51
|
Desale SE, Chinnathambi S. Role of dietary fatty acids in microglial polarization in Alzheimer's disease. J Neuroinflammation 2020; 17:93. [PMID: 32209097 PMCID: PMC7093977 DOI: 10.1186/s12974-020-01742-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Microglial polarization is an utmost important phenomenon in Alzheimer’s disease that influences the brain environment. Polarization depends upon the types of responses that cells undergo, and it is characterized by receptors present on the cell surface and the secreted cytokines to the most. The expression of receptors on the surface is majorly influenced by internal and external factors such as dietary lipids. Types of fatty acids consumed through diet influence the brain environment and glial cell phenotype and types of receptors on microglia. Reports suggest that dietary habits influence microglial polarization and the switching of microglial phenotype is very important in neurodegenerative diseases. Omega-3 fatty acids have more influence on the brain, and they are found to regulate the inflammatory stage of microglia by fine-tuning the number of receptors expressed on microglia cells. In Alzheimer’s disease, one of the pathological proteins involved is Tau protein, and microtubule-associated protein upon abnormal phosphorylation detaches from the microtubule and forms insoluble aggregates. Aggregated proteins have a tendency to propagate within the neurons and also become one of the causes of neuroinflammation. We hypothesize that tuning microglia towards anti-inflammatory phenotype would reduce the propagation of Tau in Alzheimer’s disease.
Collapse
Affiliation(s)
- Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Pune, 411008, India.
| |
Collapse
|
52
|
Neuroprotective Role of Dietary Supplementation with Omega-3 Fatty Acids in the Presence of Basal Forebrain Cholinergic Neurons Degeneration in Aged Mice. Int J Mol Sci 2020; 21:ijms21051741. [PMID: 32143275 PMCID: PMC7084583 DOI: 10.3390/ijms21051741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 01/05/2023] Open
Abstract
As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PUFA pre-treatment preserved explorative skills and associative retention memory, enhanced neurogenesis in the dentate gyrus, and reduced volume and VAChT levels loss as well as astrogliosis in hippocampus. The present findings demonstrating that n-3 PUFA supplementation before cholinergic depletion can counteract behavioral deficits and hippocampal neurodegeneration in aged mice advance a low-cost, non-invasive preventive tool to enhance life quality during aging.
Collapse
|
53
|
Bhatti GK, Reddy AP, Reddy PH, Bhatti JS. Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer's Disease. Front Aging Neurosci 2020; 11:369. [PMID: 31998117 PMCID: PMC6966236 DOI: 10.3389/fnagi.2019.00369] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a type of incurable neurodegenerative disease that is characterized by the accumulation of amyloid-β (Aβ; plaques) and tau hyperphosphorylation as neurofibrillary tangles (NFTs) in the brain followed by neuronal death, cognitive decline, and memory loss. The high prevalence of AD in the developed world has become a major public health challenge associated with social and economic burdens on individuals and society. Due to there being limited options for early diagnosis and determining the exact pathophysiology of AD, finding effective therapeutic strategies has become a great challenge. Several possible risk factors associated with AD pathology have been identified; however, their roles are still inconclusive. Recent clinical trials of the drugs targeting Aβ and tau have failed to find a cure for the AD pathology. Therefore, effective preventive strategies should be followed to reduce the exponential increase in the prevalence of cognitive decline and dementia, especially AD. Although the search for new therapeutic targets is a great challenge for the scientific community, the roles of lifestyle interventions and nutraceuticals in the prevention of many metabolic and neurodegenerative diseases are highly appreciated in the literature. In this article, we summarize the molecular mechanisms involved in AD pathology and the possible ameliorative action of lifestyle and nutritional interventions including diet, exercise, Calorie restriction (CR), and various bioactive compounds on cognitive decline and dementia. This article will provide insights into the role of non-pharmacologic interventions in the modulation of AD pathology, which may offer the benefit of improving quality of life by reducing cognitive decline and incident AD.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Arubala P. Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Speech, Language and Hearing Sciences Department, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jasvinder Singh Bhatti
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| |
Collapse
|
54
|
Malko R, Larraza I. Microwave-Assisted, Base-Catalyzed Synthesis of Fatty Acid Methyl Esters from Seeds and Fish Oil Supplements. Lipids 2019; 54:715-723. [PMID: 31658495 DOI: 10.1002/lipd.12199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/21/2019] [Accepted: 09/30/2019] [Indexed: 11/11/2022]
Abstract
Growing health awareness has resulted in the increased use of dietary supplements derived from plants and marine sources, leaving consumers unsure of their best options. There were three objectives of the present study. The first was to design and evaluate an efficient derivatization procedure. The second was to perform a comparative analysis of liquid oils and their corresponding capsules of hemp, chia, and flax seeds. The final objective was to determine the fatty acid (FA) composition of six fish oil products and compare it to the one provided on the label. For the FA profiling, we implemented two efficient, one-step, sustainable methods with high percentage recovery for the synthesis of FA methyl esters (FAME), which use base catalysis and microwave-assisted heating. Our results found no difference in nutritional value between liquid oils and capsules of the seed supplements, with flaxseed and chia offering a higher, beneficial n-3:n-6 ratio compared to hemp oil. Four of the fish oils analyzed contained significantly less eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) than their reported label, and the other two not only agreed with the manufacturers' declaration but were able to fulfill the daily adequate intake (AI) with fewer capsules.
Collapse
Affiliation(s)
- Rada Malko
- Chemistry and Biochemistry Department, North Park University, 3225 W Foster Avenue, Chicago, IL, 60625, USA
| | - Isabel Larraza
- Chemistry and Biochemistry Department, North Park University, 3225 W Foster Avenue, Chicago, IL, 60625, USA
| |
Collapse
|
55
|
Lu JH, Hsia K, Lin CH, Chen CC, Yang HY, Lin MH. Dietary Supplementation with Hazelnut Oil Reduces Serum Hyperlipidemia and Ameliorates the Progression of Nonalcoholic Fatty Liver Disease in Hamsters Fed a High-Cholesterol Diet. Nutrients 2019; 11:nu11092224. [PMID: 31540081 PMCID: PMC6770627 DOI: 10.3390/nu11092224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: Hazelnut oil (HO) is rich in monounsaturated fatty acids and polyunsaturated fatty acids. This study intended to analyze the effects of hazelnut oil supplementation on the serum lipid profile and nonalcoholic fatty liver disease in hamsters fed a high-cholesterol (HC) diet. Methods: Hamsters were fed a basic diet (control group) and an HC diet (HC group) for 16 weeks (n = 10 in each group). Hamsters were fed an HC diet for four weeks to induce hyperlipidemia and were then fed an HC diet enriched with 5% (low-dose HC + HO group; n = 10) and 10% HO (high-dose HC + HO group; n = 10) for 12 weeks. Serum lipid levels, hepatic changes (including steatosis, inflammation, and fibrosis), and hepatic prooxidant-antioxidant status (malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione S-transferase (GST)) were evaluated after the treatment period. Results: Hamsters in the control group showed normal serum lipid profiles, normal liver function, and moderate glycogen storage without hepatic steatosis. Hamsters in the HC group showed severe hyperlipidemia, severe hepatic steatosis, and moderate steatohepatitis (mononuclear cell and neutrophil infiltration, oval cell hyperplasia, and fibrosis). Compared to the HC group, both the low-dose and the high-dose HC + HO groups showed a significant reduction of hyperlipidemia (serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and very-low-density lipoprotein cholesterol (VLDL-C levels)) and improved liver function (serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT)). Additionally, compared to the HC group, intrahepatic triglyceride accumulation (IHTC) was significantly higher in the HC + HO group, while the incidence of steatohepatitis was significantly lower. The intake of the HC diet was associated with a higher level of lipid peroxidation (malondialdehyde, MDA) and a lower concentration of hepatic antioxidant enzymes (SOD, GPx, and GST), and all these factors were partially improved in the low-dose and high-dose HC + HO groups. Conclusions: Our findings indicate that the intake of HO reduced serum hyperlipidemia and oxidative stress and ameliorated the progression of nonalcoholic fatty liver disease in hamsters fed a high-cholesterol diet.
Collapse
Affiliation(s)
- Jen-Her Lu
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Pediatrics and Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Kai Hsia
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Pediatrics and Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Hsun Lin
- Department of Pediatrics and Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
- Division of Plastic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan.
- Department of Cosmetic Science, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Hsin-Yu Yang
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Pediatrics and Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Ming-Huei Lin
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan.
- Department of Pediatrics and Surgery, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
56
|
Kalampokini S, Becker A, Fassbender K, Lyros E, Unger MM. Nonpharmacological Modulation of Chronic Inflammation in Parkinson's Disease: Role of Diet Interventions. PARKINSON'S DISEASE 2019; 2019:7535472. [PMID: 31534664 PMCID: PMC6732577 DOI: 10.1155/2019/7535472] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Neuroinflammation is increasingly recognized as an important pathophysiological feature of neurodegenerative diseases such as Parkinson's disease (PD). Recent evidence suggests that neuroinflammation in PD might originate in the intestine and the bidirectional communication between the central and enteric nervous system, the so-called "gut-brain axis," has received growing attention due to its contribution to the pathogenesis of neurological disorders. Diet targets mediators of inflammation with various mechanisms and combined with dopaminergic treatment can exert various beneficial effects in PD. Food-based therapies may favorably modulate gut microbiota composition and enhance the intestinal epithelial integrity or decrease the proinflammatory response by direct effects on immune cells. Diets rich in pre- and probiotics, polyunsaturated fatty acids, phenols including flavonoids, and vitamins, such as the Mediterranean diet or a plant-based diet, may attenuate chronic inflammation and positively influence PD symptoms and even progression of the disease. Dietary strategies should be encouraged in the context of a healthy lifestyle with physical activity, which also has neuroimmune-modifying properties. Thus, diet adaptation appears to be an effective additive, nonpharmacological therapeutic strategy that can attenuate the chronic inflammation implicated in PD, potentially slow down degeneration, and thereby modify the course of the disease. PD patients should be highly encouraged to adopt corresponding lifestyle modifications, in order to improve not only PD symptoms, but also general quality of life. Future research should focus on planning larger clinical trials with dietary interventions in PD in order to obtain hard evidence for the hypothesized beneficial effects.
