, and HbA1c > 6.5% are independent risk factors for endothelial dysfunction in non-obstructive atherosclerotic patients. Elevated peripheral blood EPC counts and decreased levels of serum creatinine are independent predictors of endothelial function improvement.
Collapse
Affiliation(s)
- Yin-Ping Li
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhen-Xing Fan
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jing Gao
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xi-Peng Sun
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Guo-Hua Zhu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Ying-Hua Zhang
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jin Si
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xue-Bing Zuo
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhi Liu
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Qi Hua
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| | - Jing Li
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
| |
Collapse
|
96
|
Zakaria ER, Joseph B, Hamidi M, Zeeshan M, Algamal A, Sartaj F, Althani M, Fadl T, Madan D. Glycine improves peritoneal vasoreactivity to dialysis solutions in the elderly. Qatar Med J 2019; 2019:19. [PMID: 31903325 PMCID: PMC6929513 DOI: 10.5339/qmj.2019.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 11/23/2022] Open
Abstract
Background: Peritoneal dialysis solution (PDS) dilates peritoneal microvessels predominantly by the activation of the endothelial nitric oxide (NO) pathway. We made an incidental observation of decreased PDS-induced, NO-dependent peritoneal microvascular vasoreactivity in elderly rats naïve to PDS exposure. We hypothesized that this subordinate NO-mediated peritoneal microvascular vasoreactivity is caused by increased oxidative stress in the aged endothelium, which compromises NO bioavailability in the elderly, and that peritoneal microvascular vasoreactivity can be improved by the supplementation of antioxidant glycine to PDS. Methods: We studied PDS-mediated vasoreactivity of four intestinal visceral arterioles of different orders by in vivo intravital microscopy in weaned, adult, and elderly rats to (i) confirm subordinate vasoreactivity to PDS in elderly rats; (ii) restore vasoreactivity by glycine supplementation; and (iii) establish age as an independent risk factor for endothelial cell dysfunction. Results: In a crossover series, peritoneal microvascular vasoreactivity to PDS exposure was remarkably decreased in elderly rats. This subordinate vasoreactivity was completely restored by the supplementation of glycine to PDS. In a separate series, we assessed in situ endothelial cell function in weaned and adult rats using the cumulative acetylcholine concentration–response curves. Unlike the adults, the weaned rats demonstrated remarkable sensitivity and reactivity to cumulative acetylcholine concentrations, suggesting the dependency of endothelial cell function on age. Conclusion: Aging is an independent risk factor for peritoneal microvascular endothelial cell dysfunction. Endothelial function in the elderly can be recovered by reinforcing the bioavailability of endothelial-derived NO through glycine. Dietary glycine supplementation is a potential therapeutic strategy to decrease the burden of oxidative stress on the aged endothelium.
Collapse
Affiliation(s)
- El Rasheid Zakaria
- The University of Arizona, Division of Trauma, Critical Care, Burns & Emergency Surgery, Tucson, AZ 85721, USA
| | - Bellal Joseph
- The University of Arizona, Division of Trauma, Critical Care, Burns & Emergency Surgery, Tucson, AZ 85721, USA
| | - Mohammad Hamidi
- The University of Arizona, Division of Trauma, Critical Care, Burns & Emergency Surgery, Tucson, AZ 85721, USA
| | - Muhammad Zeeshan
- The University of Arizona, Division of Trauma, Critical Care, Burns & Emergency Surgery, Tucson, AZ 85721, USA
| | - Abdelrahman Algamal
- Qatar University, Biomedical Research Center & College of Arts and Health Sciences, P.O. Box 2713, Doha, Qatar
| | - Faheem Sartaj
- Qatar University, Biomedical Research Center & College of Arts and Health Sciences, P.O. Box 2713, Doha, Qatar
| | - Maha Althani
- Qatar University, Biomedical Research Center & College of Arts and Health Sciences, P.O. Box 2713, Doha, Qatar
| | - Tassnim Fadl
- Qatar University, Biomedical Research Center & College of Arts and Health Sciences, P.O. Box 2713, Doha, Qatar
| | - Dana Madan
- Qatar University, Biomedical Research Center & College of Arts and Health Sciences, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
97
|
Konovalova EA, Chernomortseva ES. The study of the endothelial protective properties of the L-norvaline combination with mexidol in the simulation of L-NAME-induced NO deficiency. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.38405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: The endothelium is considered as a target for the prevention and treatment of pathological processes leading to cardiovascular diseases.