Collapse
Affiliation(s)
- Stefania Kalampokini
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Anouck Becker
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Epameinondas Lyros
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| | - Marcus M. Unger
- Department of Neurology, University Hospital of Saarland, Kirrberger Straße, 66421 Homburg, Germany
| |
Collapse
|
57
|
Leung KS, Leung HH, Wu CY, Galano JM, Durand T, Lee JCY. Limited Antioxidant Effect of Rosemary in Lipid Oxidation of Pan-Fried Salmon. Biomolecules 2019; 9:biom9080313. [PMID: 31357709 PMCID: PMC6723415 DOI: 10.3390/biom9080313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) rich fatty fish is known to provide an array of health benefits. However, high temperature in food preparation, such as pan-frying, potentially degrades eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) of the n-3 PUFAs by heat oxidation. The addition of antioxidant condiments, and herbs in particular, may retard PUFA peroxidation and preserve EPA and DHA during pan-frying. In this study, different types of antioxidant condiments (sage, rosemary, black peppercorn, thyme, basil, and garlic) were tested for antioxidant capacity, and the condiment with the highest capacity was selected for its effect on lipid oxidation of salmon. The changes in fatty acids and lipid peroxidation of salmon, during pan-frying with the selected condiment (olive oil infused with rosemary, RO(infused)), were compared with salmon prepared in extra virgin olive oil, olive oil, or without oil. The total saturated fatty acid was found to be less in pan fried salmon with RO(infused). None of the oil type conserved EPA- and DHA-content in salmon. However, RO(infused) lowered lipid peroxidation by lessening hydroperoxide and 4-HNE formation, but not the other related products (HDHA, HETE, isoprostanes). Our observation indicates that the antioxidant capacity of RO(infused), when it is incorporated with food, becomes limited.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ho Hang Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ching Yu Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM Faculté de Pharmacie, Université de Montpellier, 15 Av. Ch. Flahault, BP 14491, F-34093 Montpellier CEDEX 05, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, CNRS, ENSCM Faculté de Pharmacie, Université de Montpellier, 15 Av. Ch. Flahault, BP 14491, F-34093 Montpellier CEDEX 05, France
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
58
|
Efficacy of Polyunsaturated Fatty Acids on Inflammatory Markers in Patients Undergoing Dialysis: A Systematic Review with Network Meta-Analysis of Randomized Clinical Trials. Int J Mol Sci 2019; 20:ijms20153645. [PMID: 31349671 PMCID: PMC6695890 DOI: 10.3390/ijms20153645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/07/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
The effects of polyunsaturated fatty acids (PUFAs) on inflammatory markers among patients receiving dialysis have been discussed for a long time, but previous syntheses made controversial conclusion because of highly conceptual heterogeneity in their synthesis. Thus, to further understanding of this topic, we comprehensively gathered relevant randomized clinical trials (RCTs) before April 2019, and two authors independently extracted data of C-reactive protein (CRP), high-sensitivity C-reactive protein (hs-CRP), and interleukin-6 (IL-6) for conducting network meta-analysis. Eighteen eligible RCTs with 962 patients undergoing dialysis were included in our study. The result showed that with placebo as the reference, PUFAs was the only treatment showing significantly lower CRP (weighted mean difference (WMD): −0.37, 95% confidence interval (CI): −0.07 to −0.68), but the CRP in PUFAs group was not significantly lower than vitamin E, PUFAs plus vitamin E, or medium-chain triglyceride. Although no significant changes were noted for hs-CRP and IL-6 levels, PUFAs showed the best ranking among treatments according to surface under the cumulative ranking. Therefore, PUFAs could be a protective option for patients receiving dialysis in clinical practice.
Collapse
|
59
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|
60
|
Effect of Sowing Dates on Fatty Acids and Phytosterols Patterns of Carthamus tinctorius L. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9142839] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Field experiments were carried out at the Regional Centre of Experimentation in Organic agriculture at Auch (near Toulouse, South west of France). Due to the high potential applications for its oil components such as fatty acids and phytosterols, safflower (Carthamus tinctorius L.) is considered as an emerging crop. Safflower plants, as many other oil crops, are submitted to environmental stresses that modify seed composition. Nevertheless, few reports are available about the effects of environmental conditions on fatty acid and phytosterol compositions in safflower. Different rainfall supplies can be managed by delaying the sowing dates. In this study, fatty acid and phytosterol contents have been evaluated in safflower seeds cultivated at two sowing dates (conventional and late) that led to a differential of rainfall during seed development. At harvest, seeds were used for oil extraction. Fatty acid composition was performed by using GC-FID. A set of seeds was dehulled to separate the almond (embryo) and hull to release the extraction and measurement of sterol contents in the two compartments by GC-FID. A delay of sowing increased the content of all sterol categories but induced a significant decrease in fatty acids. The ratio of saturated to unsaturated fatty acids increased under a delaying sowing. The repartition of phytosterols was ¾ and ¼ of total sterols in the embryo and the hull, respectively. These results could make the use of hull (considered as waste) possible, help breeders to improve safflower oil composition and develop new industrial applications.
Collapse
|
61
|
Nolan JM, Mulcahy R, Power R, Moran R, Howard AN. Nutritional Intervention to Prevent Alzheimer's Disease: Potential Benefits of Xanthophyll Carotenoids and Omega-3 Fatty Acids Combined. J Alzheimers Dis 2019; 64:367-378. [PMID: 29945352 DOI: 10.3233/jad-180160] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND A growing body of scientific evidence suggests that enrichment of certain nutritional compounds in the brain may reduce the risk of Alzheimer's disease (AD). OBJECTIVE To investigate the impact of supplemental xanthophyll carotenoids plus omega-3 fatty acids on disease progression in patients with AD. METHODS Three trial experiments were performed. In Trials 1 and 2 (performed on patients with AD over an 18-month period), 12 patients (AD status at baseline: 4 mild and 8 moderate) were supplemented with a xanthophyll carotenoid only formulation (Formulation 1; lutein:meso-zeaxanthin:zeaxanthin 10:10:2 mg/day) and 13 patients (AD status at baseline: 2 mild, 10 moderate, and 1 severe) were supplemented with a xanthophyll carotenoid and fish oil combination (Formulation 2; lutein:meso-zeaxanthin:zeaxanthin 10:10:2 mg/day plus 1 g/day of fish oil containing 430 mg docohexaenoic acid [DHA] and 90 mg eicopentaenoic acid [EPA]), respectively. In Trial 3, 15 subjects free of AD (the control group) were supplemented for 6 months with Formulation 1. Blood xanthophyll carotenoid response was measured in all trials by HPLC. Omega-3 fatty acids were profiled by direct infusion mass spectrometry. RESULTS Xanthophyll carotenoid concentration increases were significantly greater for Formulation 2 compared to Formulation 1 (p < 0.05), and progression of AD was less for this group (p = 0.003), with carers reporting functional benefits in memory, sight, and mood. CONCLUSION This preliminary report suggests positive outcomes for patients with AD who consumed a combination of xanthophyll carotenoids plus fish oil, but further study is required to confirm this important observation.
Collapse
Affiliation(s)
- John M Nolan
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland
| | - Riona Mulcahy
- Age-related Care Unit, University Hospital Waterford, Waterford, Ireland
| | - Rebecca Power
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland
| | - Rachel Moran
- Nutrition Research Centre Ireland, School of Health Science, Carriganore House, Waterford Institute of Technology, West Campus, Waterford, Ireland
| | | |
Collapse
|
62
|
Laing BB, Lim AG, Ferguson LR. A Personalised Dietary Approach-A Way Forward to Manage Nutrient Deficiency, Effects of the Western Diet, and Food Intolerances in Inflammatory Bowel Disease. Nutrients 2019; 11:nu11071532. [PMID: 31284450 PMCID: PMC6683058 DOI: 10.3390/nu11071532] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the personalised dietary approach with respect to inflammatory bowel disease (IBD). It identifies gene–nutrient interactions associated with the nutritional deficiencies that people with IBD commonly experience, and the role of the Western diet in influencing these. It also discusses food intolerances and how particular genotypes can affect these. It is well established that with respect to food there is no “one size fits all” diet for those with IBD. Gene–nutrient interactions may help explain this variability in response to food that is associated with IBD. Nutrigenomic research, which examines the effects of food and its constituents on gene expression, shows that—like a number of pharmaceutical products—food can have beneficial effects or have adverse (side) effects depending on a person’s genotype. Pharmacogenetic research is identifying gene variants with adverse reactions to drugs, and this is modifying clinical practice and allowing individualised treatment. Nutrigenomic research could enable individualised treatment in persons with IBD and enable more accurate tailoring of food intake, to avoid exacerbating malnutrition and to counter some of the adverse effects of the Western diet. It may also help to establish the dietary pattern that is most protective against IBD.
Collapse
Affiliation(s)
- Bobbi B Laing
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Nutrition Society of New Zealand, Palmerston North 4444, New Zealand
| | - Anecita Gigi Lim
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lynnette R Ferguson
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| |
Collapse
|
63
|
Abstract
Pistacia atlantica, which belongs to the Anacardiaceae family, is an important species for rural people in arid and semi-arid areas. The fruit, rich in oil, is used in traditional medicine for the treatment of various diseases. The oil extracted from this species growing in a northern area of Algeria and its fatty acid composition were previously studied. However, the largest areas where this species is present (traditional cultivation) is located in southern Algeria. Moreover, studies on oil fatty acid composition and essential oil were always conducted separately. This study was performed in order to assess the fatty acid and volatile organic compound composition of P. atlantica vegetable oil. The seeds were collected randomly from Djelfa (300 km South of Algiers, Algeria). Oil content and fatty acid composition were determined by Soxhlet extraction. The seeds contained high concentrations of oil (32–67%). The major fatty acids were oleic (39–49%), linoleic (23.6–31%), and palmitic (21.3–26.6%) acids. The ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA) indicated that the content of unsaturated fatty acids was approximately three times higher than that of SFA. This ratio is widely used in epidemiological studies and research on cardiovascular diseases, diabetes, and metabolic syndrome. The ratios of -acids, i.e., -9/-6 and -6/-3, were 1.3–2 and 18.5–38.3, respectively. Crushed seeds were analyzed by headspace solid-phase microextraction (SPME) coupled with gas chromatography–mass spectrometry. More than 40 compounds were identified, mainly monoterpenes (C10H16), such as α-terpinene and terpinolene, but also sesquiterpenes (C15H24) at lower levels. The value of this species as a source of healthy oil rich in -3 acid and its effects on cardiovascular disease risk are discussed.
Collapse
|
64
|
Gómez-Gómez ME, Zapico SC. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int J Mol Sci 2019; 20:ijms20112842. [PMID: 31212645 PMCID: PMC6600148 DOI: 10.3390/ijms20112842] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Currently the human population is aging faster. This leads to higher dependency rates and the transformation of health and social care to adapt to this aged population. Among the changes developed by this population is frailty. It is defined as a clinically detectable syndrome, related to the aging of multiple physiological systems, which prompts a situation of vulnerability. The etiology of frailty seems to be multifactorial and its pathophysiology is influenced by the interaction of numerous factors. Morley et al. propose four main mechanisms triggering the frailty: atherosclerosis, sarcopenia, cognitive deterioration and malnutrition, with their respective metabolic alterations. Malnutrition is associated with cognitive impairment or functional loss, but it is also known that an inadequate nutritional status predisposes to cognitive frailty. Additionally, nutritional factors that may influence vascular risk factors will potentially have an effect on dementia decline among patients with cognitive frailty. This review aims to describe the nutritional factors that have been researched so far which may lead to the development of frailty, and especially cognitive decline.
Collapse
Affiliation(s)
| | - Sara C Zapico
- International Forensic Research Institute and Chemistry Department, Florida International University, 11200 SW 8 St., CP323, Miami, FL 33199, USA.
- Anthropology Department, Smithsonian Institution, NMNH, MRC 112, 10th and Constitution Ave, NW, PO Box 37012, Washington, DC 20560, USA.
| |
Collapse
|
65
|
Fairbairn P, Tsofliou F, Johnson A, Dyall SC. Combining a high DHA multi-nutrient supplement with aerobic exercise: Protocol for a randomised controlled study assessing mobility and cognitive function in older women. Prostaglandins Leukot Essent Fatty Acids 2019; 143:21-30. [PMID: 30975379 DOI: 10.1016/j.plefa.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 03/20/2019] [Accepted: 04/01/2019] [Indexed: 01/14/2023]
Abstract
There is a complex interplay between cognition and gait in older people, with declines in gait speed coexisting with, or preceding cognitive decline. Omega-3 fatty acids, B vitamins, vitamin E, phosphatidylserine, and Ginkgo Biloba show promise in preserving mobility and cognitive function in older adults. Exercise benefits mobility and there is evidence suggesting positive interactions between exercise and omega-3 fatty acids on physical and cognitive function in older adults. Non-frail or pre-frail females aged ≥60 years are included in a randomized placebo controlled study. Intervention groups are: high DHA multi-nutrient supplement and exercise, placebo supplement and exercise, high DHA multi-nutrient supplement, and placebo supplement. Dietary supplementation is 24 weeks. The exercise intervention, two cycle ergometer classes per week, is for the final 12 weeks. The primary outcome is habitual walking speed, secondary outcomes include gait variables under single and dual task, five times sit to stand, verbal and spatial memory, executive function, interference control and health related quality of life. Blood fatty acids, serum homocysteine, dietary intake, physical activity, and verbal intelligence are measured to assess compliance and control for confounding factors. The study is registered at www.clinicaltrials.gov (NCT03228550).
Collapse
Affiliation(s)
- Paul Fairbairn
- Faculty of Health and Social Sciences, Bournemouth University, Dorset, U.K
| | - Fotini Tsofliou
- Faculty of Health and Social Sciences, Bournemouth University, Dorset, U.K
| | - Andrew Johnson
- Department of Psychology, Faculty of Science and Technology, Cognition and Cognitive Neuroscience Research Centre, Bournemouth University, Dorset, U.K
| | - Simon C Dyall
- Department of Life Sciences, University of Roehampton, London, U.K.
| |
Collapse
|
66
|
Alsumari SR, AlNouri DM, El-Sayed MMA, El-Din MFS, Arzoo S. The sociodemographic characteristics and dietary and blood plasma fatty acid profiles of elderly Saudi women with Alzheimer disease. Lipids Health Dis 2019; 18:77. [PMID: 30927917 PMCID: PMC6441169 DOI: 10.1186/s12944-019-1029-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a progressive neurodegenerative disease, and due to various physiological and psychological factors the patients are at risk of nutritional insufficiencies. The purpose of this study was to assess the dietary fatty acid intake and its effect on plasma fatty acids in elderly Saudi women and to compare the differences in their food and plasma fatty acid profile on the basis of their residence. Methods A total of 76 elderly women (50–100 years) were recruited through a random sampling method. A structured proforma was designed to gather information related to their age, income, dietary habits, and presence of any disease and awareness of AD. A 24-h dietary recall method for 3 days and food frequency questionnaire, concentrating on fish consumption and consumption of foods rich in ω-3 fatty acids, which was planned by dietitians, was used for dietary assessment. The gathered data were then analyzed using food processor software. The blood samples were collected to determine plasma fatty acids. Results The mean age of women diagnosed with AD was more than 75 years, and the prevalence of illiteracy was higher among AD subjects. As compared to the AD group, the concentration of LA and total ω-6 was significantly (p ≤ 0.05) higher in the control group from both recruitment sites [National Guard Health Affairs, King Abdulaziz Medical City, Riyadh (NGH) and Social Welfare Homes for the Elderly (SWH)]. Similarly, the concentrations of EPA, DHA, and ω-3 were also slightly higher in the control group at both sites, but the difference between the control and AD subjects was only significant (p ≤ 0.05) in subjects from NGH. We found no significant difference in the ω-6/ ω-3 ratio between groups. Also, no significant difference was found in the mean level of the plasma fatty acid when comparing the control and AD groups. The concentration of DHA in controls only and AA, EPA and ω-6 in both control and AD were significant (although weakly) correlated with their respective dietary intakes. No correlations were found between the intake of 18 C precursors (LA and ALA) and plasma levels of their long chain derivatives (AA, EPA, and DHA). Education, income, overall health status and the concentration of various fatty acids from food was higher and better in subjects from SWH than NGH. The lower plasma level indicates lower impaired systemic availability of several nutrients. Conclusion We found that dietary intervention might play a role in the prevention of AD.
Collapse
Affiliation(s)
- Samar Rashed Alsumari
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh-11495, P.O. 11495, Riyadh, Saudi Arabia
| | - Doha Mustafa AlNouri
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh-11495, P.O. 11495, Riyadh, Saudi Arabia.
| | - Mervat Mohamed Ali El-Sayed
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh-11495, P.O. 11495, Riyadh, Saudi Arabia
| | - Mohamed Fekry Serag El-Din
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh-11495, P.O. 11495, Riyadh, Saudi Arabia.,Department of Nutrition and Food Science, Faculty of Home Economics, Menoufia University, Shebin El Kom, Egypt
| | - Shaista Arzoo
- Department of Food and Nutrition Sciences, College of Food and Agriculture Sciences, King Saud University, Riyadh-11495, P.O. 11495, Riyadh, Saudi Arabia
| |
Collapse
|
67
|
Lin CC, Chiang TH, Sun YY, Lin MS. Protective Effects of CISD2 and Influence of Curcumin on CISD2 Expression in Aged Animals and Inflammatory Cell Model. Nutrients 2019; 11:E700. [PMID: 30934593 PMCID: PMC6470567 DOI: 10.3390/nu11030700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Inflammation and mitochondrial dysfunction have been linked to trauma, neurodegeneration, and aging. Impairment of CISD2 expression may trigger the aforementioned pathological conditions in neural cells. We previously reported that curcumin attenuates the downregulation of CISD2 in animal models of spinal cord injury and lipopolysaccharide (LPS)-treated neuronal cells. In this study, we investigate (1) the role of CISD2 and (2) how curcumin regulates CISD2 in the aging process. MATERIALS AND METHODS The serial expression of CISD2 and the efficacy of curcumin treatment were evaluated in old (104 weeks) mice and long-term cultures of neural cells (35 days in vitro, DIV). LPS-challenged neural cells (with or without siCISD2 transfection) were used to verify the role of curcumin on CISD2 underlying mitochondrial dysfunction. RESULTS In the brain and spinal cord of mice aged P2, 8, 25, and 104 weeks, we observed a significant decrease in CISD2 expression with age. Curcumin treatment in vivo and in vitro was shown to upregulate CISD2 expression; attenuate inflammatory response in neural cells. Moreover, curcumin treatment elevated CISD2 expression levels and prevented mitochondrial dysfunction in LPS-challenged neural cells. The beneficial effects of curcumin in either non-stressed or LPS-challenged cells that underwent siCISD2 transfection were significantly lower than in respective groups of cells that underwent scrambled siRNA-transfection. CONCLUSIONS We hypothesize that the protective effects of curcumin treatment in reducing cellular inflammation associated trauma, degenerative, and aging processes can be partially attributed to elevated CISD2 expression. We observed a reduction in the protective effects of curcumin against injury-induced inflammation and mitochondrial dysfunction in cells where CISD2 expression was reduced by siCISD2.