Materials and methods: Endothelial dysfunction was simulated in male rats using an e-NOS inhibitor L-NAME (25 mg/kg/day intraperitoneally, 7 days). This pathology was then corrected by administering mexidol at a dose of 60 mg/kg and L-norvaline at a dose of 10 mg/kg, as well as the combination of both at the same doses, intragastrically, through an atraumatic probe, once a day.
Results and discussion: A combination of L-norvaline at a dose of 10 mg/kg and mexidol at a dose of 60 mg/kg against the background of L-NAME-induced endothelial dysfunction has a pronounced endothelial protective effect. This is reflected in the prevalence of endothelial-dependent vascular relaxation, a significant decrease in the coefficient of endothelial dysfunction, as well as the prevention of a decline in the concentrations of stable nitric oxide metabolites and of a decrease in the level of the inflammatory changes marker in the vascular wall. The combination of L-norvaline and mexidol, with different pathogenetic action mechanisms, has a pronounced endothelial protective effect because of their antioxidant properties (mexidol) and donation of nitric oxide (L-arginine).
Conclusion: The investigated drugs showed pronounced endothelial protective activity and can be recommended for further pre-clinical studies.
Collapse
|
98
|
Leal MAS, Aires R, Pandolfi T, Marques VB, Campagnaro BP, Pereira TMC, Meyrelles SS, Campos-Toimil M, Vasquez EC. Sildenafil reduces aortic endothelial dysfunction and structural damage in spontaneously hypertensive rats: Role of NO, NADPH and COX-1 pathways. Vascul Pharmacol 2019; 124:106601. [PMID: 31689530 DOI: 10.1016/j.vph.2019.106601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/07/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
Arterial hypertension is a condition associated with endothelial dysfunction, accompanied by an imbalance in the production of reactive oxygen species (ROS) and NO. The aim of this study was to investigate and elucidate the possible mechanisms of sildenafil, a selective phosphodiesterase-5 inhibitor, actions on endothelial function in aortas from spontaneously hypertensive rats (SHR). SHR treated with sildenafil (40 mg/kg/day, p.o., 3 weeks) were compared to untreated SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography and vascular reactivity was determined in isolated rat aortic rings. Circulating endothelial progenitor cells and systemic ROS were measured by flow cytometry. Plasmatic total antioxidant capacity, NO production and aorta lipid peroxidation were determined by spectrophotometry. Scanning electron microscopy was used for structural analysis of the endothelial surface. Sildenafil reduced high SBP and partially restored the vasodilator response to acetylcholine and sodium nitroprusside in SHR aortic rings. Using selective inhibitors, our experiments revealed an augmented participation of NO, with a simultaneous decrease of oxidative stress and of cyclooxygenase-1 (COX-1)-derived prostanoids contribution in the endothelium-dependent vasodilation in sildenafil-treated SHR compared to non-treated SHR. Also, the relaxant responses to sildenafil and 8-Br-cGMP were normalized in sildenafil-treated SHR and sildenafil restored the pro-oxidant/antioxidant balance and the endothelial architecture. In conclusion, sildenafil reverses endothelial dysfunction in SHR by improving vascular relaxation to acetylcholine with increased NO bioavailability, reducing the oxidative stress and COX-1 prostanoids, and improving cGMP/PKG signaling. Also, sildenafil reduces structural endothelial damage. Thus, sildenafil is a promising novel pharmacologic strategy to treat endothelial dysfunction in hypertensive states reinforcing its potential role as adjuvant in the pharmacotherapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Marcos A S Leal
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Thamirys Pandolfi
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Vinicius Bermond Marques
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Thiago M C Pereira
- Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, ES, Brazil; Federal Institute of Education, Science and Technology (IFES), Vila Velha, ES, Brazil
| | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Manuel Campos-Toimil
- Pharmacology of Chronic Diseases (CD PHARMA), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology, Federal University of Espirito Santo, Vitoria, ES, Brazil; Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| |
Collapse
|
99
|
Luo W, Wang Y, Yang H, Dai C, Hong H, Li J, Liu Z, Guo Z, Chen X, He P, Li Z, Li F, Jiang J, Liu P, Li Z. Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging (Albany NY) 2019; 10:1722-1744. [PMID: 30048241 PMCID: PMC6075439 DOI: 10.18632/aging.101506] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/20/2018] [Indexed: 12/20/2022]