Collapse
Affiliation(s)
- Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan.
| | - Tien-Huang Chiang
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan.
| | - Yu-Yo Sun
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Muh-Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan.
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan.
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan.
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan.
| |
Collapse
|
68
|
Fernández-Sanz P, Ruiz-Gabarre D, García-Escudero V. Modulating Effect of Diet on Alzheimer's Disease. Diseases 2019; 7:E12. [PMID: 30691140 PMCID: PMC6473547 DOI: 10.3390/diseases7010012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
As life expectancy is growing, neurodegenerative disorders, such as Alzheimer's disease, are increasing. This disease is characterised by the accumulation of intracellular neurofibrillary tangles formed by hyperphosphorylated tau protein, senile plaques composed of an extracellular deposit of β-amyloid peptide (Aβ), and neuronal loss. This is accompanied by deficient mitochondrial function, increased oxidative stress, altered inflammatory response, and autophagy process impairment. The present study gathers scientific evidence that demonstrates that specific nutrients exert a direct effect on both Aβ production and Tau processing and their elimination by autophagy activation. Likewise, certain nutrients can modulate the inflammatory response and the oxidative stress related to the disease. However, the extent to which these effects come with beneficial clinical outcomes remains unclear. Even so, several studies have shown the benefits of the Mediterranean diet on Alzheimer's disease, due to its richness in many of these compounds, to which can be attributed their neuroprotective properties due to the pleiotropic effect they show on the aforementioned processes. These indications highlight the potential role of adequate dietary recommendations for clinical management of both Alzheimer's diagnosed patients and those in risk of developing it, emphasising once again the importance of diet on health.
Collapse
Affiliation(s)
- Paloma Fernández-Sanz
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Daniel Ruiz-Gabarre
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| | - Vega García-Escudero
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| |
Collapse
|
69
|
Hussain G, Anwar H, Rasul A, Imran A, Qasim M, Zafar S, Imran M, Kamran SKS, Aziz N, Razzaq A, Ahmad W, Shabbir A, Iqbal J, Baig SM, Ali M, Gonzalez de Aguilar JL, Sun T, Muhammad A, Muhammad Umair A. Lipids as biomarkers of brain disorders. Crit Rev Food Sci Nutr 2019; 60:351-374. [DOI: 10.1080/10408398.2018.1529653] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ghulam Hussain
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Shamaila Zafar
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Syed Kashif Shahid Kamran
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Nimra Aziz
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Aroona Razzaq
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Waseem Ahmad
- Department of Physiology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Asghar Shabbir
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad, Pakistan
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), PIEAS, Faisalabad, Pakistan
| | - Muhammad Ali
- Department of Zoology Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Jose-Luis Gonzalez de Aguilar
- Université de Strasbourg, Strasbourg, France
- Mécanismes Centraux et Péripheriques de la Neurodégénérescence, INSERM, Strasbourg, France
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian Province, China
| | - Atif Muhammad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
70
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|
71
|
Abstract
The treatment of psychiatric disorders remains a significant challenge in part due to imprecise diagnostic criteria and incomplete understanding of the molecular pathology involved. Current diagnostic and pharmacological treatment guidelines use a uniform approach to address each disorder even though psychiatric clinical presentation and prognosis within a disorder are known to be heterogeneous. Limited therapeutic success highlights the need for a precision medicine approach in psychiatry, termed precision psychiatry. To practice precision psychiatry, it is essential to research and develop multiple omics-based biomarkers that consider environmental factors and careful phenotype determination. Metabolomics, which lies at the endpoint of the "omics cascade," allows for detection of alterations in systems-level metabolites within biological pathways, thereby providing insights into the mechanisms that underlie various physiological conditions and pathologies. The eicosanoids, a family of metabolites derived from oxygenated polyunsaturated fatty acids, play a key role in inflammatory mechanisms and have been implicated in psychiatric disorders such as anorexia nervosa and depression. This review (1) provides background on the current clinical challenges of psychiatric disorders, (2) gives an overview of metabolomics application as a tool to develop improved biomarkers for precision psychiatry, and (3) summarizes current knowledge on metabolomics and lipidomic findings in common psychiatric disorders, with a focus on eicosanoids. Metabolomics is a promising tool for precision psychiatry. This research has great potential for both discovering biomarkers and elucidating molecular mechanisms underlying psychiatric disorders.
Collapse
Affiliation(s)
- Pei-An Betty Shih
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
72
|
Panahi Y, Rajaee SM, Johnston TP, Sahebkar A. Neuroprotective effects of antioxidants in the management of neurodegenerative disorders: A literature review. J Cell Biochem 2018; 120:2742-2748. [PMID: 29219206 DOI: 10.1002/jcb.26536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022]
Abstract
It is proven that oxidative stress has a pivotal role in the process of neurodegeneration. The use of antioxidants is an attractive method to prevent the incidence of neurodegenerative diseases. We searched major databases (PubMed, Medline, and Google Scholar) using the keywords of neurodegeneration, oxidative stress, and antioxidant for both review and original studies, which have reported the various beneficial effects of antioxidants. About 70 studies were identified for this review. Among various antioxidants, nine antioxidants with the most applications in research investigations were selected and the major findings concerning their protective effects were reviewed. It is concluded that antioxidants can modify and readjust the oxidative stress in the biological milieu, elicit neuroprotective effects, and positively impact the management of neurodegenerative processes.
Collapse
Affiliation(s)
- Yunes Panahi
- Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyyed Mahdi Rajaee
- Gastrointestinal Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
73
|
Oyinbo C, Robert F, Avwioro O, Igbigbi P. Jobelyn suppresses hippocampal neuronal apoptosis and necrosis in experimental alcohol-induced brain stress. PATHOPHYSIOLOGY 2018; 25:317-325. [DOI: 10.1016/j.pathophys.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/16/2023] Open
|
74
|
Carnevale LN, Arango AS, Arnold WR, Tajkhorshid E, Das A. Endocannabinoid Virodhamine Is an Endogenous Inhibitor of Human Cardiovascular CYP2J2 Epoxygenase. Biochemistry 2018; 57:6489-6499. [PMID: 30285425 PMCID: PMC6262108 DOI: 10.1021/acs.biochem.8b00691] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human body contains endogenous cannabinoids (endocannabinoids) that elicit effects similar to those of Δ9-tetrahydrocanabinol, the principal bioactive component of cannabis. The endocannabinoid virodhamine (O-AEA) is the constitutional isomer of the well-characterized cardioprotective and anti-inflammatory endocannabinoid anandamide (AEA). The chemical structures of O-AEA and AEA contain arachidonic acid (AA) and ethanolamine; however, AA in O-AEA is connected to ethanolamine via an ester linkage, whereas AA in AEA is connected through an amide linkage. O-AEA is involved in regulating blood pressure and cardiovascular function. We show that O-AEA is found at levels 9.6-fold higher than that of AEA in porcine left ventricle. On a separate note, the cytochrome P450 (CYP) epoxygenase CYP2J2 is the most abundant CYP in the heart where it catalyzes the metabolism of AA and AA-derived eCBs to bioactive epoxides that are involved in diverse cardiovascular functions. Herein, using competitive binding studies, kinetic metabolism measurements, molecular dynamics, and wound healing assays, we have shown that O-AEA is an endogenous inhibitor of CYP2J2 epoxygenase. As a result, the role of O-AEA as an endogenous eCB inhibitor of CYP2J2 may provide a new mode of regulation to control the activity of cardiovascular CYP2J2 in vivo and suggests a potential cross-talk between the cardiovascular endocannabinoids and the cytochrome P450 system.
Collapse
Affiliation(s)
- Lauren N. Carnevale
- Department of Biochemistry, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Andres S. Arango
- Center for Biophysics and Computational Biology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Beckman Institute for Advanced Science and Technology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - William R. Arnold
- Department of Biochemistry, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Beckman Institute for Advanced Science and Technology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Department of Bioengineering, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Aditi Das
- Department of Comparative Biosciences, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Department of Biochemistry, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Center for Biophysics and Computational Biology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
- Beckman Institute for Advanced Science and Technology, Division of Nutritional Sciences, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| |
Collapse
|
75
|
Eggersdorfer M, Akobundu U, Bailey RL, Shlisky J, Beaudreault AR, Bergeron G, Blancato RB, Blumberg JB, Bourassa MW, Gomes F, Jensen G, Johnson MA, Mackay D, Marshall K, Meydani SN, Tucker KL. Hidden Hunger: Solutions for America's Aging Populations. Nutrients 2018; 10:E1210. [PMID: 30200492 PMCID: PMC6165209 DOI: 10.3390/nu10091210] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 02/07/2023] Open
Abstract
The global population, including the United States, is experiencing a demographic shift with the proportion of older adults (aged ≥ 65 years) growing faster than any other age group. This demographic group is at higher risk for developing nutrition-related chronic conditions such as heart disease and diabetes as well as infections such as influenza and pneumonia. As a result, an emphasis on nutrition is instrumental for disease risk reduction. Unfortunately, inadequate nutrient status or deficiency, often termed hidden hunger, disproportionately affects older adults because of systematic healthcare, environmental, and biological challenges. This report summarizes the unique nutrition challenges facing the aging population and identifies strategies, interventions, and policies to address hidden hunger among the older adults, discussed at the scientific symposium "Hidden Hunger: Solutions for America's Aging Population", on March 23, 2018.
Collapse
Affiliation(s)
- Manfred Eggersdorfer
- DSM Nutritional Products AG, Human Nutrition and Health, 4002 Basel, Switzerland.
- Department of Healthy Ageing, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands.
| | | | - Regan L Bailey
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Julie Shlisky
- The Sackler Institute for Nutrition Science, The New York Academy of Sciences, New York, NY 10007, USA.
| | | | - Gilles Bergeron
- The Sackler Institute for Nutrition Science, The New York Academy of Sciences, New York, NY 10007, USA.
| | - Robert B Blancato
- National Coordinator, Defeat Malnutrition Today, Washington, DC 20006, USA.
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA.
| | - Megan W Bourassa
- The Sackler Institute for Nutrition Science, The New York Academy of Sciences, New York, NY 10007, USA.
| | - Filomena Gomes
- The Sackler Institute for Nutrition Science, The New York Academy of Sciences, New York, NY 10007, USA.
| | - Gordon Jensen
- Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | - Mary Ann Johnson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Douglas Mackay
- Council for Responsible Nutrition, Washington, DC 20036, USA.
| | | | - Simin Nikbin Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA.
| | - Katherine L Tucker
- Biomedical & Nutritional Sciences Department, University of Massachusetts Lowell, Lowell, MA 01854, USA.
| |
Collapse
|
76
|
Dietary Patterns and Cognitive Function among Older Community-Dwelling Adults. Nutrients 2018; 10:nu10081088. [PMID: 30110945 PMCID: PMC6116163 DOI: 10.3390/nu10081088] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/04/2018] [Accepted: 08/10/2018] [Indexed: 12/24/2022] Open
Abstract
Diet may be an important modifiable risk factor for maintenance of cognitive health in later life. This study aimed at examining associations between common dietary indices and dietary patterns defined by factor analysis and cognitive function in older community-dwelling adults. Dietary information for 1499 participants from the Rancho Bernardo Study was collected in 1988–1992 and used to calculate the alternate Mediterranean diet score, Alternate Healthy Eating Index (AHEI)-2010 score and factor scores derived from factor analysis of nutrients. Global cognitive function, executive function, verbal fluency and episodic memory were assessed at approximate four-year intervals from 1988–2016. Linear mixed models were used to examine associations between dietary patterns and cognitive trajectories. Estimates for the highest vs. lowest tertile in models adjusting for age, sex, education, energy intake, lifestyle variables and retest effect showed greater adherence to the Mediterranean score was associated with better baseline global cognitive function (β (95% CI) = 0.33 (0.11, 0.55)). The AHEI-2010 score was not significantly associated with cognitive performance. Higher loading on a plant polyunsaturated fatty acid (PUFA)/vitamin E factor was associated with better baseline global cognitive function and executive function (β = 0.22 (0.02, 0.42) and β = −7.85 (−13.20, −2.47)). A sugar/low protein factor was associated with poorer baseline cognitive function across multiple domains. Dietary patterns were not associated with cognitive decline over time. Adherence to a healthy diet with foods high in PUFA and vitamin E and a low sugar to protein ratio, as typified by a Mediterranean diet, may be beneficial for cognitive health in late life.
Collapse
|
77
|
Joyce P, Gustafsson H, Prestidge CA. Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
78
|
Leung KS, Galano JM, Durand T, Lee JCY. Profiling of Omega-Polyunsaturated Fatty Acids and Their Oxidized Products in Salmon after Different Cooking Methods. Antioxidants (Basel) 2018; 7:antiox7080096. [PMID: 30042286 PMCID: PMC6116150 DOI: 10.3390/antiox7080096] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/15/2023] Open
Abstract
Consumption of food containing n-3 PUFAs, namely EPA and DHA, are known to benefit health and protect against chronic diseases. Both are richly found in marine-based food such as fatty fish and seafood that are commonly cooked prior to consumption. However, the elevated temperature during cooking potentially degrades the EPA and DHA through oxidation. To understand the changes during different cooking methods, lipid profiles of raw, boiled, pan-fried and baked salmon were determined by LC-MS/MS. Our results showed that pan-frying and baking elevated the concentration of peroxides in salmon, whereas only pan-frying increased the MDA concentration, indicating it to be the most severe procedure to cause oxidation among the cooking methods. Pan-frying augmented oxidized products of n-3 and n-6 PUFAs, while only those of n-3 PUFA were elevated in baked salmon. Notably, pan-frying and baking increased bioactive oxidized n-3 PUFA products, in particular F-4t-neuroprostanes derived from DHA. The results of this study provided a new insight into the application of heat and its effect on PUFAs and the release of its oxidized products in salmon.
Collapse
Affiliation(s)
- Kin Sum Leung
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS Université de Montpellier, ENSCM, F-34093 Montpellier, France.
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS Université de Montpellier, ENSCM, F-34093 Montpellier, France.
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
79
|
Alghamdi BS. The neuroprotective role of melatonin in neurological disorders. J Neurosci Res 2018; 96:1136-1149. [PMID: 29498103 PMCID: PMC6001545 DOI: 10.1002/jnr.24220] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/08/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Melatonin is a neurohormone secreted from the pineal gland and has a wide-ranging regulatory and neuroprotective role. It has been reported that melatonin level is disturbed in some neurological conditions such as stroke, Alzheimer's disease, and Parkinson's disease, which indicates its involvement in the pathophysiology of these diseases. Its properties qualify it to be a promising potential therapeutic neuroprotective agent, with no side effects, for some neurological disorders. This review discusses and localizes the effect of melatonin in the pathophysiology of some diseases.
Collapse
Affiliation(s)
- B. S. Alghamdi
- Department of Physiology, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
- Neuroscience Unit, Faculty of MedicineKing Abdulaziz UniversityJeddahKSA
| |
Collapse
|
80
|
Centofanti SF, Francisco RPV, Phillippi ST, Castro IA, Hoshida MS, Curi R, Brizot ML. Low serum fatty acid levels in pregnancies with fetal gastroschisis: A prospective study. Am J Med Genet A 2018; 176:915-924. [DOI: 10.1002/ajmg.a.38638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Sandra F. Centofanti
- Department of Obstetrics and Gynecology, Faculty of Medicine, FMUSP; University of São Paulo; Sao Paulo SP Brazil
| | - Rossana P. V. Francisco
- Department of Obstetrics and Gynecology, Faculty of Medicine, FMUSP; University of São Paulo; Sao Paulo SP Brazil
| | - Sonia T. Phillippi
- Department of Nutrition, Faculty of Public Health; University of São Paulo; Sao Paulo SP Brazil
| | - Inar A. Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences; University of São Paulo, São Paulo; Sao Paulo SP Brazil
| | - Mara S. Hoshida
- Department of Obstetrics and Gynecology, Faculty of Medicine, FMUSP; University of São Paulo; Sao Paulo SP Brazil
| | - Rui Curi
- Cruzeiro do Sul University; Sao Paulo SP Brazil
| | - Maria L. Brizot
- Department of Obstetrics and Gynecology, Faculty of Medicine, FMUSP; University of São Paulo; Sao Paulo SP Brazil
| |
Collapse
|
81
|
Pan Y, Choy KHC, Marriott PJ, Chai SY, Scanlon MJ, Porter CJH, Short JL, Nicolazzo JA. Reduced blood-brain barrier expression of fatty acid-binding protein 5 is associated with increased vulnerability of APP/PS1 mice to cognitive deficits from low omega-3 fatty acid diets. J Neurochem 2017; 144:81-92. [DOI: 10.1111/jnc.14249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/18/2017] [Accepted: 10/25/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Kwok H. C. Choy
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Philip J. Marriott
- Australian Centre for Research on Separation Science; School of Chemistry; Monash University; Vic. Australia
| | - Siew Y. Chai
- Department of Physiology; Biomedicine Discovery Institute; Monash University; Clayton Vic. Australia
| | - Martin J. Scanlon
- Medicinal Chemistry; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Christopher J. H. Porter
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Jennifer L. Short
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and Dynamics; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Vic. Australia
| |
Collapse
|
82
|
Choi JY, Jang JS, Son DJ, Im HS, Kim JY, Park JE, Choi WR, Han SB, Hong JT. Antarctic Krill Oil Diet Protects against Lipopolysaccharide-Induced Oxidative Stress, Neuroinflammation and Cognitive Impairment. Int J Mol Sci 2017; 18:ijms18122554. [PMID: 29182579 PMCID: PMC5751157 DOI: 10.3390/ijms18122554] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/19/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and neuroinflammation are implicated in the development and pathogenesis of Alzheimer’s disease (AD). Here, we investigated the anti-inflammatory and antioxidative effects of krill oil. Oil from Euphausia superba (Antarctic krill), an Antarctic marine species, is rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We examined whether krill oil diet (80 mg/kg/day for one month) prevents amyloidogenesis and cognitive impairment induced by intraperitoneal lipopolysaccharide (LPS) (250 µg/kg, seven times daily) injections in AD mice model and found that krill oil treatment inhibited the LPS-induced memory loss. We also found that krill oil treatment inhibited the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and decreased reactive oxygen species (ROS) and malondialdehyde levels. Krill oil also suppresses IκB degradation as well as p50 and p65 translocation into the nuclei of LPS-injected mice brain cells. In association with the inhibitory effect on neuroinflammation and oxidative stress, krill oil suppressed amyloid beta (1–42) peptide generation by the down-regulating APP and BACE1 expression in vivo. We found that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (50 and 100 µM) dose-dependently decreased LPS-induced nitric oxide and ROS generation, and COX-2 and iNOS expression as well as nuclear factor-κB activity in cultured microglial BV-2 cells. These results suggest that krill oil ameliorated impairment via anti-inflammatory, antioxidative, and anti-amyloidogenic mechanisms.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Jun Sung Jang
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Hyung-Sik Im
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Ji Yeong Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Joung Eun Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Won Rak Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31 Osongsaemgmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Chungbuk, Korea.