Abstract
AIM Premature senescence of vascular endothelial cells is a leading cause of various cardiovascular diseases. Therapies targeting endothelial senescence would have important clinical implications. The present study was aimed to evaluate the potential of heme oxygenase-1 (HO-1) as a therapeutic target for endothelial senescence. METHODS AND RESULTS Upregulation of HO-1 by Hemin or adenovirus infection reversed H2O2-induced senescence in human umbilical vein endothelial cells (HUVECs); whereas depletion of HO-1 by siRNA or HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) triggered HUVEC senescence. Mechanistically, overexpression of HO-1 enhanced the interaction between HO-1 and endothelial nitric oxide synthase (eNOS), and promoted the interaction between eNOS and its upstream kinase Akt, thus resulting in an enhancement of eNOS phosphorylation at Ser1177 and a subsequent increase of nitric oxide (NO) production. Moreover, HO-1 induction prevented the decrease of eNOS dimer/monomer ratio stimulated by H2O2 via its antioxidant properties. Contrarily, HO-1 silencing impaired eNOS phosphorylation and accelerated eNOS uncoupling. In vivo, Hemin treatment alleviated senescence of endothelial cells of the aorta from spontaneously hypertensive rats, through upregulating eNOS phosphorylation at Ser1177. CONCLUSIONS HO-1 ameliorated endothelial senescence through enhancing eNOS activation and defending eNOS uncoupling, suggesting that HO-1 is a potential target for treating endothelial senescence.
Collapse
Affiliation(s)
- Wenwei Luo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Wang
- Infinitus (China) Co. Ltd, Guangzhou 510663, China
| | - Hanwei Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunmei Dai
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Huiling Hong
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingyan Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhiping Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhen Guo
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xinyi Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ping He
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ziqing Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fang Li
- College of Life Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianmin Jiang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuoming Li
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Sciences; National and Local United Engineering Lab of Druggability and New Drugs Evaluation; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
100
|
Mechanical pressure unloading therapy reverses thoracic aortic structural and functional changes in a hypertensive rat model. J Hypertens 2019; 36:2350-2361. [PMID: 30045361 DOI: 10.1097/hjh.0000000000001853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Hypertension can impair structure and function of blood vessels. Experimental data describing the reverse remodeling process after a mechanical pressure unloading therapy in the vasculature is limited. We studied the influence of pressure unloading on both the structural and functional alterations of the aorta in a hypertensive rat model. METHODS Using isolated thoracic aortic rings in an in-vitro organ bath system, endothelium-dependent and endothelium-independent vasorelaxation were studied 6-weeks or 12-weeks after abdominal aortic banding (aortic banding-6-week or aortic banding-12-week), and 6-weeks after an aortic debanding procedure performed after the sixth experimental week of aortic banding (aortic banding + debanding-12-week). Age-matched rats were sham-operated (sham-6-week or sham-12-week). The aortic morphometry and histological fibrosis were studied, and the mRNA-expression of metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-2, and soluble guanylate cyclase subunits GUCY1a3 and GUCY1b3 were determined. RESULTS Aortic banding significantly increased systolic, diastolic, and pulse pressures. Structural changes (increased intima-media thickness and area normalized to body weight, aortic collagen content, higher MMP-2 and TIMP-2, and lower GUCY1a3 and GUCY1b3 mRNA-levels) and functional alterations (impaired endothelium-dependent and endothelium-independent vasorelaxation) have already taken place after 6 weeks of aortic banding. Pressure unloading, after established vascular changes, improved vascular function, resulted in reduced collagen content, and decreased both MMP-2 and TIMP-2 mRNA-expression. CONCLUSION Pressure-overload-induced vascular changes regressed due to mechanical unloading. Furthermore, debanding leads to a reductive tendency in fibrosis-associated gene expression and collagen accumulation. Collectively, the addition of drugs that target fibrosis to existing hypertensive treatment may present an attractive therapy against vascular remodeling.
Collapse
|