| |
Collapse
|
83
|
Turolo S, Edefonti A, Syren ML, Marangoni F, Morello W, Agostoni C, Montini G. Fatty Acids in Nephrotic Syndrome and Chronic Kidney Disease. J Ren Nutr 2017; 28:145-155. [PMID: 29153556 DOI: 10.1053/j.jrn.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/14/2022] Open
Abstract
The role of fatty acids (FAs) in inflammation and in the related chronic diseases has been demonstrated. However, there is a lack of consistent and agreed knowledge about the role of FA profile and renal physiology and pathology, most articles focusing on the effect of polyunsaturated FAs supplementation, without considering the impact of basal FA metabolism on the efficacy of the supplementation. Here, we have summarized the specific literature concerning the assessment of circulating FA in 2 renal diseases, namely nephrotic syndrome and chronic kidney disease, also under hemodialytic treatment, and have received the most significant contributions in the last years. The effects of changes of FA profile and metabolism and the possible involvement of polyunsaturated FA metabolites in raising and modulating inflammation are discussed.
Collapse
Affiliation(s)
- Stefano Turolo
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Alberto Edefonti
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marie Louise Syren
- Pediatric Clinic IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - William Morello
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carlo Agostoni
- Pediatric Clinic IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanni Montini
- Pediatric Department of Nephrology Dialysis and Transplantation, IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Pediatric Clinic IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
84
|
Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases. Pharmacol Ther 2017; 183:177-204. [PMID: 29080699 DOI: 10.1016/j.pharmthera.2017.10.016] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous benefits have been attributed to dietary long-chain omega-3 polyunsaturated fatty acids (n-3 LC-PUFAs), including protection against cardiac arrhythmia, triglyceride-lowering, amelioration of inflammatory, and neurodegenerative disorders. This review covers recent findings indicating that a variety of these beneficial effects are mediated by "omega-3 epoxyeicosanoids", a class of novel n-3 LC-PUFA-derived lipid mediators, which are generated via the cytochrome P450 (CYP) epoxygenase pathway. CYP enzymes, previously identified as arachidonic acid (20:4n-6; AA) epoxygenases, accept eicosapentaenoic acid (20:5n-3; EPA) and docosahexaenoic acid (22:6n-3; DHA), the major fish oil n-3 LC-PUFAs, as efficient alternative substrates. In humans and rodents, dietary EPA/DHA supplementation causes a profound shift of the endogenous CYP-eicosanoid profile from AA- to EPA- and DHA-derived metabolites, increasing, in particular, the plasma and tissue levels of 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP). Based on preclinical studies, these omega-3 epoxyeicosanoids display cardioprotective, vasodilatory, anti-inflammatory, and anti-allergic properties that contribute to the beneficial effects of n-3 LC-PUFAs in diverse disease conditions ranging from cardiac disease, bronchial disorders, and intraocular neovascularization, to allergic intestinal inflammation and inflammatory pain. Increasing evidence also suggests that background nutrition as well as genetic and disease state-related factors could limit the response to EPA/DHA-supplementation by reducing the formation and/or enhancing the degradation of omega-3 epoxyeicosanoids. Recently, metabolically robust synthetic analogs mimicking the biological activities of 17,18-EEQ have been developed. These drug candidates may overcome limitations of dietary EPA/DHA supplementation and provide novel options for the treatment of cardiovascular and inflammatory diseases.
Collapse
|
85
|
Shih PB, Morisseau C, Le T, Woodside B, German JB. Personalized polyunsaturated fatty acids as a potential adjunctive treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat 2017; 133:11-19. [PMID: 28873340 PMCID: PMC5792652 DOI: 10.1016/j.prostaglandins.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/16/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Anorexia nervosa (AN) is a complex psychiatric disorder with high morbidity and mortality rates. While many individuals make full recoveries, up to a third of patients develop a chronic, treatment-resistant form of the illness that leads to a premature death in 15-20% of those affected. There have been few advances in treatment, both in terms of psychological or pharmacologic treatment over the last 30 years. Food aversion is commonly cited by patients with AN as a barrier to normalizing eating and weight. Our group has a keen interest in examining factors that might allow this to be addressed, thus improving treatment outcomes through personalized dietary plans or nutritional supplementation related to underlying genetic status. We demonstrated that polyunsaturated fatty acids (PUFAs)-derived bioactive lipids (eicosanoids) are implicated in not only the risk of AN, but also with its comorbid psychopathology. Of interest, the differential postprandial omega 6-derived eicosanoid shift observed in AN highlights the possibility that the metabolism of PUFAs is an important mechanism underlying the profound food version, contributing to pathological food restriction in AN. A concise knowledge of the relationships among PUFAs, eicosanoids, and AN clinical course and psychopathology could be the key to developing personalized nutritional rehabilitative treatments for those suffering from AN. This paper provides a comprehensive overview of the literature on PUFAs in AN. We also selectively reviewed the clinical benefits PUFA treatments exert in other psychiatric diseases, on weight and appetite regulation, and for resolution of inflammation, all of which are relevant in the disease course and outcome of AN. We propose that personalized PUFA formulation be developed and tested as a novel adjunctive treatment for patients with AN. We hypothesize that with personalized PUFA formulation, food aversion and anxiety about eating will decrease while mood, dietary behavior, and weight restoration will improve in AN, leading to improvements in the overall treatment outcome.
Collapse
Affiliation(s)
| | | | - Thu Le
- University of California, San Diego, CA, USA
| | | | | |
Collapse
|
86
|
Cooper EL, Ma MJ. Alzheimer Disease: Clues from traditional and complementary medicine. J Tradit Complement Med 2017; 7:380-385. [PMID: 29034183 PMCID: PMC5634730 DOI: 10.1016/j.jtcme.2016.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Despite modern medicine's incredible innovation and resulting accumulation of valuable knowledge, many of the world's most problematic diseases such as Alzheimer Disease (AD) still lack effective cures and treatments. Western medicine has revealed many genetic, cellular, and molecular processes that characterize AD such as protein aggregation and inflammation. As the need for novel and effective treatments increases, researchers have turned towards traditional medicine as a resource. Modern, evidence based research examining traditional and complementary remedies for AD has generated promising results within the last decade. Animal based products inhibiting cellular toxicity, anti-inflammatory nutraceuticals such as omega-3 fatty acids, and plant based compounds derived from herbal medicine demonstrate viability as neuroprotective treatments and possible application in developing pharmaceuticals. Analysis of antioxidant, anti-inflammatory, and neuroprotective phytochemicals used in various traditional medicines around the world reveal potential to ameliorate and prevent the devastating neurodegeneration observed in AD.
Collapse
Affiliation(s)
- Edwin L. Cooper
- Laboratory of Comparative Immunology, Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1763, USA
| | | |
Collapse
|
87
|
Reduced basal forebrain atrophy progression in a randomized Donepezil trial in prodromal Alzheimer's disease. Sci Rep 2017; 7:11706. [PMID: 28916821 PMCID: PMC5601919 DOI: 10.1038/s41598-017-09780-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/31/2017] [Indexed: 01/20/2023] Open
Abstract
Acetylcholinesterase inhibitors are approved drugs currently used for the treatment of Alzheimer's disease (AD) dementia. Basal forebrain cholinergic system (BFCS) atrophy is reported to precede both entorhinal cortex atrophy and memory impairment in AD, challenging the traditional model of the temporal sequence of topographical pathology associated with AD. We studied the effect of one-year Donepezil treatment on the rate of BFCS atrophy in prodromal AD patients using a double-blind, randomized, placebo-controlled trial of Donepezil (10 mg/day). Reduced annual BFCS rates of atrophy were found in the Donepezil group compared to the Placebo treated arm. Secondary analyses on BFCS subregions demonstrated the largest treatment effects in the Nucleus Basalis of Meynert (NbM) and the medial septum/diagonal band (Ch1/2). Donepezil administered at a prodromal stage of AD seems to substantially reduce the rate of atrophy of the BFCS nuclei with highest concentration of cholinergic neurons projecting to the cortex (NbM), hippocampus and entorhinal cortex (Ch1/2).
Collapse
|
88
|
Li H, Yang Q, Han X, Tan X, Qin J, Jin G. Low-dose DHA-induced astrocyte proliferation can be attenuated by insufficient expression of BLBP in vitro. Prostaglandins Other Lipid Mediat 2017; 134:114-122. [PMID: 28917610 DOI: 10.1016/j.prostaglandins.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/02/2017] [Accepted: 09/12/2017] [Indexed: 11/24/2022]
Abstract
Docosahexaenoic acid (DHA) is an n-3 long chain polyunsaturated fatty acid (PUFA) that is involved in a wide range of cellular processes in human cells. Brain lipid binding protein (BLBP) exhibits a high affinity for n-3 PUFAs, especially DHA, but the precise functional contributions of DHA and BLBP in astrocytes are not clear. We analyzed cell viability and the ratio of Ki67 positive cells after manipulating DHA and/or BLBP levels in cultured astrocytes, and found that low-dose DHA stimulated proliferation of astrocytes, whereas this proliferative effect could be attenuated by downregulation of BLBP. Moreover, we found that astrocyte proliferation was directly regulated by BLBP independently of DHA. Taken together, low-dose DHA-induced astrocyte proliferation was disturbed by insufficient BLBP; and besides acting as a fatty acid transporter, BLBP was also involved in the proliferation of astrocytes directly.
Collapse
Affiliation(s)
- Haoming Li
- Department of Anatomy, Institute of Neurobiology, Collaborative Innovation Center of Inflammatory Microenviroment, Medical School, Nantong University, Nantong 226001, China
| | - Qingqing Yang
- Xinglin College, Department of Medicine, Nantong University, Nantong 226001, China
| | - Xiao Han
- Department of Anatomy, Institute of Neurobiology, Collaborative Innovation Center of Inflammatory Microenviroment, Medical School, Nantong University, Nantong 226001, China
| | - Xuefeng Tan
- Department of Anatomy, Institute of Neurobiology, Collaborative Innovation Center of Inflammatory Microenviroment, Medical School, Nantong University, Nantong 226001, China
| | - Jianbing Qin
- Department of Anatomy, Institute of Neurobiology, Collaborative Innovation Center of Inflammatory Microenviroment, Medical School, Nantong University, Nantong 226001, China.
| | - Guohua Jin
- Department of Anatomy, Institute of Neurobiology, Collaborative Innovation Center of Inflammatory Microenviroment, Medical School, Nantong University, Nantong 226001, China.
| |
Collapse
|
89
|
Akiba C, Nakajima M, Miyajima M, Ogino I, Miura M, Inoue R, Nakamura E, Kanai F, Tada N, Kunichika M, Yoshida M, Nishimura K, Kondo A, Sugano H, Arai H. Leucine-rich α2-glycoprotein overexpression in the brain contributes to memory impairment. Neurobiol Aging 2017; 60:11-19. [PMID: 28917663 DOI: 10.1016/j.neurobiolaging.2017.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/28/2017] [Accepted: 08/15/2017] [Indexed: 12/19/2022]
Abstract
We previously reported increase in leucine-rich α2-glycoprotein (LRG) concentration in cerebrospinal fluid is associated with cognitive decline in humans. To investigate relationship between LRG expression in the brain and memory impairment, we analyzed transgenic mice overexpressing LRG in the brain (LRG-Tg) focusing on hippocampus. Immunostaining and Western blotting revealed age-related increase in LRG expression in hippocampal neurons in 8-, 24-, and 48-week-old controls and LRG-Tg. Y-maze and Morris water maze tests indicated retained spatial memory in 8- and 24-week-old LRG-Tg, while deteriorated in 48-week-old LRG-Tg compared with age-matched controls. Field excitatory postsynaptic potentials declined with age in LRG-Tg compared with controls at 8, 24, and 48 weeks. Paired-pulse ratio decreased with age in LRG-Tg, while increased in controls. As a result, long-term potentiation was retained in 8- and 24-week-old LRG-Tg, whereas diminished in 48-week-old LRG-Tg compared with age-matched controls. Electron microscopy observations revealed fewer synaptic vesicles and junctions in LRG-Tg compared with age-matched controls, which became significant with age. Hippocampal LRG overexpression contributes to synaptic dysfunction, which leads to memory impairment with advance of age.
Collapse
Affiliation(s)
- Chihiro Akiba
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masami Miura
- Neurophysiology Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Ritsuko Inoue
- Neurophysiology Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Disease Model Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fumio Kanai
- Laboratory of Disease Model Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Disease Model Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miyuki Kunichika
- Laboratory of Morpheme Analysis Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsutaka Yoshida
- Laboratory of Morpheme Analysis Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kinya Nishimura
- Neurophysiology Research Group, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan; Department of Anesthesiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
90
|
Hadad N, Levy R. Combination of EPA with Carotenoids and Polyphenol Synergistically Attenuated the Transformation of Microglia to M1 Phenotype Via Inhibition of NF-κB. Neuromolecular Med 2017; 19:436-451. [PMID: 28779377 DOI: 10.1007/s12017-017-8459-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
Microglia activation toward the M1 phenotype has been reported to contribute to the neurodegenerative processes and cognition alterations due to the release of pro-inflammatory mediators and cytokines. The aim of the present research was to assess the effectiveness of free fatty acids omega-3 preparations: eicosapentaenoic acid (EPA) or/and docosahexaenoic acid (DHA), carotenoids and phenolics combinations, in inhibiting the release of inflammatory mediators from activated microglia. Preincubation of BV-2 microglia cells with each of the FFAs omega-3 preparations in a range of 0.03-2 μM together with Lyc-O-mato® (0.1 μM), Carnosic acid (0.2 μM) with or without Lutein (0.2 μM), 1 h before addition of lipopolysaccharide (LPS) for 16 h caused a synergistic inhibition of nitric oxide (NO) production with a rank order of EPA > Ropufa (EPA/DHA 2/1) > Krill (EPA/DHA 1.23/1). The optimal inhibitory combinations of EPA (0.125 μM) with the phytonutrients caused a synergistic inhibition of prostaglandin E2 (PGE2) release, IL-6 secretion, superoxide and NO production and prevention of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) upregulation and elevated CD40 expression in microglia exposed to LPS or interferon-γ (IFN-γ), representing infection or inflammation, respectively. The presence of the combination caused a synergistic increase in the release of the anti-inflammatory cytokine IL-10. The inhibitory effects by the combinations of EPA with the phytonutrients were mediated by the inhibition of the redox-sensitive NF-κB activation and detected by its phosphorylated p-65 on serine 536 in microglia stimulated by either LPS or IFN-γ. In addition, phosphorylated CREB on serine 133 which was shown to be involved in the induction of iNOS was inhibited by the combinations in stimulated cells. In conclusion, the results suggest that low concentrations of EPA with the phytonutrients are very efficient in inhibiting the transformation of microglia to M1 phenotype and may prevent cognition deficit.
Collapse
Affiliation(s)
- Nurit Hadad
- Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Soroka University Medical Center and Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Rachel Levy
- Infectious Diseases Laboratory, Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Soroka University Medical Center and Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel.
| |
Collapse
|
91
|
Song J, Whitcomb DJ, Kim BC. The role of melatonin in the onset and progression of type 3 diabetes. Mol Brain 2017; 10:35. [PMID: 28764741 PMCID: PMC5539639 DOI: 10.1186/s13041-017-0315-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is defined by the excessive accumulation of toxic peptides, such as beta amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFT). The risk factors associated with AD include genetic mutations, aging, insulin resistance, and oxidative stress. To date, several studies that have demonstrated an association between AD and diabetes have revealed that the common risk factors include insulin resistance, sleep disturbances, blood brain barrier (BBB) disruption, and altered glucose homeostasis. Many researchers have discovered that there are mechanisms common to both diabetes and AD. AD that results from insulin resistance in the brain is termed “type 3 diabetes”. Melatonin synthesized by the pineal gland is known to contribute to circadian rhythms, insulin resistance, protection of the BBB, and cell survival mechanisms. Here, we review the relationship between melatonin and type 3 diabetes, and suggest that melatonin might regulate the risk factors for type 3 diabetes. We suggest that melatonin is crucial for attenuating the onset of type 3 diabetes by intervening in Aβ accumulation, insulin resistance, glucose metabolism, and BBB permeability.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Gwangju, 61469, South Korea
| | - Daniel J Whitcomb
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Healthy Sciences, University of Bristol, Whitson street, Bristol, BS1 3NY, UK
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, 61469, South Korea.
| |
Collapse
|
92
|
Choi JY, Hwang CJ, Lee HP, Kim HS, Han SB, Hong JT. Inhibitory effect of ethanol extract of Nannochloropsis oceanica on lipopolysaccharide-induced neuroinflammation, oxidative stress, amyloidogenesis and memory impairment. Oncotarget 2017; 8:45517-45530. [PMID: 28489589 PMCID: PMC5542205 DOI: 10.18632/oncotarget.17268] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and neuroinflammation is implicated in the pathogenesis and development of Alzheimer's disease (AD). Here, we investigated the suppressive possibility of ethanol extract of Nannochloropsis oceanica (N. oceanica) on memory deficiency along with the fundamental mechanisms in lipopolysaccharide (LPS)-treated mice model. Among several extracts of 32 marine microalgae, ethanol extract of N. oceanica showed the most significant inhibitory effect on nitric oxide (NO) generation, NF-κB activity and β-secretase activity in cultured BV-2 cells, neuronal cells and Raw 264.7 cells. Ethanol extract of N. oceanica (50, 100 mg/kg) also ameliorated LPS (250 μg/kg)-induced memory impairment. We also found that ethanol extract of N. oceanica inhibited the LPS-induced expression of iNOS and COX-2. Furthermore, the production of reactive oxygen species (ROS), malondialdehyde (MDA) level as well as glutathione (GSH) level was also decreased by treatment of ethanol extract of N.oceanica. The ethanol extract of N. oceanica also suppresses IκB degradation as well as p50 and p65 translocation into the nucleus in LPS-treated mice brain. Associated with the inhibitory effect on neuroinflammation and oxidative stress, ethanol extract of N. oceanica suppressed Aβ1-42 generation through down-regulation of APP and BACE1 expression in in vivo. These results suggest that ethanol extract of N. oceanica ameliorated memory impairment via anti-inflammatory, anti-oxidant and anti-amyloidogenic mechanisms.
Collapse
Affiliation(s)
- Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Hee Sik Kim
- Sustainable Bioresource Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseoung, Daejeon 305-806, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| |
Collapse
|
93
|
Effect of dietary supplementation with olive and sunflower oils on lipid profile and liver histology in rats fed high cholesterol diet. ASIAN PAC J TROP MED 2017; 10:539-543. [PMID: 28756916 DOI: 10.1016/j.apjtm.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/13/2017] [Accepted: 05/20/2017] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE To compare the effects of high-monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) against the metabolic disorders elicited by a high-cholesterol diet (HC) in rats. METHODS Using in vivo dietary manipulation, rats were fed with different diets containing 4% soybean oil (cholesterol free diet) and 1% HC containing 12% olive oil (HC + OO) enriched with MUFA and 12% sunflower oil (HC + SO) enriched with PUFA for 60 d. Serum lipid levels and hepatic steatosis were evaluated after the treatment period. RESULTS Comparatively, rats treated with HC + OO diet experienced a decrease in the serum LDL-C, VLDL-C and CT levels compared to those fed with HC + SO diet (P < 0.05). Otherwise, HC + OO provoked significant microvesicular steatosis situated in the hepatic acinar zone 1. CONCLUSIONS HC + OO diet has high absorption velocity in the acinar zone 1 of liver compared to the HC + SO diet. Based on this, the reduction of the LDL-C, VLDL-C and CT serum levels in the animals treated with HC + OO diet may have been caused by the delay in the FA release to the blood.
Collapse
|
94
|
Ammann EM, Pottala JV, Robinson JG, Espeland MA, Harris WS. Erythrocyte omega-3 fatty acids are inversely associated with incident dementia: Secondary analyses of longitudinal data from the Women's Health Initiative Memory Study (WHIMS). Prostaglandins Leukot Essent Fatty Acids 2017; 121:68-75. [PMID: 28651700 PMCID: PMC5564209 DOI: 10.1016/j.plefa.2017.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To assess whether red blood cell (RBC) docosahexaenoic acid and eicosapentaenoic acid (DHA+EPA) levels have a protective association with the risk of dementia in older women. METHODS RBC DHA+EPA levels were assessed at baseline, and cognitive status was evaluated annually in a cohort of 6706 women aged ≥65 years who participated in the Women's Health Initiative Memory Study (WHIMS). Cox regression was used to quantify the association between RBC DHA+EPA and the risk of probable dementia, independent of major dementia risk factors. RESULTS During a median follow-up period of 9.8 years, 587 incident cases of probable dementia were identified. After adjusting for demographic, clinical, and behavioral risk factors, a one standard deviation increase in DHA+EPA levels was associated with a significantly lower risk of dementia (HR = 0.92, 95% CI: 0.84, 1.00; p < 0.05). This effect estimate did not meaningfully change after further adjustment for baseline cognitive function and APOE genotype. For women with high DHA+EPA exposure (1SD above mean) compared to low exposure (1SD below mean), the adjusted 15-year absolute risk difference for dementia was 2.1% (95% CI: 0.2%, 4.0%). In secondary analyses, we also observed a protective association with longitudinal change in Modified Mini-Mental State (3MS) Exam scores, but no significant association with incident MCI, PD/MCI, or baseline 3MS scores. DISCUSSION Higher levels of DHA+EPA may help protect against the development of dementia. Results from prospective randomized controlled trials of DHA+EPA supplementation are needed to help clarify whether this association is causal.
Collapse
Affiliation(s)
- Eric M Ammann
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| | - James V Pottala
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jennifer G Robinson
- Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA; Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mark A Espeland
- Department of Biostatistical Services, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - William S Harris
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA; OmegaQuant Analytics LLC, Sioux Falls, SD, USA.
| |
Collapse
|
95
|
Yassine HN, Braskie MN, Mack WJ, Castor KJ, Fonteh AN, Schneider LS, Harrington MG, Chui HC. Association of Docosahexaenoic Acid Supplementation With Alzheimer Disease Stage in Apolipoprotein E ε4 Carriers: A Review. JAMA Neurol 2017; 74:339-347. [PMID: 28114437 DOI: 10.1001/jamaneurol.2016.4899] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Importance The apolipoprotein E ε4 (APOE4) allele identifies a unique population that is at significant risk for developing Alzheimer disease (AD). Docosahexaenoic acid (DHA) is an essential ω-3 fatty acid that is critical to the formation of neuronal synapses and membrane fluidity. Observational studies have associated ω-3 intake, including DHA, with a reduced risk for incident AD. In contrast, randomized clinical trials of ω-3 fatty acids have yielded mixed and inconsistent results. Interactions among DHA, APOE genotype, and stage of AD pathologic changes may explain the mixed results of DHA supplementation reported in the literature. Observations Although randomized clinical trials of ω-3 in symptomatic AD have had negative findings, several observational and clinical trials of ω-3 in the predementia stage of AD suggest that ω-3 supplementation may slow early memory decline in APOE4 carriers. Several mechanisms by which the APOE4 allele could alter the delivery of DHA to the brain may be amenable to DHA supplementation in predementia stages of AD. Evidence of accelerated DHA catabolism (eg, activation of phospholipases and oxidation pathways) could explain the lack of efficacy of ω-3 supplementation in AD dementia. The association of cognitive benefit with DHA supplementation in predementia but not AD dementia suggests that early ω-3 supplementation may reduce the risk for or delay the onset of AD symptoms in APOE4 carriers. Recent advances in brain imaging may help to identify the optimal timing for future DHA clinical trials. Conclusions and Relevance High-dose DHA supplementation in APOE4 carriers before the onset of AD dementia can be a promising approach to decrease the incidence of AD. Given the safety profile, availability, and affordability of DHA supplements, refining an ω-3 intervention in APOE4 carriers is warranted.
Collapse
Affiliation(s)
- Hussein N Yassine
- Division of Endocrinology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Katherine J Castor
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California
| | - Lon S Schneider
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles6Department of Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles
| | - Michael G Harrington
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, California
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
96
|
Abstract
PURPOSE OF REVIEW Alzheimer's disease is the most common cause of dementia. There are still no disease modifying treatments that can cure or slow disease progression. Recently, Alzheimer's disease researchers have attempted to improve early detection and diagnostic criteria for Alzheimer's disease, with the rationale that treatment of disease, or even prevention, may be more successful during the early preclinical stages of Alzheimer's disease when neurodegenerative damage is not as widespread. As the brain has a high lipid content, lipidomics may offer novel insights into the underlying pathogenesis of Alzheimer's disease. This review reports on recent developments in the relatively unexplored field of lipidomics in Alzheimer's disease, including novel biomarkers and pathomechanisms of Alzheimer's disease. RECENT FINDINGS Numerous biomarker panels involving phospholipids and sphingolipids have been proposed, indicating perturbed lipid metabolism in early stages of Alzheimer's disease. Future strategies targeting these metabolic changes through dietary supplementation could have therapeutic benefits in at-risk individuals. SUMMARY Dysregulated lipid metabolism could reflect pathological changes in synaptic function and neuronal membranes, leading to cognitive decline. However, extensive validation in large independent cohorts is required before lipid biomarkers can be used clinically to assess Alzheimer's disease risk and progression.
Collapse
|
97
|
Affiliation(s)
- Silvia Duong
- Herzl Family Medicine Centre (Duong), Jewish General Hospital, Montreal, Quebec
| | - Tejal Patel
- Herzl Family Medicine Centre (Duong), Jewish General Hospital, Montreal, Quebec
| | - Feng Chang
- Herzl Family Medicine Centre (Duong), Jewish General Hospital, Montreal, Quebec
| |
Collapse
|
98
|
Association of Nutrients with Biomarkers of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 987:257-268. [PMID: 28971464 DOI: 10.1007/978-3-319-57379-3_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Prospective cohort studies, cross-sectional surveys, autopsy studies and intervention clinical trials that investigated the association between nutrients and Alzheimer's disease (AD) have been reviewed. To estimate the relationship between specific nutrient intake and the risk of AD, Cochrane Library, PubMed, EMBASE, and the Fisher Center for Alzheimer's Research Foundation were searched for this purpose. Most published observational studies found an inverse relationship between vitamins, n-3 fatty acids and AD. The majority of intervention studies support the beneficial effect of combined vitamins and n-3 fatty acids providing them in the early stages of the disease. Only vitamin E and Zn supplementation failed to show any significant difference on the study population. On the other hand, high dietary intake of saturated fat and brain metal accumulation were positively associated with the incidence of AD.
Collapse
|
99
|
Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics (Basel) 2016; 7:diagnostics7010001. [PMID: 28025506 PMCID: PMC5373010 DOI: 10.3390/diagnostics7010001] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/18/2016] [Accepted: 12/14/2016] [Indexed: 02/07/2023] Open
Abstract
Fatty acids, as structural components of membranes and inflammation/anti-inflammatory mediators, have well-known protective and regulatory effects. They are studied as biomarkers of pathological conditions, as well as saturated and unsaturated hydrophobic moieties in membrane phospholipids that contribute to homeostasis and physiological functions. Lifestyle, nutrition, metabolism and stress—with an excess of radical and oxidative processes—cause fatty acid changes that are examined in the human body using blood lipids. Fatty acid-based membrane lipidomics represents a powerful diagnostic tool for assessing the quantity and quality of fatty acid constituents and also for the follow-up of the membrane fatty acid remodeling that is associated with different physiological and pathological conditions. This review focuses on fatty acid biomarkers with two examples of recent lipidomic research and health applications: (i) monounsaturated fatty acids and the analytical challenge offered by hexadecenoic fatty acids (C16:1); and (ii) the cohort of 10 fatty acids in phospholipids of red blood cell membranes and its connections to metabolic and nutritional status in healthy and diseased subjects.
Collapse
|
100
|
Colin J, Gregory-Pauron L, Lanhers MC, Claudepierre T, Corbier C, Yen FT, Malaplate-Armand C, Oster T. Membrane raft domains and remodeling in aging brain. Biochimie 2016; 130:178-187. [DOI: 10.1016/j.biochi.2016.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/31/2016] [Indexed: 12/21/2022]
|